Appendix G-1 Phase I Environmental Site Assessment

PHASE I ENVIRONMENTAL SITE ASSESSMENT REPORT

2311 North Hollywood Way

Burbank, California 91505

Report Date: May 18, 2020 Partner Project No. 20-279443.1

Prepared for:

LaTerra Development, LLC 1880 Century Park East, Suite 1017 Los Angeles, California 90067

May 18, 2020

Mr. Justin Fleming LaTerra Development, LLC 1880 Century Park East, Suite 1017 Los Angeles, California 90067

Subject: Phase I Environmental Site Assessment

2311 North Hollywood Way Burbank, California 91505 Partner Project No. 20-279443.1

Dear Mr. Fleming:

Partner Engineering and Science, Inc. (Partner) is pleased to provide the results of the *Phase I Environmental Site Assessment* (Phase I ESA) report of the abovementioned address (the "subject property"). This assessment was performed in conformance with the scope and limitations as detailed in the ASTM Practice E1527-13 Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process.

This assessment included a site reconnaissance as well as research and interviews with representatives of the public, property ownership, site manager, and regulatory agencies. An assessment was made, conclusions stated, and recommendations outlined.

We appreciate the opportunity to provide environmental services to you. If you have any questions concerning this report, or if we can assist you in any other matter, please contact me at (310) 765-7243.

Sincerely,

Jenny Redlin

Relationship Manager

72.

EXECUTIVE SUMMARY

Partner Engineering and Science, Inc. (Partner) has performed a Phase I Environmental Site Assessment (ESA) in accordance with the scope of work and limitations of ASTM Standard Practice E1527-13, the Environmental Protection Agency Standards and Practices for All Appropriate Inquiries (AAI) (40 CFR Part 312) and set forth by LaTerra Development, LLC for the property located at 2311 North Hollywood Way in Burbank, Los Angeles County, California (the "subject property"). The Phase I Environmental Site Assessment is designed to provide LaTerra Development, LLC with an assessment concerning environmental conditions (limited to those issues identified in the report) as they exist at the subject property.

Property Description

The subject property is located on the northwestern corner of North Hollywood Way and Valhalla Drive within a mixed commercial and industrial area of Los Angeles County. Please refer to the table below for further description of the subject property:

Subject Property Data

Address: 2311 North Hollywood Way, Burbank, California

Property Use: Commercial – Retail

Land Acreage (Ac):10.43 AcNumber of Buildings:ThreeNumber of Floors:One

Gross Building Area (SF): 104,404 SF (Total)

Date of Construction: 1962

Assessor's Parcel Number (APN): 2463-001-019

Type of Construction: Concrete-Tilt-Up, Slab-on-Grade

Current Tenants: Fry's Electronics

Site Assessment Performed By: Louis Mowers of Partner

Site Assessment Conducted On: April 16, 2020

The subject property is currently occupied by Fry's Electronics for commercial storage and retail use. Onsite operations consist of electronic and miscellaneous product sales, storage, distribution, online pick-up, automotive stereo installation, delivery reception, and typical management and maintenance practices. The subject property consists of three one-story buildings. The main commercial building is located on the southern section of the property with the additional two buildings, one used for an abandoned HVAC system housing, and the other used as a currently non-operational automotive stereo installation garage, located on the western side of the primary structure. In addition to the current structures, the subject property is also improved with asphalt paved parking areas, concrete walkways, a caged delivery center, and associated landscaping.

Based on review of historical sources, the subject property was formerly undeveloped land from as early as 1894; and developed as a dairy with associated residential structures and a store between circa-1928 and the early-1960s. By 1962, the subject property was redeveloped with the current commercial structure on the southern portion and Lockheed Martin (referred to as Plant A-1 South) occupied the property from

1969 to December 1995 for use as offices, a vehicle maintenance shop and parking. Additionally, a gasoline service station/automotive repair operation was developed on the northeastern portion of the subject property in 1962, which was acquired by Lockheed Martin in the mid-1960s and utilized as a gasoline service station/automotive repair operation for Lockheed fleet vehicles until closure in 1992. The subject property has been occupied by Fry's Electronics for retail use since at least 1995. Significant tenants at the subject property include Shoman Dairy (1950s), Lockheed Martin (1960s-1995), Unimart (1962-1986), and Fry's Electronics (1995-Present).

The immediately surrounding properties consist of Burbank Airport Rent-a-Car center to the north across Vanowen Street and Empire Avenue; multi-tenant commercial/industrial to the south across Valhalla Drive; Army National Guard to the southwest across Valhalla Dive; Public Storage across the intersection of North Hollywood Way and Valhalla Drive; Logix Smarter Banking to the east across North Hollywood Way; and Motion Picture Costum, Midnight Oil Agency, and ARRI Inc. to the west.

According to the Regional Water Quality Control Board (RWQCB) online database GeoTracker, a previous subsurface investigation conducted on the subject property (1995) indicates the depth to groundwater in the vicinity of the subject property is approximately 156 feet below ground surface (bgs) and groundwater flow is inferred to be toward the southeast.

Findings

A recognized environmental condition (REC) refers to the presence or likely presence of any hazardous substances or petroleum products in, on, or at a property: due to release to the environment; under conditions indicative of a release to the environment; or under conditions that pose a material threat of a future release to the environment. The following was identified during the course of this assessment:

• The subject property is located within the boundaries of the Burbank Operable Unit (BOU) of the San Fernando Valley North Hollywood National Priorities List (NPL) site, an area of known groundwater contamination. Constituents of Concern (COCs) that have been identified include semi-volatile organic compounds (SVOCs), Volatile Organic Compounds (VOCs) and chromium. The subject property was one of many sites investigated by RWQCB and USEPA as a potential responsible party (PRP) of the groundwater contamination. On July 6, 1995 a letter was issued to Lockheed by RWQCB indicating the subject property would no longer be under investigation for potential groundwater contamination for VOCs and the subject property (former Lockheed Plant A-1 South) and current ownership (Gort Limited) were noted to be excluded from the requirements of the Cleanup and Abatement Order No. 87-161, which is associated with the cleanup of several Lockheed plants in the Burbank area.

Former site occupant, Lockheed Martin, monitors groundwater within the BOU to comply with the provisions of a USEPA Consent Decree (#91-4527-MRP) filed March 1992, and the CRWQCB Cleanup and Abatement Order (#87-161) dated December 1987. As part of the NPL investigation, two groundwater monitoring wells, A-1-CW04 and A-1-CW09, were installed in the north and northeast portion of the subject property, respectively. A third well, monitoring well A-1-CW05 was co-located with monitoring well A-1-CW04 at a later date. Partner contacted Ms. Anita Fang

with CRWQCD regarding the most recent groundwater monitoring results on file with the agency for the BOU. A review of an Annual Groundwater Monitoring Report, Second Quarter 2017 Burbank Operable Unit, provided by Ms. Fang indicates 1,2,3 Trichloropropane (1,2,3 TCP), 1,4 Dioxane, various other VOCs (including Tetrachloroethylene (PCE) and Trichloroethene (TCE), hexavalent chromium and chromium were detected in the onsite wells at levels above the reporting limit (RL), with an increasing trend of 1,2,3 TCP concentrations. Chromium was detected in well A-1-CW04 at 0.88 ug/L which exceeds the Maximum Contaminant Level (MCL).

Lockheed Martin has conducted groundwater monitoring of the onsite wells since approximately 1996 and has been identified as a potential contributor to the regional groundwater contamination. As discussed, the current property owner (Gort, Ltd) has not been identified as a potential responsible party (PRP) and it is unlikely the subject property owner would be responsible for future remediation activities since NFA was issued in 1995. Furthermore, based on the depth to groundwater, review of the most recent groundwater analytical results, and commercial usage of the subject property, a vapor intrusion condition (VIC) is unlikely to exist at the subject property. The location of the subject property within the Burbank Operable Unit of the San Fernando Valley NPL investigation, the identification of a former site occupant as a potential contributor to the regional impact, and the reported VOC and chromium groundwater contamination identified in onsite wells is considered a REC for the subject property; however, based on the lack of an apparent VIC and issuance of an NFA letter with regards to the former subject property operations, Partner recommends no further investigation at this time with regards to this regional groundwater contamination case.

A controlled recognized environmental condition (CREC) refers to a REC resulting from a past release of hazardous substances or petroleum products that has been addressed to the satisfaction of the applicable regulatory authority, with hazardous substances or petroleum products allowed to remain in place subject to the implementation of required controls. The following was identified during the course of this assessment:

• Based on review of historical sources, by 1962, the subject property was redeveloped with the current commercial structure on the southern portion and Lockheed Martin (referred to as Plant A-1 South) occupied the property from 1969 to December 1995 for use as offices, a vehicle maintenance shop and parking. Additionally, a gasoline service station/automotive repair operation was developed on the northeastern portion of the subject property in 1962, which was acquired by Lockheed Martin in the mid-1960s and utilized as a gasoline service station/automotive repair operation for Lockheed fleet vehicles until closure in 1992. The subject property has been occupied by Fry's Electronics for retail use since at least 1995.

The subject property at 2311 North Hollywood Way was identified in the regulatory database report under the names Lockheed Martin, Gort Limited and Fry's Electronics. Based on information provided in a previous Phase I ESA report (PSI, 1998) and from a file review, this former operation included four (4) 12,000-gallon gasoline/diesel/tetrachloroethylene (PCE) USTs, one 550-gallon waste oil UST, one concrete 1,600-gallon clarifier and seven (7) dispensers. The

UST containing PCE served as a central supply point for Lockheed's other plants in the Burbank area. The former gasoline service station/automotive repair operation was demolished in 1992 and the former underground storage tank (USTs) and clarifier were removed as part of the demolition. Additionally, other features including hydraulic lifts and storm drains were removed during this demolition under the supervision of the Burbank Fire Department. Following removal of the USTs and other associated features of potential concern, a total of twenty-one soil samples were collected from the excavated areas. According to the analytical results, subsurface soil was found to be impacted with PCE, diesel fuel and hydraulic oil.

Between 1992 and 1995, seven (7) subsurface investigations were conducted at the subject property in relation to this reported release to the subsurface as a result of the former operations, and a total of 426 soil samples were collected from the former service station during this period. The 1992 subsurface investigation included 78 soil borings to depths of 10 to 40 feet bgs, and soil samples collected from varying intervals were analyzed for VOCs, PCBs, and TPH. According to the analytical results, TPH impacts were generally confined to the upper 10 feet of soil. Elevated VOC impacts were also generally limited to the upper 10 feet of soil, with one boring noting PCE impacts extending to 25 feet bgs. In 1993, a Soil Gas Survey was conducted on the subject property to further evaluate the extent of the subsurface impacts. A total of 181 soil-gas samples were collected from 159 locations across the subject property at depths ranging from 5 to 25 feet bgs, and the samples were analyzed for VOCs. According to the analytical results, twelve of the sample collected from the 5-foot depth contained PCE in excess of 0.1 mg/L, with one sample exceeding 1.0 mg/L. None of the samples collected from the 20-foot depth contained concentrations of PCE above 1.0 mg/L. Additional site characterization was conducted in 1994/1995 which included additional soil borings and sampling and additional soil vapor sampling. A total of 18 of the 426 soil samples contained concentrations of PCE above 1 mg/kg.

Based on review of the Final Soil Remediation Report dated May 22, 1995 by Lockheed Martin Corporation, approximately 1,380 tons of PCE- and diesel/oil-impacted soil was excavated and removed from the subject property. Following removal, a total of 109 confirmation soil samples were collected from the base and sidewalls of the excavation and analyzed for VOCs, TPH, and lead. According to the analytical results, the confirmation soil samples all contained less than 150 ug/kg of PCE. As such, the excavations were backfilled with approved clean fill, and a request for closure was submitted with the report. Based on review of the 1995 final soil remediation report, in a letter dated July 5, 1995, the California Regional Water Quality Control Board (RWQCB) issued a No Further Action status to the subject property and indicated the subject property had been remediated in accordance with Cleanup and Abatement Order No. 87-161. As such, the subject property (former Lockheed Plant A-1 South) and current ownership (Gort Limited) were noted to be excluded from the requirements of the Cleanup and Abatement Order No. 87-161, which is associated with the cleanup of several Lockheed plants in the Burbank area. Based on the regulatory closure with residual PCE-impacted soil left in place, the historical usage of the subject property and associated closed release case are considered a CREC for the subject property. As such, prior to any redevelopment activities and due to the presence of residual PCE-impacted soil

in the subsurface, Partner recommends a soil vapor survey be conducted to evaluate potential vapor intrusion issues for any future onsite buildings. Additionally, if the redevelopment plan includes subterranean levels, Partner recommends implementing a Soil Management Plan (SMP).

A historical recognized environmental condition (HREC) refers to a past release of any hazardous substances or petroleum products that has occurred in connection with the property and has been addressed to the satisfaction of the applicable regulatory authority or meeting unrestricted use criteria established by a regulatory authority, without subjecting the property to any required controls. The following was identified during the course of this assessment:

• Partner did not identify any HRECs during the course of this assessment.

An *environmental issue* refers to environmental concerns identified by Partner, which do not qualify as RECs; however, warrant further discussion. The following was identified during the course of this assessment:

 Due to the age of the subject property buildings, there is a potential that asbestos-containing material (ACM) and/or lead-based paint (LBP) are present. Readily visible suspect ACMs and painted surfaces were observed in good condition. The identified suspect ACMs and LBPs would need to be sampled to confirm the presence or absence of asbestos or lead prior to any renovation or demolition activities to prevent potential exposure to workers and/or building occupants.

Conclusions, Opinions and Recommendations

Partner has performed a Phase I Environmental Site Assessment in conformance with the scope and limitations of ASTM Practice E1527-13 of 2311 North Hollywood Way in Burbank, Los Angeles County, California (the "subject property"). Any exceptions to, or deletions from, this practice are described in Section 1.5 of this report.

This assessment has revealed evidence of a REC, CREC and environmental issue in connection with the subject property. Based on the conclusions of this assessment, Partner recommends the following:

- Prior to any redevelopment activities and due to the presence of residual PCE-impacted soil in the subsurface, Partner recommends a soil vapor survey be conducted to evaluate potential vapor intrusion issues for any future onsite buildings. Additionally, if the redevelopment plan includes subterranean levels, Partner recommends implementing a Soil Management Plan (SMP).
- An Operations and Maintenance (O&M) Program should be implemented in order to safely manage the suspect ACMs and LBP located at the subject property.

TABLE OF CONTENTS

1.0	INTRODUCTION	1
1.1	Purpose	1
1.2	Scope of Work	1
1.3	Limitations	2
1.4	User Reliance	2
1.5	Limiting Conditions	3
2.0	SITE DESCRIPTION	
2.1	Site Location and Legal Description	
2.2	Current Property Use	
2.3	Current Use of Adjacent Properties	
2.4	Physical Setting Sources	
2	2.4.1 Topography	
2	2.4.2 Hydrology	5
2	2.4.3 Geology/Soils	5
2	2.4.4 Flood Zone Information	6
3.0	HISTORICAL INFORMATION	
3.1	Aerial Photograph Review	10
3.2	Fire Insurance Maps	12
3.3	City Directories	13
3.4	Historical Topographic Maps	15
4.0	REGULATORY RECORDS REVIEW	17
4.1	Regulatory Agencies	17
	1.1.1 State Department	17
4	1.1.2 Fire Department	17
4	4.1.3 Air Pollution Control Agency	
4	1.1.4 Regional Water Quality Agency	18
4	1.1.5 Department of Toxic Substances Control	
4	1.1.6 Building Department	18
	1.1.7 Planning Department	
	1.1.8 Oil & Gas Exploration	
4	1.1.9 Assessor's Office	
4.2	11	
	1.2.1 Regulatory Database Summary	
	1.2.2 Subject Property Listings	
	4.2.3 Adjacent Property Listings	
4	1.2.4 Sites of Concern Listings	25
5.0	USER PROVIDED INFORMATION AND INTERVIEWS	28
5.1	Interviews	
	5.1.1 Interview with Owner	
	5.1.2 Interview with Report User	
_	5.1.3 Interview with Key Site Manager	
5	5.1.4 Interviews with Past Owners, Operators and Occupants	29

5	5.1.5	Interview with Others	29
5.2		r Provided Information	
5	5.2.1	Title Records, Environmental Liens, and AULs	29
5	5.2.2	Specialized Knowledge	29
5	5.2.3	Actual Knowledge of the User	
5	5.2.4	Valuation Reduction for Environmental Issues	30
5	5.2.5	Commonly Known or Reasonably Ascertainable Information	30
5	5.2.6	Previous Reports and Other Provided Documentation	30
6.0	SITE	RECONNAISSANCE	32
6.1	Ger	neral Site Characteristics	32
6.2		ential Environmental Hazards	
6.3	Nor	n-ASTM Services	34
6	5.3.1	Asbestos-Containing Materials (ACMs)	34
6	5.3.2	Lead-Based Paint (LBP)	
6	5.3.3	Radon	36
6	5.3.4	Lead in Drinking Water	36
6	5.3.5	Mold	36
6.4	Adj	acent Property Reconnaissance	37
7.0	FIND	INGS AND CONCLUSIONS	38
8.0	SIGN	ATURES OF ENVIRONMENTAL PROFESSIONALS	42
9.0	RFFF	RENCES	43

Figures

Figure 1 Site Location Map

Figure 2 Site Plan

Figure 3 Topographic Map

Appendices

Appendix A Site Photographs

Appendix B Historical/Regulatory Documentation

Appendix C Regulatory Database Report

Appendix D Qualifications

1.0 INTRODUCTION

Partner Engineering and Science, Inc. (Partner) has performed a Phase I Environmental Site Assessment (ESA) in conformance with the scope and limitations of ASTM Standard Practice E1527-13 and the Environmental Protection Agency Standards and Practices for All Appropriate Inquiries (AAI) (40 CFR Part 312) for the property located at 2311 North Hollywood Way in Burbank, Los Angeles County, California (the "subject property"). Any exceptions to, or deletions from, this scope of work are described in the report.

1.1 Purpose

The purpose of this ESA is to identify existing or potential Recognized Environmental Conditions (as defined by ASTM Standard E1527-13) affecting the subject property that: 1) constitute or result in a material violation or a potential material violation of any applicable environmental law; 2) impose any material constraints on the operation of the subject property or require a material change in the use thereof; 3) require clean-up, remedial action or other response with respect to Hazardous Substances or Petroleum Products on or affecting the subject property under any applicable environmental law; 4) may affect the value of the subject property; and 5) may require specific actions to be performed with regard to such conditions and circumstances. The information contained in the ESA Report will be used by Client to: 1) evaluate its legal and financial liabilities for transactions related to foreclosure, purchase, sale, loan origination, loan workout or seller financing; 2) evaluate the subject property's overall development potential, the associated market value and the impact of applicable laws that restrict financial and other types of assistance for the future development of the subject property; and/or 3) determine whether specific actions are required to be performed prior to the foreclosure, purchase, sale, loan origination, loan workout or seller financing of the subject property.

This ESA was performed to permit the *User* to satisfy one of the requirements to qualify for the innocent landowner, contiguous property owner, or bona fide prospective purchaser limitations on scope of Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) (42 U.S.C. §9601) liability (hereinafter, the "landowner liability protections," or "LLPs"). ASTM Standard E1527-13 constitutes "all appropriate inquiry into the previous ownership and uses of the property consistent with good commercial or customary practice" as defined at 42 U.S.C. §9601(35)(B).

1.2 Scope of Work

The scope of work for this ESA is in accordance with the requirements of ASTM Standard E1527-13. This assessment included: 1) a property and adjacent site reconnaissance; 2) interviews with key personnel; 3) a review of historical sources; 4) a review of regulatory agency records; and 5) a review of a regulatory database report provided by a third-party vendor. Partner contacted local agencies, such as environmental health departments, fire departments and building departments in order to determine any current and/or former hazardous substances usage, storage and/or releases of hazardous substances on the subject property. Additionally, Partner researched information on the presence of activity and use limitations (AULs) at these agencies. As defined by ASTM E1527-13, AULs are the legal or physical restrictions or limitations on the use of, or access to, a site or facility: 1) to reduce or eliminate potential

exposure to hazardous substances or petroleum products in the soil or groundwater on the subject property; or 2) to prevent activities that could interfere with the effectiveness of a response action, in order to ensure maintenance of a condition of no significant risk to public health or the environment. These legal or physical restrictions, which may include institutional and/or engineering controls (IC/ECs), are intended to prevent adverse impacts to individuals or populations that may be exposed to hazardous substances and petroleum products in the soil or groundwater on the property.

If requested by Client, this report may also include the identification, discussion of, and/or limited sampling of asbestos-containing materials (ACMs), lead-based paint (LBP), mold, and/or radon.

1.3 Limitations

Partner warrants that the findings and conclusions contained herein were accomplished in accordance with the methodologies set forth in the Scope of Work. These methodologies are described as representing good commercial and customary practice for conducting an ESA of a property for the purpose of identifying recognized environmental conditions. There is a possibility that even with the proper application of these methodologies there may exist on the subject property conditions that could not be identified within the scope of the assessment or which were not reasonably identifiable from the available information. Partner believes that the information obtained from the record review and the interviews concerning the subject property is reliable. However, Partner cannot and does not warrant or guarantee that the information provided by these other sources is accurate or complete. The conclusions and findings set forth in this report are strictly limited in time and scope to the date of the evaluations. The conclusions presented in the report are based solely on the services described therein, and not on scientific tasks or procedures beyond the scope of agreed-upon services or the time and budgeting restraints imposed by the Client. No other warranties are implied or expressed.

Some of the information provided in this report is based upon personal interviews, and research of available documents, records, and maps held by the appropriate government and private agencies. This report is subject to the limitations of historical documentation, availability, and accuracy of pertinent records, and the personal recollections of those persons contacted.

This practice does not address requirements of any state or local laws or of any federal laws other than the all appropriate inquiry provisions of the LLPs. Further, this report does not intend to address all of the safety concerns, if any, associated with the subject property.

Environmental concerns, which are beyond the scope of a Phase I ESA as defined by ASTM include the following: ACMs, LBP, radon, and lead in drinking water. These issues may affect environmental risk at the subject property and may warrant discussion and/or assessment; however, are considered non-scope issues. If specifically requested by the Client, these non-scope issues are discussed in Section 6.3.

1.4 User Reliance

LaTerra Development, LLC engaged Partner to perform this assessment in accordance with an agreement governing the nature, scope and purpose of the work as well as other matters critical to the engagement. All reports, both verbal and written, are for the sole use and benefit of LaTerra Development, LLC. Either

verbally or in writing, third parties may come into possession of this report or all or part of the information generated as a result of this work. In the absence of a written agreement with Partner granting such rights, no third parties shall have rights of recourse or recovery whatsoever under any course of action against Partner, its officers, employees, vendors, successors or assigns. Any such unauthorized user shall be responsible to protect, indemnify and hold Partner, Client and their respective officers, employees, vendors, successors and assigns harmless from any and all claims, damages, losses, liabilities, expenses (including reasonable attorneys' fees) and costs attributable to such Use. Unauthorized use of this report shall constitute acceptance of and commitment to these responsibilities, which shall be irrevocable and shall apply regardless of the cause of action or legal theory pled or asserted. Additional legal penalties may apply.

1.5 Limiting Conditions

The findings and conclusions contain all of the limitations inherent in these methodologies that are referred to in ASTM E1527-13.

Specific limitations and exceptions to this ESA are more specifically set forth below:

- Interviews with past owners, operators and occupants were not reasonably ascertainable and thus constitute a data gap. Based on information obtained from other historical sources (as discussed in Section 3.0), this data gap is not expected to alter the findings of this assessment.
- Partner requested information relative to deed restrictions and environmental liens, a title search, and completion of a pre-survey questionnaire from the Report User. This information was not provided at the time of the assessment. Based on information obtained from other historical sources (as discussed in Section 3.0), this data gap is not expected to alter the findings of this assessment.
- Partner was unable to determine the property use at 5-year intervals, which constitutes a data gap. Except for property tax files and recorded land title records, which were not considered to be sufficiently useful, Partner reviewed all standard historical sources and conducted appropriate interviews.

2.0 SITE DESCRIPTION

2.1 Site Location and Legal Description

The subject property at 2311 North Hollywood Way in Burbank, California is located on the northwestern corner of North Hollywood way and Valhalla Drive. According to the Los Angeles County Assessor, the subject property is legally described as "P M 269-99-100 LOT 1", and ownership is currently vested in GORT Limited since 1995.

Please refer to Figure 1: Site Location Map, Figure 2: Site Plan, Figure 3: Topographic Map, and Appendix A: Site Photographs for the location and site characteristics of the subject property.

2.2 Current Property Use

The subject property is currently occupied by Fry's Electronics for commercial storage and retail use. Onsite operations consist of electronic and miscellaneous product sales, storage, distribution, online pickup, automotive stereo installation, delivery reception, and typical management and maintenance practices. The subject property consists of three one-story buildings. The main commercial building is located on the southern section of the property with the additional two buildings, one used for an abandoned HVAC system housing, and the other used as a currently non-operational automotive stereo installation garage, located on the western side of the primary structure. In addition to the current structures, the subject property is also improved with asphalt paved parking areas, concrete walkways, a caged delivery center, and associated landscaping.

The subject property is designated C-3 for Commercial General Business development by the City of Burbank.

The subject property was identified as a Resource Conservation Recovery Act (RCRA) site, Hazardous Waste Manifest Data (HAZNET) and Hazardous Waste Tracking Systems (HWTS) site, Clandestine Drug Lab (CDL) and Enforcement Action (EDL) site, CalEPA Hazardous Waste (CERS HAZ WASTE) site, Underground Storage Tank (SWEEPS UST) and Facility Inventory Database UST (FID UST) site, and Well Investigation Program (WIP) site in the regulatory database report, as further discussed in Section 4.2.

2.3 Current Use of Adjacent Properties

The subject property is located within a mixed commercial and industrial area of Los Angeles County. During the vicinity reconnaissance, Partner observed the following land use on properties in the immediate vicinity of the subject property:

Immediately Surrounding Properties

North: Vanowen Street and Empire Avenue beyond which is Burbank Airport Rent-a-Car center

(2501 North Hollywood Way)

South: Valhalla Drive beyond which is multi-tenant commercial/industrial (3520 Valhalla Drive and

2243 North Hollywood Way)

Southwest Valhalla Drive beyond which is the Army National Guard (3800 Valhalla Drive)

Southeast The intersection of North Hollywood Way and Valhalla Drive beyond which is Public

Storage (2240 North Hollywood Way)

Immediately Surrounding Properties

East: North Hollywood Way beyond which is Logix Smarter Banking (2328 North Hollywood

Way)

West: Motion Picture Costume, Midnight Oil Agency, and ARRI Inc. (3811 Valhalla Drive, and 3800

and 3700 Vanowen Street)

Several adjacent properties were identified in the regulatory database report, as further discussed below in Section 4.2.

2.4 Physical Setting Sources

2.4.1 Topography

The United States Geological Survey (USGS) *Burbank, California* Quadrangle 7.5-minute series topographic map was reviewed for this ESA. According to the contour lines on the topographic map, the subject property is located at approximately 660 feet above mean sea level (MSL). The contour lines in the area of the subject property indicate the area is sloping gently toward the south-southeast. The subject property is depicted on the 2012 map as shaded indicating development,

A copy of the most recent topographic map is included as Figure 3 of this report.

2.4.2 Hydrology

According to topographic map interpretation, the direction of groundwater flow in the vicinity of the subject property is inferred to be toward the southeast. The nearest surface water in the vicinity of the subject property is the Santa Ana Canal located approximately 300-feet to the northeast of the subject property. No settling ponds, lagoons, surface impoundments, wetlands or natural catch basins were observed at the subject property during this assessment.

According to available information, a public water system operated by the Burbank Department of Public Works and Engineering serves the subject property vicinity. The sources of public water for Burbank are surface water purchased from the Metropolitan Water District (MWD) that receives its water from the Northern Sierra Mountains in California and the Colorado River.

According to the Regional Water Quality Control Board (RWQCB) online database GeoTracker, a previous subsurface investigation conducted on the subject property (1995) indicates the depth to groundwater in the vicinity of the subject property is approximately 156 feet below ground surface (bgs).

2.4.3 Geology/Soils

The subject property is situated within the southeastern portion of the San Fernando Valley in the Transverse Ranges physiographic province of the State of California. The San Fernando Valley is a sedimentary basin located between the Verdugo and San Gabriel Mountains to the northeast, Santa Monica Mountains to the south, Santa Susan Mountains to the north, and the Simi Hills to the west. The site vicinity is underlain by alluvial deposits of Holocene and Pleistocene age, comprised of unconsolidated to weakly lithified valley-fill sediments deposited as coalescing alluvial fans along the surrounding mountain fronts. The soils in the southeastern portion of the Valley are mainly gravel and

sand with localized lenses of clay and silt overlying sandstones and conglomerates of the Tertiary-aged Topanga Formation which overlies a basement complex of granitic and metamorphic rocks.

Soils encountered during onsite assessments in the 1990s were described as silty sand, sand, and sand with gravel to 85 feet bgs. Fine sands and lenses of silty sand were encountered at 10 and 30 feet bgs.

2.4.4 Flood Zone Information

Partner performed a review of the Flood Insurance Rate Map, published by the Federal Emergency Management Agency. According to Community Panel Number 06037C1328F, dated September 26, 2008, the subject property appears to be located in Zone X, an area located outside of the 100-year and 500-year flood plains.

3.0 HISTORICAL INFORMATION

Partner obtained historical use information about the subject property from a variety of sources. A chronological listing of the historical data found is summarized in the table below:

Historical Use Information					
Period/Date	Source	Description/Use			
1894-1902	Topographic Maps	Undeveloped land			
1928-circa	Aerial Photographs, City Directories, Sanborn	Developed with a Dairy			
1962	Maps, Topographic Maps				
Circa 1966-	Aerial Photographs, City Directories, Sanborn	Developed with a Store			
1962	Maps, Topographic Maps				
1962-1992	Aerial Photographs, City Directories, Sanborn	Commercial - Used as Administrative			
	Maps, Topographic Maps	Offices, Gas Station and Maintenance			
1995-Present	Aerial Photographs, City Directories, Sanborn	Used as an Electronics Store			
	Maps, Topographic Maps				

Based on review of historical sources, the subject property was formerly undeveloped land from as early as 1894; and developed as a dairy with associated residential structures and a store between circa-1928 and the early-1960s. By 1962, the subject property was redeveloped with the current commercial structure on the southern portion and Lockheed Martin (referred to as Plant A-1 South) occupied the property from 1969 to December 1995 for use as offices, a vehicle maintenance shop and parking. Additionally, a gasoline service station/automotive repair operation was developed on the northeastern portion of the subject property in 1962, which was acquired by Lockheed Martin in the mid-1960s and utilized as a gasoline service station/automotive repair operation for Lockheed fleet vehicles until closure in 1992. The subject property has been occupied by Fry's Electronics for retail use since at least 1995. Significant tenants at the subject property include Shoman Dairy (1950s), Lockheed Martin (1960s-1995), Unimart (1962-1986), and Fry's Electronics (1995-Present). Potential environmental concerns were identified in association with the USTs formerly located on the subject property, and a former occupied identified as a potentially responsible party (PRP) of known regional groundwater contamination as further discussed below and in Section 4.2.

• Based on review of historical sources, by 1962, the subject property was redeveloped with the current commercial structure on the southern portion and Lockheed Martin (referred to as Plant A-1 South) occupied the property from 1969 to December 1995 for use as offices, a vehicle maintenance shop and parking. Additionally, a gasoline service station/automotive repair operation was developed on the northeastern portion of the subject property in 1962, which was acquired by Lockheed Martin in the mid-1960s and utilized as a gasoline service station/automotive repair operation for Lockheed fleet vehicles until closure in 1992. The subject property has been occupied by Fry's Electronics for retail use since at least 1995.

The subject property at 2311 North Hollywood Way was identified in the regulatory database report under the names Lockheed Martin, Gort Limited and Fry's Electronics. Based on information provided in a previous Phase I ESA report (PSI, 1998) and from a file review, this former operation included four (4) 12,000-gallon gasoline/diesel/tetrachloroethylene (PCE) USTs,

one 550-gallon waste oil UST, one concrete 1,600-gallon clarifier and seven (7) dispensers. The UST containing PCE served as a central supply point for Lockheed's other plants in the Burbank area. The former gasoline service station/automotive repair operation was demolished in 1992 and the former underground storage tank (USTs) and clarifier were removed as part of the demolition. Additionally, other features including hydraulic lifts and storm drains were removed during this demolition under the supervision of the Burbank Fire Department. Following removal of the USTs and other associated features of potential concern, a total of twenty-one soil samples were collected from the excavated areas. According to the analytical results, subsurface soil was found to be impacted with PCE, diesel fuel and hydraulic oil.

Between 1992 and 1995, seven (7) subsurface investigations were conducted at the subject property in relation to this reported release to the subsurface as a result of the former operations, and a total of 426 soil samples were collected from the former service station during this period. The 1992 subsurface investigation included 78 soil borings to depths of 10 to 40 feet bgs, and soil samples collected from varying intervals were analyzed for VOCs, PCBs, and TPH. According to the analytical results, TPH impacts were generally confined to the upper 10 feet of soil. Elevated VOC impacts were also generally limited to the upper 10 feet of soil, with one boring noting PCE impacts extending to 25 feet bgs. In 1993, a Soil Gas Survey was conducted on the subject property to further evaluate the extent of the subsurface impacts. A total of 181 soil-gas samples were collected from 159 locations across the subject property at depths ranging from 5 to 25 feet bgs, and the samples were analyzed for VOCs. According to the analytical results, twelve of the sample collected from the 5-foot depth contained PCE in excess of 0.1 mg/L, with one sample exceeding 1.0 mg/L. None of the samples collected from the 20-foot depth contained concentrations of PCE above 1.0 mg/L. Additional site characterization was conducted in 1994/1995 which included additional soil borings and sampling and additional soil vapor sampling. A total of 18 of the 426 soil samples contained concentrations of PCE above 1 mg/kg.

Based on review of the Final Soil Remediation Report dated May 22, 1995 by Lockheed Martin Corporation, approximately 1,380 tons of PCE- and diesel/oil-impacted soil was excavated and removed from the subject property. Following removal, a total of 109 confirmation soil samples were collected from the base and sidewalls of the excavation and analyzed for VOCs, TPH, and lead. According to the analytical results, the confirmation soil samples all contained less than 150 ug/kg of PCE. As such, the excavations were backfilled with approved clean fill, and a request for closure was submitted with the report. Based on review of the 1995 final soil remediation report, in a letter dated July 5, 1995, the California Regional Water Quality Control Board (RWQCB) issued a No Further Action status to the subject property and indicated the subject property had been remediated in accordance with Cleanup and Abatement Order No. 87-161. As such, the subject property (former Lockheed Plant A-1 South) and current ownership (Gort Limited) were noted to be excluded from the requirements of the Cleanup and Abatement Order No. 87-161, which is associated with the cleanup of several Lockheed plants in the Burbank area. Based on the regulatory closure with residual PCE-impacted soil left in place, the historical usage of the subject property and associated closed release case are considered a CREC for the subject property. As

such, prior to any redevelopment activities and due to the presence of residual PCE-impacted soil in the subsurface, Partner recommends a soil vapor survey be conducted to evaluate potential vapor intrusion issues for any future onsite buildings. Additionally, if the redevelopment plan includes subterranean levels, Partner recommends implementing a Soil Management Plan (SMP).

• The subject property is located within the boundaries of the Burbank Operable Unit (BOU) of the San Fernando Valley North Hollywood National Priorities List (NPL) site, an area of known groundwater contamination. Constituents of Concern (COCs) that have been identified include semi-volatile organic compounds (SVOCs), Volatile Organic Compounds (VOCs) and chromium. The subject property was one of many sites investigated by RWQCB and USEPA as a potential responsible party (PRP) of the groundwater contamination. On July 6, 1995 a letter was issued to Lockheed by RWQCB indicating the subject property would no longer be under investigation for potential groundwater contamination for VOCs and the subject property (former Lockheed Plant A-1 South) and current ownership (Gort Limited) were noted to be excluded from the requirements of the Cleanup and Abatement Order No. 87-161, which is associated with the cleanup of several Lockheed plants in the Burbank area.

Former site occupant, Lockheed Martin, monitors groundwater within the BOU to comply with the provisions of a USEPA Consent Decree (#91-4527-MRP) filed March 1992, and the CRWQCB Cleanup and Abatement Order (#87-161) dated December 1987. As part of the NPL investigation, two groundwater monitoring wells, A-1-CW04 and A-1-CW09, were installed in the north and northeast portion of the subject property, respectively. A third well, monitoring well A-1-CW05 was co-located with monitoring well A-1-CW04 at a later date. Partner contacted Ms. Anita Fang with CRWQCD regarding the most recent groundwater monitoring results on file with the agency for the BOU. A review of an Annual Groundwater Monitoring Report, Second Quarter 2017 Burbank Operable Unit, provided by Ms. Fang indicates 1,2,3 Trichloropropane (1,2,3 TCP), 1,4 Dioxane, various other VOCs (including Tetrachloroethylene (PCE) and Trichloroethene (TCE), hexavalent chromium and chromium were detected in the onsite wells at levels above the reporting limit (RL), with an increasing trend of 1,2,3 TCP concentrations. Chromium was detected in well A-1-CW04 at 0.88 ug/L which exceeds the Maximum Contaminant Level (MCL).

Lockheed Martin has conducted groundwater monitoring of the onsite wells since approximately 1996 and has been identified as a potential contributor to the regional groundwater contamination. As discussed, the current property owner (Gort, Ltd) has not been identified as a potential responsible party (PRP) and it is unlikely the subject property owner would be responsible for future remediation activities since NFA was issued in 1995. Furthermore, based on the depth to groundwater, review of the most recent groundwater analytical results, and commercial usage of the subject property, a vapor intrusion condition (VIC) is unlikely to exist at the subject property. The location of the subject property within the Burbank Operable Unit of the San Fernando Valley NPL investigation, the identification of a former site occupant as a potential contributor to the regional impact, and the reported VOC and chromium groundwater contamination identified in onsite wells is considered a REC for the subject property; however,

based on the lack of an apparent VIC and issuance of an NFA letter with regards to the former subject property operations, Partner recommends no further investigation at this time with regards to this regional groundwater contamination case.

3.1 Aerial Photograph Review

Partner obtained available aerial photographs of the subject property and surrounding area from Environmental Data Resources (EDR) on April 9, 2020. The following was observed on the subject property and adjacent properties during the aerial photograph review:

Date: 1928,1938 Scale: 1"=500'

Subject Property: Appears to be developed with a possible commercial dairy operation with several

structures on the central and east portions of the property and two square enclosures.

The south and west portions appear to be grassland undeveloped

North: Appears to be developed with a farmstead and agricultural fields across an

unimproved road and railroad track in 1928. By 1938 the farmstead is no longer

present and the property appears to be part of an airfield

South: Appears to be agricultural across an unimproved road

East: Appears to be developed with a farmstead and agricultural fields across an

unimproved road

West: Appears to possibly be and agricultural field with an orchard. A possible cemetery

is present further west

Date: 1948,1952,1954 Scale: 1"=500'

Subject Property: Several small structures are located on the central and southeast portion of the

property. A paved parking area has been developed on the east side of the property. An unimproved parking area is located in the northwest portion of the

property. The remainder of the site appears grass-covered.

North: A very large commercial complex has been developed across two paved roads and

railroad tracks, as part of an airport

South: Developed with a commercial building, a baseball field and parking lot, across a

aved road. By 1954 the baseball field had been developed as a parking lot

East: Developed with a paved parking lot, vacant filed and possible mobile home park to

the southeast

West: Developed with a vacant land and a large paved parking lot

Date: 1964 Scale: 1"=500'

Subject Property: Developed with a large commercial building on the south portion of the property. A

long, rectangular shaped building is present on the north portion of the site with

the remainder of the property developed as a paved parking lot

North: No significant changes visible South: No significant changes visible

East: Developed with a large parking lot and commercial buildings, and possible mobile

homes to the southeast

West: Developed with a large parking lot and commercial building

Date: 1970 Scale: 1"=500'

Subject Property: No significant changes visible. The rectangular building on north portion of

property appears to be fenced off from the rest of the property

North: No significant changes visible South: No significant changes visible

East: Vacant land. North Hollywood Way appears to have been temporarily detoured or

re-routed and is no longer present along the east property boundary

West: No significant changes visible

Date: 1977,1981 Scale: 1"=500'

Subject Property: No significant changes visible North: No significant changes visible

South: Developed with three commercial buildings

East: North Hollywood Way has been redeveloped and is present along the east property

boundary with a commercial building and parking lot beyond

West: No significant changes visible

Date: 1989 Scale: 1"=500'

Subject Property: A building addition has been constructed on the west side of the north rectangular

building

North: No significant changes visible South: No significant changes visible

East: Developed with two commercial buildings

West: No significant changes visible

Date: 1994 Scale: 1"=500"

Subject Property: The rectangular building on the north portion of the property has been razed and

the area appears to have been graded excavated and graded. The remainder of the

property is occupied by the large commercial building and paved parking

North: No significant changes visible South: No significant changes visible

East: One commercial building has been razed

West: No significant changes visible

Date: 2002,2005 Scale: 1"=500'

Subject Property: The north portion of the property has been redeveloped as a parking lot

North: The large commercial/industrial complex has been razed and excavated and the

entire area has been graded

South: No significant changes visible East: No significant changes visible

West: A commercial building has been constructed on the former parking lot

Date: 2009,2012,2016 Scale: 1"=500'

Subject Property:No significant changes visibleNorth:Redeveloped as a large parking lotSouth:No significant changes visible

Date: 2009,2012,2016 Scale: 1"=500'

East: No significant changes visible **West:** No significant changes visible

Copies of select aerial photographs are included in Appendix B of this report.

3.2 Fire Insurance Maps

Partner reviewed the collection of Sanborn Fire insurance maps from Environmental Data Resources (EDR) on April 9, 2020. The following was observed on the subject property and adjacent properties during the fire insurance map review:

Date: 1953

Subject Property: The subject property was occupied by a dairy which included a milking shed,

storage area, milk house, two storage shed, two wood silos and four dwellings

North: Appears occupied with an industrial type facility across West Vanowen Street, a

railroad track and West Empire Avenue. The facility includes a plate shop, extrusion

area, transfer switch yard, medical storage with acetylene, and a paint shop

South: A softball field and National Guard Armory are depicted across West Valhalla Drive **East:** North Hollywood Way is depicted. The east side of North Hollywood Boulevard is

not depicted on this map

West: No development depicted

Date: 1954,1956,1960

Subject Property: No significant changes depicted North: No significant changes depicted

South: A National Guard Armory and a parking lot are depicted across West Valhalla Drive East: A house trailer park is depicted to the southeast across North Hollywood Way

West: No significant changes depicted

Date: 1966,1968

Subject Property: The property has been redeveloped and a store constructed of reinforced concrete

with steel columns and beams has been developed on the south portion of the property. A rectangular feature labelled as "gas & oil" is depicted in the northeast

corner of the property. A parking lot is depicted north of the building

North: No significant changes depicted
South: No significant changes depicted
East: No significant changes depicted
West: No significant changes depicted

Date: 1969

Subject Property: The subject property is occupied by Lockheed Aircraft Corporate Offices. The gas

and oil area is depicted in the northeast corner of the property with parking north of

the building

North: No significant changes depicted
South: No significant changes depicted
East: No significant changes depicted
West: No significant changes depicted

Copies of reviewed Sanborn Maps are included in Appendix B of this report.

3.3 City Directories

Partner reviewed historical city directories obtained from Environmental Data Resources (EDR) on April 14, 2020 for past names and businesses that were listed for the subject property and adjacent properties. The findings are presented in the following table:

City Directory Search for 2311 North Hollywood Way (Subject Property)				
Year(s)	Occupant Listed			
1950	Shoman Dairy			
1956	Shoman Dairy, Manuel Rocha, Wayne Dennis			
1967	W G Products Inc Shoes			
1970	Lockheed-California Company Corporation, Federal Credit Union and Employee			
	Recreation Club			
1971	Lockheed California Company, Employees Credit Union, Group Insurance			
1975,1980	Employees Credit Union, Group Insurance			
1985	Administrative Offices, Certificate Rates Recording, Collection Department, Lockheed			
	Air Terminal Inc., Lockheed Aircraft Employees Federal Credit Union and Administrative			
	Offices			
1999,2004,2006	Frys Electronics			
2009,2015	Frys Electronics			

According to the city directory review, the subject property was occupied by a dairy and an office building. The historical usage of the subject property is discussed further in Section 3.0.

City Director	y Search for A	Adjacent Prop	erties
---------------	----------------	---------------	--------

Year(s)	Occupant Listed
1950,1956	Multiple Individual Tenant Names (2240 N. Hollywood Way)
1962	Multiple Individual Tenant Names (2240 N. Hollywood Way)
1970	Multiple Individual Tenant Names (2240 N. Hollywood Way)
	Polich Benedict Construction (2340 N. Hollywood Way)
1975	Sale & Service (2231 N. Hollywood Way)
	Multiple individual tenant names (2240 N. Hollywood Way)
1976	Westinghouse Elevator (2231 N. Hollywood Way)
	Multiple Individual Tenant Names (2240 N. Hollywood Way)
1980	Barrow Fabrics Inc. (3520 W. Valhalla Dr.)
	Westinghouse Elevator (2231 N. Hollywood Way)
	Multiple Individual Tenant Names (2240 N. Hollywood Way)
1981	Barrow Fabrics Inc. (3520 W. Valhalla Dr.)
	Westinghouse Elevator Co (2231 N. Hollywood Way)
1985	Westinghouse Elevator Co, Construction Business Development (2231 N. Hollywood Way)
	Multiple Individual Tenant Names (2240 N. Hollywood Way)
	Lockheed Federal Credit Union, Loan Department, Weber Aircraft Co (2340 N. Hollywood
	Way)
1986	Barrow Fabrics Inc. (3520 W. Valhalla Dr.)
	Westinghouse Elevator Co (2311 N. Hollywood Way)
1990	Barrow Fabrics Inc (3520 W. Valhalla Dr.)

City Direc	tory Search for Adjacent Properties
Year(s)	Occupant Listed
1991	Unitel Mobile (2231 N. Hollywood Way)
	Multiple Individual Tenant Names (2240 N. Hollywood Way)
	University of Laverne, B&P The Spaceconnection, Daniell Engineering, Que (2340 N.
	Hollywood Way)
1994	Barrow Fabrics Inc (3520 W. Valhalla Dr.)
	Sonic Edge, Unitel Mobile (2231 N. Hollywood Way)
	Multiple Individual Tenant Names (2240 N. Hollywood Way)
	Lockheed Federal Credit Union (2340 N. Hollywood Way)
1995	Unitel Mobile, Sonic Edge (2231 N. Hollywood Way)
	Multiple Individual Tenant Names (2240 N. Hollywood Way)
1999	Ampex, Quantegy Inc. (3520 W. Valhalla Dr.)
	Sling Shot Records (2231 N. Hollywood Way)
	Pacific Radio Electronics Inc (2243 N. Hollywood Way)
2024	Multiple Individual Tenant Names (2240 N. Hollywood Way)
2001	Quantegy Inc. (3520 W. Valhalla Dr.)
2004	Pacific Radio Electronics (2243 N. Hollywood Way)
2004	Quantegy Inc. (3520 W. Valhalla Dr.)
	Sonic Atmospheres Inc., Craig Huxley (2231 N. Hollywood Way) Pacific Radio Electronics (2243 N. Hollywood Way)
	Irene Hidalgo (2240 N. Hollywood Way)
	Lockheed Martin (2340 N. Hollywood Way)
2006	Archives, Pactitle (3520 W. Valhalla Dr.)
2000	Omegacase Company Inc (2231 N. Hollywood Way)
	Pac Radio Electronics Inc (2243 N. Hollywood Way)
	CTGY (2340 N. Hollywood Way)
2009	Pacific Title Archives (3520 W. Valhalla Dr.)
	Omega Case Co Inc (2231 N. Hollywood Way)
	Pacific Radio Exchange Inc (2243 N. Hollywood Way)
	Lockheed Federal Credit Union, University of Laverne, LFCU Brokerage Inc, (2340 N.
2015	Hollywood Way)
	Flashpoint Graphix (3520 W. Valhalla Dr.)
	Omega Case Company Inc (2231 N. Hollywood Way)
	Trew Audio LA, Pacific Radio Electronics (2243 N. Hollywood Way)
	Public Storage (2240 N. Hollywood Way)
	CTGY (2340 N Hollywood Way)

Based on the city directory review, no environmentally sensitive listings (such as dry cleaners, automotive facilities, etc.) were identified for the adjacent property addresses; however, listings identified in the regulatory database report are discussed further in Section 4.2.3.

Copies of reviewed city directories are included in Appendix B of this report.

3.4 Historical Topographic Maps

Partner reviewed historical topographic maps obtained from Environmental Data Resources (EDR) on April 9, 2020. The following was observed on the subject property and adjacent properties during the topographic map review:

Date: 1894,1896,1898,1900,1902

Subject Property: No development depicted. A sandy area, possibly part of a stream bed, is indicated in

the northeast portion of the property

North: No development depicted across a roadway

South: No development depicted

East: A small residential-type structure is depicted across a roadway

West: No development depicted

Date: 1920,1921

Subject Property: A small residential-like structure is depicted in the east portion of the subject property

North: Developed with a railroad track and roadway. An intermittent stream is depicted

adjacent to the northeast of the subject property and across the roadway

South: No significant changes depicted

East: An intermittent stream and railroad tracks are depicted

West: No significant changes depicted

Date: 1926

Subject Property: Two small residential-type structures are depicted on the south portion of the property

North: The intermittent stream is no longer depicted across Empire Avenue and the Southern

and Pacific Railroad

South: No development depicted across a roadway or driveway **East:** No development depicted across Hollywood Way

West: No development depicted. A cemetery is depicted further west

Date: 1948

Subject Property: Five small structures are depicted on the south and east portion of the property

North: A large commercial building and numerous smaller buildings are depicted as part of

Lockheed Air Terminal. Runways are depicted further northwest

South: No development depicted across a roadway or driveway **East:** Three small structures are depicted to the southeast

West: No development depicted. Two small structures and Valhalla Memorial Park are

depicted further west

Date: 1953

Subject Property: No significant changes depicted North: No significant changes depicted

South: Three commercial buildings are depicted

East: The Providence School is depicted to the further east and southeast

West: No significant changes depicted

Date: 1966,1972,1994

Subject Property: The subject property is in an area referred to as Vega. A large commercial building is

depicted on the south portion of the property. A small rectangular structure is depicted

in the northeast corner of the property.

North: No significant changes depicted

South: An Armory is depicted across a driveway

East: No significant changes visible **West:** A commercial structure is depicted

Date: 2012

Subject Property: No manmade structures other than roadways, governmental, academic and religious

institutions are depicted on this map

North: No manmade structures other than roadways, governmental, academic and religious

institutions are depicted on this map

South: No manmade structures other than roadways, governmental, academic and religious

institutions are depicted on this map

East: No manmade structures other than roadways, governmental, academic and religious

institutions are depicted on this map

West: No manmade structures other than roadways, governmental, academic and religious

institutions are depicted on this map

Copies of reviewed topographic maps are included in Appendix B of this report.

4.0 REGULATORY RECORDS REVIEW

4.1 Regulatory Agencies

4.1.1 State Department

Regulatory Agency Data

Name of Agency: California Environmental Protection Agency (Cal/EPA)

Agency Website: https://calepa.ca.gov/

Agency Address: 1001 | Street, Sacramento, California 95814

Agency Phone Number: (916) 323-2514

Date of Contact: April 10, 2020

Method of Communication: Online

Summary of Communication: Information is on file with Cal/EPA for former site occupant

Lockheed Martin, as further discussed below in Section 4.2.2.

4.1.2 Fire Department

Regulatory Agency Data

Name of Agency: Burbank Fire Department (BFD)

Agency Address: 311 East Orange Grove, Burbank, California 91502

Agency Phone Number: (818) 238-3458 **Date of Contact:** April 10, 2020

Method of Communication: Telephone Request (April 10 and 20), Email Request (April 13)

Summary of Communication: Records provided by BFD indicated the subject property utilized

small quantities of hazardous substances and has submitted numerous hazardous materials inventory forms under Fry's Electronics. A Business Activities Declaration form dated 2006 indicates no USTs or ASTs were located on the subject property at

that time.

Partner also reviewed online information with RWQCB and Los Angeles County Fire Department for any available UST information. In addition to the site address, a search was also conducted under three other possible historic addresses that could have been associated with the subject property. No UST information was

available with BFD for any of the addresses searched.

4.1.3 Air Pollution Control Agency

Regulatory Agency Data

Name of Agency: South Coast Air Quality Management District (SCAQMD)

Agency Website:http://www.aqmd.gov/webappl/fim/default.htmAgency Address:21865 Copley Drive, Diamond Bar, California 91765

Agency Phone Number: (909) 396-2000

Name of Agency: South Coast Air Quality Management District (SCAQMD)

Method of Communication: Online

Summary of Communication: No Permits to Operate (PTO), Notices of Violation (NOV), or Notices

Regulatory Agency Data

to Comply (NTC) or the presence of AULs, dry cleaning machines, or USTs were on file for the subject property in the SCAQMD online

database.

4.1.4 Regional Water Quality Agency

Regulatory Agency Data

Name of Agency: California Regional Water Quality Control Board (CRWQCB) – Los

Angeles, Region 4

Agency Website: http://geotracker.waterboards.ca.gov/

Agency Address: 320 West 4th Street, Los Angeles, California 90013

Agency Phone Number: (213) 576-6600 **Date of Contact:** April 14, 2020

Method of Communication: Online

Summary of Communication The subject property has conducted soil cleanup activities

associated with four USTs, and asbestos cleanup activities. The subject property is also located within the San Fernando Valley NPL site boundaries. Partner conducted a regulatory file review with regards to the subject property release case, which is described

further in Section 3.0.

Copies of the CRWQCB file and associated cleanup reports are

provided in Appendix B.

4.1.5 Department of Toxic Substances Control

Regulatory Agency Data

Name of Agency: California Department of Toxic Substances Control (DTSC)

Agency Websites: http://www.envirostor.dtsc.ca.gov/public/

http://hwts.dtsc.ca.gov/report_list.cfm

Agency Address: 1001 | Street, Sacramento, California 95814

Agency Phone Number: (916) 255-3687

Date of Contact: April 14, 2020

Method of Communication: Online

Summary of Communication: According to the records reviewed, the subject property, identified

as Lockheed Martin Corporation at 2311 North Hollywood Way, is listed in the Hazardous Waste Tracking System (HWTS) online database under EPA ID No. CAD982504052. A hazardous waste manifest record was recorded in June 1990, listed as inactive in June 1998 and was last updated in August 2004. Manifests were

reported in 1993, 1994, and 1995 as a generator.

4.1.6 Building Department

Regulatory Agency Data

Name of Agency: Burbank Building Department (BBD)

Agency Address: 150 North 3rd Street, Burbank, California 91502

Regulatory Agency Data

Agency Phone Number: (818) 238-5564

Date of Contact: July 23, 2018

Method of Communication: In Person

Summary of Communication: Due to Covid-19 the public is not allowed access to BBD to view

historical building permits on file with the agency. A review conducted of the BBD online database indicates three records are on file for the subject property; a Conditional Use permit (#PL0801916) dated February 2008 for installation of a wireless communication monopole; Building Permit #BS1214071 dated December 2012 for new roof installation for Fry's Electronics; and, Building Permit #BS1303664 dated March 2013 for relocation of accessible parking

stalls.

4.1.7 Planning Department

Regulatory Agency Data

Name of Agency: Burbank Planning Department (BPD)

Agency Address: 150 North 3rd Street, Burbank, California 91502

Agency Phone Number: (818) 238-5250 **Date of Contact:** April 18, 2020

Method of Communication: Online

Summary of Communication: According to records reviewed, the subject property is zoned C-3 for

Commercial General Business Development by the City of Burbank.

4.1.8 Oil & Gas Exploration

Regulatory Agency Data

Name of Agency: California Department of Conservation Division of Oil, Gas and

Geothermal Resources (DOGGR) – Southern District

Agency Website:https://maps.conservation.ca.gov/doggr/wellfinder/#closeAgency Address:5816 Corporate Avenue, Suite 100, Cypress, California 90630

Agency Phone Number:(916) 324-0850Date of Contact:April 18, 2020

Method of Communication: Online

Summary of Communication: According to DOGGR, no oil or gas wells are located on or adjacent

to the subject property.

4.1.9 Assessor's Office

Regulatory Agency Data

Name of Agency: Los Angeles County Office of the Assessor (LACOA)

Agency Website: http://maps.assessor.lacounty.gov

Agency Address: 500 West Temple Street, Room 225, Los Angeles, California 90012

Agency Phone Number: (213) 974-2111 **Date of Contact:** April 16, 2020

Method of Communication: Online

Summary of Communication: According to records reviewed, the subject property is identified by

Regulatory Agency Data

Assessor's Parcel Number (APN) 2463-001-019. The current building was constructed in 1962 on a 10.43-acre lot.

Copies of pertinent documents obtained from the above-referenced regulatory agencies (if available) are included in Appendix B of this report.

4.2 Mapped Database Records Search

Information from standard federal, state, county, and city environmental record sources was provided by Environmental Data Resources, Inc. (EDR). Data from governmental agency lists are updated and integrated into one database, which is updated as these data are released. The information contained in this report was compiled from publicly available sources and the locations of the sites are plotted utilizing a geographic information system, which geocodes the site addresses. The accuracy of the geocoded locations is approximately +/-300 feet.

Using the ASTM definition of migration, Partner considers the migration of hazardous substances or petroleum products in any form onto the subject property during the evaluation of each site listed on the radius report, which includes solid, liquid, and vapor.

4.2.1 Regulatory Database Summary

Radius Report Data				
Database	Search Radius (mile)	Subject Property	Adjacent Properties	Sites of Concern
Federal NPL or Delisted NPL Site	1.00	Ν	Ν	Υ
Federal CERCLIS Site	0.50	Ν	Ν	Ν
Federal CERCLIS-NFRAP Site	0.50	Ν	Ν	Ν
Federal RCRA CORRACTS Facility	1.00	Ν	Ν	Ν
Federal RCRA TSDF Facility	0.50	Ν	Ν	Ν
Federal RCRA Generators Site (LQG, SQG, CESQG)	0.25	Υ	Y	N
Federal IC/EC Registries	0.50	Ν	Ν	Ν
Federal ERNS Site	Subject	Ν	Ν	Ν
	Property			
State/Tribal Equivalent NPL	1.00	Ν	Ν	Ν
State/Tribal Equivalent CERCLIS	1.00	Ν	Ν	Ν
State/Tribal Landfill/Solid Waste Disposal Site	0.50	Ν	Ν	Ν
State/Tribal Leaking Storage Tank Site	0.50	Y /N	Ν	Ν
State/Tribal Registered Storage Tank Sites (UST/AST)	0.25	Υ	Y	N
State/Tribal Voluntary Cleanup Sites (VCP)	0.50	Ν	Ν	Ν
State/Tribal Spills	0.50	Ν	Ν	Ν
Federal Brownfield Sites	0.50	Ν	Ν	Ν
State Brownfield Sites	0.50	Ν	N	Ν
EDR MGP	Varies	Ν	Ν	Ν
EDR US Hist Auto Station	Varies	Ν	Ν	Ν
EDR US Hist Cleaners	Varies	Ν	Ν	Ν

4.2.2 Subject Property Listings

The subject property is identified as a CA CERS, CA WIP, CA FID UST, CA SWEEPS UST, CA CERS HAZ WASTE, CA CPS-SLIC, CA HWTS, CA HAZNET, CA CDL, CA ENF, RCRA NonGen/NLR, FINSD and ECHO site in the regulatory database report. Several of the databases including FINDS and ECHO are cross-referenced database listings, as discussed below:

- The subject property is identified on the RCRA non-generator and CA CERS HAZ Waste database as a non-generator of hazardous waste, no longer required to report. A form was filed in 1992 and 1996 as a large quantity generator, and in 1998 as a non-generator of hazardous waste under Lockheed Martin. A form was filed in 2019 under Fry's Electronics as a RCRA non-generator. No violations have been reported. Based on the nature of the listing and lack of violations, this listing is not expected to represent a REC for the subject property.
- The subject property at 2311 North Hollywood Way was identified in the regulatory database report under the names Lockheed Martin, Gort Limited and Fry's Electronics. Based on information provided in a previous Phase I ESA report (PSI, 1998) and from a file review, this former operation included four (4) 12,000-gallon gasoline/diesel/tetrachloroethylene (PCE) USTs, one 550-gallon waste oil UST, one concrete 1,600-gallon clarifier and seven (7) dispensers. The UST containing PCE served as a central supply point for Lockheed's other plants in the Burbank area. The former gasoline service station/automotive repair operation was demolished in 1992 and the former underground storage tank (USTs) and clarifier were removed as part of the demolition. Additionally, other features including hydraulic lifts and storm drains were removed during this demolition under the supervision of the Burbank Fire Department. Following removal of the USTs and other associated features of potential concern, a total of twenty-one soil samples were collected from the excavated areas. According to the analytical results, subsurface soil was found to be impacted with PCE, diesel fuel and hydraulic oil.

Between 1992 and 1995, seven (7) subsurface investigations were conducted at the subject property in relation to this reported release to the subsurface as a result of the former operations, and a total of 426 soil samples were collected from the former service station during this period. The 1992 subsurface investigation included 78 soil borings to depths of 10 to 40 feet bgs, and soil samples collected from varying intervals were analyzed for VOCs, PCBs, and TPH. According to the analytical results, TPH impacts were generally confined to the upper 10 feet of soil. Elevated VOC impacts were also generally limited to the upper 10 feet of soil, with one boring noting PCE impacts extending to 25 feet bgs. In 1993, a Soil Gas Survey was conducted on the subject property to further evaluate the extent of the subsurface impacts. A total of 181 soil-gas samples were collected from 159 locations across the subject property at depths ranging from 5 to 25 feet bgs, and the samples were analyzed for VOCs. According to the analytical results, twelve of the sample collected from the 5-foot depth contained PCE in excess of 0.1 mg/L, with one sample exceeding 1.0 mg/L. None of the samples collected from the 20-foot depth contained concentrations of PCE above 1.0 mg/L. Additional site characterization was conducted in

1994/1995 which included additional soil borings and sampling and additional soil vapor sampling. A total of 18 of the 426 soil samples contained concentrations of PCE above 1 mg/kg.

Based on review of the Final Soil Remediation Report dated May 22, 1995 by Lockheed Martin Corporation, approximately 1,380 tons of PCE- and diesel/oil-impacted soil was excavated and removed from the subject property. Following removal, a total of 109 confirmation soil samples were collected from the base and sidewalls of the excavation and analyzed for VOCs, TPH, and lead. According to the analytical results, the confirmation soil samples all contained less than 150 ug/kg of PCE. As such, the excavations were backfilled with approved clean fill, and a request for closure was submitted with the report. Based on review of the 1995 final soil remediation report, in a letter dated July 5, 1995, the California Regional Water Quality Control Board (RWQCB) issued a No Further Action status to the subject property and indicated the subject property had been remediated in accordance with Cleanup and Abatement Order No. 87-161. As such, the subject property (former Lockheed Plant A-1 South) and current ownership (Gort Limited) were noted to be excluded from the requirements of the Cleanup and Abatement Order No. 87-161, which is associated with the cleanup of several Lockheed plants in the Burbank area. Based on the regulatory closure with residual PCE-impacted soil left in place, the historical usage of the subject property and associated closed release case are considered a CREC for the subject property. As such, prior to any redevelopment activities and due to the presence of residual PCE-impacted soil in the subsurface, Partner recommends a soil vapor survey be conducted to evaluate potential vapor intrusion issues for any future onsite buildings. Additionally, if the redevelopment plan includes subterranean levels, Partner recommends implementing a Soil Management Plan (SMP).

- The subject property was identified on the CA CDL and CA ENF databases as a clandestine mobile
 lab site. In 2003 illegal drug lab equipment and materials were found in a vehicle parked on the
 subject property. The car was removed, and cleanup was conducted by local authorities. Based
 on the nature of the database and lack of reported releases to the subsurface, these listings are
 not expected to represent a REC for the subject property.
- The subject property is located within the boundaries of the Burbank Operable Unit (BOU) of the San Fernando Valley North Hollywood National Priorities List (NPL) site, an area of known groundwater contamination. Constituents of Concern (COCs) that have been identified include semi-volatile organic compounds (SVOCs), Volatile Organic Compounds (VOCs) and chromium. The subject property was one of many sites investigated by RWQCB and USEPA as a potential responsible party (PRP) of the groundwater contamination. On July 6, 1995 a letter was issued to Lockheed by RWQCB indicating the subject property would no longer be under investigation for potential groundwater contamination for VOCs and the subject property (former Lockheed Plant A-1 South) and current ownership (Gort Limited) were noted to be excluded from the requirements of the Cleanup and Abatement Order No. 87-161, which is associated with the cleanup of several Lockheed plants in the Burbank area.

Former site occupant, Lockheed Martin, monitors groundwater within the BOU to comply with the provisions of a USEPA Consent Decree (#91-4527-MRP) filed March 1992, and the CRWQCB

Cleanup and Abatement Order (#87-161) dated December 1987. As part of the NPL investigation, two groundwater monitoring wells, A-1-CW04 and A-1-CW09, were installed in the north and northeast portion of the subject property, respectively. A third well, monitoring well A-1-CW05 was co-located with monitoring well A-1-CW04 at a later date. Partner contacted Ms. Anita Fang with CRWQCD regarding the most recent groundwater monitoring results on file with the agency for the BOU. A review of an Annual Groundwater Monitoring Report, Second Quarter 2017 Burbank Operable Unit, provided by Ms. Fang indicates 1,2,3 Trichloropropane (1,2,3 TCP), 1,4 Dioxane, various other VOCs (including Tetrachloroethylene (PCE) and Trichloroethene (TCE), hexavalent chromium and chromium were detected in the onsite wells at levels above the reporting limit (RL), with an increasing trend of 1,2,3 TCP concentrations. Chromium was detected in well A-1-CW04 at 0.88 ug/L which exceeds the Maximum Contaminant Level (MCL).

Lockheed Martin has conducted groundwater monitoring of the onsite wells since approximately 1996 and has been identified as a potential contributor to the regional groundwater contamination. As discussed, the current property owner (Gort, Ltd) has not been identified as a potential responsible party (PRP) and it is unlikely the subject property owner would be responsible for future remediation activities since NFA was issued in 1995. Furthermore, based on the depth to groundwater, review of the most recent groundwater analytical results, and commercial usage of the subject property, a vapor intrusion condition (VIC) is unlikely to exist at the subject property. The location of the subject property within the Burbank Operable Unit of the San Fernando Valley NPL investigation, the identification of a former site occupant as a potential contributor to the regional impact, and the reported VOC and chromium groundwater contamination identified in onsite wells is considered a REC for the subject property; however, based on the lack of an apparent VIC and issuance of an NFA letter with regards to the former subject property operations, Partner recommends no further investigation at this time with regards to this regional groundwater contamination case.

The subject property is identified as a WIP (Well Investigation Program) site on the database report and the status of the site is listed as "Active". The subject property was investigated by either having been sent a questionnaire or having a walk-through inspection conducted by RWQCB personnel. As discussed, the subject property was issued an NFA in 1995. Therefore, the WIP listing is not considered a REC.

4.2.3 Adjacent Property Listings

Several adjacent properties were identified in the regulatory database report, as discussed below:

• A property identified as Quantegy Inc. at 3800 West Valhalla Drive is located adjacent to the south, down and cross gradient of the subject property. This site is identified as a LA CO HMS (Industrial Waste and Underground Storage Tank Site) under Quantegy Inc. and a CA WIP site under Barrow Fabrics Inc. and is located within the San Fernando Valley NPL site currently under investigation and remediation. This site has not been identified as having had a release. There is no information on file for this site address with RWQCB or BFD. According to the WIP listing the

status of this site is listed as "Historical". As referenced above, RWQCB locates and abates sources of pollutants affecting these wells and oversees remediation. To identify the sources or responsible parties, this site was investigated by either having been sent a questionnaire or a walk-through inspection was conducted by RWQCB personnel. RWQCB did not identify this as an active site. No additional information was provided in the database report and this facility is not listed on any regulatory release database that would indicate an unauthorized release or compliance violations. Based on the above information, and location with regard to groundwater flow direction, this facility is not expected to represent a REC for the subject property.

• A property identified as National Guard Repair Garage FMS #13 / Organizational Maintenance Shop / Burbank OMS 13 at 3800 Valhalla Drive is located adjacent to the southwest portion of the subject property, down and cross gradient. This site is listed on several databases including CA CERS HAZ WASTE, CA HIST UST, CA SWEEPS UST, RCRA NonGen/NLR, and CA WIP. This facility is listed on the CA HIST UST database as having had three USTs and on the CA SWEEPS database as having two active USTs containing diesel and unleaded gasoline. A review of UST information on file with RWQCB indicates the tanks were installed in the 1950s. No additional information was provided in the database report and no information was discovered in Geotracker. In addition, this site is not listed on any regulatory release database that would indicate an unauthorized release or compliance violations.

This facility also filed a form in 1986 as a small quantity generator of hazardous waste and in 1987 as a non-generator of hazardous waste, no longer required to report. No violations have been reported on the RCRA database. Numerous compliance inspections have been conducted of the facility and one violation was noted on the CERS database for failure to dispose of hazardous waste within a 90-day period. This facility is also listed on the WIP database as an historical site. Based on the above information and location with regard to groundwater flow direction, this facility is not expected to represent a REC for the subject property.

- A property identified as Calstart at 3601 Empire Avenue is located adjacent to the north, up and cross gradient of the subject property. This facility filed a form in 1996 as a small quantity generator of hazardous waste. Wastes identified included alkaline solution with metals which were recycled. No violations have been noted and no further information was provided in the database report. Based on the nature of the listing, lack of a documented release, and location with regard to groundwater flow direction, this facility is not expected to represent a REC for the subject property.
- A property identified as Vega Aircraft is located north of the subject property, on the north side of
 Empire Avenue, up and cross gradient of the subject property. This site is listed as a Formerly
 Used Defense Site (FUDS) in the database report. FUDS sites are former defense properties which
 the US Army Corps of Engineers was formerly or is actively working on cleanup actions. This area
 was formerly occupied by a large industrial complex associated with the airport and was razed
 between 1994 and 2002. The entire area has been redeveloped. Based on this information,

identification of the source, and location with regard to estimated groundwater flow, this site is not expected to represent a REC for the subject property.

- A property identified as Tylie Jones and Associates is located at 2240 Screenland Drive, adjacent to the south, down and cross gradient of the subject property. This facility is listed as a CA WIP site. The file status is listed as "Historical". As referenced above, RWQCB locates and abates sources of pollutants affecting these wells and oversees remediation. RWQCB did not identify this as an active site. No additional information was provided in the database report and this site is not listed on any regulatory release database that would indicate an unauthorized release or compliance violations. Based on the above information, and location with regard to groundwater flow direction, this facility is not expected to represent a REC for the subject property.
- A property identified as Lockheed Federal Credit Union at 2340 N Hollywood Way, is located adjacent to the east across North Hollywood Way, down gradient of the subject property. This site is listed on the CA CERS TANKS, CA HAZNET, CA CERS, and CA HWTS databases. A UST is identified on this property. Routine inspections are completed by Burbank Fire Department and compliance violations have been issued for failure to submit a UST permit, and the presence of water in the UST sump. The violations were corrected, and the facility returned to compliance.
 - This facility was identified on the RCRA-SQG and HAZNET databases for producing wastes listed as unspecified solvent mixture. A form was filed in 1980 as a large quantity generator and in 1996 as a small quantity generator. No violations have been reported. No additional information was provided in the database report and this site is not listed on any regulatory release database that would indicate an unauthorized release has occurred. Based on lack of a documented release and down gradient location with regard to groundwater flow, this site is not expected to represent a REC for the subject property.
- A property identified as Midnight Oil Agency at 3800 Vanowen Street, is located adjacent to the west and up-gradient of the subject property. This facility is listed as a CA CERS HAZ Waste, CA EMI and CA CERS site in the database report. This facility is listed as a hazardous waste generator and chemical storage facility and has reported air emissions with SCAQMD. Compliance inspections has been conducted by the Burbank and Los Angeles County Fire Department. Violations have been issued by the fire departments for failure to label hazardous waste containers. Forms were filed between 1995 and 2003 as a RCRA hazardous waste generator. Wastes listed included ignitable, corrosive, silver, and spent nonhalogenated wastes. No violations were reported on the RCRA database. This site is not listed on any regulatory release database that would indicate an unauthorized release has occurred. Based on lack of a documented release, this site is not expected to represent a REC for the subject property.

Based on the findings, vapor migration is not expected to represent a significant environmental concern at this time.

4.2.4 Sites of Concern Listings

The following potential site of concern is identified in the regulatory database report:

• The subject property is located within the boundaries of the Burbank Operable Unit (BOU) of the San Fernando Valley North Hollywood National Priorities List (NPL) site, an area of known groundwater contamination. Constituents of Concern (COCs) that have been identified include semi-volatile organic compounds (SVOCs), Volatile Organic Compounds (VOCs) and chromium. The subject property was one of many sites investigated by RWQCB and USEPA as a potential responsible party (PRP) of the groundwater contamination. On July 6, 1995 a letter was issued to Lockheed by RWQCB indicating the subject property would no longer be under investigation for potential groundwater contamination for VOCs and the subject property (former Lockheed Plant A-1 South) and current ownership (Gort Limited) were noted to be excluded from the requirements of the Cleanup and Abatement Order No. 87-161, which is associated with the cleanup of several Lockheed plants in the Burbank area.

Former site occupant, Lockheed Martin, monitors groundwater within the BOU to comply with the provisions of a USEPA Consent Decree (#91-4527-MRP) filed March 1992, and the CRWQCB Cleanup and Abatement Order (#87-161) dated December 1987. As part of the NPL investigation, two groundwater monitoring wells, A-1-CW04 and A-1-CW09, were installed in the north and northeast portion of the subject property, respectively. A third well, monitoring well A-1-CW05 was co-located with monitoring well A-1-CW04 at a later date. Partner contacted Ms. Anita Fang with CRWQCD regarding the most recent groundwater monitoring results on file with the agency for the BOU. A review of an Annual Groundwater Monitoring Report, Second Quarter 2017 Burbank Operable Unit, provided by Ms. Fang indicates 1,2,3 Trichloropropane (1,2,3 TCP), 1,4 Dioxane, various other VOCs (including Tetrachloroethylene (PCE) and Trichloroethene (TCE), hexavalent chromium and chromium were detected in the onsite wells at levels above the reporting limit (RL), with an increasing trend of 1,2,3 TCP concentrations. Chromium was detected in well A-1-CW04 at 0.88 ug/L which exceeds the Maximum Contaminant Level (MCL).

Lockheed Martin has conducted groundwater monitoring of the onsite wells since approximately 1996 and has been identified as a potential contributor to the regional groundwater contamination. As discussed, the current property owner (Gort, Ltd) has not been identified as a potential responsible party (PRP) and it is unlikely the subject property owner would be responsible for future remediation activities since NFA was issued in 1995. Furthermore, based on the depth to groundwater, review of the most recent groundwater analytical results, and commercial usage of the subject property, a vapor intrusion condition (VIC) is unlikely to exist at the subject property. The location of the subject property within the Burbank Operable Unit of the San Fernando Valley NPL investigation, the identification of a former site occupant as a potential contributor to the regional impact, and the reported VOC and chromium groundwater contamination identified in onsite wells is considered a REC for the subject property; however, based on the lack of an apparent VIC and issuance of an NFA letter with regards to the former subject property operations, Partner recommends no further investigation at this time with regards to this regional groundwater contamination case.

No other sites of concern are identified in the regulatory database report. Listed sites within the specified search radius of the subject property which appeared on local, State, or Federally published lists of sites that have had releases of hazardous substances, have been granted regulatory closure, were determined to be of sufficient distance, and/or are situated hydrologically cross- or down-gradient such that impact to the subject property is unlikely. Based on the findings, vapor migration is not expected to represent a significant environmental concern at this time.

4.2.5 Orphan Listings

The San Fernando Valley Groundwater Basin is identified as a CA CHMIRS, CA BOND EXP. PLAN site in the orphan summary of the regulatory database report, as previously discussed in Sections 4.2.2, 4.2.3 and 4.2.4.

A copy of the regulatory database report is included in Appendix C of this report.

5.0 USER PROVIDED INFORMATION AND INTERVIEWS

In order to qualify for one of the *Landowner Liability Protections (LLPs)* offered by the Small Business Liability Relief and Brownfields Revitalization Act of 2001 (the *Brownfields Amendments*), the *User* must conduct the following inquiries required by 40 CFR 312.25, 312.28, 312.29, 312.30, and 312.31. The *User* should provide the following information to the *environmental professional*. Failure to provide this information could result in a determination that *all appropriate inquiries* is not complete. The *User* is asked to provide information or knowledge of the following:

- Review Title and Judicial Records for Environmental Liens and AULs
- Specialized Knowledge or Experience of the User
- Actual Knowledge of the User
- Reason for Significantly Lower Purchase Price
- Commonly Known or *Reasonably Ascertainable* information
- Degree of Obviousness
- Reason for Preparation of this Phase I ESA

Fulfillment of these user responsibilities is key to qualification for the identified defenses to CERCLA liability. Partner requested our Client to provide information to satisfy User Responsibilities as identified in Section 6 of the ASTM guidance.

Pursuant to ASTM E1527-13, Partner requested the following site information from LaTerra Development, LLC (User of this report).

User Responsibilities				
Item	Provided By User	Not Provided By User	Discussed Below	Does Not Apply
Environmental Pre-Survey Questionnaire		-	X	
Title Records, Environmental Liens, and AULs			X	
Specialized Knowledge			X	
Actual Knowledge			X	
Valuation Reduction for Environmental Issues			X	
Identification of Key Site Manager	Section 5.1.3			
Reason for Performing Phase I ESA	Section 1.1			
Prior Environmental Reports	X		X	
Other				X

5.1 Interviews

5.1.1 Interview with Owner

The owner of the subject property identified as Gort, A California Limited Partnership, was not available to be interviewed at the time of the assessment. Mr. Kevin Robins, representative for the subject property owner, was not aware of any pending, threatened, or past litigation relevant to hazardous substances or petroleum products in, on, or from the subject property; any pending, threatened, or past administrative proceedings relevant to hazardous substances or petroleum products in, on, or from the subject property; or any notices from a governmental entity regarding any possible violation of environmental laws or possible liability relating to hazardous substances or petroleum products.

5.1.2 Interview with Report User

Please refer to Section 5.2 below for information requested from the Report User.

5.1.3 Interview with Key Site Manager

Mr. Caesar Perez , key site manager, indicated that he had no information pertaining to any pending, threatened, or past litigation relevant to hazardous substances or petroleum products in, on, or from the subject property; any pending, threatened, or past administrative proceedings relevant to hazardous substances or petroleum products in, on, or from the subject property; or any notices from a governmental entity regarding any possible violation of environmental laws or possible liability relating to hazardous substances or petroleum products.

5.1.4 Interviews with Past Owners, Operators and Occupants

Interviews with past owners, operators and occupants were not conducted since information regarding the potential for contamination at the subject property was obtained from other sources.

5.1.5 Interview with Others

As the subject property is not an abandoned property as defined in ASTM 1527-13, interview with others were not performed.

5.2 User Provided Information

5.2.1 Title Records, Environmental Liens, and AULs

Partner was not provided with title records or environmental lien and AUL information for review as part of this assessment.

5.2.2 Specialized Knowledge

No specialized knowledge of environmental conditions associated with the subject property was provided by the User at the time of the assessment.

5.2.3 Actual Knowledge of the User

No actual knowledge of any environmental lien or AULs encumbering the subject property or in connection with the subject property was provided by the User at the time of the assessment.

5.2.4 Valuation Reduction for Environmental Issues

No knowledge of valuation reductions associated with the subject property was provided by the User at the time of the assessment.

5.2.5 Commonly Known or Reasonably Ascertainable Information

The User did not provide information that is commonly known or *reasonably ascertainable* within the local community about the subject property at the time of the assessment.

5.2.6 Previous Reports and Other Provided Documentation

The following information was provided to Partner for review during the course of this assessment:

Phase I Environmental Site Assessment, Professional Service Industries, Inc. (November 9, 1998)

Professional Service Industries, Inc. (PSI) prepared this report on behalf of Gort LTD., LP and USG Annuity & Life Company c/o ING Investment Management, LLC. The assessment was performed in accordance with ASTM Standard E1527-97. The assessment consisted of a site reconnaissance, interviews with knowledgeable personnel, review of historical information, and a review of federal, state and local regulatory databases. This assessment included an extra parcel to the west. Pertinent information contained in this report is summarized below:

- At the time of the 1998 assessment, the subject property consisted of two parcels of land totaling 12.21-acres in size and developed with an approximately 97,405 square-foot commercial building occupied by Fry's Electronics.
- According to the report, the subject property was formerly undeveloped land from as early as 1894; and developed as a dairy with associated residential structures and a store between circa-1928 and the early-1960s. By 1962, the subject property was redeveloped with the current commercial structure on the southern portion and Lockheed Martin (referred to as Plant A-1 South) occupied the property from 1969 to December 1995 for use as offices, a vehicle maintenance shop and parking. Additionally, a gasoline service station/automotive repair operation was developed on the northeastern portion of the subject property in 1962, which was acquired by Lockheed Martin in the mid-1960s and utilized as a gasoline service station/automotive repair operation for Lockheed fleet vehicles until closure in 1992. The subject property had been occupied by Fry's Electronics for retail use since at least 1995.
- Based on information provided in the report, this former operation included four (4) 12,000-gallon gasoline/diesel/tetrachloroethylene (PCE) USTs, one 550-gallon waste oil UST, one concrete 1,600-gallon clarifier and seven (7) dispensers. The UST containing PCE served as a central supply point for Lockheed's other plants in the Burbank area. The former gasoline service station/automotive repair operation was demolished in 1992 and the former underground storage tank (USTs) and clarifier were removed as part of the demolition. Additionally, other features including hydraulic lifts and storm drains were removed during this demolition under the supervision of the Burbank Fire Department. Following removal of the USTs and other associated

features of potential concern, a total of twenty-one soil samples were collected from the excavated areas. According to the analytical results, subsurface soil was found to be impacted with PCE, diesel fuel and hydraulic oil.

Between 1992 and 1995, seven (7) subsurface investigations were conducted at the subject property in relation to this reported release to the subsurface as a result of the former operations, and a total of 426 soil samples were collected from the former service station during this period. A total of 18 of the 426 soil samples contained concentrations of PCE above 1 mg/kg. As such, approximately 1,380 tons of PCE-impacted soil was excavated and removed from the subject property, and confirmation soil samples collected from the base and sidewalls of the excavation contained less than 150 ug/kg of PCE. As such, in a letter dated July 5, 1995, the California Regional Water Quality Control Board (RWQCB) issued a No Further Action status to the subject property and indicated the subject property had been remediated in accordance with Cleanup and Abatement Order No. 87-161. As such, PSI concluded the historical use of the subject property was not a REC.

PSI identified no RECs and recommended no further investigation.

Copies of pertinent pages reviewed are included in Appendix B of this report.

6.0 SITE RECONNAISSANCE

The weather at the time of the site visit was sunny and clear. Refer to Section 1.5 for limitations encountered during the field reconnaissance and Sections 2.1 and 2.2 for subject property operations. The table below provides the site assessment details:

Site Assessment Data

Site Assessment Performed By: Claudia Cook
Site Assessment Conducted On: April 16, 2020

The table below provides the subject property personnel interviewed during the field reconnaissance:

Site Visit Personnel for 2311 North Hollywood Way (Subject Property)				
Name	Title/Role	Contact Number	Site Walk* Yes/No	
Mr. Cesar Perez	Store General Manager	(818) 524-0423	Yes	

^{*} Accompanied Partner during the field reconnaissance activities and provided information pertaining to the current operations and maintenance of the subject property

Environmental concerns were identified during the onsite reconnaissance related to indications of former subsurface investigations, etc., as further discussed in Sections 6.1 and 6.2.

6.1 General Site Characteristics

6.1.1 Solid Waste Disposal

Solid waste generated at the subject property is disposed of in commercial dumpsters located on the southeastern section of the subject property on the subject property. An independent solid waste disposal contractor, Burbank Refuse, removes solid waste from the subject property. According to property personnel, only household and office-type trash is collected in the on-site solid waste dumpsters. No evidence of illegal dumping of solid waste was observed during the Partner site reconnaissance.

6.1.2 Sewage Discharge and Disposal

Sanitary discharges on the subject property are directed into the municipal sanitary sewer system. The City of Burbank services the subject property vicinity. No wastewater treatment facilities or septic systems were observed or reported on the subject property.

6.1.3 Surface Water Drainage

Storm water is removed from the subject property primarily by sheet flow action across the paved surfaces towards storm water drains located throughout the subject property and in the public right of way. The subject property is connected to a municipal owned and maintained sewer system.

The subject property does not appear to be a designated wetland area, based on information obtained from the United States Department of Agriculture; however, a comprehensive wetlands survey would be required in order to formally determine actual wetlands on the subject property. No surface impoundments, wetlands, natural catch basins, settling ponds, or lagoons are located on the subject property. No drywells were identified on the subject property.

6.1.4 Source of Heating and Cooling

Heating and cooling systems as well as domestic hot water equipment are fueled by electricity and natural gas provided by Southern California Edison and the Southern California Gas Company. Heating and cooling are provided by HVAC packaged units. There are three pad-mounted units at grade along the east elevation of the building and ten units mounted on the roof. Cooling is provided by direct expansion and appears to utilize R-410A refrigerant while heating is provided by gas-fired heating coils. The car audio installation building contains one roof-mounted evaporative swamp cooler unit.

6.1.5 Wells and Cisterns

No aboveground evidence of wells or cisterns was observed during the site reconnaissance.

6.1.6 Wastewater

Domestic wastewater generated at the subject property is disposed by means of the sanitary sewer system. No industrial process is currently performed at the subject property.

6.1.7 Septic Systems

No septic systems were observed or reported on the subject property.

6.1.8 Additional Site Observations

Partner observed at least one groundwater monitoring well on the northeastern corner of the subject property. This well appeared to be in good operating condition. The site contact was unaware of the nature of the well and or current operations. This feature is further discussed in Sections 4.2.2 and 4.2.4.

6.2 Potential Environmental Hazards

6.2.1 Hazardous Substances and Petroleum Products Used or Stored at the Site

No evidence of the use of reportable quantities of hazardous substances was observed on the subject property. Small quantities of general maintenance supplies were found to be properly labeled and stored at the time of the assessment with no signs of leaks, stains, or spills. The storage and use of maintenance supplies does not appear to pose a significant threat to the environmental integrity of the subject property at this time.

6.2.2 Aboveground & Underground Hazardous Substance or Petroleum Product Storage Tanks (ASTs/USTs)

No evidence of current or former ASTs or USTs was observed during the site reconnaissance.

6.2.3 Evidence of Releases

No spills, stains or other indications that a surficial release has occurred at the subject property were observed.

6.2.4 Polychlorinated Biphenyls (PCBs)

Older transformers and other electrical equipment could contain PCBs at a level that subjects them to regulation by the U.S. EPA. PCBs in electrical equipment are controlled by United States Environmental

Protection Agency regulations 40 CFR, Part 761. Under the regulations, there are three categories into which electrical equipment can be classified: 1) Less than 50 parts per million (ppm) of PCBs – "Non-PCB;" 2) 50 ppm-500 ppm – "PCB-Contaminated;" and, 3) Greater than 500 ppm – "PCB-Containing." The manufacture, process, or distribution in commerce or use of any PCB in any manner other than in a totally enclosed manner was prohibited after July 2, 1979.

The on-site reconnaissance addressed indoor and outdoor transformers that may contain PCBs. Two padmounted transformers, and three dry interior transformers were observed on the subject property. The transformers are not labeled indicating PCB content. No staining or leakage was observed in the vicinity of the transformers. Based on the good condition of the equipment, the transformers are not expected to represent a significant environmental concern.

The subject property is equipped with three dock levelers along the cargo loading bay on the southeastern corner of the subject property. The levelers appear to be in good condition, undergoing annual inspections and repairs by the ownership, with no signs of leaks or staining; therefore, they are not expected to represent a significant environmental concern.

Additionally, no other potential PCB-containing equipment (interior transformers, oil-filled switches, hoists, lifts, dock levelers, hydraulic elevators, balers, etc.) was observed on the subject property during Partner's reconnaissance.

6.2.5 Strong, Pungent or Noxious Odors

No strong, pungent or noxious odors were evident during the site reconnaissance.

6.2.6 Pools of Liquid

No pools of liquid were observed on the subject property during the site reconnaissance.

6.2.7 Drains, Sumps and Clarifiers

No drains, sumps, or clarifiers, other than those associated with storm water removal, were observed on the subject property during the site reconnaissance.

6.2.8 Pits, Ponds and Lagoons

No pits, ponds or lagoons were observed on the subject property.

6.2.9 Stressed Vegetation

No stressed vegetation was observed on the subject property.

6.2.10 Additional Potential Environmental Hazards

No additional environmental hazards, including landfill activities or radiological hazards, were observed.

6.3 Non-ASTM Services

6.3.1 Asbestos-Containing Materials (ACMs)

Asbestos is the name given to a number of naturally occurring, fibrous silicate minerals mined for their useful properties such as thermal insulation, chemical and thermal stability, and high tensile strength. The

Occupational Safety and Health Administration (OSHA) regulation 29 CFR 1926.1101 requires certain construction materials to be presumed to contain asbestos, for purposes of this regulation. All thermal system insulation (TSI), surfacing material, and asphalt/vinyl flooring that are present in a building that have not been appropriately tested are "presumed asbestos-containing material" (PACM).

The subject property buildings were constructed in 1962. A limited, visual evaluation of accessible areas for the presence of suspect ACMs at the subject property was conducted. The objective of this visual survey was to note the presence and condition of suspect ACM observed. Please refer to the table below for identified suspect ACMs:

Suspect ACMs			
Suspect ACM	Location	Friable Yes/No	Physical Condition
Drywall Systems	Throughout Building Interior	No	Good
Floor Tiles	Throughout Building Interior	No	Good
Floor Tile Mastic	Throughout Building Interior	No	Good

The limited visual survey consisted of noting observable materials (materials which were readily accessible and visible during the course of the site reconnaissance) that are commonly known to potentially contain asbestos. This activity was not designed to discover all sources of suspect ACM, PACM, or asbestos at the site; or to comply with any regulations and/or laws relative to planned disturbance of building materials such as renovation or demolition, or any other regulatory purpose. Rather, it is intended to give the User an indication if significant (significant due to quantity, accessibility, or condition) potential sources of ACM or PACM are present at the subject property. Additional sampling, assessment, and evaluation will be warranted for any other use.

Partner was not provided building plans or specifications for review, which may have been useful in determining areas likely to have used ACM.

According to the US EPA, ACM and PACM that is intact and in good condition can, in general, be managed safely in-place under an Operations and Maintenance (O&M) Program until removal is dictated by renovation, demolition, or deteriorating material condition. Prior to any disturbance of the construction materials within this facility, a comprehensive ACM survey is recommended.

6.3.2 Lead-Based Paint (LBP)

Lead is a highly toxic metal that affects virtually every system of the body. LBP is defined as any paint, varnish, stain, or other applied coating that has 1 mg/cm² (or 5,000 ug/g or 0.5% by weight) or more of lead. Congress passed the Residential Lead-Based Paint Hazard Reduction Act of 1992, also known as "Title X", to protect families from exposure to lead from paint, dust, and soil. Under Section 1017 of Title X, intact LBP on most walls and ceilings is not considered a "hazard," although the condition of the paint should be monitored and maintained to ensure that it does not become deteriorated. Further, Section 1018 of this law directed the Housing and Urban Development (HUD) and the US EPA to require the disclosure of known information on LBP and LBP hazards before the sale or lease of most housing built before 1978.

Based on the age of the subject property buildings (pre-1978), there is a potential that LBP is present. Interior and exterior painted surfaces were observed in good condition and therefore not expected to represent a "hazard," although the condition of the paint should be monitored and maintained to ensure that it does not become deteriorated.

Actual material samples would need to be collected in order to determine if LBP is present.

6.3.3 Radon

Radon is a colorless, odorless, naturally occurring, radioactive, inert, gaseous element formed by radioactive decay of radium (Ra) atoms. The US EPA has prepared a map to assist National, State, and local organizations to target their resources and to implement radon-resistant building codes. The map divides the country into three Radon Zones, according to the table below:

EPA Radon Zones				
EPA Zones	Average Predicted Radon Levels	Potential		
Zone 1	Exceed 4.0 pCi/L	Highest		
Zone 2	Between 2.0 and 4.0 pCi/L	Moderate		
Zone 3	Less than 2.0 pCi/L	Low		

It is important to note that the EPA has found homes with elevated levels of radon in all three zones, and the US EPA recommends site-specific testing in order to determine radon levels at a specific location. However, the map does give a valuable indication of the propensity of radon gas accumulation in structures.

Radon sampling was not conducted as part of this assessment. Review of the US EPA Map of Radon Zones places the subject property in Zone 2. Based upon the radon zone classification, radon is not considered to be a significant environmental concern.

6.3.4 Lead in Drinking Water

According to available information, a public water system operated by the Burbank Department of Public Works and Engineering serves the subject property vicinity. The sources of public water for Burbank are surface water purchased from the Metropolitan Water District (MWD) that received its water from the Northern Sierra Mountains in California and the Colorado River. According to the Burbank and the 2018 Annual Water Quality Report, water supplied to the subject property is in compliance with all State and Federal regulations pertaining to drinking water standards, including lead and copper. Water sampling was not conducted to verify water quality.

6.3.5 Mold

Molds are microscopic organisms found virtually everywhere, indoors and outdoors. Mold will grow and multiply under the right conditions, needing only sufficient moisture (e.g.in the form of very high humidity, condensation, or water from a leaking pipe, etc.) and organic material (e.g., ceiling tile, drywall, paper, or natural fiber carpet padding).

Partner observed accessible, interior areas for the subject property buildings for significant evidence of mold growth with the exceptions detailed in Section 1.5 of this report; however, this ESA should not be

used as a mold survey or inspection. Additionally, this limited assessment was not designed to assess all areas of potential mold growth that may be affected by mold growth on the subject property. Rather, it is intended to give the client an indication as to whether or not conspicuous (based on observed areas) mold growth is present at the subject property. This evaluation did not include a review of pipe chases, mechanical systems, or areas behind enclosed walls and ceilings.

No obvious indications of water damage or mold growth were observed during Partner's visual assessment.

6.4 Adjacent Property Reconnaissance

The adjacent property reconnaissance consisted of observing the adjacent properties from the subject property premises.

6.4.1 PCBs

Two pole-mounted transformers and at least three pad-mounted transformers were observed on the adjacent properties. No staining or leakage was observed in the vicinity of the transformers. Based on these observations, the presence of adjacent transformers is not expected to represent a significant environmental concern.

No additional items of environmental concern were identified on the adjacent properties during the site assessment, including hazardous substances, petroleum products, ASTs, USTs, evidence of releases, PCBs, strong or noxious odors, pools of liquids, sumps or clarifiers, pits or lagoons, stressed vegetation, or any other potential environmental hazards

7.0 FINDINGS AND CONCLUSIONS

Findings

A recognized environmental condition (REC) refers to the presence or likely presence of any hazardous substances or petroleum products in, on, or at a property: due to release to the environment; under conditions indicative of a release to the environment; or under conditions that pose a material threat of a future release to the environment. The following was identified during the course of this assessment:

The subject property is located within the boundaries of the Burbank Operable Unit (BOU) of the San Fernando Valley North Hollywood National Priorities List (NPL) site, an area of known groundwater contamination. Constituents of Concern (COCs) that have been identified include semi-volatile organic compounds (SVOCs), Volatile Organic Compounds (VOCs) and chromium. The subject property was one of many sites investigated by RWQCB and USEPA as a potential responsible party (PRP) of the groundwater contamination. On July 6, 1995 a letter was issued to Lockheed by RWQCB indicating the subject property would no longer be under investigation for potential groundwater contamination for VOCs and the subject property (former Lockheed Plant A-1 South) and current ownership (Gort Limited) were noted to be excluded from the requirements of the Cleanup and Abatement Order No. 87-161, which is associated with the cleanup of several Lockheed plants in the Burbank area.

Former site occupant, Lockheed Martin, monitors groundwater within the BOU to comply with the provisions of a USEPA Consent Decree (#91-4527-MRP) filed March 1992, and the CRWQCB Cleanup and Abatement Order (#87-161) dated December 1987. As part of the NPL investigation, two groundwater monitoring wells, A-1-CW04 and A-1-CW09, were installed in the north and northeast portion of the subject property, respectively. A third well, monitoring well A-1-CW05 was co-located with monitoring well A-1-CW04 at a later date. Partner contacted Ms. Anita Fang with CRWQCD regarding the most recent groundwater monitoring results on file with the agency for the BOU. A review of an Annual Groundwater Monitoring Report, Second Quarter 2017 Burbank Operable Unit, provided by Ms. Fang indicates 1,2,3 Trichloropropane (1,2,3 TCP), 1,4 Dioxane, various other VOCs (including Tetrachloroethylene (PCE) and Trichloroethene (TCE), hexavalent chromium and chromium were detected in the onsite wells at levels above the reporting limit (RL), with an increasing trend of 1,2,3 TCP concentrations. Chromium was detected in well A-1-CW04 at 0.88 ug/L which exceeds the Maximum Contaminant Level (MCL).

Lockheed Martin has conducted groundwater monitoring of the onsite wells since approximately 1996 and has been identified as a potential contributor to the regional groundwater contamination. As discussed, the current property owner (Gort, Ltd) has not been identified as a potential responsible party (PRP) and it is unlikely the subject property owner would be responsible for future remediation activities since NFA was issued in 1995. Furthermore, based on the depth to groundwater, review of the most recent groundwater analytical results, and commercial usage of the subject property, a vapor intrusion condition (VIC) is unlikely to exist at the subject property. The location of the subject property within the Burbank Operable Unit of the

San Fernando Valley NPL investigation, the identification of a former site occupant as a potential contributor to the regional impact, and the reported VOC and chromium groundwater contamination identified in onsite wells is considered a REC for the subject property; however, based on the lack of an apparent VIC and issuance of an NFA letter with regards to the former subject property operations, Partner recommends no further investigation at this time with regards to this regional groundwater contamination case.

A controlled recognized environmental condition (CREC) refers to a REC resulting from a past release of hazardous substances or petroleum products that has been addressed to the satisfaction of the applicable regulatory authority, with hazardous substances or petroleum products allowed to remain in place subject to the implementation of required controls. The following was identified during the course of this assessment:

• Based on review of historical sources, by 1962, the subject property was redeveloped with the current commercial structure on the southern portion and Lockheed Martin (referred to as Plant A-1 South) occupied the property from 1969 to December 1995 for use as offices, a vehicle maintenance shop and parking. Additionally, a gasoline service station/automotive repair operation was developed on the northeastern portion of the subject property in 1962, which was acquired by Lockheed Martin in the mid-1960s and utilized as a gasoline service station/automotive repair operation for Lockheed fleet vehicles until closure in 1992. The subject property has been occupied by Fry's Electronics for retail use since at least 1995.

The subject property at 2311 North Hollywood Way was identified in the regulatory database report under the names Lockheed Martin, Gort Limited and Fry's Electronics. Based on information provided in a previous Phase I ESA report (PSI, 1998) and from a file review, this former operation included four (4) 12,000-gallon gasoline/diesel/tetrachloroethylene (PCE) USTs, one 550-gallon waste oil UST, one concrete 1,600-gallon clarifier and seven (7) dispensers. The UST containing PCE served as a central supply point for Lockheed's other plants in the Burbank area. The former gasoline service station/automotive repair operation was demolished in 1992 and the former underground storage tank (USTs) and clarifier were removed as part of the demolition. Additionally, other features including hydraulic lifts and storm drains were removed during this demolition under the supervision of the Burbank Fire Department. Following removal of the USTs and other associated features of potential concern, a total of twenty-one soil samples were collected from the excavated areas. According to the analytical results, subsurface soil was found to be impacted with PCE, diesel fuel and hydraulic oil.

Between 1992 and 1995, seven (7) subsurface investigations were conducted at the subject property in relation to this reported release to the subsurface as a result of the former operations, and a total of 426 soil samples were collected from the former service station during this period. The 1992 subsurface investigation included 78 soil borings to depths of 10 to 40 feet bgs, and soil samples collected from varying intervals were analyzed for VOCs, PCBs, and TPH. According to the analytical results, TPH impacts were generally confined to the upper 10 feet of soil. Elevated VOC impacts were also generally limited to the upper 10 feet of soil, with one boring noting PCE

impacts extending to 25 feet bgs. In 1993, a Soil Gas Survey was conducted on the subject property to further evaluate the extent of the subsurface impacts. A total of 181 soil-gas samples were collected from 159 locations across the subject property at depths ranging from 5 to 25 feet bgs, and the samples were analyzed for VOCs. According to the analytical results, twelve of the sample collected from the 5-foot depth contained PCE in excess of 0.1 mg/L, with one sample exceeding 1.0 mg/L. None of the samples collected from the 20-foot depth contained concentrations of PCE above 1.0 mg/L. Additional site characterization was conducted in 1994/1995 which included additional soil borings and sampling and additional soil vapor sampling. A total of 18 of the 426 soil samples contained concentrations of PCE above 1 mg/kg.

Based on review of the Final Soil Remediation Report dated May 22, 1995 by Lockheed Martin Corporation, approximately 1,380 tons of PCE- and diesel/oil-impacted soil was excavated and removed from the subject property. Following removal, a total of 109 confirmation soil samples were collected from the base and sidewalls of the excavation and analyzed for VOCs, TPH, and lead. According to the analytical results, the confirmation soil samples all contained less than 150 ug/kg of PCE. As such, the excavations were backfilled with approved clean fill, and a request for closure was submitted with the report. Based on review of the 1995 final soil remediation report, in a letter dated July 5, 1995, the California Regional Water Quality Control Board (RWQCB) issued a No Further Action status to the subject property and indicated the subject property had been remediated in accordance with Cleanup and Abatement Order No. 87-161. As such, the subject property (former Lockheed Plant A-1 South) and current ownership (Gort Limited) were noted to be excluded from the requirements of the Cleanup and Abatement Order No. 87-161, which is associated with the cleanup of several Lockheed plants in the Burbank area. Based on the regulatory closure with residual PCE-impacted soil left in place, the historical usage of the subject property and associated closed release case are considered a CREC for the subject property. As such, prior to any redevelopment activities and due to the presence of residual PCE-impacted soil in the subsurface, Partner recommends a soil vapor survey be conducted to evaluate potential vapor intrusion issues for any future onsite buildings. Additionally, if the redevelopment plan includes subterranean levels, Partner recommends implementing a Soil Management Plan (SMP).

A historical recognized environmental condition (HREC) refers to a past release of any hazardous substances or petroleum products that has occurred in connection with the property and has been addressed to the satisfaction of the applicable regulatory authority or meeting unrestricted use criteria established by a regulatory authority, without subjecting the property to any required controls. The following was identified during the course of this assessment:

• Partner did not identify any HRECs during the course of this assessment.

An *environmental issue* refers to environmental concerns identified by Partner, which do not qualify as RECs; however, warrant further discussion. The following was identified during the course of this assessment:

 Due to the age of the subject property buildings, there is a potential that asbestos-containing material (ACM) and/or lead-based paint (LBP) are present. Readily visible suspect ACMs and painted surfaces were observed in good condition. The identified suspect ACMs and LBPs would need to be sampled to confirm the presence or absence of asbestos or lead prior to any renovation or demolition activities to prevent potential exposure to workers and/or building occupants.

Conclusions, Opinions and Recommendations

Partner has performed a Phase I Environmental Site Assessment in conformance with the scope and limitations of ASTM Practice E1527-13 of 2311 North Hollywood Way in Burbank, Los Angeles County, California (the "subject property"). Any exceptions to, or deletions from, this practice are described in Section 1.5 of this report.

This assessment has revealed evidence of a REC, CREC and environmental issue in connection with the subject property. Based on the conclusions of this assessment, Partner recommends the following:

- Prior to any redevelopment activities and due to the presence of residual PCE-impacted soil in the subsurface, Partner recommends a soil vapor survey be conducted to evaluate potential vapor intrusion issues for any future onsite buildings. Additionally, if the redevelopment plan includes subterranean levels, Partner recommends implementing a Soil Management Plan (SMP).
- An Operations and Maintenance (O&M) Program should be implemented in order to safely manage the suspect ACMs and LBP located at the subject property.

8.0 SIGNATURES OF ENVIRONMENTAL PROFESSIONALS

Partner has performed a Phase I Environmental Site Assessment of the property located at 2311 North Hollywood Way in Burbank, Los Angeles County, California in conformance with the scope and limitations of the protocol and the limitations stated earlier in this report. Exceptions to or deletions from this protocol are discussed earlier in this report.

By signing below, Partner declares that, to the best of our professional knowledge and belief, we meet the definition of *Environmental Professional* as defined in §312.10 of 40 CFR §312. Partner has the specific qualifications based on education, training, and experience to assess a *property* of the nature, history, and setting of the subject *property*. Partner has developed and performed the all appropriate inquiries in conformance with the standards and practices set forth in 40 CFR Part 312.

Prepared By:

Claudia Cook

Environmental Professional

Louis Mowers

Environmental Scientist

Reviewed By:

David Boyce Senior Author

9.0 REFERENCES

Reference Documents

American Society for Testing and Materials, Standard Practice for Environmental Site Assessments: Phase I

Bernalillo County Assessor office, accessed via internet, April 2020

Environmental Site Assessment Process, ASTM Designation: E1527-13.

Environmental Data Resources (EDR), Radius Report, April 2020

Federal Emergency Management Agency, Federal Insurance Administration, National Flood Insurance Program, Flood Insurance Map, accessed via internet, April 2020

National Pipeline Mapping System, accessed via internet, April 2020

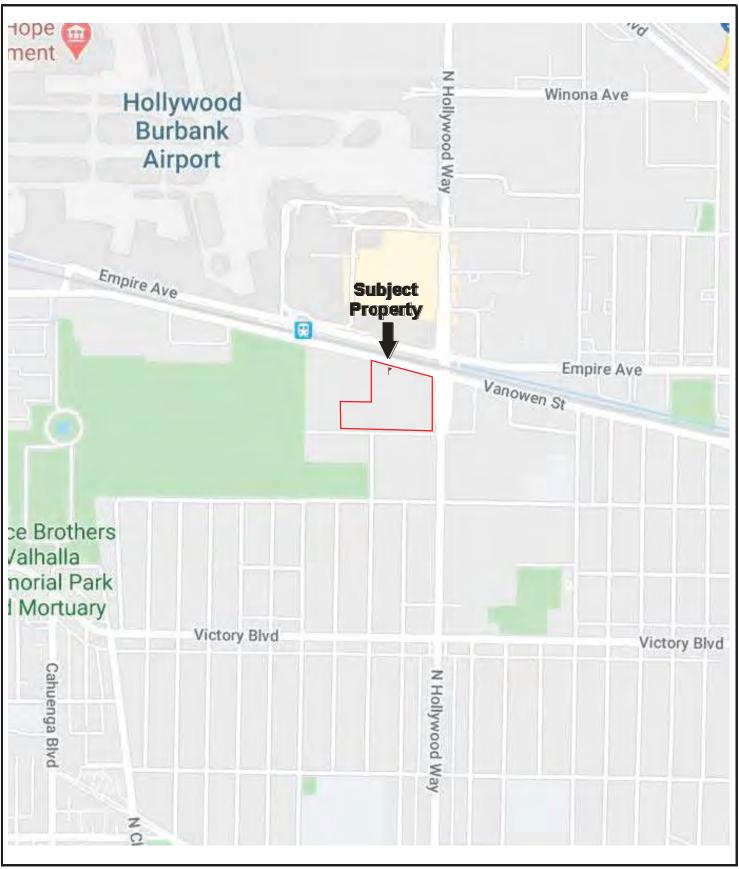
New Mexico Department of Oil and Gas, accessed via internet, April 2020

United States Department of Agriculture, Conservation Service, accessed via internet, April 2020

Unites States Fish & Wildlife Department, accessed via internet, April 2020

United States Environmental Protection Agency, EPA Map of Radon Zones (Document EPA-402-R-93-071), April 2020

United States Geological Survey, accessed via the Internet, April 2020


United States Geological Survey Topographic Map 1995, 7.5-minute series, accessed via internet, April 2020

FIGURES

- 1 SITE LOCATION MAP
- 2 SITE PLAN
- 3 TOPOGRAPHIC MAP

Drawing Not To Scale

KEY:
Subject Property

GROUNDWATER

GW Monitoring Well

KEY: Subject Property

N

USGS 7.5 Minute *Burbank, California* Quadrangle Created: 2012

KEY: Subject Property

APPENDIX A: SITE PHOTOGRAPHS

1. View of the northern side of the subject property, facing southwest on Vanowen Street

2. View of the western side of the subject property, facing south from the parking lot

3. View of the eastern side of the subject property, facing north from Valhalla Drive

4. View of the southern side of the subject property, facing northeast from Valhalla Drive

5. View of the subject property electrical panels

6. View of the inoperable automotive stereo installation garage

7. View of a typical storm water drain

8. View of the southeastern corner of the subject property loading and distribution area

9. View of the subject property parking lot

10. View of the groundwater monitoring well on the northeastern corner of the subject property

11. View of the entrance to the subject property

12. View of the checkout area of the subject property

13. View of the internals of the electrical panel

14. View of a not in use air compressor within the automotive stereo installation garage

15. View of the automotive stereo installation garage

16. View of the main floor area of the subject property

17. View of an employee breakroom

18. View of the central data center and fire sprinkler computer equipment

19. View of the maintenance closet

20. View of the subject property restroom area

21. View of the three leveling docks on the subject property

22. View of the subject property café area

23. View of a typical dry-transformer in the subject property

24. View of the two outdoor pad-mounted transformers


25. View of the northern adjacent property

26. View of the western adjacent property

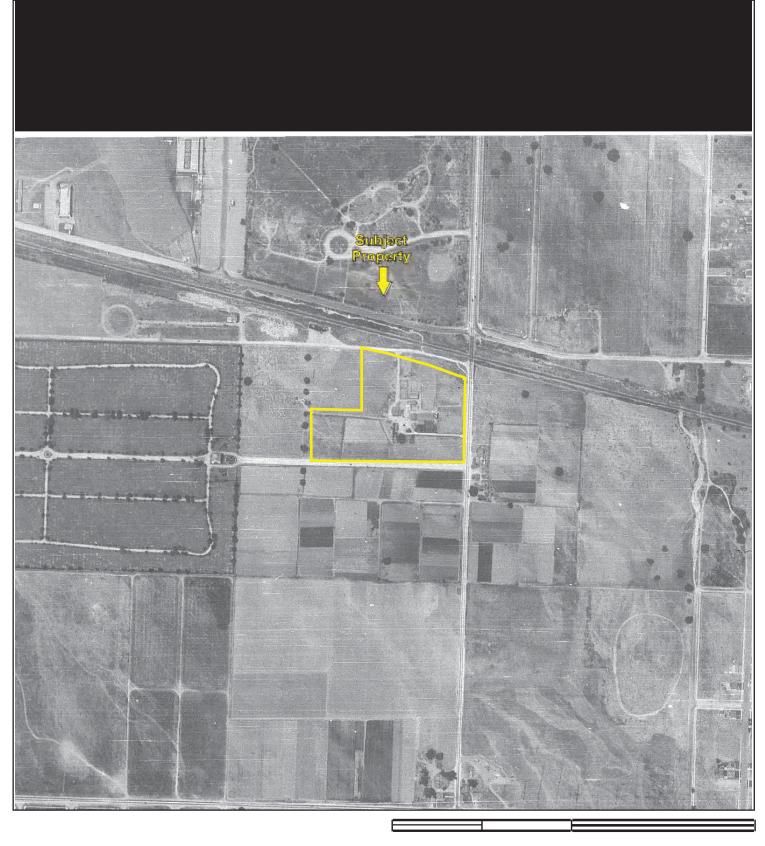
27. View of the eastern adjacent property

28. View of the southwestern adjacent property

29. View of the southern adjacent property

30. View of the southeastern adjacent property

APPENDIX B: HISTORICAL/REGULATORY DOCUMENTATION


1000

2000

1000

2000

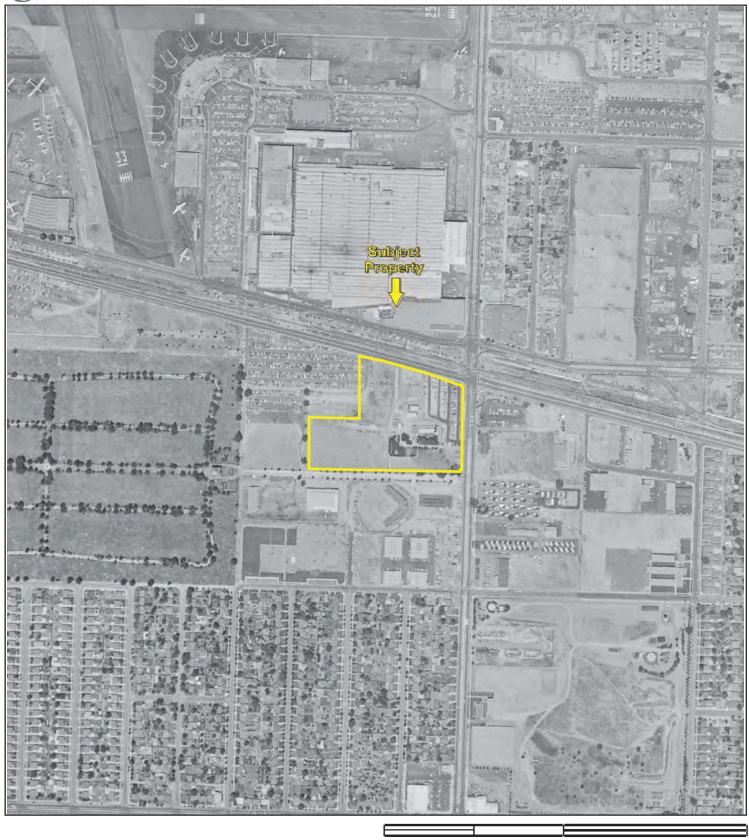
Key: Subject Property

 \bigwedge

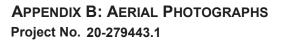
APPENDIX B: AERIAL PHOTOGRAPHS Project No. 20-279443.1

1000

2000

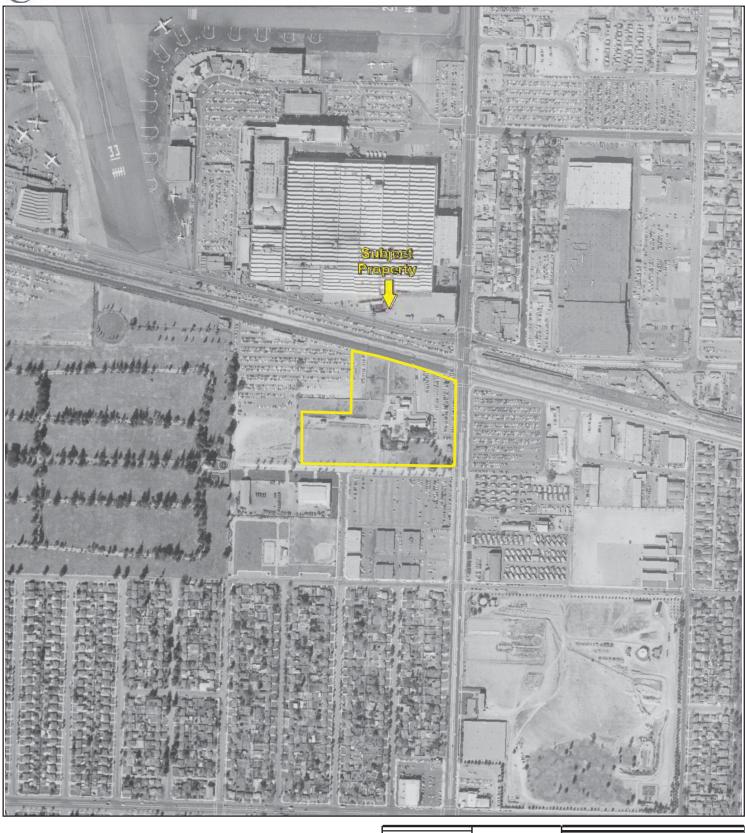

Key: Subject Property

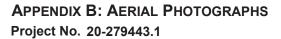
APPENDIX B: AERIAL PHOTOGRAPHS Project No. 20-279443.1



1000

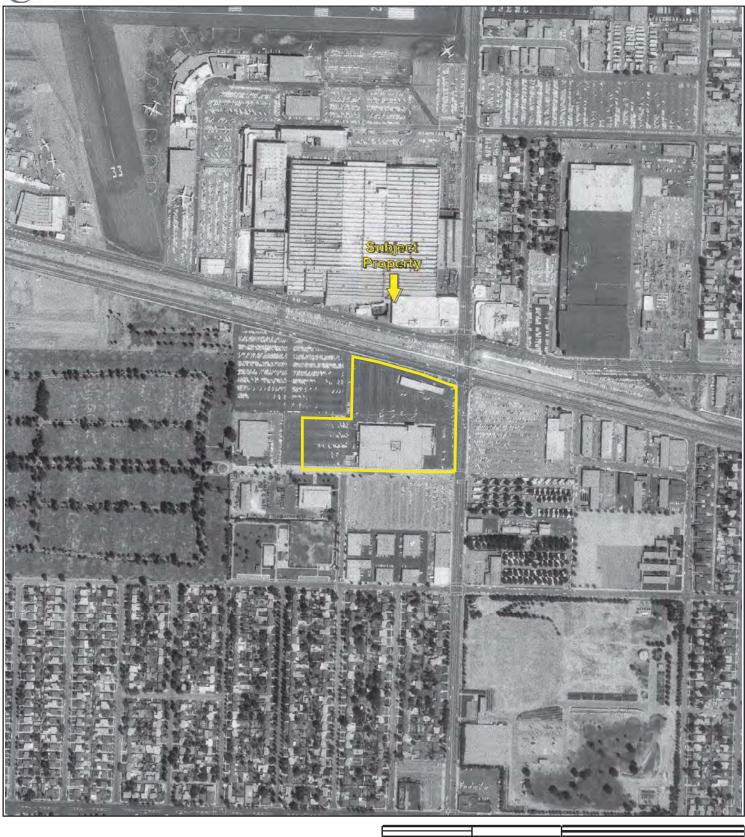
2000

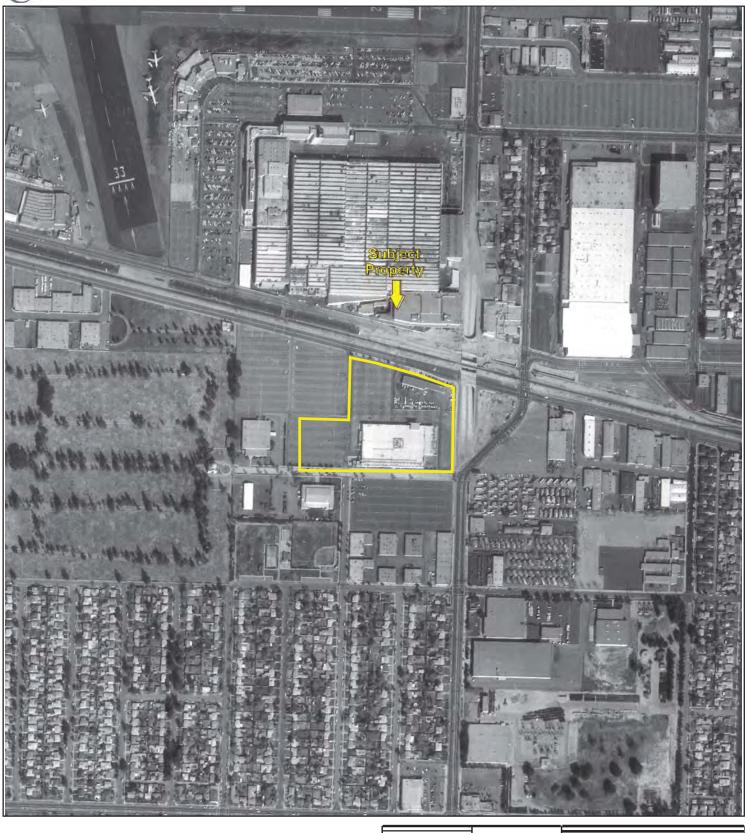




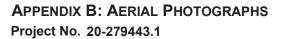
1000

2000



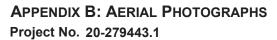

1000

2000



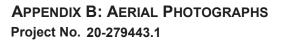
1000

2000



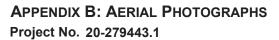
1000

2000



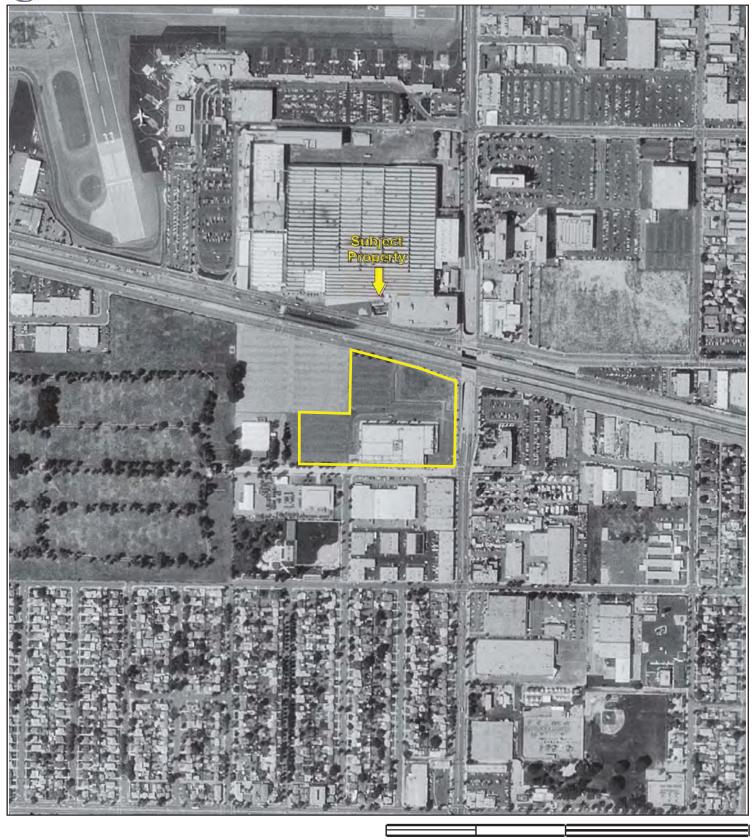
1000

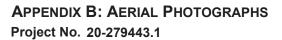
2000



1000

2000





1000

2000

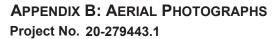
1000

2000

Key: Subject Property

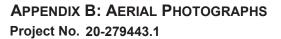
 \bigvee

APPENDIX B: AERIAL PHOTOGRAPHS Project No. 20-279443.1



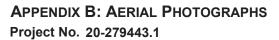
1000

2000



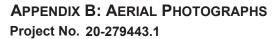
1000

2000



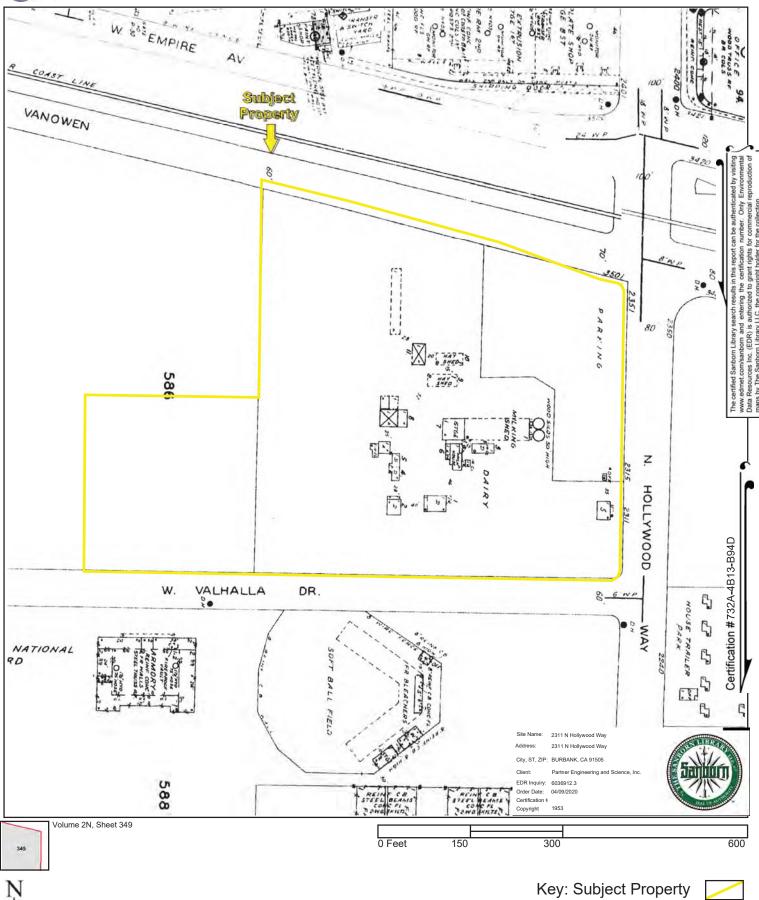
1000

2000

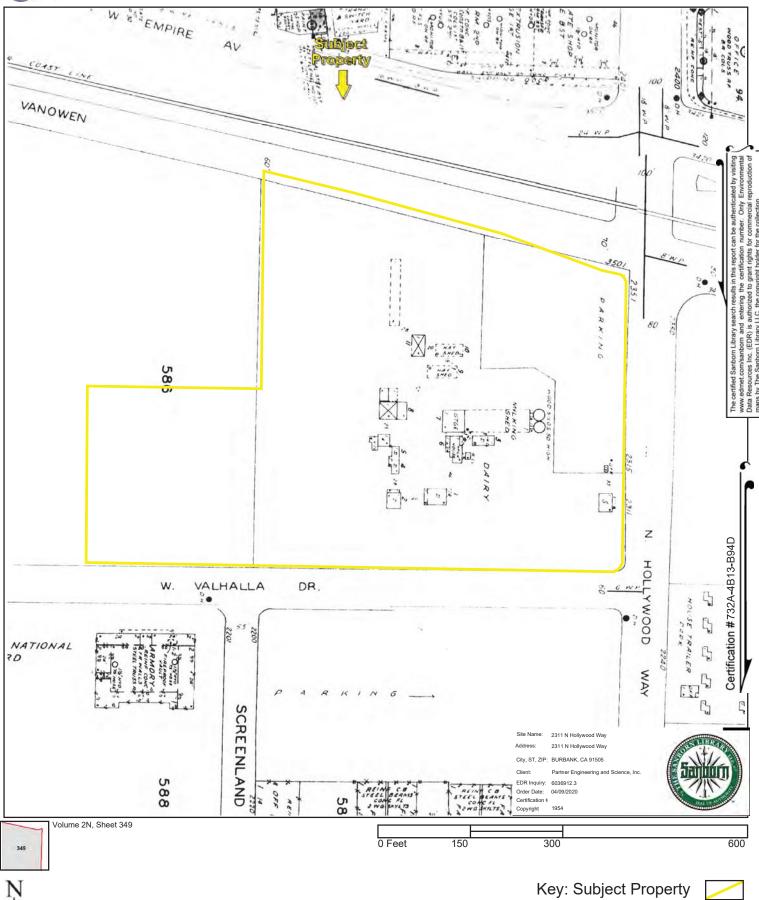

1000

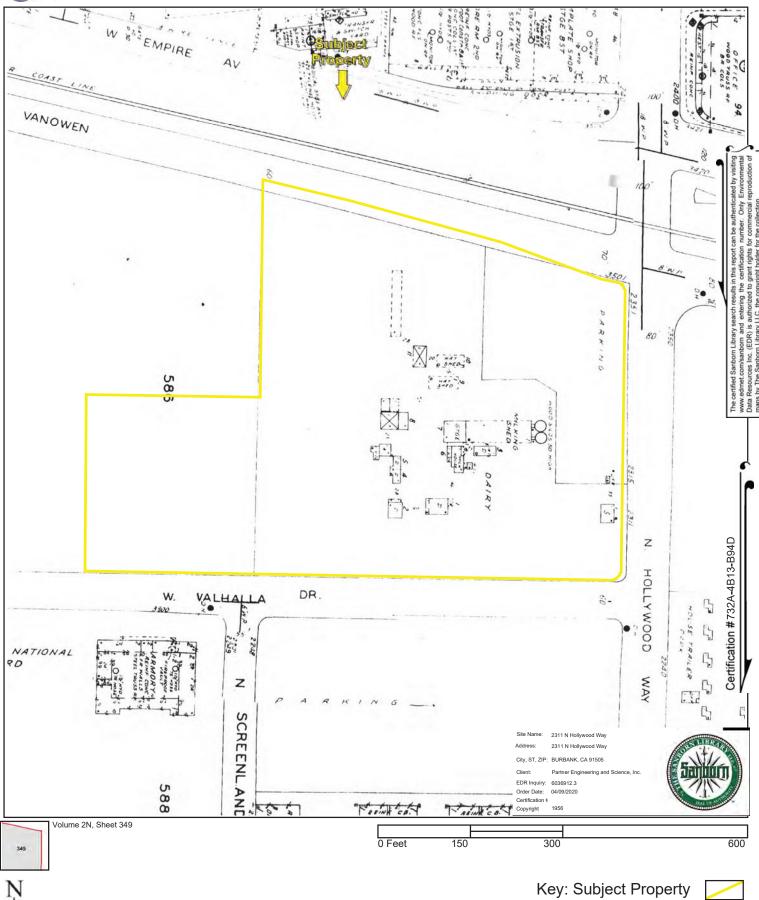
2000

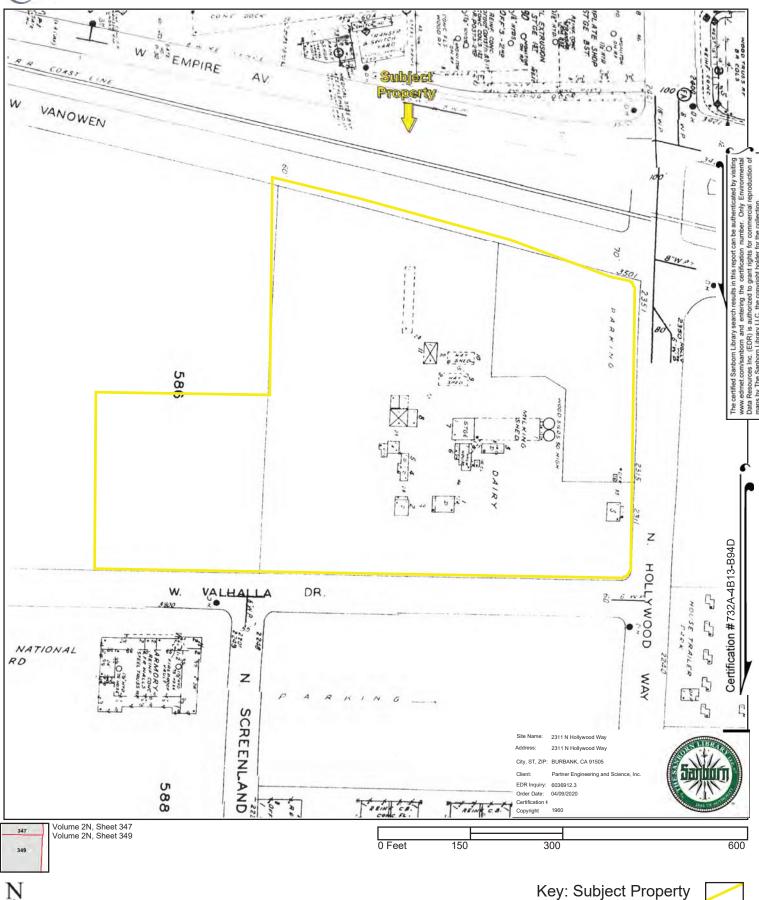
Key: Subject Property

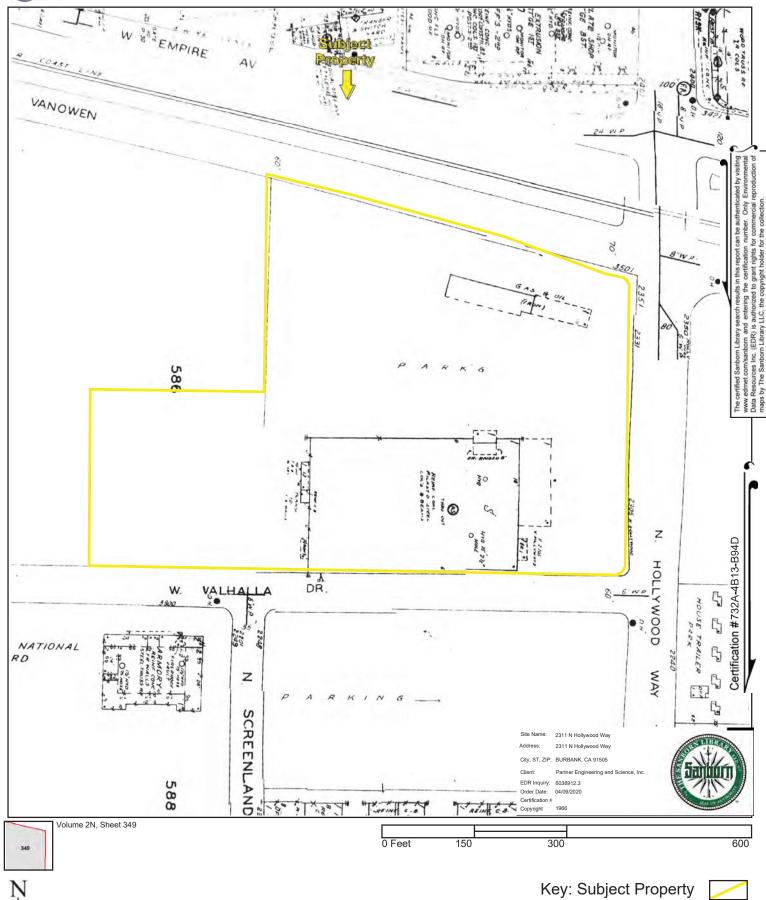


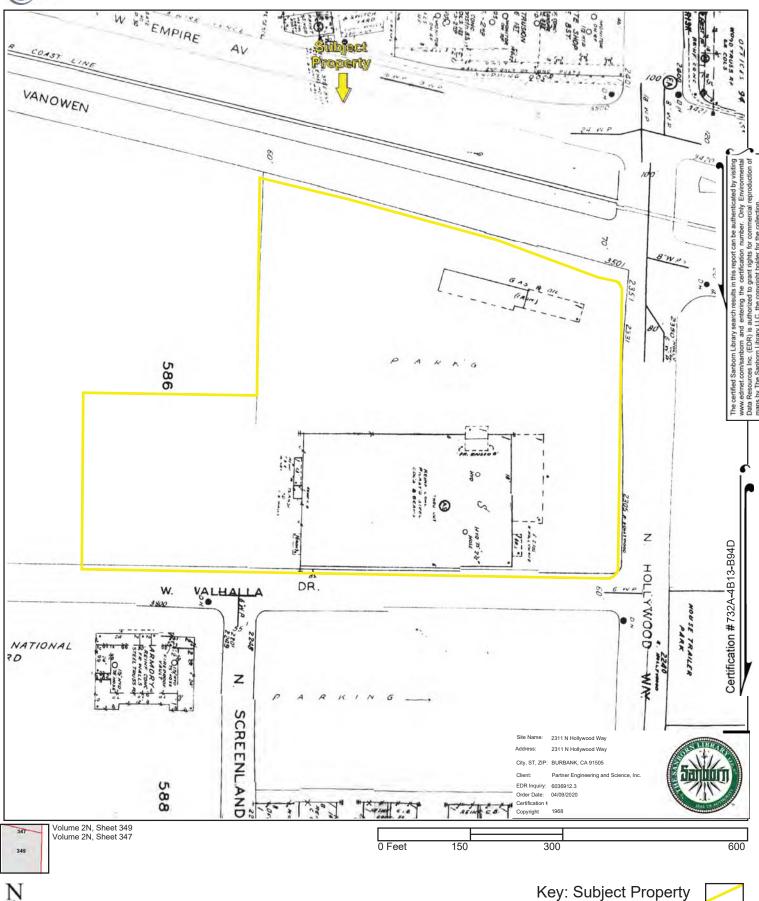
 \bigwedge

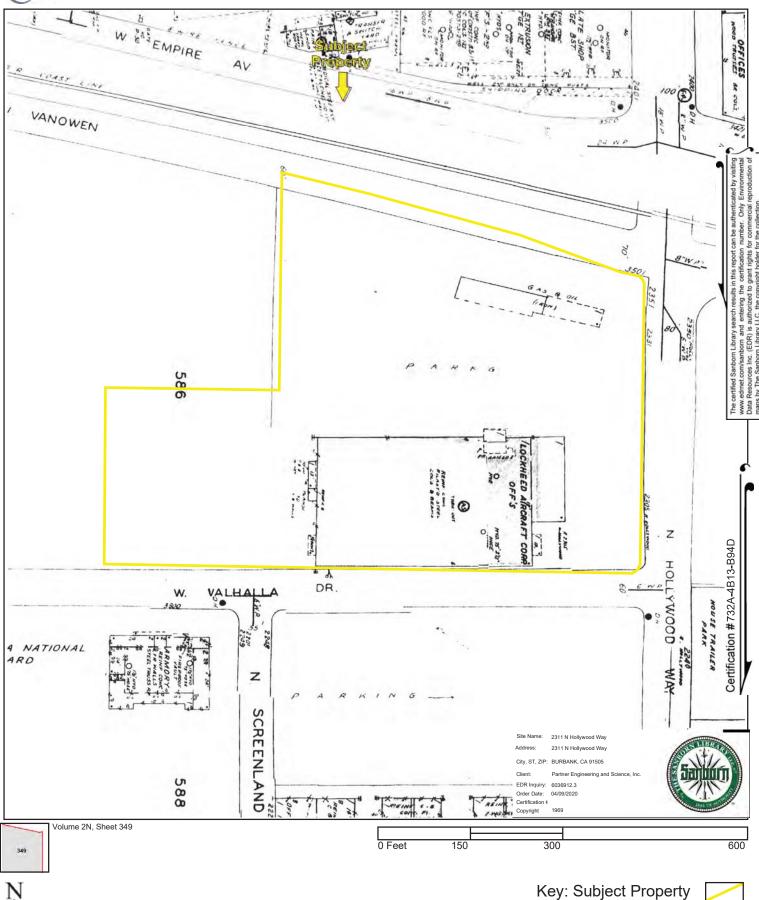


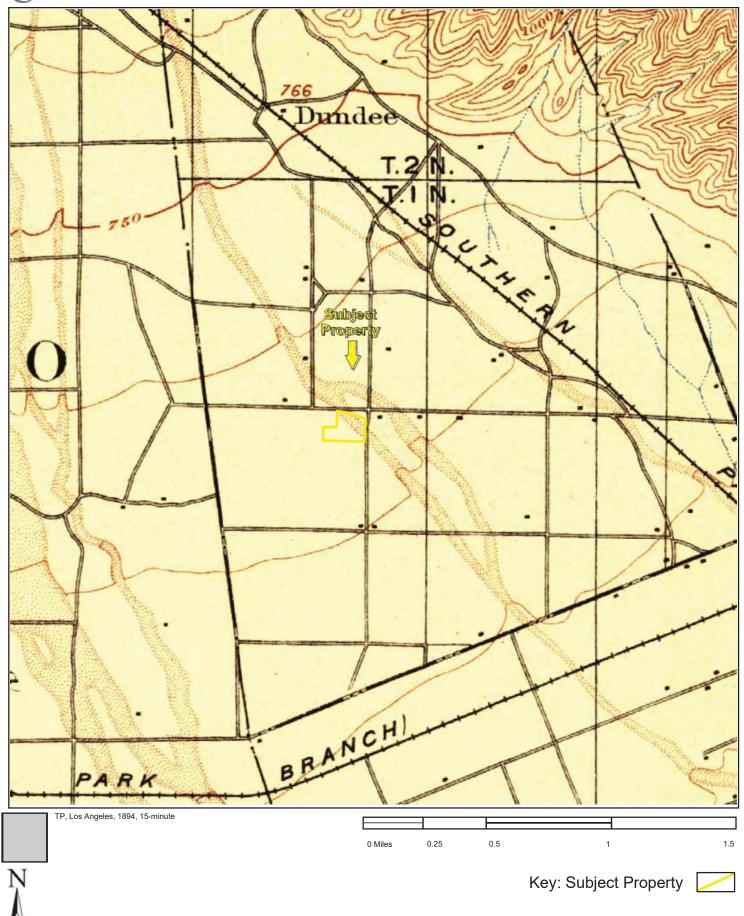


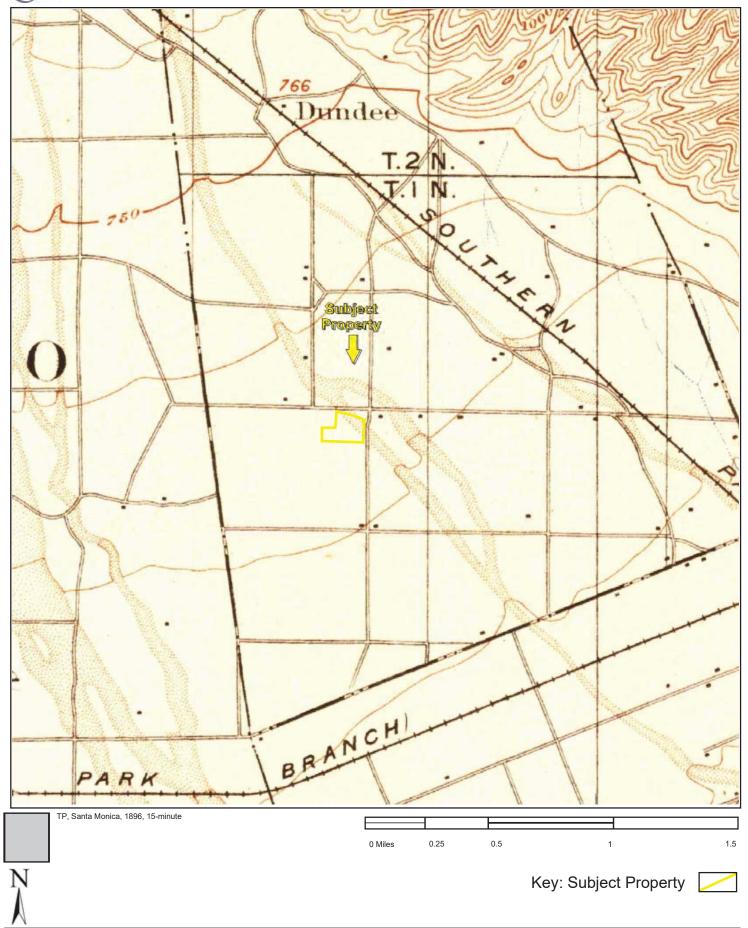


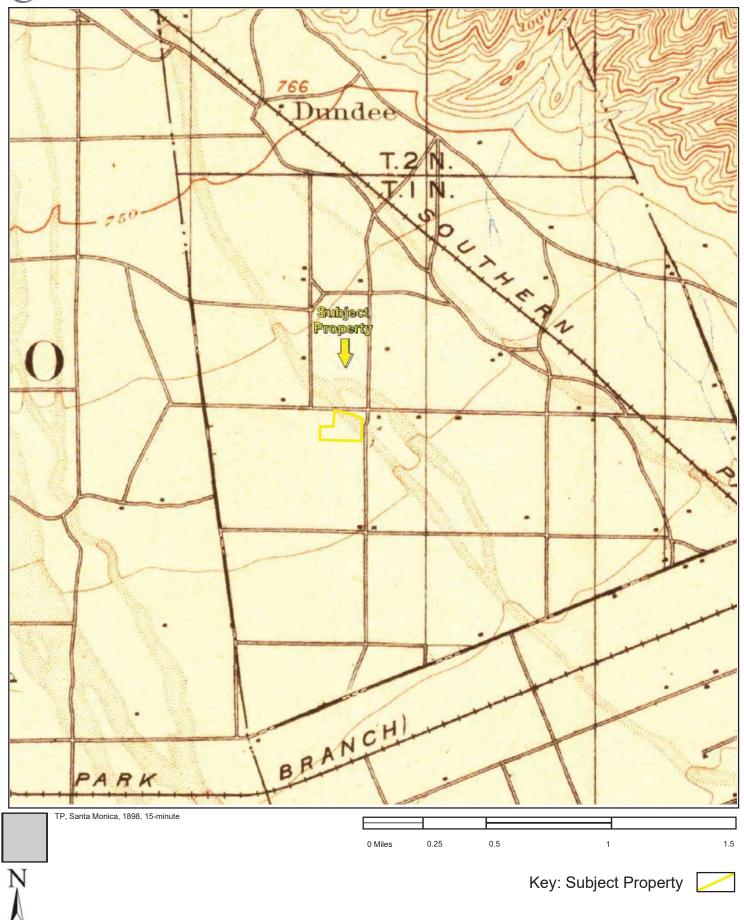


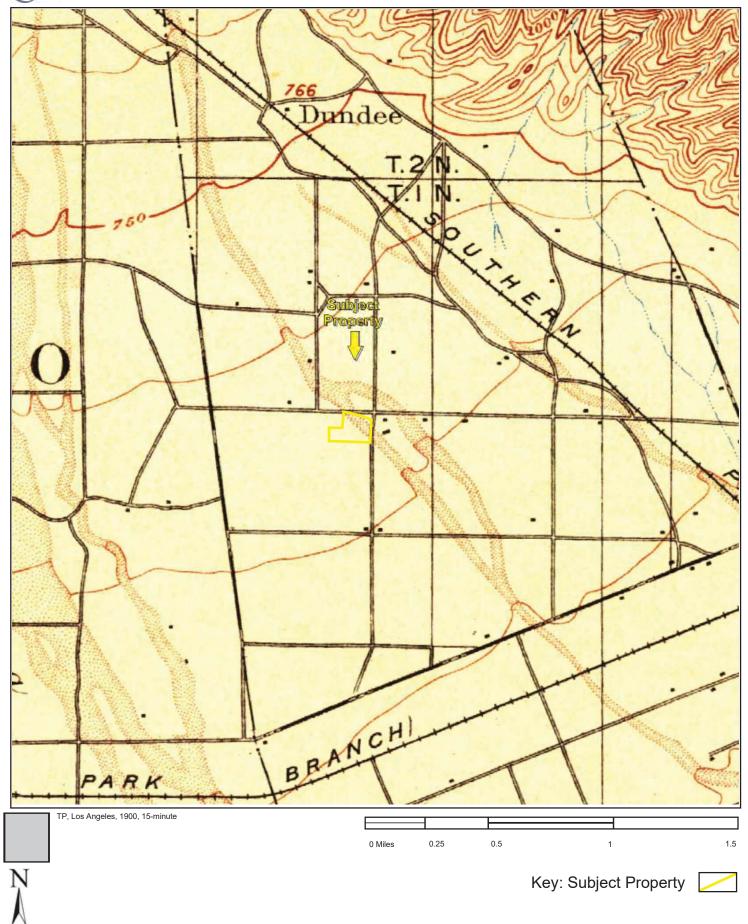


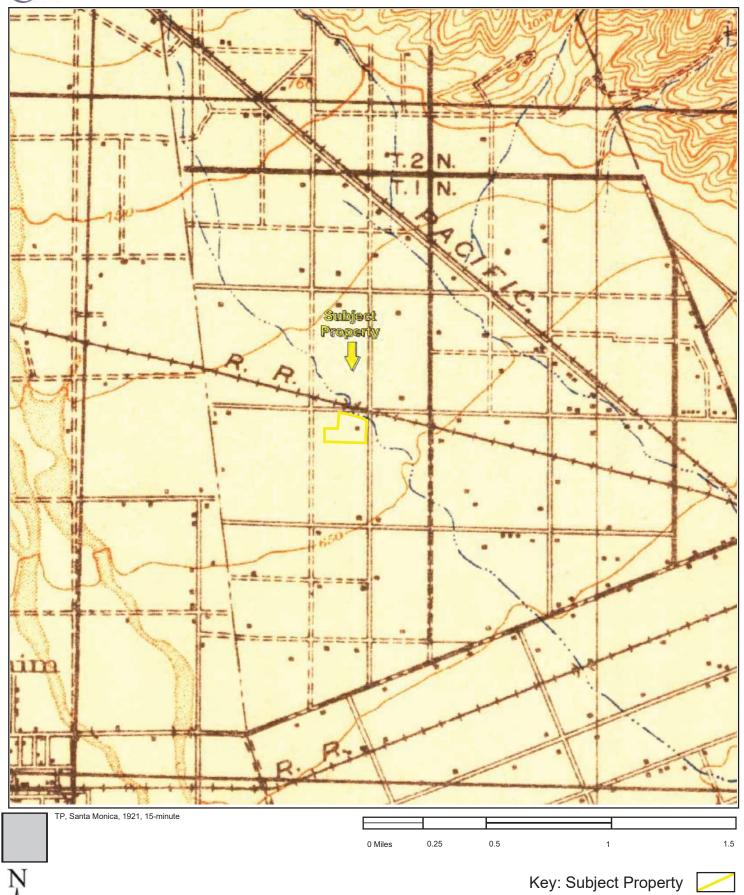


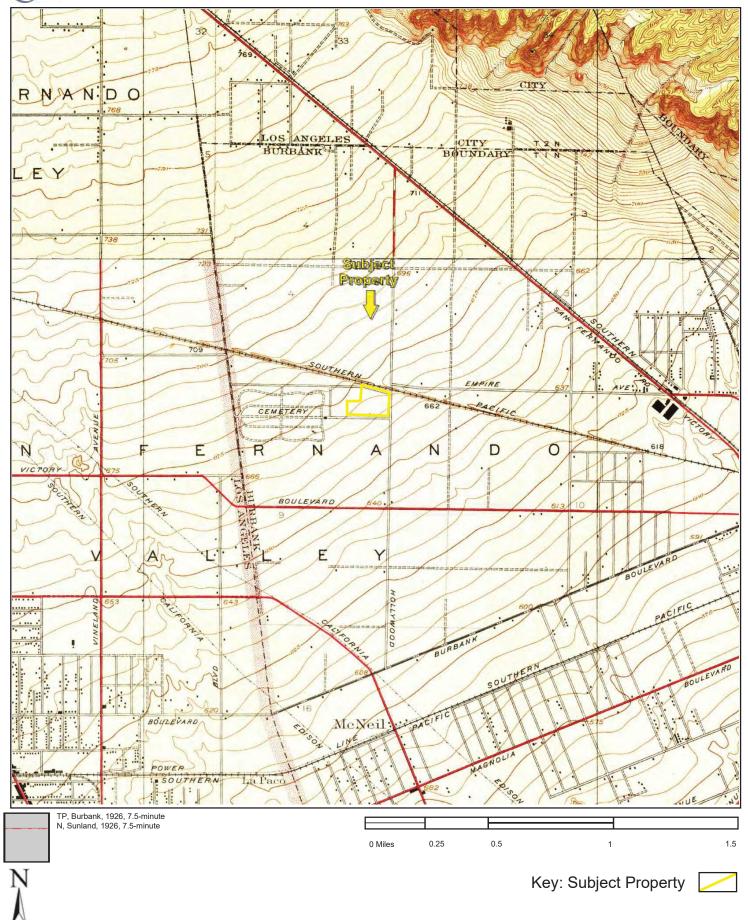


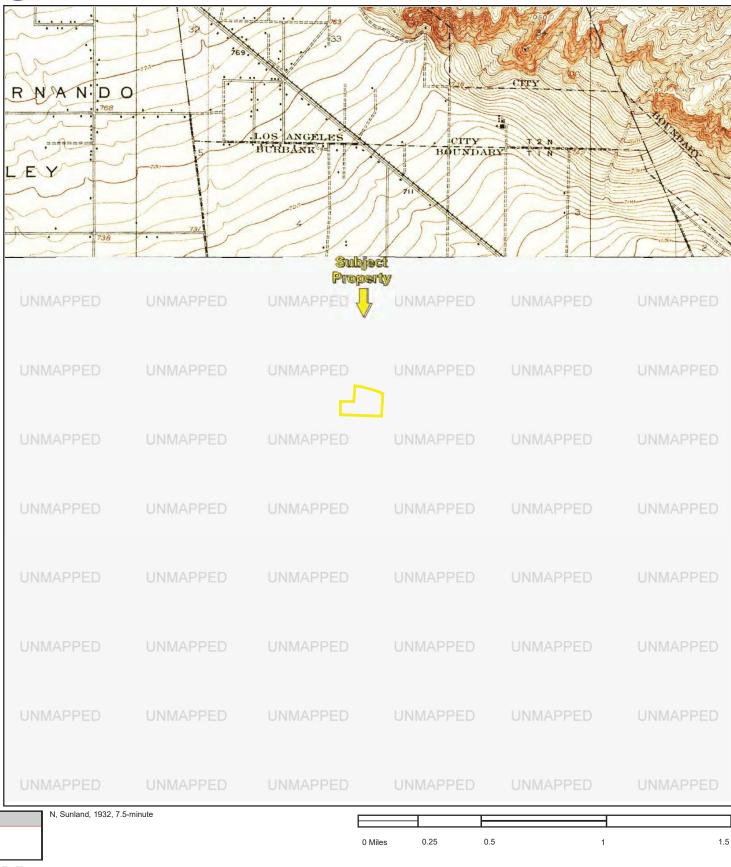


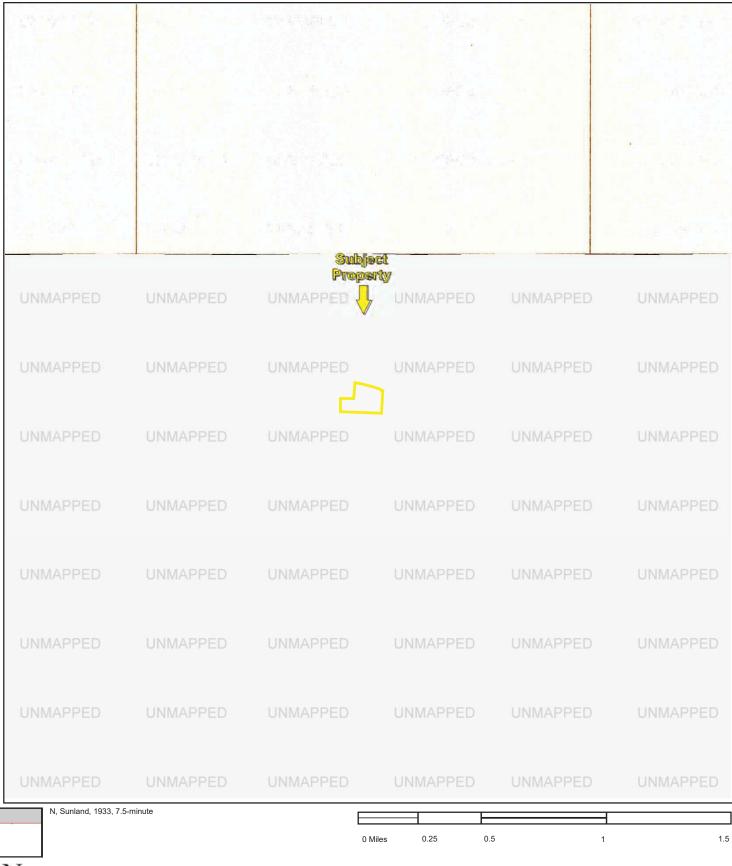




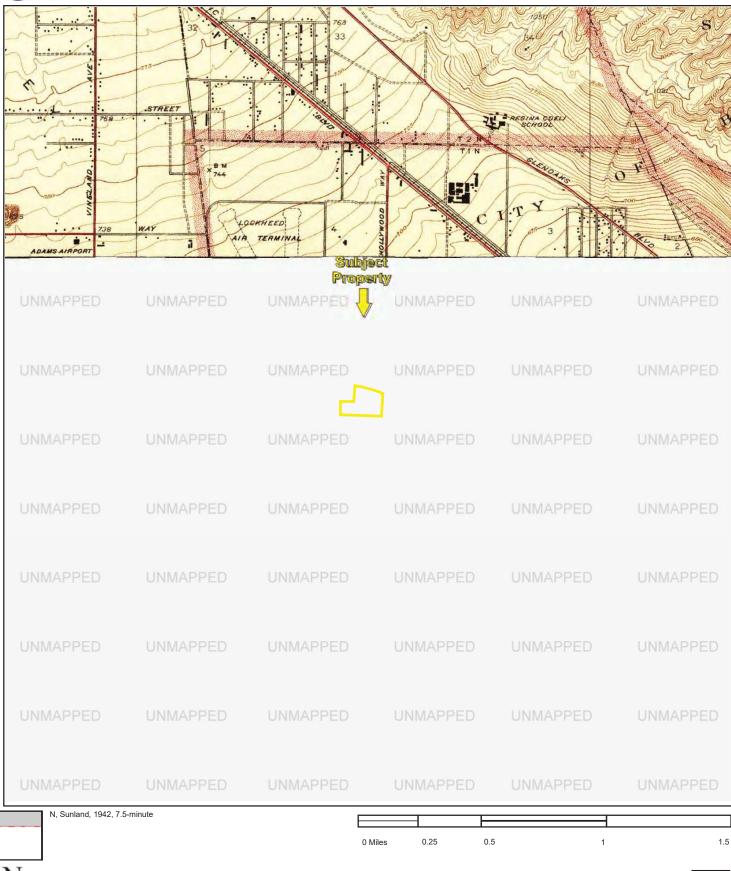




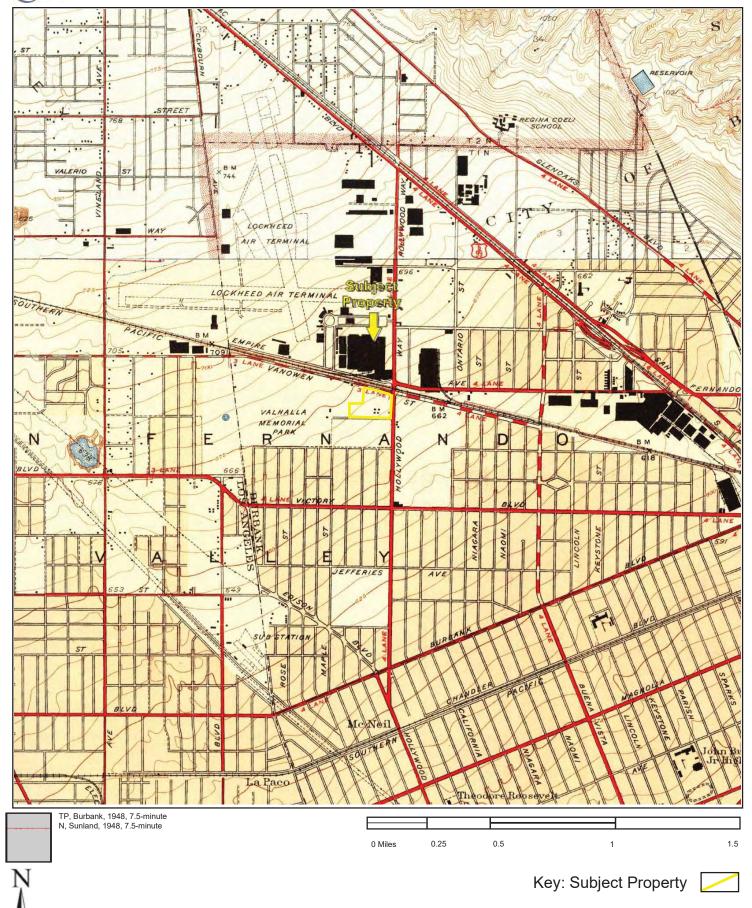




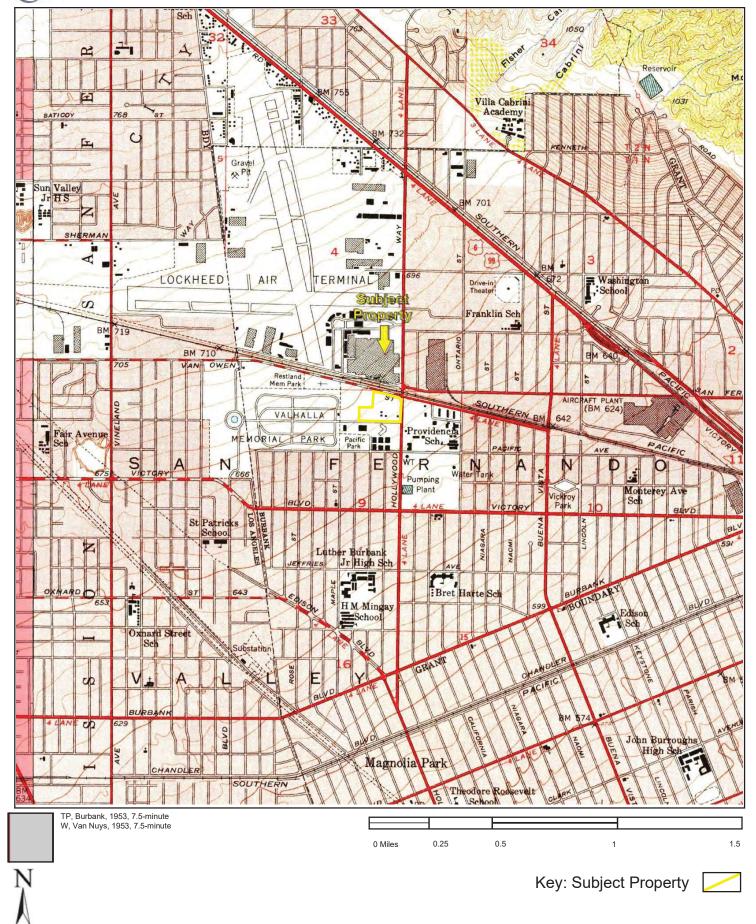
Key: Subject Property

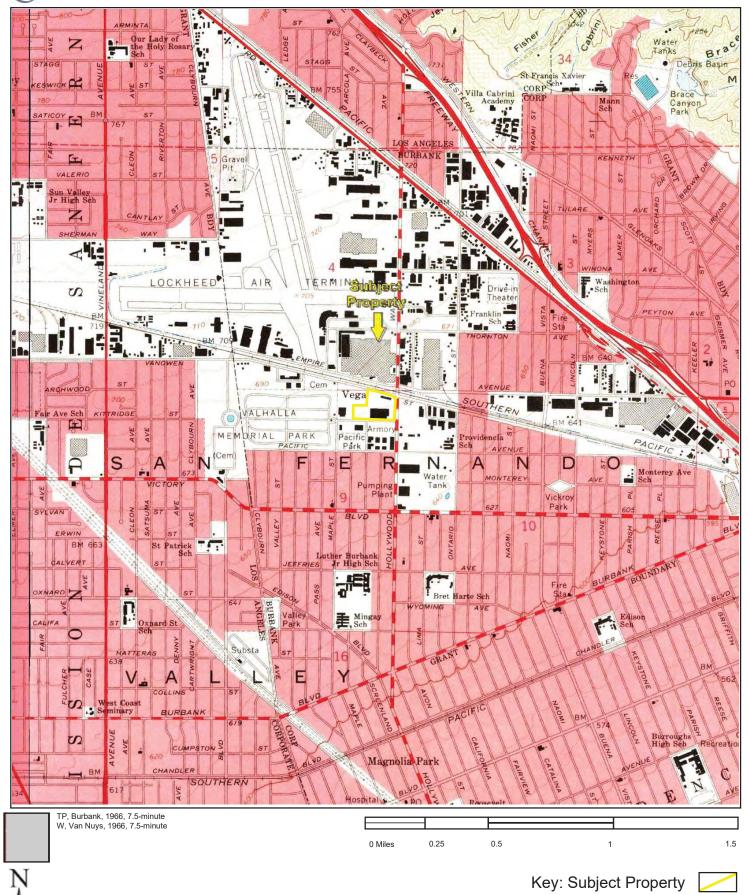


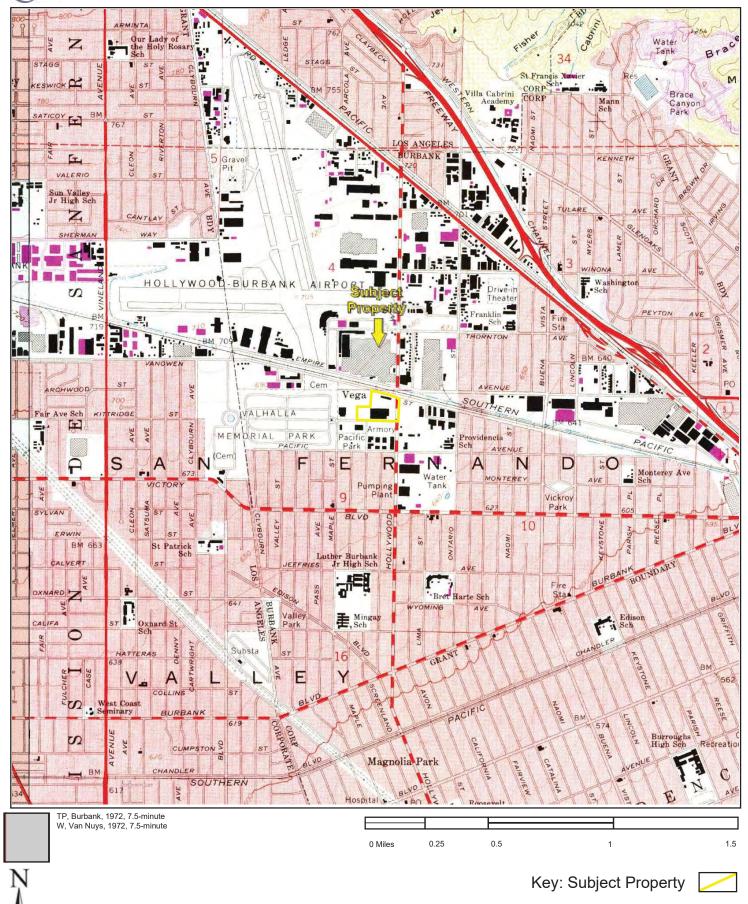
Key: Subject Property

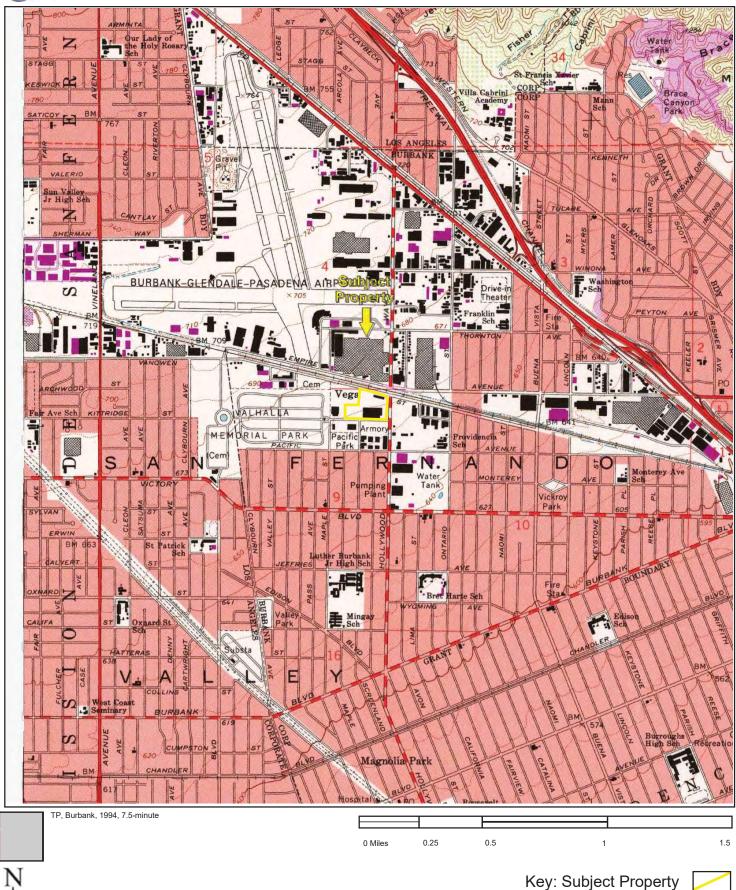


Key: Subject Property









2311 N Hollywood Way

2311 N Hollywood Way BURBANK, CA 91505

Inquiry Number: 6036912.5

April 14, 2020

The EDR-City Directory Abstract

TABLE OF CONTENTS

SECTION

Executive Summary

Findings

City Directory Images

Thank you for your business.Please contact EDR at 1-800-352-0050 with any questions or comments.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OR DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction orforecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2020 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc. or its affiliates is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

EXECUTIVE SUMMARY

DESCRIPTION

Environmental Data Resources, Inc.'s (EDR) City Directory Abstract is a screening tool designed to assist environmental professionals in evaluating potential liability on a target property resulting from past activities. EDR's City Directory Abstract includes a search and abstract of available city directory data. For each address, the directory lists the name of the corresponding occupant at five year intervals.

Business directories including city, cross reference and telephone directories were reviewed, if available, at approximately five year intervals for the years spanning 1920 through 2015. This report compiles information gathered in this review by geocoding the latitude and longitude of properties identified and gathering information about properties within 660 feet of the target property.

A summary of the information obtained is provided in the text of this report.

RECORD SOURCES

EDR's Digital Archive combines historical directory listings from sources such as Cole Information and Dun & Bradstreet. These standard sources of property information complement and enhance each other to provide a more comprehensive report.

EDR is licensed to reproduce certain City Directory works by the copyright holders of those works. The purchaser of this EDR City Directory Report may include it in report(s) delivered to a customer. Reproduction of City Directories without permission of the publisher or licensed vendor may be a violation of copyright.

RESEARCH SUMMARY

The following research sources were consulted in the preparation of this report. An "X" indicates where information was identified in the source and provided in this report.

<u>Year</u>	Source	<u>TP</u>	<u>Adjoining</u>	Text Abstract	Source Image
2015	Cole Information Services	Χ	X	X	-
2009	Cole Information Services	Χ	X	X	-
2006	Haines Company, Inc.	-	X	X	-
	Haines Company, Inc.	Χ	X	X	-
2004	Cole Information Services	-	X	X	-
	Cole Information Services	Χ	X	X	-
	Haines Company	-	-	-	-
	Haines Company	Χ	-	X	-
2003	Haines & Company	-	-	-	-
2001	Haines & Company, Inc.	-	X	X	-
	Haines & Company, Inc.	Χ	X	X	-
2000	Pacific Bell Telephone	-	-	-	-

EXECUTIVE SUMMARY

<u>Year</u>	Source	<u>TP</u>	<u>Adjoining</u>	Text Abstract	Source Image
1999	Cole Information Services	-	X	X	-
	Cole Information Services	Χ	X	Χ	-
	Haines Company	-	-	-	-
	Haines Company	Χ	-	Χ	-
1996	GTE	-	-	-	-
1995	Pacific Bell	-	X	Χ	-
1994	Cole Information Services	-	X	X	-
1992	PACIFIC BELL WHITE PAGES	-	-	-	-
1991	Pacific Bell	-	X	X	-
1990	Pacific Bell	-	X	Χ	-
1986	Pacific Bell	-	X	X	-
1985	Pacific Bell	-	Χ	Χ	-
	Pacific Bell	Χ	X	Χ	-
1981	Pacific Telephone	=	X	Χ	-
1980	Pacific Telephone	-	X	Χ	-
	Pacific Telephone	Χ	X	Χ	-
1976	Pacific Telephone	-	X	Χ	-
1975	Pacific Telephone	-	X	Χ	-
	Pacific Telephone	Χ	X	Χ	-
1972	R. L. Polk & Co.	-	-	-	-
1971	Pacific Telephone	-	X	Χ	-
	Pacific Telephone	Χ	X	X	-
1970	Pacific Telephone	_	X	X	-
	Pacific Telephone	Χ	X	X	-
	R. L. Polk & Co.	-	X	Χ	-
	R. L. Polk & Co.	Χ	X	X	-
1969	Pacific Telephone	-	-	-	-
1967	Pacific Telephone	-	X	Χ	-
	Pacific Telephone	Χ	X	X	-
1966	Pacific Telephone	_	-	-	-
1965	GTE	_	-	-	-
1964	Pacific Telephone	-	-	-	-
1963	Pacific Telephone	-	-	-	-
1962	Pacific Telephone	-	X	Χ	-
1961	R. L. Polk & Co.	-	_	-	-
1960	Pacific Telephone	-	X	Χ	-
1958	Pacific Telephone	-	X	Χ	-
1957	Pacific Telephone	-	X	Χ	-
1956	Pacific Telephone	-	X	Χ	-
	Pacific Telephone	Χ	Χ	X	-
1955	R. L. Polk & Co.	-	-	-	-
1954	R. L. Polk & Co.	_	-	-	-

EXECUTIVE SUMMARY

<u>Year</u>	<u>Source</u>	<u>TP</u>	<u>Adjoining</u>	Text Abstract	Source Image
1952	Los Angeles Directory Co.	-	X	X	-
	Los Angeles Directory Co.	Χ	X	Χ	-
1951	Los Angeles Directory Co Publishers	-	-	-	-
1950	Pacific Telephone	-	X	Χ	-
	Pacific Telephone	Χ	X	Χ	-
1949	Los Angeles Directory Co.	-	-	-	-
1948	Los Angeles Directory Co.	-	-	-	-
1947	Pacific Directory Co.	-	-	-	-
1946	Los Angeles Directory Co.	-	X	Χ	-
	Los Angeles Directory Co.	Χ	X	Χ	-
1945	The Glendale Directory Co.	-	-	-	-
1944	R. L. Polk & Co.	-	-	-	-
1942	Los Angeles Directory Co.	-	X	X	-
	Los Angeles Directory Co.	Χ	X	X	-
1940	Los Angeles Directory Co.	-	-	-	-
1939	Los Angeles Directory Co.	-	-	-	-
1938	Los Angeles Directory Company Publishers	-	-	-	-
1937	Los Angeles Directory Co.	-	X	X	-
1936	Los Angeles Directory Co.	-	-	-	-
1935	Los Angeles Directory Co.	-	-	-	-
1934	Los Angeles Directory Co.	-	-	-	-
1933	Los Angeles Directory Co.	-	-	-	-
1932	Los Angeles Directory Co.	-	-	-	-
1931	Los Angeles Directory Company Publishers	-	-	-	-
1930	Los Angeles Directory Co.	-	-	-	-
1929	Los Angeles Directory Co.	-	-	-	-
1928	Los Angeles Directory Co.	-	-	-	-
1927	Los Angeles Directory Co.	-	-	-	-
1926	Los Angeles Directory Co.	-	-	-	-
1925	Los Angeles Directory Co.	-	-	-	-
1924	Los Angeles Directory Co.	-	-	-	-
1923	Los Angeles Directory Co.	-	-	-	-
1921	Los Angeles Directory Co.	-	-	-	-
1920	Los Angeles Directory Co.	-	-	-	-

TARGET PROPERTY INFORMATION

ADDRESS

2311 N Hollywood Way BURBANK, CA 91505

FINDINGS DETAIL

Target Property research detail.

HOLLYWOOD WAY N

2311 HOLLYWOOD WAY N

<u>Year</u>	<u>Uses</u>	<u>Source</u>
2001	FRYS ELECTRONICS	Haines & Company, Inc.
1970	VACANT	R. L. Polk & Co.
1952	Shoman P M dairy Ch	Los Angeles Directory Co.
1946	AShoman F M dairy	Los Angeles Directory Co.
1942	AThompson W S dairy	Los Angeles Directory Co.

N HOLLYWOOD WAY

2311 N HOLLYWOOD WAY

<u>Year</u>	<u>Uses</u>	<u>Source</u>
2015	FRYS ELECTRONICS	Cole Information Services
2009	FRYS ELECTRONICS INC	Cole Information Services
2006	FRYS ELECTRONICS	Haines Company, Inc.
2004	FRYS ELECTRONICS	Cole Information Services
1999	FRYS ELECTRONICS	Cole Information Services
1985	Administrative Offices	Pacific Bell
	Certificate Rates Recording	Pacific Bell
	Collection Department	Pacific Bell
	Lockheed Air Terminal Inc Administrative Offices PO Box 7229 Brb	Pacific Bell
	Lockheed Aircraft Employees Federal Credit Union	Pacific Bell
	Lockheed California Company Administrative Offices	Pacific Bell
	Main Office	Pacific Bell
1980	LOCKHEED AIRCRAFT EMPLOYEES FEDERAL CREDIT UNION	Pacific Telephone
	LOCKHEED CORPORATION LOCKHEED CALIFORNIA COMPANY	Pacific Telephone

<u>Year</u>	<u>Uses</u>	<u>Source</u>
1975	Employees Credit Union	Pacific Telephone
	Group Insurance	Pacific Telephone
1971	Employees Credit Union	Pacific Telephone
	Group Insurance	Pacific Telephone
	LOCKHCED CALIFORNIA COMPANY	Pacific Telephone
1970	LOCKHEED AIRCRAFT CORPORATION	Pacific Telephone
	LOCKHEED AIRCRAFT CORPORATION LOCKHEED CALIFORNIA COMPANY	Pacific Telephone
	LOCKHEED AIRCRAFT EMPLOYEES FEDERAL CREDIT UNION	Pacific Telephone
	LOCKHEED-CALIFORNIA COMPANY EMPLOYEE RECREATION CLUB	Pacific Telephone
1967	W G Products Inc shoes	Pacific Telephone
1956	DENNIS WAYNE L	Pacific Telephone
	ROCHA MANUEL P	Pacific Telephone
	SHOMAN S DAIRY	Pacific Telephone
1950	SHOMAN S DAIRY	Pacific Telephone

ADJOINING PROPERTY DETAIL

The following Adjoining Property addresses were researched for this report. Detailed findings are provided for each address.

H HOLLYWOOD WAY

2240 H HOLLYWOOD WAY

<u>Year</u> <u>Uses</u> <u>Source</u>

1980 LIPTAK J J Pacific Telephone

HOLLYWOOD BOWL RD

2205 HOLLYWOOD BOWL RD

<u>Year</u> <u>Uses</u> <u>Source</u>

1970 GRIMES WALKER Pacific Telephone

GRIMES WALKER Pacific Telephone

HOLLYWOOD WAY

2231 HOLLYWOOD WAY

<u>Year</u> <u>Uses</u> <u>Source</u>

1981 WESTINGHOUSE ELECTRIC Pacific Telephone

CORPORATION

HOLLYWOOD WAY N

2205 HOLLYWOOD WAY N

<u>Year</u>	<u>Uses</u>	<u>Source</u>
2001	BUILD REHABILITATION INDUSTRY	Haines & Company, Inc.
1970	LEE ENGINEERING MACH SHOP	R. L. Polk & Co.
	TRIG MFG CO MACH SHOP	R. L. Polk & Co.
	JOHNSON F VINCENT & TECHNICAL ASSOCIATES MFRS REP CASTINGS	R. L. Polk & Co.
	GRIMES WALKER MACH SHOP	R. L. Polk & Co.

2207 HOLLYWOOD WAY N

Year	Uses	Source

2001 XXXX Haines & Company, Inc.

2211 HOLLYWOOD WAY N

<u>Year</u>	<u>Uses</u>	<u>Source</u>
2001	A T K AUDIOTEK CORP	Haines & Company, Inc.
1970	BELL HELICOPTER CO AIRCRAFT EQUIP DIRS	R. L. Polk & Co.

2220 HOLLYWOOD WAY N

<u>Year</u>	<u>Uses</u>	<u>Source</u>
2001	BUDGET CAR & TRUCK RENTAL	Haines & Company, Inc.
1970	CARDIN CECIL	R. L. Polk & Co.
	CARTERS NICK TRAILER PARK	R. L. Polk & Co.
	TRAILER PARK REALTY CO REAL EST	R. L. Polk & Co.
1952	Wilson W D Ch	Los Angeles Directory Co.
	Carter S F Ri Ch	Los Angeles Directory Co.

2228 HOLLYWOOD WAY N

<u>Year</u>	<u>Uses</u>	<u>Source</u>
2001	JENSEN Lynn	Haines & Company, Inc.
	COLOR WEST INC	Haines & Company, Inc.
	DIE WEST INC	Haines & Company, Inc.

2230 HOLLYWOOD WAY N

<u>Year</u>	<u>Uses</u>	<u>Source</u>
1970	ALFORD BEN	R. L. Polk & Co.
	MID-VALLEY CATERERS INC CATERING SERV	R. L. Polk & Co.

2231 HOLLYWOOD WAY N

<u>Year</u>	<u>Uses</u>	<u>Source</u>
2001	ENTERPRISE IMAGE	Haines & Company, Inc.
2237 HOLLYWOOD WAY N		

<u>Year</u>	<u>Uses</u>	<u>Source</u>
2001	LEE FILTERS DVSN OF PANAVISION	Haines & Company, Inc.

2240 HOLLYWOOD WAY N

<u>Year</u>	<u>Uses</u>	<u>Source</u>
2001	XXXX	Haines & Company, Inc.
1970	RICE AL	R. L. Polk & Co.
	TILLOTSON FRANCIS J	R. L. Polk & Co.
	HOLLYWOODWAY TRAILER PARK	R. L. Polk & Co.
1952	Rice A T Ch	Los Angeles Directory Co.

<u>Year</u> <u>Uses</u> <u>Source</u>

1952 Davis D D Ch Los Angeles Directory Co.

2243 HOLLYWOOD WAY N

<u>Year</u> <u>Uses</u> <u>Source</u>

2001 PACIFIC RADIO ELECTRONICS INC Haines & Company, Inc.

2248 HOLLYWOOD WAY N

YearUsesSource1946Albers H GLos Angeles Directory Co.

1942 Osito T Los Angeles Directory Co.

Fujikawa Kiso Los Angeles Directory Co.

1937 Takashaki T Los Angeles Directory Co.

Osito T Los Angeles Directory Co.

Fujikawa Kiso o Los Angeles Directory Co.

2249 HOLLYWOOD WAY N

<u>Year</u> <u>Uses</u> <u>Source</u>

2001 WESTERN CYTOPATHOLOGY LABS Haines & Company, Inc.

INC

2250 HOLLYWOOD WAY N

<u>Year</u> <u>Uses</u> <u>Source</u>

2001 XXXX Haines & Company, Inc.

2268 HOLLYWOOD WAY N

<u>Year</u> <u>Uses</u> <u>Source</u>

2001 XXXX Haines & Company, Inc.

2280 HOLLYWOOD WAY N

<u>Year</u> <u>Uses</u> <u>Source</u>

2001 XXXX Haines & Company, Inc.

2315 HOLLYWOOD WAY N

<u>Year</u> <u>Uses</u> <u>Source</u>

1946 Clough H Los Angeles Directory Co.

2316 HOLLYWOOD WAY N

<u>Year</u> <u>Uses</u> <u>Source</u>

1952 Dels Auto Park Los Angeles Directory Co.
 1946 ATrout D C auto pk Los Angeles Directory Co.

2331 HOLLYWOOD WAY N

<u>Year</u>	<u>Uses</u>	<u>Source</u>
1952	Black Clarence	Los Angeles Directory Co.
1946	Shoman F M	Los Angeles Directory Co.
1942	I AThompson W S	Los Angeles Directory Co.
1937	Williams Fred	Los Angeles Directory Co.
	Thompson W S dairy	Los Angeles Directory Co.

2228A HOLLYWOOD WAY N

<u>Year</u>	<u>Uses</u>	<u>Source</u>
1970	KELLY-JENNINGS MRS MFRS AIRCRAFT	R. L. Polk & Co.

2228B HOLLYWOOD WAY N

<u>Year</u>	<u>Uses</u>	<u>Source</u>
1970	G M NEON CORP MFRS	R. L. Polk & Co.

N HOLLYWOOD WAY

2201 N HOLLYWOOD WAY

<u>Year</u>	<u>Uses</u>	<u>Source</u>
2015	PRO HD HOLDINGS INC	Cole Information Services
	A20 TECHNOLOGIES	Cole Information Services
	PRO HD RENTALS	Cole Information Services
2009	JUDYS CAROUSEL CRAFT WAREHOUSE	Cole Information Services
	PRO HD RENTALS	Cole Information Services
	ROSSINI VIDEO GROUP	Cole Information Services
2006	COMTELPROMEDIA	Haines Company, Inc.
2004	COMTEL PRO MEDIA	Cole Information Services
1999	COMTEL VIDEO PRODUCTS	Cole Information Services
	ROBERT ROSSINI	Cole Information Services
1994	SIMCO ELECTRONICS INC	Cole Information Services

2205 N HOLLYWOOD WAY

<u>Year</u>	<u>Uses</u>	<u>Source</u>
2009	BUILD REHABILITATION INDUSTRIES	Cole Information Services
2006	BUILD INDUSTRIES	Haines Company, Inc.
2004	BUILD REHABILITATION INDSTRY	Cole Information Services
1999	BUILD REHABILITATION INDUSTRIES	Cole Information Services
1995	Build Rehabilitation Industries	Pacific Bell

<u>Year</u>	<u>Uses</u>	<u>Source</u>
1994	BUILD REHABILITATION INDSTRS	Cole Information Services
1991	Build Rehabilitation Industries	Pacific Bell
1986	NOVA OPPORTUNITY CENTER INC BURBANK	Pacific Bell
1985	From Los Angeles Telephones Call	Pacific Bell
1976	Westlake Mfg Inc	Pacific Telephone
1975	WESTLAKE MFG INC	Pacific Telephone
1970	JOHNSON F VINCENT & TECHNICAL ASSOCIATES	Pacific Telephone
	TRIG MANUFACTURING CO	Pacific Telephone
	LEE ENGINEERING	Pacific Telephone
	JOHNSON F VINCENT & TECHNICAL ASSOCIATES	Pacific Telephone
	LEE ENGINEERING	Pacific Telephone
	TRIG MANUFACTURING CO	Pacific Telephone
1967	Macklin Machining & Mfg	Pacific Telephone
1962	CAPTIVE AIR	Pacific Telephone
1958	Century Engineers Inc See Electrosystems Inc	Pacific Telephone
	Electrosystems Inc	Pacific Telephone

2210 N HOLLYWOOD WAY

<u>Year</u>	<u>Uses</u>	<u>Source</u>
1985	Griffen M BI	Pacific Bell

2211 N HOLLYWOOD WAY

<u>Year</u>	<u>Uses</u>	Source
2009	INTER VIDEO	Cole Information Services
	C G W ENTERPRISES INC	Cole Information Services
	AUDIOTEK CORP	Cole Information Services
2006	ALTERNATIVES	Haines Company, Inc.
	VISTA MFG	Haines Company, Inc.
	CORP AUDIOTEK CORP	Haines Company, Inc.
	ATK AUDIOTEK	Haines Company, Inc.
2004	ATK/AUDIOTEK CORP	Cole Information Services
	JOHN STEWART	Cole Information Services
1994	ATK AUDIOTEK CORP	Cole Information Services
	ASSOCTD PRODUCTS	Cole Information Services
1991	Associated Products	Pacific Bell
	From Los Angeles Telephones Call	Pacific Bell
	Zipco	Pacific Bell

<u>Year</u>	<u>Uses</u>	<u>Source</u>
1991	Zipco Metal Fabrication Machining & Welding	Pacific Bell
	Zipco Precision Metal Fabrication Machining & Welding	Pacific Bell
1990	ZIPCO PRECISION METAL FABRICATION MACHINING & WELDING BURBANK	Pacific Bell
	ASSOCIATED PRODUCTS BURBANK	Pacific Bell
1986	ASSOCIATED PRODUCTS BURBANK	Pacific Bell
	ZIPCO PRECISION METAL FABRICATION MACHINING & WELDING BURBANK	Pacific Bell
1985	Associated Products	Pacific Bell
	From Los Angeles Telephones Call	Pacific Bell
	Zip Co	Pacific Bell
	Zipco Precision Metal Fabrication Machining & Welding	Pacific Bell
1981	SOUTHWEST PARTITION CO INC BURBANK	Pacific Telephone
1980	SOUTHWEST PARTITION CO INC BURBANK	Pacific Telephone
1976	SOUTHWEST PARTITION CO INC	Pacific Telephone
1975	SOUTHWEST PARTITION CO INC	Pacific Telephone
1971	Bell Helicopter Co Div Of Bell Aerospace Corp	Pacific Telephone
1970	BELL HELICOPTER CO DIV OF BELL AEROSPACE CORP	Pacific Telephone
	BELL HELICOPTER CO DIV OF BELL AEROSPACE CORP	Pacific Telephone
1967	Bell Helicopter Co Div of Bell Aerospace Corp	Pacific Telephone
1962	Bell Helicopter Co Div of Bell Aerospace Corp	Pacific Telephone
	BELL HELICOPTER CO DIV OF BELL AEROSPACE CORP	Pacific Telephone
1958	Bell Helicopter Corp Western Div	Pacific Telephone

2220 N HOLLYWOOD WAY

<u>Year</u>	<u>Uses</u>	Source
2015	BUDGET	Cole Information Services
2009	BUDGET RENT A CAR	Cole Information Services
	BUDGET	Cole Information Services
2004	OCCUPANT UNKNOWN	Cole Information Services
	BUDGET RENT A CAR	Cole Information Services

<u>Year</u>	<u>Uses</u>	<u>Source</u>
1999	BUDGET CAR AND TRUCK RENTAL	Cole Information Services
	BGT CAR & TRCK RENT STHRN CALIFORNIA RENTALS	Cole Information Services
1995	Burbank Airport	Pacific Bell
1994	BUDGET RENT A CAR	Cole Information Services
	SEARS RENT A TRUCK	Cole Information Services
1991	Burbank Airport	Pacific Bell
	Encino	Pacific Bell
	Hollywood Burbank Airport	Pacific Bell
	Hollywood Burbank Airport	Pacific Bell
	Hollywood Burbank Airport	Pacific Bell
	Hollywood Burbank Airport	Pacific Bell
1990	BUDGET RENT-A-CAR RENT-A-CAR STATIONS	Pacific Bell
1985	BUDGET RENT-A- CAR HOLLYWOOD- BURBANK AIRPORT	Pacific Bell
	Burbank Airport	Pacific Bell
	Encino	Pacific Bell
	Hollywood Burbank Airport	Pacific Bell
	Hollywood Burbank Airport	Pacific Bell
1981	BUDGET RENT-A-CAR RENT-A-CAR STATIONS	Pacific Telephone
1980	CANN R F	Pacific Telephone
	KUREK JOS M BURBANK	Pacific Telephone
	MIKELK MABEL E	Pacific Telephone
	MIKELK WALTER R	Pacific Telephone
	PATER WM	Pacific Telephone
	RADIO AMATEUR KH6IAF	Pacific Telephone
1976	Brewton Shirley	Pacific Telephone
	Burns J F	Pacific Telephone
	Evans Roy J	Pacific Telephone
	Evans Tracy	Pacific Telephone
1975	Allen Francis E	Pacific Telephone
	Borneman Naomi Mrs	Pacific Telephone
	Brewton Shirley	Pacific Telephone
	Brown Clara M	Pacific Telephone
	Carters Trailer Park	Pacific Telephone
	Corral G	Pacific Telephone
	De Grazzio Florence C	Pacific Telephone
	Eils C M	Pacific Telephone

<u>Year</u>	<u>Uses</u>	Source
1975	Evans Roy J	Pacific Telephone
	Evans Tracy	Pacific Telephone
	Gauwain W M	Pacific Telephone
	Geisler Alvin E	Pacific Telephone
	Graham Dal Mont E	Pacific Telephone
	Grimm Frank L	Pacific Telephone
	Haberman Helen H	Pacific Telephone
	Huston Fred F	Pacific Telephone
	Jones Lon	Pacific Telephone
	Juntunen Emilie	Pacific Telephone
	Kaikainahaolei Kuulei Makahanoleia	Pacific Telephone
	Kaikainahaolei Kuulei Nakakohekau	Pacific Telephone
	Kelsey Robt L	Pacific Telephone
	King H Le Roy	Pacific Telephone
	Kontos Jas Alex	Pacific Telephone
	Kuenle Donald L	Pacific Telephone
	Lampman G	Pacific Telephone
	Lewis Earl L	Pacific Telephone
	Lewis Lucille L	Pacific Telephone
	Mathis Marguerite J	Pacific Telephone
	Mc Coy Calvin J	Pacific Telephone
	Mc Kenzie W Donald	Pacific Telephone
	Meinicke A R	Pacific Telephone
	Merideth Janette	Pacific Telephone
	Mikelk Mabel E	Pacific Telephone
	Mikelk Walter R	Pacific Telephone
	Miller Glenn	Pacific Telephone
	Mueller Ervin O	Pacific Telephone
	Owens Russell	Pacific Telephone
	Porter Sylvia C	Pacific Telephone
	Quigley Robt A	Pacific Telephone
	Robison Julia E	Pacific Telephone
	Rohlfsen Margaret E	Pacific Telephone
	Sansgaard E M	Pacific Telephone
	Schafer Pearl B	Pacific Telephone
	Simon Jas B	Pacific Telephone
	Simpson La Vaughn E	Pacific Telephone
	Still Custer	Pacific Telephone

<u>Year</u>	<u>Uses</u>	Source
1975	Thomas Josie M	Pacific Telephone
	Waldron Roy C	Pacific Telephone
	Ward Landis J	Pacific Telephone
	Winslow Geo	Pacific Telephone
	Winslow Wm G	Pacific Telephone
1971	Brewton Shirley	Pacific Telephone
1970	MILLER GLENN BURBANK	Pacific Telephone
	ASBURY EARL E	Pacific Telephone
	ASHER ETHEL	Pacific Telephone
	BLACK MILDRED	Pacific Telephone
	BORNEMAN NAOMI MRS	Pacific Telephone
	BREWTON SHIRLEY	Pacific Telephone
	CARTERS TRAILER PARK	Pacific Telephone
	CONAWAY RUBY	Pacific Telephone
	DE GRAZZIO FLORENCE C	Pacific Telephone
	DREW ZULA MARIE	Pacific Telephone
	EILS JOHN B	Pacific Telephone
	EILS JOHN B WATCH REPRNG	Pacific Telephone
	FAUS PEARL B	Pacific Telephone
	GRAHAM DAL MONT E	Pacific Telephone
	HABERMAN HELEN H	Pacific Telephone
	HANLON RUTH	Pacific Telephone
	HENSON RUTH J	Pacific Telephone
	HOSTETTLER J E	Pacific Telephone
	JONES LON	Pacific Telephone
	JUNTUNEN EMILLE	Pacific Telephone
	KELSEN ROBT L	Pacific Telephone
	KLEIN EDW	Pacific Telephone
	KLUTSENBAKER DALE	Pacific Telephone
	LEWIS EARL L	Pacific Telephone
	LEWIS LUCILLE L	Pacific Telephone
	MATHIS MARGUERITE J	Pacific Telephone
	METEYER ALICE MRS	Pacific Telephone
	MIKELK MABEL E	Pacific Telephone
	MIKELK WALTER R	Pacific Telephone
	OLSSON S TED	Pacific Telephone
	OSTEEN M J	Pacific Telephone
	OWENS RUSSELL	Pacific Telephone

<u>Year</u>	<u>Uses</u>	<u>Source</u>
1970	PATRICK BENJAMIN	Pacific Telephone
	PATTEN VERNE V	Pacific Telephone
	PERKINS ALMA	Pacific Telephone
	PERRY L R	Pacific Telephone
	PORTER SYLVIA C	Pacific Telephone
	RIOS RICHARD	Pacific Telephone
	ROBISON JULIA E	Pacific Telephone
	ROHLFSEN MARGARET E	Pacific Telephone
	SANSGAARD E M	Pacific Telephone
	SIMON JAS B	Pacific Telephone
	SMITH MAUDE MRS	Pacific Telephone
	STITT CARTER H	Pacific Telephone
	TEN EYCK BARRY	Pacific Telephone
	THOMAS JOHN R	Pacific Telephone
	THOMAS JOSIE M	Pacific Telephone
	TRAILER PARK REALTY CO	Pacific Telephone
	TROUT DAISY A	Pacific Telephone
	WILSON BILLIE L	Pacific Telephone
	WINSLOW WM G	Pacific Telephone
	ASBURY EARL E	Pacific Telephone
	ASHER ETHEL	Pacific Telephone
	BLACK MILDRED	Pacific Telephone
	BORNEMAN NAOMI MRS	Pacific Telephone
	BREWTON SHIRLEY	Pacific Telephone
	CARTERS TRAILER PARK	Pacific Telephone
	CONAWAY RUBY	Pacific Telephone
	DE GRAZZIO FLORENCE C	Pacific Telephone
	DREW ZULA MARIE	Pacific Telephone
	EILS JOHN B	Pacific Telephone
	EILS JOHN B WATCH REPRNG	Pacific Telephone
	FAUS PEARL B	Pacific Telephone
	GRAHAM DAL MONT E	Pacific Telephone
	HABERMAN HELEN H	Pacific Telephone
	HANLON RUTH	Pacific Telephone
	HENSON RUTH J	Pacific Telephone
	HOSTETTLER J E	Pacific Telephone
	JONES LON	Pacific Telephone
	JUNTUNEN EMILLE	Pacific Telephone

<u>Year</u>	<u>Uses</u>	Source
1970	KELSEN ROBT L	Pacific Telephone
	KLEIN EDW	Pacific Telephone
	KLUTSENBAKER DALE	Pacific Telephone
	LEWIS EARL L	Pacific Telephone
	LEWIS LUCILLE L	Pacific Telephone
	MATHIS MARGUERITE J	Pacific Telephone
	METEYER ALICE MRS	Pacific Telephone
	MIKELK MABEL E	Pacific Telephone
	MIKELK WALTER R	Pacific Telephone
	OLSSON S TED	Pacific Telephone
	OSTEEN M J	Pacific Telephone
	OWENS RUSSELL	Pacific Telephone
	PATRICK BENJAMIN	Pacific Telephone
	PATTEN VERNE V	Pacific Telephone
	PERKINS ALMA	Pacific Telephone
	PERRY L R	Pacific Telephone
	PORTER SYLVIA C	Pacific Telephone
	RIOS RICHARD	Pacific Telephone
	ROBISON JULIA E	Pacific Telephone
	ROHLFSEN MARGARET E	Pacific Telephone
	SANSGAARD E M	Pacific Telephone
	SIMON JAS B	Pacific Telephone
	SMITH MAUDE MRS	Pacific Telephone
	STITT CARTER H	Pacific Telephone
	TEN EYCK BARRY	Pacific Telephone
	THOMAS JOHN R	Pacific Telephone
	THOMAS JOSIE M	Pacific Telephone
	TRAILER PARK REALTY CO	Pacific Telephone
	TROUT DAISY A	Pacific Telephone
	WILSON BILLIE L	Pacific Telephone
	WINSLOW WM G	Pacific Telephone
1967	Brewton Shirley	Pacific Telephone
1962	ATWOOD WALTER H	Pacific Telephone
	BECK W W	Pacific Telephone
	BLACK MILDRED	Pacific Telephone
	BRUCE ALBERT D	Pacific Telephone
	CARTER S NICK TRAILER PARK	Pacific Telephone
	COCKBURN SAML J	Pacific Telephone

<u>Year</u>	<u>Uses</u>	<u>Source</u>
1962	CONAWAY RUBY	Pacific Telephone
	CONYERS RALPH E	Pacific Telephone
	CORWIN GLADYS	Pacific Telephone
	CORWIN JOHN V	Pacific Telephone
	COX CASSIE L	Pacific Telephone
	DAVIS FRED B SR	Pacific Telephone
	DIETZ FRANK W	Pacific Telephone
	DIRK LAWRENCE O	Pacific Telephone
	EILS JOHN B	Pacific Telephone
	EILS JOHN B WATCH REPRNG	Pacific Telephone
	FLANINGAM WALTER L	Pacific Telephone
	GRAHAM D E	Pacific Telephone
	HABERMAN HELEN H	Pacific Telephone
	HAMILTON EDW RAY	Pacific Telephone
	HEINZ L E MRS	Pacific Telephone
	HENSON JAY	Pacific Telephone
	KEMPF GLEN M	Pacific Telephone
	LEWIS EARL L	Pacific Telephone
	LEWIS LUCILLE L	Pacific Telephone
	LUTHER R V MRS	Pacific Telephone
	MAGISEN IRWIN	Pacific Telephone
	MARVIN ROBT S	Pacific Telephone
	MATHIS EDW	Pacific Telephone
	MCBRIDE FRED B	Pacific Telephone
	MELANSON LOUIS	Pacific Telephone
	MULLENS DAVID H	Pacific Telephone
	NORREGAARD SOREN	Pacific Telephone
	NUCKLES RAY	Pacific Telephone
	OLSSON S TED	Pacific Telephone
	PAPKE EMIL	Pacific Telephone
	PERKINS ALMA	Pacific Telephone
	PORTER SYLVIA C	Pacific Telephone
	POSSEHL ARTHUR A	Pacific Telephone
	ROBERTSON PHYLLIS F	Pacific Telephone
	ROGERS BEN	Pacific Telephone
	SANSGAARD EUNICE	Pacific Telephone
	SATTLER MAY D MRS	Pacific Telephone
	SCHERER L M MRS	Pacific Telephone

<u>Year</u>	<u>Uses</u>	Source
1962	SIMON JOS B	Pacific Telephone
	SMITH MARY MRS	Pacific Telephone
	SNYDER FRED W	Pacific Telephone
	STRAW RAY W	Pacific Telephone
	TRAILER PARK REALTY CO	Pacific Telephone
	TROUT L G	Pacific Telephone
	VINNEDGE ANN	Pacific Telephone
	WALBERT LYNDELL	Pacific Telephone
1956	STANLEY ROBT E	Pacific Telephone
	STRAW RAY W	Pacific Telephone
	TRAILER PARK REALTY CO	Pacific Telephone
	TREFSGER KENNETH R	Pacific Telephone
	TURNER H J	Pacific Telephone
	UNCKLES F G	Pacific Telephone
	WILSON A HERBERT SR	Pacific Telephone
	BARTLETT CHARLIE JOE	Pacific Telephone
	BEAULIEU OMER	Pacific Telephone
	BRUCE ALBERT D	Pacific Telephone
	BURCH CARL L	Pacific Telephone
	BURRITT BURT N	Pacific Telephone
	CARTERS NICK TRAILER PARK	Pacific Telephone
	COCKBURN SAML J	Pacific Telephone
	CORNFORD BABE	Pacific Telephone
	CORNFORD W E	Pacific Telephone
	DICK CLAUS G	Pacific Telephone
	DIXON LLOYD F	Pacific Telephone
	DULANEY LLOYD K	Pacific Telephone
	ELLIOTT JOHN CHAS	Pacific Telephone
	GARNETT PAUL	Pacific Telephone
	HAFNER WM	Pacific Telephone
	HARPER J E	Pacific Telephone
	HELWIG ROBT M	Pacific Telephone
	IOTT CRAIG	Pacific Telephone
	JOANIS MELVINA	Pacific Telephone
	LAMSON WALTER E	Pacific Telephone
	LUCHT W F	Pacific Telephone
	LUTHER R V MRS	Pacific Telephone
	MANLEY S B	Pacific Telephone

<u>Year</u>	<u>Uses</u>	Source
1956	MARKHAM WM J	Pacific Telephone
	MINSKE WILLARD F	Pacific Telephone
	MOSCONI CAMILLE	Pacific Telephone
	MOSCONI IRENE MRS	Pacific Telephone
	NUCKLES RAY	Pacific Telephone
	PAC TRAILER PARKS INC	Pacific Telephone
	PENNINGTON LEE	Pacific Telephone
	REED GLENN	Pacific Telephone
	ROBERTSON PHYLLIS F	Pacific Telephone
	STANCHFIELD LEE	Pacific Telephone
	STANLEY HAZEL F	Pacific Telephone
1950	GRAVES HELEN E MISS R	Pacific Telephone
	SALVESON LEONA R	Pacific Telephone
	GRAVES HELEN E MISS R	Pacific Telephone
	SALVESON LEONA R	Pacific Telephone

2226 N HOLLYWOOD WAY

<u>Year</u>	<u>Uses</u>	<u>Source</u>
1956	STEWART MARGARET	Pacific Telephone

2228 N HOLLYWOOD WAY

<u>Year</u>	<u>Uses</u>	<u>Source</u>
2015	COLORWEST	Cole Information Services
2006	DIEWESTINC	Haines Company, Inc.
	COLOR WEST INC	Haines Company, Inc.
	COLOR WEST INC	Haines Company, Inc.
2004	OCCUPANT UNKNOWN	Cole Information Services
1999	DIE WEST INCORPORATED	Cole Information Services
	COLOR WEST INCORPORATED	Cole Information Services
1995	Color West Inc	Pacific Bell
	Heywood & Heywood Printing	Pacific Bell
1994	HEYWOOD & HEYWOOD PRINTING	Cole Information Services
1991	Color West Inc	Pacific Bell
	From Los Angeles Telephones Call	Pacific Bell
	Color World TV Service 742 Andover Dr Brb	Pacific Bell
	Color 1 colrcinsltut	Pacific Bell
	Calabasas Calbt	Pacific Bell
1990	COLOR WEST INC BURBANK	Pacific Bell

<u>Year</u>	<u>Uses</u>	<u>Source</u>
1990	THOUGHT FACTORY BURBANK	Pacific Bell
1986	COLOR WEST INC BURBANK	Pacific Bell
	THOUGHT FACTORY BURBANK	Pacific Bell
1985	Color West Inc	Pacific Bell
	From Los Angeles Telephones Call	Pacific Bell
1980	COLOR WEST	Pacific Telephone
1976	G M SIGNS	Pacific Telephone
	Spiegel Publishing Co	Pacific Telephone
1975	Color West	Pacific Telephone
	G M Signs	Pacific Telephone
	G M SIGNS INC	Pacific Telephone
	Litho Prep	Pacific Telephone
	Spiegel Publishing Co	Pacific Telephone
1971	G M SIGNS	Pacific Telephone
1970	JENNINGS KELLY	Pacific Telephone
	KELLY-JENNINGS	Pacific Telephone
	JENNINGS KELLY	Pacific Telephone
	KELLY-JENNINGS	Pacific Telephone
	PLATT LORETTA J	Pacific Telephone
	PLATT LORETTA J	Pacific Telephone
1967	G M NEON CORP	Pacific Telephone
1962	Hieatt Engineering Co	Pacific Telephone
	Hyatt Engineering Co	Pacific Telephone
	HIEATT ENGNERG CO	Pacific Telephone
	HYATT ENGINEERING CO	Pacific Telephone
	HIEATT ENGINEERING CO	Pacific Telephone
1960	HIEATT ENGINEERING CO	Pacific Telephone
1958	Hieatt Engnrng Co	Pacific Telephone
	Hyatt Engineering Co	Pacific Telephone
	HIEATT ENGINEERING CO	Pacific Telephone
1957	HIEATT ENGINEERING CO	Pacific Telephone
1956	HIEATT ENGNRNG CO	Pacific Telephone
	HYATT ENGINEERING CO	Pacific Telephone
1950	CARENT CO AUTO RENTL	Pacific Telephone
	CONSUMERS HOME PRODUCTS INC	Pacific Telephone
	EASE QUALITY DETERGENTS	Pacific Telephone
	CARENT CO AUTO RENTL	Pacific Telephone
	CONSUMERS HOME PRODUCTS INC	Pacific Telephone

<u>Year</u>	<u>Uses</u>	<u>Source</u>
1950	FASE QUALITY DETERGENTS	Pacific Telephone

2230 N HOLLYWOOD WAY

<u>Year</u>	<u>Uses</u>	<u>Source</u>
1981	MID-VALLEY CATERERS BURBANK	Pacific Telephone
	OWENS GEORGE CATERING BURBANK	Pacific Telephone
1980	MID VALLEY CATERERS	Pacific Telephone
1976	Mid Valley Caterers Inc	Pacific Telephone
1975	Mid Valley Caterers Inc	Pacific Telephone
1971	Mid Valley Caterers Inc	Pacific Telephone
1970	MID-VALLEY CATERERS INC	Pacific Telephone
	MID-VALLEY CATERERS INC	Pacific Telephone
1967	Mid Valley Caterers Inc	Pacific Telephone
1962	Mid Valley Caterers Inc	Pacific Telephone
	MID-VALLEY CATERERS INC	Pacific Telephone
1958	Jim & Ken Caterers	Pacific Telephone
1956	JIM & KEN CATERERS	Pacific Telephone
	JIM & KEN CATERERS	Pacific Telephone

2231 N HOLLYWOOD WAY

<u>Year</u>	<u>Uses</u>	<u>Source</u>
2015	OMEGA CASE COMPANY INC	Cole Information Services
2009	OMEGA CASE CO INC	Cole Information Services
2006	OMEGACASE	Haines Company, Inc.
	COMPANY INC	Haines Company, Inc.
2004	SONIC ATMOSPHERES INC	Cole Information Services
	CRAIG HUXLEY	Cole Information Services
1999	SLING SHOT RECORDS	Cole Information Services
1995	Unitel Mobile	Pacific Bell
	Sonic Edge	Pacific Bell
1994	SONIC EDGE	Cole Information Services
	UNITEL MOBILE	Cole Information Services
1991	Unitel Moble	Pacific Bell
1986	WESTINGHOUSE ELEVATOR CO	Pacific Bell
	WESTINGHOUSE ELEVATOR CO	Pacific Bell
	WESTINGHOUSE ELECTRIC CORPORATION	Pacific Bell
1985	Service	Pacific Bell
	Sales	Pacific Bell

<u>Year</u>	<u>Uses</u>	Source
1985	Construction Business Development	Pacific Bell
	WESTINGHOUSE ELEVATOR CO	Pacific Bell
	WESTINGHOUSE ELEVATOR CO	Pacific Bell
	WESTINGHOUSE ELEVATOR CO	Pacific Bell
	WESTINGHOUSE ELEVATOR CO	Pacific Bell
	WESTINGHOUSE ELECTRIC CORPORATION	Pacific Bell
1981	WESTINGHOUSE ELEVATOR CO	Pacific Telephone
	WESTINGHOUSE ELEVATOR CO	Pacific Telephone
1980	Sales	Pacific Telephone
	Service	Pacific Telephone
	WESTINGHOUSE ELEVATOR CO	Pacific Telephone
	WESTINGHOUSE ELEVATOR CO	Pacific Telephone
1976	Service	Pacific Telephone
	Westinghouse Elevator Co	Pacific Telephone
	Sales	Pacific Telephone
	Westinghouse Elevator Co	Pacific Telephone
1975	Sales	Pacific Telephone
	Service	Pacific Telephone
	Sales	Pacific Telephone
	Service	Pacific Telephone

2232 N HOLLYWOOD WAY

<u>Year</u>	<u>Uses</u>	<u>Source</u>
2015	ELKS BPOE BURBANK LODGE	Cole Information Services
2009	BURBANK ELKS LODGE	Cole Information Services
	BURBANK CA LODGE 1497	Cole Information Services
2006	BURBANK LODGE	Haines Company, Inc.
	ELKSBPOE	Haines Company, Inc.
2004	BURBANK ELKS LODGE	Cole Information Services

2235 N HOLLYWOOD WAY

<u>Year</u>	<u>Uses</u>	<u>Source</u>
1980	ATKINS PARK	Pacific Telephone
1950	ATKINS PARK	Pacific Telephone
	BURBANK AUCTION PALACE	Pacific Telephone
	ATKINS PARK	Pacific Telephone
	BURBANK AUCTION PALACE	Pacific Telephone

2237 N HOLLYWOOD WAY

<u>Year</u>	<u>Uses</u>	<u>Source</u>
2015	LEE FILTERS DIVISION OF PANAVISION	Cole Information Services
2009	LEE FILTERS	Cole Information Services
2006	OF PANAVISION	Haines Company, Inc.
	LEEFILTERSDVSN	Haines Company, Inc.
1999	LEE FILTERS DIVISION OF PANAVISION	Cole Information Services
	ZIP COMPANY HYDRAULICS	Cole Information Services
	OCCUPANT UNKNOWN	Cole Information Services
1995	Associated Podiatrists Group Of San Fernando Valley	Pacific Bell
	L Associated Products	Pacific Bell
	Zipco	Pacific Bell
1994	ZIPCO	Cole Information Services
	ASSOCIATED PRODUCTS	Cole Information Services
	ZIPCO PRECISION METAL	Cole Information Services
1985	Accratronics Of California Inc	Pacific Bell
1981	PRO LITHO GRAPHICS BURBANK	Pacific Telephone
1976	American Printing & Stationary Co See Westland Graphics	Pacific Telephone
	Westland Graphics	Pacific Telephone
1975	American Printing & Stationary Co See Westland Graphics	Pacific Telephone
	Westland Graphics	Pacific Telephone

2240 N HOLLYWOOD WAY

<u>Uses</u>	Source
PUBLIC STORAGE	Cole Information Services
IRENE HIDALGO	Cole Information Services
HOLLYWOODWAY TRAILER COURT	Cole Information Services
SHARON MARTIN	Cole Information Services
Bishop James	Pacific Bell
Cline J	Pacific Bell
Herrera John	Pacific Bell
I Lumley John E	Pacific Bell
Lumley G	Pacific Bell
Martin MA Sun	Pacific Bell
i Martin MC	Pacific Bell
Peterson E A	Pacific Bell
	PUBLIC STORAGE IRENE HIDALGO HOLLYWOODWAY TRAILER COURT SHARON MARTIN Bishop James Cline J Herrera John I Lumley John E Lumley G Martin MA Sun i Martin MC

<u>Year</u>	<u>Uses</u>	<u>Source</u>
1995	Price C C	Pacific Bell
	i Roland Ella Mrs	Pacific Bell
	Roland Carl	Pacific Bell
	Roman Ruben	Pacific Bell
	Soils Rodrigo	Pacific Bell
	Tilley Bob	Pacific Bell
	i Tilley Brick	Pacific Bell
	Tucker Chaz	Pacific Bell
	Wilkus Ted	Pacific Bell
	Yost Bernice	Pacific Bell
1994	BAXLEY, J	Cole Information Services
	DELESLEY, JOHN JR	Cole Information Services
	GOLDEN, NEAL	Cole Information Services
	ROLAND, ELLA	Cole Information Services
	YOST, BERNICE	Cole Information Services
	PRICE, C C	Cole Information Services
	HOLLYWOODWAY TRAILER COURT	Cole Information Services
	MARTIN, M C	Cole Information Services
	HERRERA, JOHN	Cole Information Services
	WILKUS, TED	Cole Information Services
	TUCKER, CHAZ	Cole Information Services
	MOORE, JAMES	Cole Information Services
	CLINE, J	Cole Information Services
	PETERSON, E A	Cole Information Services
	TILLEY, BRICK	Cole Information Services
	SILVA, ELIAS P	Cole Information Services
	STANDARD, BUD M	Cole Information Services
	BISHOP, JAMES	Cole Information Services
	LUMLEY, JOHN E	Cole Information Services
1991	Bishop James	Pacific Bell
	Cline J	Pacific Bell
	Cline J&C GHis	Pacific Bell
	De Lesley John Jr	Pacific Bell
	De Leston E	Pacific Bell
	Deo etran Nenette	Pacific Bell
	Firebaugh Carl	Pacific Bell
	Golden Neal	Pacific Bell
	Ho Uywoodway Trailer Court	Pacific Bell

<u>Year</u>	Uses	<u>Source</u>
1991	Lumley John E	Pacific Bell
	Martin MC	Pacific Bell
	Martinez Librada	Pacific Bell
	Mc Adams Jim	Pacific Bell
	Mc Adams Jimmy & Patricia	Pacific Bell
	Moore James	Pacific Bell
	Peterson E A	Pacific Bell
	Peterson E M	Pacific Bell
	Price CC	Pacific Bell
	Price CJ	Pacific Bell
	Roland Ella Mrs	Pacific Bell
	Rudy Paul	Pacific Bell
	Rudy Prince Motors	Pacific Bell
	Silva Elias P	Pacific Bell
	Stackhouse Jesse L	Pacific Bell
	Wilkus Ted	Pacific Bell
	Yost Bernice	Pacific Bell
	Yost C	Pacific Bell
1985	Benander Elmer N	Pacific Bell
	Clark Leonard	Pacific Bell
	Closson Robt	Pacific Bell
	De Lesley John Jr	Pacific Bell
	De Leston E	Pacific Bell
	Denopolos Ernest	Pacific Bell
	Dunwoody Ron	Pacific Bell
	Dyess I A	Pacific Bell
	Firebaugh Carl	Pacific Bell
	Gaghagen Dean C	Pacific Bell
	Garrett E H	Pacific Bell
	Hogan Hurst	Pacific Bell
	Hollywoodway Trailer Court	Pacific Bell
	Hunt J W	Pacific Bell
	Liptak J J	Pacific Bell
	Martin M C	Pacific Bell
	Peterfy M	Pacific Bell
	Peterson E A	Pacific Bell
	Peterson E L	Pacific Bell
	Price C C	Pacific Bell

<u>Year</u>	<u>Uses</u>	Source
1985	Price C J	Pacific Bell
	Rivera Victor Corey	Pacific Bell
	Roland Ella Mrs	Pacific Bell
	Rudy Paul	Pacific Bell
	RUDY PRIN CE MOTORS	Pacific Bell
	Rust Gary A	Pacific Bell
	Schwarzbeck Frederick	Pacific Bell
	Schwarzbein Z E GHIs	Pacific Bell
	Schwarzberg Katy Van Nuys	Pacific Bell
	Schwarze M	Pacific Bell
	Schwarzer R	Pacific Bell
	Snow Jos	Pacific Bell
	Snow Joyce	Pacific Bell
	Snow LF	Pacific Bell
	Stackhouse Jesse L	Pacific Bell
	Unac Industrial Systems	Pacific Bell
	Unatin Morley	Pacific Bell
	Wilkus Ted	Pacific Bell
	Williams Vernon R	Pacific Bell
1980	ADAMS CARL E BURBANK	Pacific Telephone
	AYERS MARILYN K	Pacific Telephone
	BENANDER ELMER N	Pacific Telephone
	BRAY ROBT	Pacific Telephone
	BRYSON CLAYTON	Pacific Telephone
	BUTLER B MRS	Pacific Telephone
	CROWDER LINDA	Pacific Telephone
	DE LESLEY JOHN JR	Pacific Telephone
	DOANE G H	Pacific Telephone
	DUNWOODY GERALD G	Pacific Telephone
	FIREBAUGH CARL	Pacific Telephone
	HENDERSON DAVID R	Pacific Telephone
	HOGAN HURST	Pacific Telephone
	HOLLYWOODWAY TRAILER COURT	Pacific Telephone
	HUNT J W	Pacific Telephone
	HUNTER ROBT A	Pacific Telephone
	KELSEY C S	Pacific Telephone
	LEVINSON SANFORD	Pacific Telephone
	LIPTAK M J	Pacific Telephone

<u>Year</u>	<u>Uses</u>	Source
1980	LUCAS ROBT A	Pacific Telephone
	LYON G N	Pacific Telephone
	MAC DONALD RICHARD H	Pacific Telephone
	MARTIN M C	Pacific Telephone
	MCKENZIE W DONALD	Pacific Telephone
	MINTER BILLIE P	Pacific Telephone
	PENNEY BEA	Pacific Telephone
	PETERSON E A	Pacific Telephone
	PRICE C C	Pacific Telephone
	RAMIREZ CARLOS	Pacific Telephone
	ROLAND ELLA MRS	Pacific Telephone
	ROLAND PAUL	Pacific Telephone
	STACKHOUSE JESSE L	Pacific Telephone
	WILKUS TED	Pacific Telephone
1976	Mc Kenny Walter F	Pacific Telephone
	Wilkus Ted	Pacific Telephone
1975	Adams Carl E	Pacific Telephone
	Alford F Z	Pacific Telephone
	Benander Elmer N	Pacific Telephone
	Callahan E A	Pacific Telephone
	Clark Harry M	Pacific Telephone
	De Cleene E J	Pacific Telephone
	De Lesley John Jr	Pacific Telephone
	Derry Wm	Pacific Telephone
	Diamond Belle	Pacific Telephone
	Dickson Martha C	Pacific Telephone
	Doane G H	Pacific Telephone
	Dunwoody Gerald G	Pacific Telephone
	Gray Scott C	Pacific Telephone
	Hollywoodway Trailer Court	Pacific Telephone
	Jacobs G	Pacific Telephone
	Kelsey C S	Pacific Telephone
	Kennedy Earl	Pacific Telephone
	Liptak J J	Pacific Telephone
	Martin Mary C	Pacific Telephone
	Minter Billie P	Pacific Telephone
	Music Z S	Pacific Telephone
	Myers Betty De Buhr	Pacific Telephone

<u>Year</u>	<u>Uses</u>	Source
1975	Newman Paul	Pacific Telephone
	Penney Bea	Pacific Telephone
	Rice Alexander T	Pacific Telephone
	Roland Ella Mrs	Pacific Telephone
	Scheer Edw	Pacific Telephone
	Shinbloom J M	Pacific Telephone
	Stackhouse Jesse L	Pacific Telephone
	Swartz Frank L	Pacific Telephone
	Westmore Iva L	Pacific Telephone
	Wharff Bernard	Pacific Telephone
	Wilkus Ted	Pacific Telephone
1970	LOWELL WAITER R BURBANK	Pacific Telephone
	MINTER BILLIE P BURBANK	Pacific Telephone
	ADAMS CARL E	Pacific Telephone
	ALFORD F Z	Pacific Telephone
	ALLEN V E	Pacific Telephone
	BAYERLE M	Pacific Telephone
	BENANDER ELMER N	Pacific Telephone
	BOGATTO JOHN	Pacific Telephone
	BROWN ELIZABETH I	Pacific Telephone
	CALLAHAN ELIZABETH A	Pacific Telephone
	CLARK HARRY	Pacific Telephone
	CURTIS HAROLD L	Pacific Telephone
	DIAMOND BELLE	Pacific Telephone
	DOANE G H	Pacific Telephone
	EVANS ROY J	Pacific Telephone
	FOGELSON R L	Pacific Telephone
	GAINES FRANK B	Pacific Telephone
	GLASER JOHN H MRS	Pacific Telephone
	GUY MELVIN	Pacific Telephone
	HOLLYWOODWAY TRAILER COURT	Pacific Telephone
	KOMM WM R	Pacific Telephone
	KUHLENKAMP FLOY	Pacific Telephone
	LIPTAK J J	Pacific Telephone
	LITTLE BUFFALO GEO	Pacific Telephone
	LOEWENGUTH W R	Pacific Telephone
	LYON PAUL	Pacific Telephone
	MARTIN MARY C	Pacific Telephone

<u>Year</u>	<u>Uses</u>	<u>Source</u>
1970	MUSIC Z S	Pacific Telephone
	NIENSTEDT ANNA	Pacific Telephone
	OZANICH J E	Pacific Telephone
	PENNEY BEA	Pacific Telephone
	RICE ALEX T	Pacific Telephone
	SCOTT CHAS L	Pacific Telephone
	SHARP CLAIR L	Pacific Telephone
	SHERBESMAN KATHERINE	Pacific Telephone
	SHINBLOOM J M	Pacific Telephone
	SIDEBOTHAM HAZEL U	Pacific Telephone
	SMITH PAULINE MARGARET	Pacific Telephone
	SOCKWELL D K	Pacific Telephone
	STEIN BERTHA L	Pacific Telephone
	SWARTZ FRANK L	Pacific Telephone
	TILLOTSON FRANCIS J	Pacific Telephone
	WHARFF BERNARD	Pacific Telephone
	ADAMS CARL E	Pacific Telephone
	ALFORD F Z	Pacific Telephone
	ALLEN V E	Pacific Telephone
	BAYERLE M	Pacific Telephone
	BENANDER ELMER N	Pacific Telephone
	BOGATTO JOHN	Pacific Telephone
	BROWN ELIZABETH I	Pacific Telephone
	CALLAHAN ELIZABETH A	Pacific Telephone
	CLARK HARRY	Pacific Telephone
	CURTIS HAROLD L	Pacific Telephone
	DIAMOND BELLE	Pacific Telephone
	DOANE G H	Pacific Telephone
	EVANS ROY J	Pacific Telephone
	FOGELSON R L	Pacific Telephone
	GAINES FRANK B	Pacific Telephone
	GLASER JOHN H MRS	Pacific Telephone
	GUY MELVIN	Pacific Telephone
	HOLLYWOODWAY TRAILER COURT	Pacific Telephone
	KOMM WM R	Pacific Telephone
	KUHLENKAMP FLOY	Pacific Telephone
	LIPTAK J J	Pacific Telephone
	LITTLE BUFFALO GEO	Pacific Telephone

<u>Year</u>	<u>Uses</u>	Source
1970	LOEWENGUTH W R	Pacific Telephone
	LYON PAUL	Pacific Telephone
	MARTIN MARY C	Pacific Telephone
	MUSIC Z S	Pacific Telephone
	NIENSTEDT ANNA	Pacific Telephone
	OZANICH J E	Pacific Telephone
	PENNEY BEA	Pacific Telephone
	RICE ALEX T	Pacific Telephone
	SCOTT CHAS L	Pacific Telephone
	SHARP CLAIR L	Pacific Telephone
	SHERBESMAN KATHERINE	Pacific Telephone
	SHINBLOOM J M	Pacific Telephone
	SIDEBOTHAM HAZEL U	Pacific Telephone
	SMITH PAULINE MARGARET	Pacific Telephone
	SOCKWELL D K	Pacific Telephone
	STEIN BERTHA L	Pacific Telephone
	SWARTZ FRANK L	Pacific Telephone
	TILLOTSON FRANCIS J	Pacific Telephone
	WHARFF BERNARD	Pacific Telephone
1962	ALEXANDER ROY	Pacific Telephone
	ALLEN ROBT H SR	Pacific Telephone
	ANDERSON CORRINE	Pacific Telephone
	BENDER HELEN C	Pacific Telephone
	BERKOWITZ PAULINE R	Pacific Telephone
	BLOHM RICHARD G	Pacific Telephone
	CHAPMAN C M	Pacific Telephone
	CORDES A L	Pacific Telephone
	CRIVYEA ROSS D	Pacific Telephone
	DAVIS DONALD D	Pacific Telephone
	DOANE G H	Pacific Telephone
	DYKE WALTER ROY	Pacific Telephone
	GEER FRANK	Pacific Telephone
	GEER MARY	Pacific Telephone
	HARTMAN WANDA J	Pacific Telephone
	HEATER ROLLIN A	Pacific Telephone
	HOLLYWOODWAY TRAILER COURT	Pacific Telephone
	INFANTE FRANCES	Pacific Telephone
	JENSEN GEO	Pacific Telephone

Year	Uses	Source
1962	JOHNSON EARL L	Pacific Telephone
.002	JONES LEON A	Pacific Telephone
	KLAWITTER LOUISE	Pacific Telephone
	KOMM WM R	Pacific Telephone
	LOEWENGUTH W R	Pacific Telephone
	MILLER GLENN	Pacific Telephone
	MILLER OLIVE	Pacific Telephone
	MOTT E A	Pacific Telephone
	MUSIC ROBT E	Pacific Telephone
		Pacific Telephone
	PROBST FRANK A	·
	RICE ALEX T	Pacific Telephone Pacific Telephone
	SCHMIDT EVELYN	·
	SCHMIDT FREDRIC	Pacific Telephone
	SELBY FLOSSIE H	Pacific Telephone
	SHEARER LESLIE J	Pacific Telephone
	SHERBESMAN KATHERINE	Pacific Telephone
	SHINBLOOM J M	Pacific Telephone
	SHULER MARJORIE MRS	Pacific Telephone
	SIDEBOTHAM WM	Pacific Telephone
	SMITH PAULINE MARGARET	Pacific Telephone
	STEVENS EARL A BURBANK	Pacific Telephone
	STEVENSON BYRLE A	Pacific Telephone
	SUMMERS GUY	Pacific Telephone
	SWARTZ FRANK L	Pacific Telephone
	TWERP JOE	Pacific Telephone
	WHEELESS ODELL C	Pacific Telephone
	WILEY J ALBERT	Pacific Telephone
1956	ALEXANDER ROY	Pacific Telephone
	BERKOWITZ PAULINE R	Pacific Telephone
	CONYERS RALPH E	Pacific Telephone
	COOMBES FRANCIS C	Pacific Telephone
	CROWE WALLACE	Pacific Telephone
	DAVIS DONALD D	Pacific Telephone
	DOANE G H	Pacific Telephone
	EVANS EVAN	Pacific Telephone
	GERBER ARTHUR J	Pacific Telephone
	HOLLYWOODWAY TRAILER COURT	Pacific Telephone
	KLAWITTER LOUISE	Pacific Telephone

<u>Year</u>	<u>Uses</u>	<u>Source</u>
1956	MOORE PAULINE K	Pacific Telephone
	MOORE RAY	Pacific Telephone
	MOTT E A	Pacific Telephone
	OLSEN VIOLA	Pacific Telephone
	PAYTON ALFRED	Pacific Telephone
	PRATT HENRY L JR	Pacific Telephone
	ROBERTS JAS E	Pacific Telephone
	ROSENTHAL CHAS H	Pacific Telephone
	ROULSTON WM A	Pacific Telephone
	RUSH LEON L	Pacific Telephone
	SHINBLOOM SHIRLEY	Pacific Telephone
	SHOEMAKER H R	Pacific Telephone
	SHORTMAN JOHN R	Pacific Telephone
	SINCLAIR LA VERNE	Pacific Telephone
	SMITH PAULINE MARGARET	Pacific Telephone
	TED S IDEAL CLEANERS	Pacific Telephone
	THOMPSON F J	Pacific Telephone
	TWERP JOE	Pacific Telephone
	WILLIAMS HELEN M	Pacific Telephone
	WILLIAMS TED R	Pacific Telephone
1950	STANDEFER G K R BURBANK	Pacific Telephone
	STANDEFER G K R BURBANK	Pacific Telephone
	ALEXANDER ROY R	Pacific Telephone
	HOEFER WM F R	Pacific Telephone
	LONGFIELD MAY H R	Pacific Telephone
	MOORE RAY R	Pacific Telephone
	RICE ALEX T R	Pacific Telephone
	SMITH PAULINE MARGARET R	Pacific Telephone
	ALEXANDER ROY R	Pacific Telephone
	HOEFER WM F R	Pacific Telephone
	LONGFIELD MAY H R	Pacific Telephone
	MOORE RAY R	Pacific Telephone
	RICE ALEX T R	Pacific Telephone
	SMITH PAULINE MARGARET R	Pacific Telephone

2243 N HOLLYWOOD WAY

<u>Year</u>	<u>Uses</u>	<u>Source</u>
2015	TREW AUDIO LOS ANGELES	Cole Information Services
	PACIFIC RADIO ELECTRONICS INC	Cole Information Services

<u>Year</u>	<u>Uses</u>	Source
2009	PACIFIC RADIO EXCHANGE INC	Cole Information Services
2006	PAC RADIO ELECTRONICS INC	Haines Company, Inc.
	PAC RADIO ELECTRONICS INC	Haines Company, Inc.
2004	PACIFIC RADIO ELECTRONICS INC	Cole Information Services
	OCCUPANT UNKNOWN	Cole Information Services
1999	PACIFIC RADIO ELECTRONICS INCORPORATED	Cole Information Services

2249 N HOLLYWOOD WAY

<u>Year</u>	<u>Uses</u>	Source
2009	MATRIX MEDICAL LABS	Cole Information Services
2004	OCCUPANT UNKNOWN	Cole Information Services
	LAB1 MEDICAL LAB INC	Cole Information Services
1999	WESTERN CYTOPATHOLOGY LABORATORIES INCORPORATED	Cole Information Services
1994	NOBART INC	Cole Information Services
	DANOBART INC	Cole Information Services

2268 N HOLLYWOOD WAY

<u>Year</u>	<u>Uses</u>	<u>Source</u>
1980	HOLMES WM B	Pacific Telephone
1956	MCCARTNEY HENRIETTA	Pacific Telephone

2288 N HOLLYWOOD WAY

<u>Year</u>	<u>Uses</u>	<u>Source</u>
1970	LORIMER E	Pacific Telephone
	LORIMER E	Pacific Telephone

2331 N HOLLYWOOD WAY

<u>Year</u>	<u>Uses</u>	<u>Source</u>
1950	SHOMAN S DAIRY	Pacific Telephone
	SHOMAN S DAIRY	Pacific Telephone

2340 N HOLLYWOOD WAY

<u>Year</u>	<u>Uses</u>	<u>Source</u>
2015	CTGY	Cole Information Services
2009	LFCU BROKERAGE INC	Cole Information Services
	LOCKHEED MARTIN CORP	Cole Information Services
	UNIV OF LAVERNE SCHOOL OF CONTINUING	Cole Information Services
	UNIVERSITY OF LAVERNE	Cole Information Services

<u>Year</u>	<u>Uses</u>	Source
2009	LOCKHEED FEDERAL CREDIT UNION	Cole Information Services
2006	CTGY	Haines Company, Inc.
2004	OCCUPANT UNKNOWN	Cole Information Services
	LOCKHEED MARTIN CORP	Cole Information Services
1994	LOCKHEED FEDERAL CREDIT UNION	Cole Information Services
1991	University Of Laverne	Pacific Bell
	B &P The Spaceconnection Inc	Pacific Bell
	Daniell JR Engineering Co	Pacific Bell
	Main Office	Pacific Bell
	No Charge To Calling Party	Pacific Bell
	QUE	Pacific Bell
	Spaceconnection Inc The	Pacific Bell
1985	Lockheed Federal Credit Union Contd Operations Offhce	Pacific Bell
	Loan Department	Pacific Bell
	New Accounts	Pacific Bell
	QUE	Pacific Bell
	Share Drafts Tellers	Pacific Bell
	Statements	Pacific Bell
	Weber Aircraft Co Employees	Pacific Bell
1970	POLICH BENEDICT CONSTRUCTION CO INC	Pacific Telephone
	POLICH BENEDICT CONSTRUCTION CO INC	Pacific Telephone

2341 N HOLLYWOOD WAY

<u>Year</u>	<u>Uses</u>	<u>Source</u>
1991	Queirolo David	Pacific Bell
	Queiros G	Pacific Bell
	Quelch Y	Pacific Bell

2228B N HOLLYWOOD WAY

<u>Year</u>	<u>Uses</u>	<u>Source</u>
1980	G M SIGNS	Pacific Telephone
	G M SIGNS INC	Pacific Telephone

N LIMA ST

2015 N LIMA ST

<u>Year</u>	<u>Uses</u>	<u>Source</u>
1995	Original Heidelberg Pretzel Co	Pacific Bell

N SCREENLAND DR

2220 N SCREENLAND DR

<u>Year</u>	<u>Uses</u>	<u>Source</u>
1980	JOHANSON MONOLITHIC DIELECTRICS INC	Pacific Telephone

2240 N SCREENLAND DR

<u>Year</u>	<u>Uses</u>	<u>Source</u>
2015	PACIFIC TITLE ARCHIVES	Cole Information Services
2009	TYLIE JONES & ASSOCIATES INC	Cole Information Services
2004	OCCUPANT UNKNOWN	Cole Information Services
1999	JONES TYLIE & ASSOCIATES	Cole Information Services
1980	AUTOMOTIVE JOBBER SUPPLY INC	Pacific Telephone

SCREENLAND DR

2240 SCREENLAND DR

<u>Year</u>	<u>Uses</u>	<u>Source</u>
1995	Century Council The	Pacific Bell
1985	From Van Nuys Telephones Call	Pacific Bell
1975	Automotive Jobber Supply Inc	Pacific Telephone

VALHALLA DR

3520 VALHALLA DR

<u>Year</u>	<u>Uses</u>	Source
2001	QUANTEGY INC	Haines & Company, Inc.
	QUANTEGY INC	Haines & Company, Inc.
	AMPEX	Haines & Company, Inc.
1990	BARROW FABRICS INC OF CALIF BURBANK	Pacific Bell
1986	BARROW FABRICS INC OF CALIF BURBANK	Pacific Bell
1981	BARROW FABRICS INC OF CALIF BURBANK	Pacific Telephone
1980	BARROW FABRICS INC OF CALIF	Pacific Telephone
	BARROW FABRICS INC OF CALIF	Pacific Telephone

3540 VALHALLA DR

<u>Year</u>	<u>Uses</u>	<u>Source</u>
2001	ORGATECH OMEGALUX	Haines & Company, Inc.

<u>Year</u>	<u>Uses</u>	Source
1986	STOR-WEL SYSTEMS BURBANK	Pacific Bell
1985	LB Industries plastc hdwe	Pacific Bell
	Stor Wel Systems	Pacific Bell
1981	STOR- WEL SYSTEMS BURBANK	Pacific Telephone
1980	STOR-WEL SYSTEMS	Pacific Telephone
	L B INDUSTRIES PLASTC HDWE	Pacific Telephone

3620 VALHALLA DR

<u>Year</u> <u>Uses</u>	<u>Source</u>
-------------------------	---------------

2001 XXXX Haines & Company, Inc.

VANOWEN PL

3714 VANOWEN PL

<u>Year</u>	<u>Uses</u>	<u>Source</u>
1956	V CAFE	Pacific Telephone

VANOWEN ST

3310 VANOWEN ST

<u>Year</u>	<u>Uses</u>	<u>Source</u>
2001	INSURANCE COURIER SERVICES	Haines & Company, Inc.
1991	cuae Leak Dtection	Pacific Bell
	Accurate Lazer Graphics 84	Pacific Bell
	Accurate Laser Internat I	Pacific Bell
1980	SEATON-WILSON DIV OF SYSTRON- DONNER CORP CPLNG	Pacific Telephone
	FILTRACO DIV SEATON WILSON INC	Pacific Telephone
1976	Seaton Wilson Inc Subsidiary Of Systron Donner Corp cplngs	Pacific Telephone
	Filtraco Div Seaton Wilson Inc	Pacific Telephone
1975	Filtraco Div Seaton Wilson Inc	Pacific Telephone
	Seaton Wilson Inc Subsidiary Of Systron Donner Corp cplngs	Pacific Telephone
1970	SIERRA SCHROEDER CONTROLS A DIV OF CAL-VAL RESEARCH & DEVELOPMENT CORP	Pacific Telephone
	ROBINTECH INC	Pacific Telephone
	ROBINSON TECHNICAL PRODUCTS	Pacific Telephone
	SIERRA SCHROEDER CONTROLS A DIV OF CAL-VAL RESEARCH & DEVELOPMENT CORP	Pacific Telephone

<u>Year</u>	<u>Uses</u>	<u>Source</u>
1970	ROBINTECH INC	Pacific Telephone
	ROBINSON TECHNICAL PRODUCTS	Pacific Telephone
1962	PESCO PRODUCTS DIV OF BORGWARNER CORP	Pacific Telephone
	BORG-WARNER CORP PESCO PRODUCTS DIV PESCO PRODUCTS DIVISION OF BORG-WARNER	Pacific Telephone
	PESCO PRODUCTS DIV OF BORG- ARNER CORP	Pacific Telephone
1960	PESCO PRODUCTS DIV OF BORG- WARNER CORP	Pacific Telephone

3714 VANOWEN ST

<u>Year</u>	<u>Uses</u>	<u>Source</u>
1962	H & H AUTO WRECKERS	Pacific Telephone
	V CAFE	Pacific Telephone

VANOWEN ST W

3310 VANOWEN ST W

<u>Year</u>	<u>Uses</u>	<u>Source</u>
1970	ROBINTECH INC ELECTRO MECHANICAL DIV PARTS MER	R. L. Polk & Co.

W PACIFIC AVE

3513 W PACIFIC AVE

<u>Year</u>	<u>Uses</u>	<u>Source</u>
1981	STEPHENS ELECTRONICS INC BURBANK	Pacific Telephone
1980	STEPHENS ELECTRONICS INC	Pacific Telephone
1976	Stephens Electronics Inc	Pacific Telephone

3519 W PACIFIC AVE

<u>Year</u>	<u>Uses</u>	<u>Source</u>
1991	Jones Tylie & Associates Inc	Pacific Bell
1985	Artisan Brass Products	Pacific Bell
1980	ARTISAN BRASS PRODUCTS	Pacific Telephone

3521 W PACIFIC AVE

	7.1010.7.11.2	
<u>Year</u>	<u>Uses</u>	<u>Source</u>
1980	REINER DOROTHY B COURT REPORTING	Pacific Telephone

<u>Year</u> <u>Uses</u>	<u>Source</u>
-------------------------	---------------

1980 BURBANK COLLEGE OF COURT Pacific Telephone REPORTING BURBANK

W PACIFIC LN

3513 W PACIFIC LN

<u>Year</u>	<u>Uses</u>	<u>Source</u>
1971	STEPHENS ELECTRONICS INC	Pacific Telephone
1970	SAV-ON ASSEMBLY CO	Pacific Telephone
	SAV-ON ASSEMBLY CO	Pacific Telephone
1967	SAV ON ASSEMBLY CO	Pacific Telephone
1962	B & M ENGINEERING CO TOOL DESGNRS	Pacific Telephone
1956	B & M ENGINEERING CO TOOL DESGNRS	Pacific Telephone

3519 W PACIFIC LN

<u>Year</u>	<u>Uses</u>	<u>Source</u>
1962	KINDRED AVIATION & AIRCRAFT ENGINE SUPPLY CO	Pacific Telephone
	KINDRED AVIATION & AIRCRAFT ENGINE SUPPLY CO	Pacific Telephone
1958	Kindred Aviation & Aircraft Engine Supply Co	Pacific Telephone
1956	KINDRED AVIATION CO	Pacific Telephone

W VALHALLA DR

3520 W VALHALLA DR

<u>Year</u>	<u>Uses</u>	<u>Source</u>
2015	FLASHPOINT GRAPHIX	Cole Information Services
2009	PACIFIC TITLE ARCHIVES	Cole Information Services
2006	ARCHIVES	Haines Company, Inc.
	PACTITLE	Haines Company, Inc.
2004	QUANTEGY INC	Cole Information Services
1999	AMPEX	Cole Information Services
	QUANTEGY INCORPORATED	Cole Information Services
1994	BARROW FABRICS INC OF CALIF	Cole Information Services

3540 W VALHALLA DR

<u> year</u>	<u>Uses</u>	<u>Source</u>
1999	ORGATECH OMEGALUX	Cole Information Services

6036912-5 Page 38

<u>Year</u> <u>Uses</u> <u>Source</u>

1994 ORGATECH AMERICA Cole Information Services

WESTERN LIGHTING INDUSTRIES Cole Information Services

3620 W VALHALLA DR

YearUsesSource2015DIGITAL 2 VISUALCole Information Services1994VISTA SCENERY INCCole Information ServicesVISTA ELECTRONICS INCCole Information Services4 WARD PRODUCTION INCCole Information Services

3640 W VALHALLA DR

<u>Year</u> <u>Uses</u> <u>Source</u>

2015 PACIFIC TITLE ARCHIVES Cole Information Services

W VANOWEN ST

3310 W VANOWEN ST

<u>Year</u>	<u>Uses</u>	<u>Source</u>
2015	EVOLUTION FILM	Cole Information Services
2009	EVOLUTION MEDICAL	Cole Information Services
	EVOLUTION FILM & TAPE INC	Cole Information Services
2006	EVOLUTION FILM	Haines Company, Inc.
2004	OCCUPANT UNKNOWN	Cole Information Services
1999	INSURANCE COURIER SERVICES	Cole Information Services
1994	ACCURATE LASER INTL	Cole Information Services

6036912-5 Page 39

ADJOINING PROPERTY: ADDRESSES NOT IDENTIFIED IN RESEARCH SOURCE

The following Adjoining Property addresses were researched for this report, and the addresses were not identified in research source.

Address Researched	Address Not Identified in Research Source
2015 N LIMA ST	2015, 2009, 2006, 2004, 2003, 2001, 2000, 1999, 1996, 1994, 1992, 1991, 1990, 1986, 1985, 1981, 1980, 1976, 1975, 1972, 1971, 1970, 1969, 1967, 1966, 1965, 1964, 1963, 1962, 1961, 1960, 1958, 1957, 1956, 1955, 1954, 1952, 1951, 1950, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920
2201 N HOLLYWOOD WAY	2015, 2009, 2004, 2003, 2001, 2000, 1999, 1996, 1995, 1994, 1992, 1991, 1990, 1986, 1985, 1981, 1980, 1976, 1975, 1972, 1971, 1970, 1969, 1967, 1966, 1965, 1964, 1963, 1962, 1961, 1960, 1958, 1957, 1956, 1955, 1954, 1952, 1951, 1950, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920
2201 N HOLLYWOOD WAY	2006, 2003, 2001, 2000, 1996, 1995, 1992, 1991, 1990, 1986, 1985, 1981, 1980, 1976, 1975, 1972, 1971, 1970, 1969, 1967, 1966, 1965, 1964, 1963, 1962, 1961, 1960, 1958, 1957, 1956, 1955, 1954, 1952, 1951, 1950, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920
2205 HOLLYWOOD BOWL RD	2015, 2009, 2006, 2004, 2003, 2001, 2000, 1999, 1996, 1995, 1994, 1992, 1991, 1990, 1986, 1985, 1981, 1980, 1976, 1975, 1972, 1971, 1969, 1967, 1966, 1965, 1964, 1963, 1962, 1961, 1960, 1958, 1957, 1956, 1955, 1954, 1952, 1951, 1950, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920
2205 HOLLYWOOD WAY N	2015, 2009, 2006, 2004, 2003, 2000, 1999, 1996, 1995, 1994, 1992, 1991, 1990, 1986, 1985, 1981, 1980, 1976, 1975, 1972, 1971, 1969, 1967, 1966, 1965, 1964, 1963, 1962, 1961, 1960, 1958, 1957, 1956, 1955, 1954, 1952, 1951, 1950, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920
2205 N HOLLYWOOD WAY	2015, 2009, 2004, 2003, 2001, 2000, 1999, 1996, 1994, 1992, 1990, 1981, 1980, 1972, 1971, 1969, 1966, 1965, 1964, 1963, 1961, 1960, 1957, 1956, 1955, 1954, 1952, 1951, 1950, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920
2205 N HOLLYWOOD WAY	2015, 2006, 2003, 2001, 2000, 1996, 1995, 1992, 1991, 1990, 1986, 1985, 1981, 1980, 1976, 1975, 1972, 1971, 1970, 1969, 1967, 1966, 1965, 1964, 1963, 1962, 1961, 1960, 1958, 1957, 1956, 1955, 1954, 1952, 1951, 1950, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920
2207 HOLLYWOOD WAY N	2015, 2009, 2006, 2004, 2003, 2000, 1999, 1996, 1995, 1994, 1992, 1991, 1990, 1986, 1985, 1981, 1980, 1976, 1975, 1972, 1971, 1970, 1969, 1967, 1966, 1965, 1964, 1963, 1962, 1961, 1960, 1958, 1957, 1956, 1955, 1954, 1952, 1951, 1950, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920

Address Researched	Address Not Identified in Research Source
2210 N HOLLYWOOD WAY	2015, 2009, 2006, 2004, 2003, 2001, 2000, 1999, 1996, 1995, 1994, 1992, 1991, 1990, 1986, 1981, 1980, 1976, 1975, 1972, 1971, 1970, 1969, 1967, 1966, 1965, 1964, 1963, 1962, 1961, 1960, 1958, 1957, 1956, 1955, 1954, 1952, 1951, 1950, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920
2211 HOLLYWOOD WAY N	2015, 2009, 2006, 2004, 2003, 2000, 1999, 1996, 1995, 1994, 1992, 1991, 1990, 1986, 1985, 1981, 1980, 1976, 1975, 1972, 1971, 1969, 1967, 1966, 1965, 1964, 1963, 1962, 1961, 1960, 1958, 1957, 1956, 1955, 1954, 1952, 1951, 1950, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920
2211 N HOLLYWOOD WAY	2015, 2009, 2004, 2003, 2001, 2000, 1999, 1996, 1995, 1994, 1992, 1972, 1969, 1966, 1965, 1964, 1963, 1961, 1960, 1957, 1956, 1955, 1954, 1952, 1951, 1950, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920
2211 N HOLLYWOOD WAY	2015, 2006, 2003, 2001, 2000, 1999, 1996, 1995, 1992, 1991, 1990, 1986, 1985, 1981, 1980, 1976, 1975, 1972, 1971, 1970, 1969, 1967, 1966, 1965, 1964, 1963, 1962, 1961, 1960, 1958, 1957, 1956, 1955, 1954, 1952, 1951, 1950, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920
2220 HOLLYWOOD WAY N	2015, 2009, 2006, 2004, 2003, 2000, 1999, 1996, 1995, 1994, 1992, 1991, 1990, 1986, 1985, 1981, 1980, 1976, 1975, 1972, 1971, 1969, 1967, 1966, 1965, 1964, 1963, 1962, 1961, 1960, 1958, 1957, 1956, 1955, 1954, 1951, 1950, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920
2220 N HOLLYWOOD WAY	2015, 2009, 2006, 2004, 2003, 2001, 2000, 1999, 1996, 1994, 1992, 1986, 1972, 1969, 1966, 1965, 1964, 1963, 1961, 1960, 1958, 1957, 1955, 1954, 1952, 1951, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920
2220 N HOLLYWOOD WAY	2006, 2003, 2001, 2000, 1996, 1995, 1992, 1991, 1990, 1986, 1985, 1981, 1980, 1976, 1975, 1972, 1971, 1970, 1969, 1967, 1966, 1965, 1964, 1963, 1962, 1961, 1960, 1958, 1957, 1956, 1955, 1954, 1952, 1951, 1950, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920
2220 N SCREENLAND DR	2015, 2009, 2006, 2004, 2003, 2001, 2000, 1999, 1996, 1995, 1994, 1992, 1991, 1990, 1986, 1985, 1981, 1976, 1975, 1972, 1971, 1970, 1969, 1967, 1966, 1965, 1964, 1963, 1962, 1961, 1960, 1958, 1957, 1956, 1955, 1954, 1952, 1951, 1950, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920
2226 N HOLLYWOOD WAY	2015, 2009, 2006, 2004, 2003, 2001, 2000, 1999, 1996, 1995, 1994, 1992, 1991, 1990, 1986, 1985, 1981, 1980, 1976, 1975, 1972, 1971, 1970, 1969, 1967, 1966, 1965, 1964, 1963, 1962, 1961, 1960, 1958, 1957, 1955, 1954, 1952, 1951, 1950, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920
2228 HOLLYWOOD WAY N	2015, 2009, 2006, 2004, 2003, 2000, 1999, 1996, 1995, 1994, 1992, 1991, 1990, 1986, 1985, 1981, 1980, 1976, 1975, 1972, 1971, 1970, 1969, 1967, 1966, 1965, 1964, 1963, 1962, 1961, 1960, 1958, 1957, 1956, 1955, 1954, 1952, 1951, 1950, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920

Address Researched	Address Not Identified in Research Source
2228 N HOLLYWOOD WAY	2015, 2009, 2004, 2003, 2001, 2000, 1999, 1996, 1994, 1992, 1981, 1972, 1969, 1966, 1965, 1964, 1963, 1961, 1955, 1954, 1952, 1951, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920
2228 N HOLLYWOOD WAY	2009, 2006, 2003, 2001, 2000, 1996, 1995, 1992, 1991, 1990, 1986, 1985, 1981, 1980, 1976, 1975, 1972, 1971, 1970, 1969, 1967, 1966, 1965, 1964, 1963, 1962, 1961, 1960, 1958, 1957, 1956, 1955, 1954, 1952, 1951, 1950, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920
2228A HOLLYWOOD WAY N	2015, 2009, 2006, 2004, 2003, 2001, 2000, 1999, 1996, 1995, 1994, 1992, 1991, 1990, 1986, 1985, 1981, 1980, 1976, 1975, 1972, 1971, 1969, 1967, 1966, 1965, 1964, 1963, 1962, 1961, 1960, 1958, 1957, 1956, 1955, 1954, 1952, 1951, 1950, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920
2228B HOLLYWOOD WAY N	2015, 2009, 2006, 2004, 2003, 2001, 2000, 1999, 1996, 1995, 1994, 1992, 1991, 1990, 1986, 1985, 1981, 1980, 1976, 1975, 1972, 1971, 1969, 1967, 1966, 1965, 1964, 1963, 1962, 1961, 1960, 1958, 1957, 1956, 1955, 1954, 1952, 1951, 1950, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920
2228B N HOLLYWOOD WAY	2015, 2009, 2006, 2004, 2003, 2001, 2000, 1999, 1996, 1995, 1994, 1992, 1991, 1990, 1986, 1985, 1981, 1976, 1975, 1972, 1971, 1970, 1969, 1967, 1966, 1965, 1964, 1963, 1962, 1961, 1960, 1958, 1957, 1956, 1955, 1954, 1952, 1951, 1950, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920
2230 HOLLYWOOD WAY N	2015, 2009, 2006, 2004, 2003, 2001, 2000, 1999, 1996, 1995, 1994, 1992, 1991, 1990, 1986, 1985, 1981, 1980, 1976, 1975, 1972, 1971, 1969, 1967, 1966, 1965, 1964, 1963, 1962, 1961, 1960, 1958, 1957, 1956, 1955, 1954, 1952, 1951, 1950, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920
2230 N HOLLYWOOD WAY	2015, 2009, 2006, 2004, 2003, 2001, 2000, 1999, 1996, 1995, 1994, 1992, 1991, 1990, 1986, 1985, 1972, 1969, 1966, 1965, 1964, 1963, 1961, 1960, 1957, 1955, 1954, 1952, 1951, 1950, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920
2231 HOLLYWOOD WAY	2015, 2009, 2006, 2004, 2003, 2001, 2000, 1999, 1996, 1995, 1994, 1992, 1991, 1990, 1986, 1985, 1980, 1976, 1975, 1972, 1971, 1970, 1969, 1967, 1966, 1965, 1964, 1963, 1962, 1961, 1960, 1958, 1957, 1956, 1955, 1954, 1952, 1951, 1950, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920
2231 HOLLYWOOD WAY N	2015, 2009, 2006, 2004, 2003, 2000, 1999, 1996, 1995, 1994, 1992, 1991, 1990, 1986, 1985, 1981, 1980, 1976, 1975, 1972, 1971, 1970, 1969, 1967, 1966, 1965, 1964, 1963, 1962, 1961, 1960, 1958, 1957, 1956, 1955, 1954, 1952, 1951, 1950, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920
2231 N HOLLYWOOD WAY	2015, 2009, 2004, 2003, 2001, 2000, 1999, 1996, 1994, 1992, 1990, 1972, 1971, 1970, 1969, 1967, 1966, 1965, 1964, 1963, 1962, 1961, 1960, 1958, 1957, 1956, 1955, 1954, 1952, 1951, 1950, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920

Address Researched	Address Not Identified in Research Source
2231 N HOLLYWOOD WAY	2006, 2003, 2001, 2000, 1996, 1995, 1992, 1991, 1990, 1986, 1985, 1981, 1980, 1976, 1975, 1972, 1971, 1970, 1969, 1967, 1966, 1965, 1964, 1963, 1962, 1961, 1960, 1958, 1957, 1956, 1955, 1954, 1952, 1951, 1950, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920
2232 N HOLLYWOOD WAY	2006, 2003, 2001, 2000, 1999, 1996, 1995, 1994, 1992, 1991, 1990, 1986, 1985, 1981, 1980, 1976, 1975, 1972, 1971, 1970, 1969, 1967, 1966, 1965, 1964, 1963, 1962, 1961, 1960, 1958, 1957, 1956, 1955, 1954, 1952, 1951, 1950, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920
2232 N HOLLYWOOD WAY	2015, 2009, 2004, 2003, 2001, 2000, 1999, 1996, 1995, 1994, 1992, 1991, 1990, 1986, 1985, 1981, 1980, 1976, 1975, 1972, 1971, 1970, 1969, 1967, 1966, 1965, 1964, 1963, 1962, 1961, 1960, 1958, 1957, 1956, 1955, 1954, 1952, 1951, 1950, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920
2235 N HOLLYWOOD WAY	2015, 2009, 2006, 2004, 2003, 2001, 2000, 1999, 1996, 1995, 1994, 1992, 1991, 1990, 1986, 1985, 1981, 1976, 1975, 1972, 1971, 1970, 1969, 1967, 1966, 1965, 1964, 1963, 1962, 1961, 1960, 1958, 1957, 1956, 1955, 1954, 1952, 1951, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920
2237 HOLLYWOOD WAY N	2015, 2009, 2006, 2004, 2003, 2000, 1999, 1996, 1995, 1994, 1992, 1991, 1990, 1986, 1985, 1981, 1980, 1976, 1975, 1972, 1971, 1970, 1969, 1967, 1966, 1965, 1964, 1963, 1962, 1961, 1960, 1958, 1957, 1956, 1955, 1954, 1952, 1951, 1950, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920
2237 N HOLLYWOOD WAY	2006, 2004, 2003, 2001, 2000, 1996, 1995, 1992, 1991, 1990, 1986, 1985, 1981, 1980, 1976, 1975, 1972, 1971, 1970, 1969, 1967, 1966, 1965, 1964, 1963, 1962, 1961, 1960, 1958, 1957, 1956, 1955, 1954, 1952, 1951, 1950, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920
2237 N HOLLYWOOD WAY	2015, 2009, 2004, 2003, 2001, 2000, 1999, 1996, 1994, 1992, 1991, 1990, 1986, 1980, 1972, 1971, 1970, 1969, 1967, 1966, 1965, 1964, 1963, 1962, 1961, 1960, 1958, 1957, 1956, 1955, 1954, 1952, 1951, 1950, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920
2240 H HOLLYWOOD WAY	2015, 2009, 2006, 2004, 2003, 2001, 2000, 1999, 1996, 1995, 1994, 1992, 1991, 1990, 1986, 1985, 1981, 1976, 1975, 1972, 1971, 1970, 1969, 1967, 1966, 1965, 1964, 1963, 1962, 1961, 1960, 1958, 1957, 1956, 1955, 1954, 1952, 1951, 1950, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920
2240 HOLLYWOOD WAY N	2015, 2009, 2006, 2004, 2003, 2000, 1999, 1996, 1995, 1994, 1992, 1991, 1990, 1986, 1985, 1981, 1980, 1976, 1975, 1972, 1971, 1969, 1967, 1966, 1965, 1964, 1963, 1962, 1961, 1960, 1958, 1957, 1956, 1955, 1954, 1951, 1950, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920
2240 N HOLLYWOOD WAY	2015, 2009, 2006, 2004, 2003, 2001, 2000, 1999, 1996, 1994, 1992, 1990, 1986, 1981, 1972, 1971, 1969, 1967, 1966, 1965, 1964, 1963, 1961, 1960, 1958, 1957, 1955, 1954, 1952, 1951, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920

Address Researched	Address Not Identified in Research Source
2240 N HOLLYWOOD WAY	2009, 2006, 2003, 2001, 2000, 1996, 1995, 1992, 1991, 1990, 1986, 1985, 1981, 1980, 1976, 1975, 1972, 1971, 1970, 1969, 1967, 1966, 1965, 1964, 1963, 1962, 1961, 1960, 1958, 1957, 1956, 1955, 1954, 1952, 1951, 1950, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920
2240 N SCREENLAND DR	2015, 2009, 2006, 2004, 2003, 2001, 2000, 1999, 1996, 1995, 1994, 1992, 1991, 1990, 1986, 1985, 1981, 1976, 1975, 1972, 1971, 1970, 1969, 1967, 1966, 1965, 1964, 1963, 1962, 1961, 1960, 1958, 1957, 1956, 1955, 1954, 1952, 1951, 1950, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920
2240 N SCREENLAND DR	2006, 2003, 2001, 2000, 1996, 1995, 1994, 1992, 1991, 1990, 1986, 1985, 1981, 1980, 1976, 1975, 1972, 1971, 1970, 1969, 1967, 1966, 1965, 1964, 1963, 1962, 1961, 1960, 1958, 1957, 1956, 1955, 1954, 1952, 1951, 1950, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920
2240 SCREENLAND DR	2015, 2009, 2006, 2004, 2003, 2001, 2000, 1999, 1996, 1994, 1992, 1991, 1990, 1986, 1981, 1980, 1976, 1972, 1971, 1970, 1969, 1967, 1966, 1965, 1964, 1963, 1962, 1961, 1960, 1958, 1957, 1956, 1955, 1954, 1952, 1951, 1950, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920
2243 HOLLYWOOD WAY N	2015, 2009, 2006, 2004, 2003, 2000, 1999, 1996, 1995, 1994, 1992, 1991, 1990, 1986, 1985, 1981, 1980, 1976, 1975, 1972, 1971, 1970, 1969, 1967, 1966, 1965, 1964, 1963, 1962, 1961, 1960, 1958, 1957, 1956, 1955, 1954, 1952, 1951, 1950, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920
2243 N HOLLYWOOD WAY	2015, 2009, 2004, 2003, 2001, 2000, 1999, 1996, 1995, 1994, 1992, 1991, 1990, 1986, 1985, 1981, 1980, 1976, 1975, 1972, 1971, 1970, 1969, 1967, 1966, 1965, 1964, 1963, 1962, 1961, 1960, 1958, 1957, 1956, 1955, 1954, 1952, 1951, 1950, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920
2243 N HOLLYWOOD WAY	2006, 2003, 2001, 2000, 1996, 1995, 1994, 1992, 1991, 1990, 1986, 1985, 1981, 1980, 1976, 1975, 1972, 1971, 1970, 1969, 1967, 1966, 1965, 1964, 1963, 1962, 1961, 1960, 1958, 1957, 1956, 1955, 1954, 1952, 1951, 1950, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920
2248 HOLLYWOOD WAY N	2015, 2009, 2006, 2004, 2003, 2001, 2000, 1999, 1996, 1995, 1994, 1992, 1991, 1990, 1986, 1985, 1981, 1980, 1976, 1975, 1972, 1971, 1970, 1969, 1967, 1966, 1965, 1964, 1963, 1962, 1961, 1960, 1958, 1957, 1956, 1955, 1954, 1952, 1951, 1950, 1949, 1948, 1947, 1945, 1944, 1940, 1939, 1938, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920
2249 HOLLYWOOD WAY N	2015, 2009, 2006, 2004, 2003, 2000, 1999, 1996, 1995, 1994, 1992, 1991, 1990, 1986, 1985, 1981, 1980, 1976, 1975, 1972, 1971, 1970, 1969, 1967, 1966, 1965, 1964, 1963, 1962, 1961, 1960, 1958, 1957, 1956, 1955, 1954, 1952, 1951, 1950, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920
2249 N HOLLYWOOD WAY	2015, 2006, 2003, 2001, 2000, 1996, 1995, 1992, 1991, 1990, 1986, 1985, 1981, 1980, 1976, 1975, 1972, 1971, 1970, 1969, 1967, 1966, 1965, 1964, 1963, 1962, 1961, 1960, 1958, 1957, 1956, 1955, 1954, 1952, 1951, 1950, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920

Address Researched	Address Not Identified in Research Source
2250 HOLLYWOOD WAY N	2015, 2009, 2006, 2004, 2003, 2000, 1999, 1996, 1995, 1994, 1992, 1991, 1990, 1986, 1985, 1981, 1980, 1976, 1975, 1972, 1971, 1970, 1969, 1967, 1966, 1965, 1964, 1963, 1962, 1961, 1960, 1958, 1957, 1956, 1955, 1954, 1952, 1951, 1950, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920
2268 HOLLYWOOD WAY N	2015, 2009, 2006, 2004, 2003, 2000, 1999, 1996, 1995, 1994, 1992, 1991, 1990, 1986, 1985, 1981, 1980, 1976, 1975, 1972, 1971, 1970, 1969, 1967, 1966, 1965, 1964, 1963, 1962, 1961, 1960, 1958, 1957, 1956, 1955, 1954, 1952, 1951, 1950, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920
2268 N HOLLYWOOD WAY	2015, 2009, 2006, 2004, 2003, 2001, 2000, 1999, 1996, 1995, 1994, 1992, 1991, 1990, 1986, 1985, 1981, 1976, 1975, 1972, 1971, 1970, 1969, 1967, 1966, 1965, 1964, 1963, 1962, 1961, 1960, 1958, 1957, 1955, 1954, 1952, 1951, 1950, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920
2280 HOLLYWOOD WAY N	2015, 2009, 2006, 2004, 2003, 2000, 1999, 1996, 1995, 1994, 1992, 1991, 1990, 1986, 1985, 1981, 1980, 1976, 1975, 1972, 1971, 1970, 1969, 1967, 1966, 1965, 1964, 1963, 1962, 1961, 1960, 1958, 1957, 1956, 1955, 1954, 1952, 1951, 1950, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920
2288 N HOLLYWOOD WAY	2015, 2009, 2006, 2004, 2003, 2001, 2000, 1999, 1996, 1995, 1994, 1992, 1991, 1990, 1986, 1985, 1981, 1980, 1976, 1975, 1972, 1971, 1969, 1967, 1966, 1965, 1964, 1963, 1962, 1961, 1960, 1958, 1957, 1956, 1955, 1954, 1952, 1951, 1950, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920
2315 HOLLYWOOD WAY N	2015, 2009, 2006, 2004, 2003, 2001, 2000, 1999, 1996, 1995, 1994, 1992, 1991, 1990, 1986, 1985, 1981, 1980, 1976, 1975, 1972, 1971, 1970, 1969, 1967, 1966, 1965, 1964, 1963, 1962, 1961, 1960, 1958, 1957, 1956, 1955, 1954, 1952, 1951, 1950, 1949, 1948, 1947, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920
2316 HOLLYWOOD WAY N	2015, 2009, 2006, 2004, 2003, 2001, 2000, 1999, 1996, 1995, 1994, 1992, 1991, 1990, 1986, 1985, 1981, 1980, 1976, 1975, 1972, 1971, 1970, 1969, 1967, 1966, 1965, 1964, 1963, 1962, 1961, 1960, 1958, 1957, 1956, 1955, 1954, 1951, 1950, 1949, 1948, 1947, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920
2331 HOLLYWOOD WAY N	2015, 2009, 2006, 2004, 2003, 2001, 2000, 1999, 1996, 1995, 1994, 1992, 1991, 1990, 1986, 1985, 1981, 1980, 1976, 1975, 1972, 1971, 1970, 1969, 1967, 1966, 1965, 1964, 1963, 1962, 1961, 1960, 1958, 1957, 1956, 1955, 1954, 1951, 1950, 1949, 1948, 1947, 1945, 1944, 1940, 1939, 1938, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920
2331 N HOLLYWOOD WAY	2015, 2009, 2006, 2004, 2003, 2001, 2000, 1999, 1996, 1995, 1994, 1992, 1991, 1990, 1986, 1985, 1981, 1980, 1976, 1975, 1972, 1971, 1970, 1969, 1967, 1966, 1965, 1964, 1963, 1962, 1961, 1960, 1958, 1957, 1956, 1955, 1954, 1952, 1951, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920

Address Researched	Address Not Identified in Research Source
2340 N HOLLYWOOD WAY	2015, 2009, 2004, 2003, 2001, 2000, 1999, 1996, 1995, 1994, 1992, 1990, 1986, 1981, 1980, 1976, 1975, 1972, 1971, 1969, 1967, 1966, 1965, 1964, 1963, 1962, 1961, 1960, 1958, 1957, 1956, 1955, 1954, 1952, 1951, 1950, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920
2340 N HOLLYWOOD WAY	2006, 2003, 2001, 2000, 1999, 1996, 1995, 1992, 1991, 1990, 1986, 1985, 1981, 1980, 1976, 1975, 1972, 1971, 1970, 1969, 1967, 1966, 1965, 1964, 1963, 1962, 1961, 1960, 1958, 1957, 1956, 1955, 1954, 1952, 1951, 1950, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920
2341 N HOLLYWOOD WAY	2015, 2009, 2006, 2004, 2003, 2001, 2000, 1999, 1996, 1995, 1994, 1992, 1990, 1986, 1985, 1981, 1980, 1976, 1975, 1972, 1971, 1970, 1969, 1967, 1966, 1965, 1964, 1963, 1962, 1961, 1960, 1958, 1957, 1956, 1955, 1954, 1952, 1951, 1950, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920
3310 VANOWEN ST	2015, 2009, 2006, 2004, 2003, 2000, 1999, 1996, 1995, 1994, 1992, 1990, 1986, 1985, 1981, 1972, 1971, 1969, 1967, 1966, 1965, 1964, 1963, 1961, 1958, 1957, 1956, 1955, 1954, 1952, 1951, 1950, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920
3310 VANOWEN ST W	2015, 2009, 2006, 2004, 2003, 2001, 2000, 1999, 1996, 1995, 1994, 1992, 1991, 1990, 1986, 1985, 1981, 1980, 1976, 1975, 1972, 1971, 1969, 1967, 1966, 1965, 1964, 1963, 1962, 1961, 1960, 1958, 1957, 1956, 1955, 1954, 1952, 1951, 1950, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920
3310 W VANOWEN ST	2015, 2009, 2004, 2003, 2001, 2000, 1999, 1996, 1995, 1994, 1992, 1991, 1990, 1986, 1985, 1981, 1980, 1976, 1975, 1972, 1971, 1970, 1969, 1967, 1966, 1965, 1964, 1963, 1962, 1961, 1960, 1958, 1957, 1956, 1955, 1954, 1952, 1951, 1950, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920
3310 W VANOWEN ST	2006, 2003, 2001, 2000, 1996, 1995, 1992, 1991, 1990, 1986, 1985, 1981, 1980, 1976, 1975, 1972, 1971, 1970, 1969, 1967, 1966, 1965, 1964, 1963, 1962, 1961, 1960, 1958, 1957, 1956, 1955, 1954, 1952, 1951, 1950, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920
3513 W PACIFIC AVE	2015, 2009, 2006, 2004, 2003, 2001, 2000, 1999, 1996, 1995, 1994, 1992, 1991, 1990, 1986, 1985, 1975, 1972, 1971, 1970, 1969, 1967, 1966, 1965, 1964, 1963, 1962, 1961, 1960, 1958, 1957, 1956, 1955, 1954, 1952, 1951, 1950, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920
3513 W PACIFIC LN	2015, 2009, 2006, 2004, 2003, 2001, 2000, 1999, 1996, 1995, 1994, 1992, 1991, 1990, 1986, 1985, 1981, 1980, 1976, 1975, 1972, 1969, 1966, 1965, 1964, 1963, 1961, 1960, 1958, 1957, 1955, 1954, 1952, 1951, 1950, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920
3519 W PACIFIC AVE	2015, 2009, 2006, 2004, 2003, 2001, 2000, 1999, 1996, 1995, 1994, 1992, 1990, 1986, 1981, 1976, 1975, 1972, 1971, 1970, 1969, 1967, 1966, 1965, 1964, 1963, 1962, 1961, 1960, 1958, 1957, 1956, 1955, 1954, 1952, 1951, 1950, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920

Address Researched	Address Not Identified in Research Source
3519 W PACIFIC LN	2015, 2009, 2006, 2004, 2003, 2001, 2000, 1999, 1996, 1995, 1994, 1992, 1991, 1990, 1986, 1985, 1981, 1980, 1976, 1975, 1972, 1971, 1970, 1969, 1967, 1966, 1965, 1964, 1963, 1961, 1960, 1957, 1955, 1954, 1952, 1951, 1950, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920
3520 VALHALLA DR	2015, 2009, 2006, 2004, 2003, 2000, 1999, 1996, 1995, 1994, 1992, 1991, 1985, 1976, 1975, 1972, 1971, 1970, 1969, 1967, 1966, 1965, 1964, 1963, 1962, 1961, 1960, 1958, 1957, 1956, 1955, 1954, 1952, 1951, 1950, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920
3520 W VALHALLA DR	2015, 2009, 2004, 2003, 2001, 2000, 1999, 1996, 1995, 1994, 1992, 1991, 1990, 1986, 1985, 1981, 1980, 1976, 1975, 1972, 1971, 1970, 1969, 1967, 1966, 1965, 1964, 1963, 1962, 1961, 1960, 1958, 1957, 1956, 1955, 1954, 1952, 1951, 1950, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920
3520 W VALHALLA DR	2006, 2003, 2001, 2000, 1996, 1995, 1992, 1991, 1990, 1986, 1985, 1981, 1980, 1976, 1975, 1972, 1971, 1970, 1969, 1967, 1966, 1965, 1964, 1963, 1962, 1961, 1960, 1958, 1957, 1956, 1955, 1954, 1952, 1951, 1950, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920
3521 W PACIFIC AVE	2015, 2009, 2006, 2004, 2003, 2001, 2000, 1999, 1996, 1995, 1994, 1992, 1991, 1990, 1986, 1985, 1981, 1976, 1975, 1972, 1971, 1970, 1969, 1967, 1966, 1965, 1964, 1963, 1962, 1961, 1960, 1958, 1957, 1956, 1955, 1954, 1952, 1951, 1950, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920
3540 VALHALLA DR	2015, 2009, 2006, 2004, 2003, 2000, 1999, 1996, 1995, 1994, 1992, 1991, 1990, 1976, 1975, 1972, 1971, 1970, 1969, 1967, 1966, 1965, 1964, 1963, 1962, 1961, 1960, 1958, 1957, 1956, 1955, 1954, 1952, 1951, 1950, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920
3540 W VALHALLA DR	2015, 2009, 2006, 2004, 2003, 2001, 2000, 1996, 1995, 1992, 1991, 1990, 1986, 1985, 1981, 1980, 1976, 1975, 1972, 1971, 1970, 1969, 1967, 1966, 1965, 1964, 1963, 1962, 1961, 1960, 1958, 1957, 1956, 1955, 1954, 1952, 1951, 1950, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920
3620 VALHALLA DR	2015, 2009, 2006, 2004, 2003, 2000, 1999, 1996, 1995, 1994, 1992, 1991, 1990, 1986, 1985, 1981, 1980, 1976, 1975, 1972, 1971, 1970, 1969, 1967, 1966, 1965, 1964, 1963, 1962, 1961, 1960, 1958, 1957, 1956, 1955, 1954, 1952, 1951, 1950, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920
3620 W VALHALLA DR	2009, 2006, 2004, 2003, 2001, 2000, 1999, 1996, 1995, 1992, 1991, 1990, 1986, 1985, 1981, 1980, 1976, 1975, 1972, 1971, 1970, 1969, 1967, 1966, 1965, 1964, 1963, 1962, 1961, 1960, 1958, 1957, 1956, 1955, 1954, 1952, 1951, 1950, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920
3640 W VALHALLA DR	2009, 2006, 2004, 2003, 2001, 2000, 1999, 1996, 1995, 1994, 1992, 1991, 1990, 1986, 1985, 1981, 1980, 1976, 1975, 1972, 1971, 1970, 1969, 1967, 1966, 1965, 1964, 1963, 1962, 1961, 1960, 1958, 1957, 1956, 1955, 1954, 1952, 1951, 1950, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920

Address Researched	Address Not Identified in Research Source
3714 VANOWEN PL	2015, 2009, 2006, 2004, 2003, 2001, 2000, 1999, 1996, 1995, 1994, 1992, 1991, 1990, 1986, 1985, 1981, 1980, 1976, 1975, 1972, 1971, 1970, 1969, 1967, 1966, 1965, 1964, 1963, 1962, 1961, 1960, 1958, 1957, 1955, 1954, 1952, 1951, 1950, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920
3714 VANOWEN ST	2015, 2009, 2006, 2004, 2003, 2001, 2000, 1999, 1996, 1995, 1994, 1992, 1991, 1990, 1986, 1985, 1981, 1980, 1976, 1975, 1972, 1971, 1970, 1969, 1967, 1966, 1965, 1964, 1963, 1961, 1960, 1958, 1957, 1956, 1955, 1954, 1952, 1951, 1950, 1949, 1948, 1947, 1946, 1945, 1944, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920

TARGET PROPERTY: ADDRESS NOT IDENTIFIED IN RESEARCH SOURCE

The following Target Property addresses were researched for this report, and the addresses were not identified in the research source.

Address Researched

Address Not Identified in Research Source

2311 N Hollywood Way

2003, 2000, 1996, 1995, 1994, 1992, 1991, 1990, 1986, 1981, 1976, 1972, 1969, 1966, 1965, 1964, 1963, 1962, 1961, 1960, 1958, 1957, 1955, 1954, 1951, 1949, 1948, 1947, 1945, 1944, 1940, 1939, 1938, 1937, 1936, 1935, 1934, 1933, 1932, 1931, 1930, 1929, 1928, 1927, 1926, 1925, 1924, 1923, 1921, 1920

BURBANK FIRE DEPT

2311 N Hollywood Way

2311 N Hollywood Way

BURBANK FIRE DEPARTMENT

HAZARDOUS MATERIALS DIVISION

311 East Orange Grove Avenue, Burbank CA 91502-1221

BUSINESS PLAN ANNUAL RENEWAL CERTIFICATION

I have reviewed my inventory as	<u>Hazardous Materials Invent</u> and certify the following:	ory
box to add each hazardous n Delete: Write "delete" acros checking the "Delete" box to Submit one form per chemic	naterial that you have not previously of sthe Hazardous Materials Inventor of delete any previously disclosed haza al.	disclosed. Submit one form per chemical. Ty—Chemical Description Form Therefore are the standard of the stan
to reflect the accuracy of any	previously reported hazardous mater eription Form. Submit one form per	rial on each Hazardous Materials
Description Form and sign Appendix A—The List of Ex	n the EPCRA field on the Hazardous	Materials Inventory—Chemical quantity identified on 40 CFR Part 355,
I have reviewed the CCP and ce with the following conditions:	Consolidated Contingency Plan rtify that the CCP on file with your ag	(CCP) gency is accurate and current in accordance
Modification: Significant of Complete, sign, and submit	nanges in facility personnel or operation and the CCP with this form.	ons required a revision of the CCP.
No Change: There have not require a revision to the curr		acility's personnel and operations that
	Cal-ARP Program les in Section 2770.5 of Title 19 of the	e California Code of Regulations and stration requirement:
substance is at or above the	P Program Regulated Substance Rethreshold quantity (TQ). Submit one submitted registration for regulated s	
is complete, accurate, and up to date. A	also, no hazardous materials subject to the in	nitted herein and believe the submitted information ventory requirements of this Chapter, (California
Health & Safety Code Chapter 6.95) at	re being handled that are not listed on the mo Kathryn J. Kolder	st recently submitted annual inventory form.
Print Name of Document Preparer	Print Name of Owner/Operator	Signature of Owner/Operator
Fry's Electronics Inc Business Name	2311 N Hollywood WAY Site Address	2/18/08
	the above address before March 1, 20	Date OR to avoid penalties or

Submit this packet to the above address before March 1, 2008 to avoid penalties or other enforcement options.

Obtain additional forms from our website at http://www.burbankfire.us/mainpage.htm.
or from the Burbank Fire Department at (818) 238-3473.

1

FM101 12-07

UNIFIED PROGRAM (UP) FORM BUSINESS OWNER / OPERATOR IDENTIFICATION

□ NEW BUSINESS □ OUT OF		(EFFECTIVE 01/01/2008)	PAGE 1 OF 2	
FACILITY ID#	I. IDENTIF	FICATION 1 BEGINNING DATE			101
(CUPA #) BUSINESS NAME (Same as FACILIT Fry's Electronic	Y NAME or DBA – Doing Business As)	1 1/1/	3 BUSINES	12/31/2008 SS PHONE 818-526-8100	102
BUSINESS SITE ADDRESS				010-320-0100	103
2311 N Hollywoo		104 STATE	ZIP CODE		105
Burbank DUN & BRADSTREET NUMBER		CA 106	SIC CODE (4 DIC	91505	107
Los Angeles		108	UNINCORPORA	TED Yes ⊠ No	133a
BUSINESS OPERATOR		109	BUSINESS OPER	RATOR PHONE 818-526-8159	110
John Goyette	H BUGINE	SE OWNED		010-320-0139	-
OWNER NAME	II. BUSINE	SS OWNER	OWNER PHONE		112
Fry's Electronic OWNER MAILING ADDRESS	s Inc			408-487-4500	113
600 E. Brokaw I	Rd.				
San Jose		114 STATE	CA	2IP CODE 95112	116
	III. ENVIRO	ONMENTAL CONTA	ACT		
CONTACT NAME Kevin Robins		117	CONTACT PHO	NE 408-487-4500	118
CONTACT MAILING ADDRESS 600 E. Brokaw I	₹d.				119
San Jose		120 STATE	CA 121	2IP CODE 95112	122
-PRI	MARY- IV. EMERG	ENCY CONTACTS	-SI	ECONDARY-	-9
NAME	Everett Martinez	NAME Lavier A	allema Car	MEN Barragan	128
TITLE	AVE EII I INEZ	TITLE	CALCIO, Pos	J	129
Store Manager BUSINESS PHONE	125		vention Ma	nager	130
818-526-8159		818-526-8	155		131
24-HOUR PHONE 818-526-8159	126	24-HOUR PHONE 818-526-8	155		131
818-318-2486(3	10)493-0241	CELL# 323-273-8	201(818)	415-6169	132
		ONAL LOCALLY CO			
NUMBER OF EMPLOYEES	1336				133c
	VI. MAILIN	G/BILLING INFOR			
NAME Fry's Electronics	133i		CO P VI	133h PHONE NUMBER 408-487-470	133
ADDRESS	133d	CITY	133e STAT	E 133f ZIP CODE	133g
600 E Brokaw R		San Jose	L A-4 F	CA 95112	2
	nose individuals responsible for obtaining the informati	ICATION ion, I certify under penalty of la	w that I have person	ally examined and am familiar with the	2
information submitted and believe the in	nformation is true, accurate, and complete. R OR DESIGNATED REPRESENTATIVE				135
SIGN PROPERTY OF THE PROPERTY OF	R OR DESIGNATED REPRESENTATIVE	2/18 /0K		la Castrilla	133
NAME OF SIGNER PRINT		136 TITLE OF SIGNER EXECUTIVE	1000	11.7	137
Kathryn J. Kol	der	LXECATIVE	VICE Pr	esideni	

UNIFIED PROGRAM (UP) FORM BUSINESS ACTIVITIES

00745

YEAR 2008

PAGE 2 OF 2

	I. FACILITY IDEN	TIFICATION	
FACILITY ID# (CUPA#) AR0013833	EPA ID # (Hazardous Waste Only)	2	
BUSINESS NAME (Same as Fa	cility Name of DBA-Doing Business As)	•	3
Fry's Electronic	cs Inc		

	II. ACTIVITIES DE	CLARATION	
	NOTE: Please submit the Business Owner/Open	rator Identification Fo	m with this Page
	Does your facility	If Yes, please	complete these pages of the UPCF
<u>A.</u>	HAZARDOUS MATERIALS Have on site (for any purpose) hazardous materials at or above 55 gallons for liquids, 500 pounds for solids, or 200 cubic feet for compressed gases (include liquids in ASTs and USTs); or the applicable Federal threshold quantity for an extremely hazardous substance specified in 40 CFR Part 355, Appendix A or B; or handle radiological materials in quantities for which an emergency plan is required pursuant to 10 CFR Parts 30, 40 or 70?	YES NO 4	 ✓ HAZARDOUS MATERIALS INVENTORY – CHEMICAL DESC ✓ CONSOLIDATED CONTINGENCY PLAN (Section I and Site Map(s)) ✓ TRAINING PLAN
B.	UNDERGROUND STORAGE TANKS (USTs)		✓UST FACILITY
1.	Own or operate underground storage tanks?	YES X NO 5	✓UST TANK (one page per tank)
2.	Intend to upgrade existing or install new USTs?	YES NO 6	✓UST FACILITY
			✓UST TANK (one per tank) ✓UST INSTALLATION - CERTIFICATE OF COMPLIANCE (one page per tank)
3.	Need to report closing a UST?	YES X NO 7	✓UST TANK (closure portion -one page per tank)
<u>C.</u>	ABOVE GROUND PETROLEUM STORAGE TANKS (ASTs) Own or operate ASTs above these thresholds: any tank capacity is greater than 660 gallons, or the total capacity for the facility is greater than 1,320 gallons?	□YES Ø NO 8	NO FORM REQUIRED TO CUPA's
D. 1.	HAZARDOUS WASTE Generate hazardous waste?	□YES 🗖 NO 9	 ✓ EPA ID NUMBER – provide at the top of this page. ✓ As a generator, answer YES to Item E2b and complete Waste Generator Form.
2.	Recycle more than 100 kg/month of excluded or exempted recyclable materials (per HSC 25143.2)?	☐ YES 💆 NO 10	✓ RECYCLABLE MATERIALS REPORT
3.	Treat hazardous waste on site?	☐ YES 🔊 NO 11	✓ ON-SITE HAZARDOUS WASTE TREATMENT – FACILITY ✓ ON-SITE HAZARDOUS WASTE TREATMENT – UNIT (one page per unit)
4.	Treatment subject to financial assurance requirements (for Permit by Rule and Conditional Authorization)?	☐ YES 💆 NO 12	✓ CERTIFICATION OF FINANCIAL ASSURANCE
5.	Consolidate hazardous waste generated at a remote site?	YES X NO 13	✓ REMOTE WASTE / CONSOLIDATION SITE ANNUAL NOTIFICATION
6.	Need to report the closure/removal of a tank that was classified as hazardous waste and cleaned on-site?	☐ YES 🙇 NO 14	✓ HAZARDOUS WASTE TANK CLOSURE CERTIFICATION
E.	LOCAL REQUIREMENTS		In addition to Hazardous Materials
l.	REGULATED SUBSTANCES Have Regulated Substances (RS) including Extremely Hazardous Substances (EHS) stored on site at greater than the threshold planning quantities established by the California Accidental Release Program (CalARP)?	□ YES 💆 NO 15a	requirements, complete: REGULATED SUBSTANCE REGISTRATION RISK MANAGEMENT PLAN (when required)
2. a.	OTHER REQUIREMENTS Have hazardous materials stored on site at or above a threshold amount	YES X NO 15b	✓ Consult local CUPA or PA for added
d.	established by a CUPA's or PA's local ordinance?	YES X NO 156	reporting requirements.

CITY OF BURBANK

311 ORANGE GROVE AVENUE, BURBANK CALIFORNIA 91502-1221 (818) 238-3473

FAX (818) 238-3479

January 10, 2008

RICARDO CASTRILLO FRY'S ELECTRONICS INC 600 E BROKAW RD SAN JOSE CA 95112

Subject:

00745 - FRY'S ELECTRONICS INC 2311 N HOLLYWOOD WAY

California Health & Safety Code, Chapter 6.95, Article 1 and Burbank Municipal Code §15-1-2701-5.1 require all businesses that store, use, or handle hazardous materials in quantities that meet or exceed the thresholds established in Health & Safety Code §25503.6 (as indicated below), to submit a completed Hazardous Materials Inventory Disclosure Statement annually. Our records indicate that you meet these requirements.

The established thresholds are a hazardous material or a mixture containing a hazardous material in an aggregate quantity at any one time during the reporting year equal to or greater than a TOTAL weight of 500 pounds, or a TOTAL volume of 55 gallons, or a TOTAL volume of 200 cubic feet at standard temperature and pressure for compressed gas, or the threshold quantity (if less than 500 pounds) for regulated substances. A mixture that contains one percent (1%) or more of a hazardous ingredient is a hazardous material. A mixture that contains one tenth of one percent (.1%) or more of a carcinogen is a hazardous material. The California Accidental Release Prevention (CalARP) Program requires all regulated substance handlers to register with the Burbank Fire Department. Our records indicate that you meet these requirements.

These Hazardous Materials Inventory Disclosure forms are currently part of a Consolidated Permit Package issued by the Los Angeles County Certified Unified Program Agency (LACoCUPA). Please carefully read the instructions, complete the enclosed forms, and sign where indicated. Return **ORIGINAL** forms to the Burbank Fire Department with original signatures by **March 1**, 2008. Failure to submit a properly completed and signed Business Plan Annual Renewal Certification statement, signed Business Owner / Operator Identification page, and Business Activities page by the due date could result in civil penalties. A self-addressed envelope is enclosed for your convenience.

BE SURE TO RETAIN A COPY FOR YOUR RECORDS.

See attached schedule for your submittal requirements,

If you have	Then complete, sign, and submit the following forms:
no changes to your inventory or Consolidated Contingency Plan,	 Business Plan Annual Renewal Certification Form – signed; HazMat Owner and Operator Identification page – signed; and HazMat Business Activities page
no changes to your inventory or Consolidated Contingency Plan, but you are subject to EPCRA,	 Business Plan Annual Renewal Certification Form signed; HazMat Owner and Operator Identification page – signed; HazMat Business Activities page; and Hazardous Materials Inventory Statement — sign each hazardous material being reported as an extremely hazardous substance.
changes to your inventory,	 Business Plan Annual Renewal Certification Form – signed; HazMat Owner and Operator Identification page – signed; HazMat Business Activities page; and Hazardous Materials Inventory — Chemical Description Form to add new reportable hazardous materials. Make as many copies as you need to disclose each reportable hazardous material that you will handle in 2008;
changes to your Consolidated Contingency Plan,	 Business Plan Annual Renewal Certification Form – signed; HazMat Owner and Operator Identification page – signed; HazMat Business Activities page; and A revised Consolidated Contingency Plan form.
a chemical that is at or above the threshold quantity for a regulated substance.	 Business Plan Annual Renewal Certification Form – signed; HazMat Owner and Operator Identification page – signed; HazMat Business Activities page; and A Cal-ARP Program Regulated Substances Registration form.

Forms can now be downloaded from our website at http://www.Burbankfire.US/Mainpage.Htm. These forms may be completed on your computer by using Microsoft Word. If you are unable to download the required forms from our website, or have questions, or need assistance, please contact the Fire Prevention Bureau at (818) 238-3473.

Thank you for your cooperation.

/md

BUSANK FIRE DEPARTMENT HAZARDOUS MATERIALS DIVISION

00/45

De

311 East Orange Grove Avenue, Burbank CA 91502-1221

HAZARDOUS MATERIALS REPORTING FORMS

Enclosed is your most recent Hazardous Materials Inventory Statement based on the latest information available. Please carefully review it for accuracy. The requirements for submitting a consolidated Contingency Plan have changed (see * on page 1). If you require assistance in completing these forms, please feel free to contact the Burbank Fire Department, Hazardous Materials Division, at (818) 238-3475, Monday through Friday 7:30 to 9:00 AM and 1:00 to 4:00 PM.

Return to the Burbank Fire Department this Re-Certification Procedure Page signed and dated along with a newly completed and signed Business Activities Form, Business Owner/Operator Identification Form, and any other appropriate and/or requested forms on or before March 1. Failure to complete and return these forms by March 1 may result in fines and penalties. Keep a copy of the entire package for your records. To avoid late penalties, this Department recommends use of CERTIFIED MAIL to ensure delivery of these forms before the March 1 deadline.

RE-CERTIFICATION PROCEDURE

Please check the appropriate box(es)

20	HAZARDOUS MATERIALS:			
	Delete: If you no longer handle a materia complete a Chemical Description form with	on the Inventory Statement provided, dra riting "DELETE" across the form for each	w a line through the disc material you no longer l	continued material, and handle.
	Add: If you are handling materials not prinformation on the form (one form per materials)	reviously disclosed, make copies of Chemic terial).	cal Description form and	d complete all
		the Inventory Statement and Clearly Print all information on the form <i>indicating "RI</i>		
		n the quantity of any hazardous material as d signed <i>Business Activities Form, Busine</i> ed and dated.		ntification Form, and
	CONCOLIDATED CONTINCENCI	L/ DF AND		12 108
	CONSOLIDATED CONTINGENCY PLAN: Change: Mark this Box if you are undating the Consolidated Contingency Plan			B
Ц	Change: Mark this Box if you are updating the Consolidated Contingency Plan.			PR A
X	No Change: Mark this box if the Consol	idated Contingency Plan on file is correct a	and complete.	BURBANK FIRE D
	REGULATED SUBSTANCE REGI	STRATION:		96 06
	Regulated Substance Registration: It complete the Regulated Substance Regist list of Regulated Substances is attached for	f you are handling a Regulated Substance retation Form. Complete only if substance is reference.	not previously disclosed, is at or above threshold C	yen must also
ST	TE SUBMITTAL OF THE HAZARDOUS M. ATE & FEDERAL INVENTORY INFORMA GULATIONS.			
is of He	ertify under penalty of law that I have person complete, accurate, and up to date. Also, no alth & Safety Code Chapter 6.95) are being cardo Castrillo	hazardous materials subject to the inventor handled that are not listed on the most reco Kathryn J. Kolder (herein and believe the sury requirements of this clently submitted annual in	hapter, (California nventory form.
Pı	rint Name of Document Preparer	Print Name of Owner/Operator	Signature of Owner	yberator
F	ry's Electronics Inc	2311 N Hollywood Way		
_	usiness Name	Facility/Site Address		Date

UNIFIED PROGRAM (UP) FORM BUSINESS OWNER / OPERATOR IDENTIFICATION

00745

☐ NEW BUSINESS ☐ OUT OF BUSIN	ESS REVISE/UPDATE (EFFECTIVE _/_/_) ICATION		PAGE 1 OF 2	
FACILITY ID# (CUPA #)	AR0013833	1 BEGINNING DATE	2007	ENDING DATE 12/31/2007	10
BUSINESS NAME (Same as FACILITY NAME Fry's Electronics Inc	or DBA - Doing Business As)		3 BUSINESS	PHONE 818-526-8100	10
BUSINESS SITE ADDRESS 2311 N Hollywood Wa	av				10
CITY		STATE CA	ZIP CODE	04505	10
Burbank DUN & BRADSTREET NUMBER		CA 106	SIC CODE (4 DIGIT	91505	10
COUNTY		108	UNINCORPORATI	an and an	133
Los Angeles			Care Care Care Care Care Care Care Care	☐ Yes ☒ No	
John Goyette		109	BUSINESS OPERA	TOR PHONE 818-526-8159	- 0
	II. BUSINES	S OWNER			
OWNER NAME		111	OWNER PHONE	400 407 4500	11
Fry's Electronics Inc				408-487-4500	11
600 E Brokaw Rd		114 STATE	13	S ZIP CODE C	11
San Jose		II4 STATE	CA	№95112	- 11
	III. ENVIRO	NMENTAL CONTA	CT	AP A	
ONTACT NAME Kevin Robins		117	CONTACT PHONE		-1
ONTACT MAILING ADDRESS			· ·		1
600 E. Brokaw Rd		120 STATE	121	ZIP CODE S D	Ľ
San Jose			Ca	95112 📺	
-PRIMARY-	IV. EMERGE	NCY CONTACTS	-SEC	CONDARY- & -	
John Goyette	123	NAME OCCUPATION	nullan Ta	vier Arelian	1;
ITLE	124	TITLE			12
Store Manager USINESS PHONE	125	Loss Prev BUSINESS PHONE	ention Man	ager	13
818-526-8159		*\$18-562-8	*55 * (818)	526-8155	
4-HOUR PHONE 818-526-8159	126	24-HOUR PHONE 218-562-8	155 (818)	526-8155	13
AGER # 818-318-2480	127	PAGER #	759 (323)	273-8201	- 13
	V. ADDITIO	NAL LOCALLY CO	1		
UMBER OF EMPLOYEES	133b	FEDERAL TAX IDENTIFIC	CATION NUMBER		133
	Marrie	/ BULLING INFOR	77-0062	030	
AME	MAILING	CONTACT		133h PHONE NUMBER	13.
Fry's Electronics Inc		Ricardo (4084874702	2
600 E Brokaw Rd	133d	San Jose	133e STATE	CA 2IP CODE 95112	133
A RESERVE A PROPERTY.	CERTIFIC	CATION			
ertification: Based on my inquiry of those indivi-	duals responsible for obtaining the informatio		v that I have personally	y examined and am familiar with the	2
IGNATURE OF OWNER/OPERATOR OR DES		PATE 134	A local control of a supply	MENT PREPARER	13
ANE OF SIGNIER CON-		4 14 10-	Ricardo	Castrillo	
athryn J. Kolder	13	6 TITLE OF SIGNER Executive	Vice Pres	sident	13

UNIFIED PROGRAM (UP) FORM BUSINESS ACTIVITIES

00745

YEAR 2007

PAGE 2 OF 2

	I. FACILITY IDEN	HITCATION		
FACILITY ID # (CUPA #) AR0013833		EPA ID # (Hazardous Waste Only)		2
BUSINESS NAME (Same as Fac	cility Name of DBA-Doing Business As)			3
Fry's Electroni	cs Inc			

II. ACTIVITIES DECLARATION NOTE: Please submit the Business Owner/Operator Identification Form with this Page Does your facility . . . If Yes, please complete these pages of the UPCF. . . HAZARDOUS MATERIALS ✓ HAZARDOUS MATERIALS Have on site (for any purpose) hazardous materials at or above 55 gallons for INVENTORY - CHEMICAL DESC liquids, 500 pounds for solids, or 200 cubic feet for compressed gases (include YES X NO 4 CONSOLIDATED CONTINGENCY liquids in ASTs and USTs); or the applicable Federal threshold quantity for an PLAN (Section I and Site Map(s)) extremely hazardous substance specified in 40 CFR Part 355, Appendix A or B; TRAINING PLAN or handle radiological materials in quantities for which an emergency plan is required pursuant to 10 CFR Parts 30, 40 or 70? **VUST FACILITY** B. UNDERGROUND STORAGE TANKS (USTs) Own or operate underground storage tanks? 1. YES X NO 5 ✓UST TANK (one page per tank) 2. Intend to upgrade existing or install new USTs? TYES INO 6 **UST FACILITY** ✓UST TANK (one per tank) **✓**UST INSTALLATION - CERTIFICATE OF COMPLIANCE (one page per tank) Need to report closing a UST? YES NO 7 VUST TANK (closure portion -one page per tank) ABOVE GROUND PETROLEUM STORAGE TANKS (ASTs) Own or operate ASTs above these thresholds: YES NO 8 NO FORM REQUIRED TO CUPA's any tank capacity is greater than 660 gallons, or the total capacity for the facility is greater than 1,320 gallons? HAZARDOUS WASTE D. Generate hazardous waste? ✓ EPA ID NUMBER – provide at the top of YES NO 9 As a generator, answer YES to Item E2b and complete Waste Generator Form. Recycle more than 100 kg/month of excluded or exempted 2. TYES IN NO 10 ✔ RECYCLABLE MATERIALS REPORT recyclable materials (per HSC 25143.2)? ✓ ON-SITE HAZARDOUS WASTE 3. Treat hazardous waste on site? YES X NO II TREATMENT - FACILITY ON-SITE HAZARDOUS WASTE TREATMENT - UNIT (one page per unit) 4. Treatment subject to financial assurance requirements (for ERTIFICATION OF FINANCIAL YES NO 12 Permit by Rule and Conditional Authorization)? ASSURANCE REMOTE WASTE / CONSOLIDATION YES NO 13 Consolidate hazardous waste generated at a remote site? 5. SITE ANNUAL NOTIFICATION Need to report the closure/removal of a tank that was classified as 6. AZARDOUS WASTE TANK CLOSURE YES NO 14 CERTIFICATION hazardous waste and cleaned on-site? LOCAL REQUIREMENTS E. In addition to Hazardous Materials REGULATED SUBSTANCES requirements, complete: Have Regulated Substances (RS) including Extremely Hazardous Substances ✓ REGULATED SUBSTANCE (EHS) stored on site at greater than the threshold planning quantities established REGISTRATION by the California Accidental Release Program (CalARP)? YES X NO 15a ✓ RISK MANAGEMENT PLAN (when required) 2. OTHER REQUIREMENTS Consult local CUPA or PA for added a, Have hazardous materials stored on site at or above a threshold amount YES NO 15b reporting requirements. established by a CUPA's or PA's local ordinance? Required by a CUPA or PA to provide other information? YES X NO 15c ✓ WASTE GENERATOR FORM (LA County)

Corporate Office 600 E. Brokaw Road San Jose, CA 95112 Phone 408-487-4743 Fax 408-487-4741

BURBANK FIRE DEPT.

11 APR 07 15 57

Golden State Overnight

March 24, 2004

Burbank Fire Department Hazardous Materials Specialist **Attn Devin Burns** 311 East Orange Grove Ave. Burbank, CA 91502 - 1221

> Re: Hazardous Materials Consolidated Contingency Plan and Inventory Disclosure Statement: 2311 Hollywood Way Burbank, CA 91505

Dear Mr. Burns:

Enclosed please find the above-referenced documents for our Burbank location, site #00745. As per you office instruction I am forwarding the executed and signed copy of the CONSOLIDATED CONTINGENCY PLAN.

Should you have any questions or need additional information, please do not hesitate to call me at (408) 487-4702.

Respectfully,

Ricardo Castrillo

Paralegal

RPC/rpc Enclosure IS ABB O7 OF 55

CITY OF BURBANK

311 ORANGE GROVE AVENUE, BURBANK CALIFORNIA 91502-1221 (818) 238-3473 FAX (818) 238-3479

January 10, 2007

Ricardo Castrillo Fry's Electronics Inc 600 E Brokaw Rd San Jose CA 95112-

SUBJECT: 00745 - FRY'S ELECTRONICS INC 2311 N HOLLYWOOD WAY

In July 1997, the City of Burbank became part of the Los Angeles County Certified Unified Program Agency (LACoCUPA). The LACoCUPA consolidates six environmental programs. The City of Burbank is responsible for the management of four of these six programs. They include Underground Storage Tanks, Hazardous Materials Disclosure and Response, Risk Management, and enforcement of the Hazardous Materials Management requirements of the Fire Code.

California Health & Safety Code, Chapter 6.95, Article 1 and Burbank Municipal Code §15-1-8001-3.3 require all businesses that store, use, or handle hazardous materials in quantities that meet or exceed the thresholds established in Health & Safety Code §25503.6, must submit a completed Hazardous Materials Inventory Disclosure Statement annually. Our records indicate that you meet these requirements.

Enclosed you will find the following forms which you are required to complete and submit to us by March 1, 2007:

✓ The Hazardous Materials Annual Re-Certification Procedure

A list of the hazardous materials identified at your facility may be included in the package. Review it carefully. You may complete and sign and submit the Annual Re-Certification Procedure for the Hazardous Materials Disclosure Report only, provided you can attest to the following:

- The most recent information submitted to the Burbank Fire Department is complete, accurate and up to date. (See attached list)
- There have been no changes in the quantities of hazardous materials as reported in the most recent submittal.
- No hazardous materials subject to the inventory reporting requirements are being handled that are not listed in the most recently submitted inventory report.
- The most recently submitted annual inventory report contains information required by Section 11022 of Title 42 of the United States Code.

FH

HAZARDOUS MATERIALS INVENTORY DISCLOSURE STATEMENT 00745 - 2311 N Hollywood Way January 10, 2007 Page 2

✓ The Facility Information Section

Everyone is required to submit their signed Facility Information for 2007. This form has been filled out with the information we currently have on file. If there are any blanks, please complete this information. If there are any changes, please cross out the filled in information and write in your new information.

✓ The Hazardous Materials Section

These forms are provided for your convenience to be completed if you have added any new Hazardous Materials, deleted any Hazardous Materials, or if there are any changes in quantities or substances to be reported.

These Hazardous Materials Inventory Disclosure forms are currently part of a Consolidated Permit Package issued by the Los Angeles County Certified Unified Program Agency (LACoCUPA). Please carefully read the instructions, complete the appropriate forms, and sign where indicated. Return *ORIGINAL* forms to the Burbank Fire Department by *March 1, 2007*. Failure to submit a properly completed Inventory or signed Annual Re-Certification Statement by the due date could result in civil penalties. A self-addressed envelope is enclosed for your convenience. **BE SURE TO RETAIN A COPY FOR YOUR RECORDS**.

You can now request the Hazardous Materials and the Consolidated Contingency Plan forms to be sent to you by Email. These forms may be completed on your computer by using Microsoft Word. If you have any questions, or if we can be of any assistance, please contact the Fire Prevention Bureau at (818) 238-3475.

Thank you for your cooperation.

Jorge Martinez, Fire Safety Asalist

/md

UNIFIED PROGRAM (UP) FORM BUSINESS OWNER / OPERATOR IDENTIFICATION

00745

ACILITY ID#	AR00138		ICATION 1 B	EGINNING DATE		100 ENDING DA		1
(CUPA #) USINESS NAME (Same as FACILITY N.				1/1/	2006		12/31/2006	1
Fry's Electronics I		s As)			3 BUSIN	NESS PHONE 8185	268100	-
2311 N Hollywood	Way							
Burbank		10	04 STATE	CA	ZIP CODE	9150)5	3
IN & BRADSTREET NUMBER				106	SIC CODE (4	DIGIT#)		
Los Angeles				108	UNINCORPO	☐ Ye		13
John Goyette				109	BUSINESS OF	PERATOR PHONE 818526		
	II.	BUSINES	S OWNE	R				
VNER NAME Fry's Electronics I	nc			III	OWNER PHO	408487	4500	9
WIER MAILING ADDRESS 600 E Brokaw Rd								
San Jose			114	STATE	CA	115 ZIP CO	95112	-
	m.	ENVIRO	NMENTA	L CONTA				
NTACT NAME KEVIN	Robins			117	CONTACT PE	8 487	-4500	
NTACT MAILING ADDRESS		Kaw R	1					
San	Tose		120	STATE	CA '	ZIP CODE	5112	
-PRIMA	RY- IV.	EMERGE		NTACTS		-SECONDAR		
John Goyette		123	NAME (Oscar Sei	rvellon		28	
Store Manager		124	TITLE	oss Prev	vention M	anager	SA) FEB	
SINESS PHONE 818-526-8159		125	BUSINESS				8 5	
HOUR PHONE 818-526-8159		126	24-HOUR P		C. 10.		Ū = ==	
GER # 818-318-2480		127	PAGER#	18-204-6	13.6		= 10	
010-310-2400	v.	ADDITIO				D INFORMA	Titol	-
MBER OF EMPLOYEES	· ·	133b			CATION NUME		TION - , 1	ı
		MAILING	G/BILLE	NG INFOR	MATION			
Fry's Electronics I	nc	133i		Ricardo (NE NUMBER 4084874702	
600 E Brokaw Rd		133d	CITY	an Jose	133e ST/	CA	3f ZIP CODE 95112	13
		CERTIFIC						
tification. Based on my inquiry of those			n, I certify und	er penalty of lav	that I have pers	onally examined ar	d am familiar with the	
ormation submitted and delieve the inform								

UNIFIED PROGRAM (UP) FORM BUSINESS ACTIVITIES

00745

YEAR 2006

PAGE 2 OF 2

	L FACILITY IDEN	IFICATION		
FACILITY ID # (CUPA #)	AR0013833	1	EPA ID # (Hazardous Waste Only)	2
BUSINESS NAME (Same as Fac	cility Name of DBA-Doing Business As)			3
Fry's Electroni	cs Inc			

	II. ACTIVITIES DE	CLARATION	
	NOTE: Please submit the Business Owner/Ope	rator Identification For	m with this Page
	Does your facility	If Yes, please	complete these pages of the UPCF
<u>A.</u>	HAZARDOUS MATERIALS Have on site (for any purpose) hazardous materials at or above 55 gallons for liquids, 500 pounds for solids, or 200 cubic feet for compressed gases (include liquids in ASTs and USTs); or the applicable Federal threshold quantity for an extremely hazardous substance specified in 40 CFR Part 355, Appendix A or B; or handle radiological materials in quantities for which an emergency plan is required pursuant to 10 CFR Parts 30, 40 or 70?	□ YES 🏿 NO 4	⁹ 4 HAZARDOUS MATERIALS INVENTORY – CHEMICAL DESC ⁹ 4 CONSOLIDATED CONTINGENCY PLAN (Section I and Site Map(s)) ⁹ 4 TRAINING PLAN
B	UNDERGROUND STORAGE TANKS (USTs)		*UST FACILITY
1.	Own or operate underground storage tanks?	YES NO 5	LUST TANK (one page per tank)
2.	Intend to upgrade existing or install new USTs?	YES NO 6	%UST FACILITY
			LUST TANK (one per tank)
			OF COMPLIANCE (one page per tank)
3	Need to report closing a UST?	YES NO 7	64UST TANK (closure portion -one page per tank)
C.	ABOVE GROUND PETROLEUM STORAGE TANKS (ASTs)		
	Own or operate ASTs above these thresholds: any tank capacity is greater than 660 gallons, or the total capacity for the facility is greater than 1,320 gallons?	□ YES XNO 8	NO FORM REQUIRED TO CUPA's
D.	HAZARDOUS WASTE		
1.	Generate hazardous waste?	□YES X NO 9	 a EPA ID NUMBER – provide at the top of this page. a As a generator, answer YES to Item E2b and complete Waste Generator Form.
2.	Recycle more than 100 kg/month of excluded or exempted recyclable materials (per HSC 25143.2)?	YES NO 10	% RECYCLABLE MATERIALS REPORT
3.	Treat hazardous waste on site?	YES NO 11	°4 ON-SITE HAZARDOUS WASTE TREATMENT – FACILITY °4 ON-SITE HAZARDOUS WASTE TREATMENT – UNIT (one page per unit)
4.	Treatment subject to financial assurance requirements (for Permit by Rule and Conditional Authorization)?	☐ YES 🌠 NO 12	** CERTIFICATION OF FINANCIAL ASSURANCE
5.	Consolidate hazardous waste generated at a remote site?	YES NO 13	% REMOTE WASTE / CONSOLIDATION SITE ANNUAL NOTIFICATION
6.	Need to report the closure/removal of a tank that was classified as hazardous waste and cleaned on-site?	☐ YES NO 14	A HAZARDOUS WASTE TANK CLOSURE CERTIFICATION
E.	LOCAL REQUIREMENTS		In addition to Hazardous Materials
1.	REGULATED SUBSTANCES Have Regulated Substances (RS) including Extremely Hazardous Substances (EHS) stored on site at greater than the threshold planning quantities established by the California Accidental Release Program (CalARP)?	☐ YES A NO 15a	requirements, complete: % REGULATED SUBSTANCE REGISTRATION % RISK MANAGEMENT PLAN (when required)
2. a.	OTHER REQUIREMENTS Have hazardous materials stored on site at or above a threshold amount	☐ YES X NO 15b	% Consult local CUPA or PA for added
ь.	established by a CUPA's or PA's local ordinance? Required by a CUPA or PA to provide other information?	YES NO 15e	reporting requirements. ** WASTE GENERATOR FORM (LA County)

	+ 078, 12 ph. 14 A \$7 a ph.	115.254.4			3.000	22.50/10			(one p	age per m	aterial per building	or area)
ADD	DELETE	☐ REVIS	E	REPO	ORTING	YEAR 20	006	200	PAG	E 1 0	F <u>7</u>	
			I. FAC	ILITY	INFOR	MATIO	N					
The state of the s	ne as FACILITY NAME or D	BA – Doing B	susiness As)				1					3
CHEMICAL LOCATION						201		LOCATION	CONFI	DENTIA	L	202
Cafe							(EPCR		_		⊠ No	
FACILITY ID#		4	0 0 7	4	5	t MAP#	(optional)	203	GRID	# (optiona	al)	204
			II. CHE	MICAL	L INFOI	RMATIC	ON					
CHEMICAL NAME	Co2-Carbon Dioxi	de				205	TRADE SE	CRET (If Subi	Mary Congress	CRA, refer	to instructions)	206
COMMON NAME	Co2-For Soda Fou	ntain				207	EHS (RS)*		E	Yes	⊠ No	208
CAS# N/A *If EHS (RS) is "Yes", all amounts below must be in Lbs.												
	CLASSES (Complete if requi	red by CUPA)										210
HAZARDOUS MATER	IAL TYPE (Check one item of			_	211	RADIOAC			212	CURI	IES	213
a. PURE	☐ b. MIXTURE	☐ c.	WASTE				☐ Yes	⊠ No				
PHYSICAL STATE (CF	☐ b. LIQUID		GAS		214	LARGEST	CONTAINER	20 lb:	s.			215
FED HAZARD CATEG	ORIES (Check all that apply b. REACTIV	The state of the s	PRESSU	RE RE	LEASE	☐ d.	ACUTE HE	ALTH	□ е.	CHRO	NIC HEALT	216 H
AVERAGE DAILY AM	MOUNT 217	MAXIMUN	I DAILY AM	OUNT	218	ANNUAL	WASTE AMO	UNT	219	TATE W	ASTE CODE	220
4/20 I	bs.	4	/20 lbs.				N/A				N/A	
UNITS* (Check one it	로 보면 있는데 통해), amount mus	t be in pounds.	57 - 1	DOLINDS		d. TONS	221	DAY	S ON SI	TE: 865	222
STORAGE CONTAINE		b. COBIC	ree:	△ C. I	POUNDS		u. TONS				100	223
a. ABOVE GRO	경기에		ONMETALLI	C DRUI	107 TH	FIBER D		n. GLASS I			q. RAIL C	
b. UNDERGRO	일하는데 이번 생활하다 기프로그러스카				30.74.35	BAG		. PLASTIC		TLE	r. OTHER	₹
C. TANK INSIDE	, [2012] 11.1916(1741) (1748)	ARBOY				BOX CYLIND		. TOTE BI				
STORAGE PRESSURE		iiLO				CTLIND		. IAINE VV	AGON			224
	a. AMBI	ENT [b. ABOV	E AMBIE	ENT	☐ c. BE	LOW AMBIE	ENT				225
STORAGE TEMPERAT	a. AMBIE	ENT [b. ABOV	E AMBIE	ENT	☐ c. BE	LOW AMBIE	ENT	☐ d.	CRYO	SENIC	225
%WT	HAZARDOUS C	OMPONE	NT (For mix	ture or	waste only		EHS (RS				CAS# 💬	
1 N/A						227	Yes □No	228			17.05.	229
2 230				-		231	Yes □No	232			180 1111	233
3 234						235	Yes □No	236			5 7	237
4 238						239	Yes □No	240			, m	241
5 242						243	Yes □No	244		ري	5 19	245
	omponents are present a required information.	t greater tha	an 1% by we	ight if n	on-carcino	genic, or (0.1% by weig	ht if carcino	genic,	attach a	dditional shee	ts of
	ALLY COLLECTED INF	ORMATION	1			***						246
If EPCRA, Please Sig	n Here											
	Chemicals subject to EPC	RA reporting	g thresholds n	nust sign	each Chen	nical Descr	iption page fo	reach EPC	RA rep	orted che	emical.)	
OFFICIAL USE ONLY	DATE RECEIVED		REVIEWED	BY					T			

one page per material per building or area

						(one pa	ge per material per bullding	g or area)
□ ADD [DELETE	REVISE L FAC	REPORTING			PAGE	2 OF <u>7</u>	
and the control of the second of the second of	s FACILITY NAME or DBA		LITT EVIC	CHATTO!	`			3
CHEMICAL LOCATION Customer	Service Return Ca	ge with Chains		201	(EPCRA)		Yes No	202
FACILITY ID#				1 MAP#	(optional) 2	03 GRID#	(optional)	204
		п. сне	MICAL INFO	RMATIO				
CHEMICAL NAME He	lium Tank			205	TRADE SECRET (16		RA. refer to instructions) Yes No	206
COMMON NAME He	lium Tank			207	EHS (RS)*		Yes 🛛 No	208
CAS#	A			209	*If EHS (RS) is "Y	es", all am	ounts below must be	in Lbs.
FIRE CODE HAZARD CL	ASSES (Complete if required by	ov CUPA)						210
HAZARDOUS MATERIAI	TYPE (Check one item only)	□ c. WASTE	211	RADIOAC	TIVE ☐ Yes ☑ No	212	CURIES	213
PHYSICAL STATE (Chec	k one item only)	⊠ c. GAS	214	LARGEST	CONTAINER	bic feet		215
FED HAZARD CATEGOR	IES (Check all that apply)		retain de sa					216
☐ a. FIRE AVERAGE DAILY AMO	☐ b. REACTIVE	C. PRESSU			WASTE AMOUNT		CHRONIC HEALT	H 220
291 cubic	feet	291 cubic f		, a treat	N/A		N/A	
UNITS* (Check one item		cubic FEET	C. POUNDS		d. TONS	221 DAYS	ON SITE:	222
STORAGE CONTAINER a. ABOVE GROU b. UNDERGROUN c. TANK INSIDE E d. STEEL DRUM	ID TANK f. CAN	BOY		i. FIBER DF j. BAG k. BOX I. CYLINDE	n. PLAS	TIC BOTT		₹
STORAGE PRESSURE	a. AMBIENT	b. ABOV	EAMBIENT	C. BEI	LOW AMBIENT			224
STORAGE TEMPERATUR	RE ☐ a. AMBIENT	b. ABOV	E AMBIENT	C. BEI	LOW AMBIENT	☐ d. C	RYOGENIC	225
%WT	HAZARDOUS COM	PONENT (For mix	ture or waste on	ly)	EHS (RS)		CAS#	
1 N/A				227	Yes □No			229
2 230				231	Yes □No			233
3 234				235	Yes □No 236			237
4 238				239	Yes □No			241
5 242		100000		243	Yes □No			245
If more hazardous com paper capturing the rec	ponents are present at gr	eater than 1% by we	ight if non-carcin	ogenic, or 0	.1% by weight if care	inogenic, a	ttach additional shee	ts of
	LY COLLECTED INFOR	MATION						246
If EPCRA, Please Sign I	Here							
(Facilities reporting Che	micals subject to EPCRA DATE RECEIVED	reporting thresholds n		mical Descrip	ption page for each E	PCRA repor	ted chemical.)	
OFFICIAL USE ONLY	DATE RECEIVED	KEVIEWED	D1					

					(one page per material per building or	r area)			
☐ ADD	☐ DELETE ☐ REVI	SE REPORTING	YEAR 20	06 200	PAGE 3 OF 7				
and the second		I. FACILITY INFO	RMATION	V					
	as FACILITY NAME or DBA - Doing ronics, Inc.	Business As)				3			
CHEMICAL LOCATION	ionics, nic.		201	CHEMICAL LOCATION	CONFIDENTIAL	202			
Maintenan	ce Room-North East Co	orner		(EPCRA)	☐ Yes ⊠ No				
FACILITY ID#		0 0 7 4 5	1 MAP#	(optional) 203	GRID# (optional)	204			
		II. CHEMICAL INFO	RMATIO	N					
CHEMICAL NAME	d ecyl Dimethyl Ammor	7.48 A. S.A. W.	205		ect to EPCRA refer to instructions) Yes No	206			
COMMON NAME	COMMON NAME 207 EHS (RS)* 208								
CAS#	Lemon Clean Disinfectant ☐ Yes ☑ No								
N/				*If EHS (RS) is "Yes"	, all amounts below must be in				
FIRE CODE HAZARD CL	ASSES (Complete if required by CUP)	A).				210			
HAZARDOUS MATERIA a. PURE	L TYPE (Check one item only)	. WASTE	RADIOAC	∏Yes ⊠ No	212 CURIES	213			
PHYSICAL STATE (Chec		214 c. GAS	LARGEST	CONTAINER Gallo	on.	215			
FED HAZARD CATEGOR	RIES (Check all that apply)		12.7			216			
a. FIRE		PRESSURE RELEASE JM DAILY AMOUNT 218		ACUTE HEALTH WASTE AMOUNT	e. CHRONIC HEALTH	220			
Gallor		Gallon	ANNUAL	N/A	N/A	220			
UNITS* (Check one item	only) * If EHS (RS), amount m			d. TONS	DAYS ON SITE:	222			
STORAGE CONTAINER a. ABOVE GROU	IND TANK DA PLASTICA	NONMETALLIC DRUM	i. FIBER DE	RUM m. GLASS I	BOTTLE	223 D			
□ b. UNDERGROUN	Santa and the sa	10.70°	. BAG	☑ n. PLASTIC					
C. TANK INSIDE		₩ <u></u>	k. BOX	O. TOTE B					
d. STEEL DRUM	h. SILO		. CYLINDE	R Dp. TANKW	AGON	224			
	a. AMBIENT	☐ b. ABOVE AMBIENT	C. BEI	LOW AMBIENT					
STORAGE TEMPERATUR	RE a. AMBIENT	☐ b. ABOVE AMBIENT	C. BEI	LOW AMBIENT	d. CRYOGENIC	225			
%WT	HAZARDOUS COMPONI	ENT (For mixture or waste on	ly)	EHS (RS)	CAS#				
1 N/A 226			227	Yes □No 228		229			
2 230			231	Yes □No		233			
3 234			235	Yes □No		237			
4 238			239	Yes □No		241			
5 242			243	Yes □No		245			
	nponents are present at greater t	han 1% by weight if non-carcin			genic, attach additional sheets	of			
paper capturing the re	quired information.				Barney and additional siletts				
ADDITIONAL LOCAL	LY COLLECTED INFORMATIO	JN				246			
If EPCRA, Please Sign	Here	ng throcholde must size and Ch	mical Dasset	ntion page for each EDC	P.4 vanowted charging!				
OFFICIAL USE ONLY	DATE RECEIVED	REVIEWED BY	micai Descri	buon page for each EPC	Teporiea chemical.)	_			

□ADD	□ DELETE	□ REVISE I. FA	REPORTING CILITY INFO	A		PAGE 4	OF <u>7</u>	
BUSINESS NAME (Same	as FACILITY NAME or DI							3
CHEMICAL LOCATION	ce Room North I	ast Corner		201	(EPCRA)		L ⊠ No	202
FACILITY ID#		- 0 0	7 4 5	1 MAP#	(optional) 203	GRID# (option	al)	204
		п. сн	EMICAL INFO	ORMATIO	N			
CHEMICAL NAME PI	nk Station Hand	Soap		205	TRADE SECRET (If S	Subject to EPCRA refe	r to instructions) No	206
COMMON NAME	and Soap			207	EHS (RS)*	☐ Yes	⊠ No	208
CAS# N/	CAS# N/A *If EHS (RS) is "Yes", all amounts below must be in Lbs.							
FIRE CODE HAZARD CL	ASSES (Complete if requir	ed by CUPA)						210
HAZARDOUS MATERIA a. PURE	L TYPE (Check one item of	c. WASTE	= 21	RADIOAC	TIVE ☐ Yes ☑ No	212 CUF	RIES	213
PHYSICAL STATE (Chec	ck one item only)	□ c. GAS	21	4 LARGEST	CONTAINER Gal	lon		215
FED HAZARD CATEGOR	RIES (Check all that apply) b. REACTIVE		SURE RELEASE	⊠ d. /	ACUTE HEALTH	e. CHR	ONIC HEALTH	216
AVERAGE DAILY AMO Gallor	y - 4	MAXIMUM DAILY A Gallor		8 ANNUAL	N/A	219 STATE	N/A	220
UNITS* (Check one item		amount must be in poun b. CUBIC FEET	ds.	s 🗆	d. TONS	21 DAYS ON S	TTE: 365	222
STORAGE CONTAINER a. ABOVE GROU b. UNDERGROU c. TANK INSIDE d. STEEL DRUM	ND TANK f. C	ARBOY		i. FIBER DE j. BAG k. BOX I. CYLINDE	☐ n. PLAST☐ o. TOTE	FIC BOTTLE BIN	☐ q. RAIL CA	
STORAGE PRESSURE	a. AMBIE	NT 🗆 b. ABC	OVE AMBIENT	☐ c. BE	LOW AMBIENT			224
STORAGE TEMPERATU	RE a. AMBIE	NT 🗆 b. ABC	OVE AMBIENT	☐ c. BE	LOW AMBIENT	d. CRYO	GENIC	225
%WT	HAZARDOUS CO	OMPONENT (For n	nixture or waste o	nly)	EHS (RS)	A CONTRACTOR OF THE PARTY OF TH	CAS#	220
1 N/A					Yes □No			229
2 230					Yes □No ²³²	100.4		233
3 234		and the second s			Yes □No 236			237
4 238			The second second	100 100 100 100 100 100 100 100 100 100	Yes □No			241
5				243	Yes □No			245
If more hazardous com paper capturing the re	nponents are present at equired information.	greater than 1% by	weight if non-carci	nogenic, or 0	.1% by weight if carci	nogenic, attach	additional sheets	s of
ADDITIONAL LOCAL	LLY COLLECTED INFO	DRMATION						246
If EPCRA, Please Sign	Here temicals subject to EPCK	A vanantina thuash-l-	le must siem aanh C	amical Dance	ntion page for each ED	OCD A war and all all	iomical)	
OFFICIAL USE ONLY	DATE RECEIVED	REVIEW		emicai Descri	phon page for each EP	ска геропеа сп	iemical.)	

Salla .									(one pa	ge per material per building o	or area)
ADD	DELETE	REVISE		REPORT	ING YE	AR 20	06	200	PAGE	5 OF 7	
			I. FACII	ITY IN	ORMA	TION	N				
BUSINESS NAME (Same	e as FACILITY NAME or D	BA – Doing Bu									3
	tronics, Inc.										
CHEMICAL LOCATION			42			201	(EPCR	L LOCATION C		Control of the Contro	202
Maintena	nce Room North	East Corn	er		111	MAD# /	optional)			Yes No	204
FACILITY ID#		_ 0	0 7	4 5		NII II W I	optional		OKID	(ориолаг)	207
]	п. снем	ICAL IN	FORM	ATIO	N				
CHEMICAL NAME	omet Cleaner					205	TRADE SE	CRET (If Subject		RA. refer to instructions) Yes No	206
COMMON NAME						207	EHS (RS)*				208
	omet	XII.				209			⊔	Yes 🛛 No	
CAS#	I/A			5		209	*If EHS (RS) is "Yes",	all amo	ounts below must be in	ı Lbs.
FIRE CODE HAZARD C	LASSES (Complete if requi	red by CUPA)		A STATE OF THE STA					Control		210
The state of the s	AL TYPE (Check one item of		WASTE	-	211 RA	DIOACT	rive ☐ Yes	⊠ No	212	CURIES	213
A. PURE PHYSICAL STATE (Ch			WASIE		214 LA	RGEST	CONTAINER	⊠ NO			215
a. SOLID	b. LIQUID	☐ c.	GAS							-	216
a. FIRE	DRIES (Check all that apply b. REACTIVE		PRESSUR	E RELEA	SE [] d. A	ACUTE HE	ALTH [] e. C	CHRONIC HEALTH	216
AVERAGE DAILY AM	OUNT 217	MAXIMUM	DAILY AMOU	UNT	218 AN	NUAL V	WASTE AMO	OUNT 21	19 ST	ATE WASTE CODE	220
42oz	<u>.</u>		42oz.				N/A		1	N/A	
UNITS* (Check one ite), amount must l		7 a DOU	NDC.		4 TONG	221	DAYS	ON SITE:	222
STORAGE CONTAINER		b. CUBIC F	EEI [_ c. POUI	פטא		d. TONS		-	365	223
a. ABOVE GRO		LASTIC/NO	NMETALLIC	DRUM	🗌 i. FIE	BER DR	RUM 🗆 n	n. GLASS B	OTTLE	q. RAIL CA	
□ b. UNDERGROU					☐ j. BA		⊠ n	. PLASTIC	BOTT	LE r. OTHER	
C. TANK INSIDE		ARBOY			k. BC			. TOTE BIN			
d. STEEL DRUM	1 □ h. S	ILO			I. CY	LINDE	R 🗆 p	. TANK WA	GON		
STORAGE PRESSURE	a. AMBI	NT 🗆	b. ABOVE	AMBIENT		c. BEL	LOW AMBIE	ENT			224
STORAGE TEMPERAT	URE a. AMBIE	NT 🗆	b. ABOVE	AMBIENT		c BFI	LOW AMBIE	ENT [7 4 0	RYOGENIC	225
%WT	HAZARDOUS C					T	EHS (RS			CAS#	
1 N/A		-			22	7 🗖	Yes □No	228			229
230					23	1		232	-		233
2 234		No.			23	5	Yes □No	236			237
3					20000		Yes □No				3124-200
4 238					23	מם (Yes □No	240			241
5					24	3 🗆	Yes □No	244	9000		245
	mponents are present a	t greater than	1% by weigh	ht if non-ca	rcinogen	ic, or 0.	.1% by weig	ht if carcinog	enic, a	ttach additional sheets	of
	required information. LLY COLLECTED INF	ORMATION									246
\										400	
If EPCRA, Please Sign	Here										
	hemicals subject to EPCI	100000000000000000000000000000000000000		200	Chemical	l Descrip	otion page fo	r each EPCR	A repor	ted chemical.)	
OFFICIAL USE ONLY	DATE RECEIVED	1	REVIEWED B	Y							

						(one page pe	r material per building	or area)
□ADD	DELETE	☐ REVISE	REPORT	NG YEAR 20	06 200	PAGE 6	OF <u>7</u>	
		1, 1	FACILITY INF	ORMATION	V			
	as FACILITY NAME or D	BA - Doing Business	As)	77 77				3
CHEMICAL LOCATION		or BO Crill		201	(EPCRA)		IAL S No	202
	o Department - B	ar BQ Grill	Telefold	1 MAP# ((optional) 203			204
FACILITY ID#		- 0 0	7 4 5			112-1		
		П. С	HEMICAL IN	FORMATIO	N			
CHEMICAL NAME P	ropane		7	205	TRADE SECRET (If Su	biect to EPCRA. re		206
COMMON NAME	ropane			207	EHS (RS)*	☐ Yes	s ⊠ No	208
CAS#	/A			209	*If EHS (RS) is "Yes	s", all amount	s below must be i	n Lbs.
	LASSES (Complete if requi	red by CUPA)						210
HAZARDOUS MATERIA	AL TYPE (Check one item of	mly)		211 RADIOACT	TIVE	212 CU	TRIES	213
a. PURE	☐ b. MIXTURE	C. WAS	STE	214 LABORET	☐ Yes ⊠ No			216
PHYSICAL STATE (Ch	b. LIQUID	⊠ c. GAS		214 LARGEST	CONTAINER Gall	on		215
FED HAZARD CATEGO ☐ a. FIRE	RIES (Check all that apply	2.2	SSURE RELEA	SE Dd 4	ACUTE HEALTH	□ a CHR	ONIC HEALTH	216
AVERAGE DAILY AM		MAXIMUM DAIL			WASTE AMOUNT		WASTE CODE	220
Eight Ga	llons	Eight G	allons		N/A	. 1	N/A	
UNITS* (Check one ite), amount must be in p		NDS 🗆	d. TONS	DAYSON	365	222
STORAGE CONTAINER			7.7					223
□ a. ABOVE GRO □ b. UNDERGROU		LASTIC/NONME		□ i. FIBER DF □ j. BAG	RUM m. GLASS n. PLAST		q. RAIL C	
C. TANK INSIDE		ARBOY		k. BOX	O. TOTE		L I. Ollien	,
d. STEEL DRUM	☐ h. S	ILO		I. CYLINDE	R p. TANK	NAGON		
STORAGE PRESSURE	a. AMBI	ENT D b. A	BOVE AMBIENT	C. BEI	LOW AMBIENT			224
STORAGE TEMPERATI	JRE ☐ a. AMBIE	ENT D. A	BOVE AMBIENT	C. BEI	LOW AMBIENT	d. CRY	OGENIC	225
%WT	HAZARDOUS C	OMPONENT (Fo	or mixture or waste	e only)	EHS (RS)		CAS#	
1 N/A			2-100ph	227	Yes □No 228		THE STATE OF THE S	229
2 230		***************************************	William .	231	Yes □No ²³²		100000000000000000000000000000000000000	233
3 234		19-	17.	235	Yes □No 236		NEWS NEWS IN	237
4 238			×:	239	Yes □No 240			241
5 242				243	Yes □No 244			245
	mponents are present a	t greater than 1%	by weight if non-ca	rcinogenic, or 0.	.1% by weight if carcin	ogenic, attacl	additional sheet	s of
paper capturing the I	equired information. LLY COLLECTED INF	ORMATION						246
Continue and the continue of t	91 and 101 202 and 101 202 and 102 202 202 202 202 202 202 202 202 202				2 - 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -			
If EPCRA, Please Sign		B.d. namanting de la	and a montain and	Chamier! Beauty	ntian mana 6	CR4 man and a		
OFFICIAL USE ONLY	DATE RECEIVED		EWED BY	Cnemical Descrip	puon page jor each EPC	KA reported o	chemical.)	=
			10000000000000000000000000000000000000	- 1		- 1		

		*****		10	1010		(one pa	ge per material per building	or area)
ADD	DELETE	REVISE	REI	PORTING Y	EAR 200	06 200	PAGE	7 OF 7	
			I. FACILITY	Y INFORM	ATION	1			
the other was in a constant as a set	as FACILITY NAME or D	BA - Doing B							3
	tronics, Inc.								202
CHEMICAL LOCATION Maintenau	nce Room North	East Corr	ner		201	(EPCRA)		Yes No	202
FACILITY ID#		- 0	0 7 4	5	MAP# (optional) 203	GRID#	(optional)	204
			II CHEMICA	LINEOD	MATIO	N			
CHEMICAL NAME	- 7.5 Ga 37	100	II. CHEMICA	L INFOR	205	TRADE SECRET (If Sub	iect to EPC		206
COMMON NAME	ropylene Gylcol-	Ethylene	Gycol		207	EHS (RS)*		Yes 🛛 No	208
	iterior				207	Elis (KS)		Yes 🛛 No	375
N/A *If EHS (RS) is "Yes", all amounts below must be in Lbs.							n Lbs.		
FIRE CODE HAZARD C	LASSES (Complete if requi	red by CUPA)							210
The state of the s	AL TYPE (Check one item of		in the same	211	RADIOACT	the second of th	212	CURIES	213
	b. MIXTURE	∐ c.	WASTE	214	LARGEST (☐ Yes ☒ No		l	215
a. SOLID	☐ b. LIQUID	☐ c.	GAS			Gallo	n		-
a. FIRE	RIES (Check all that apply B. REACTIV		PRESSURE R	ELEASE	⊠ d. A	CUTE HEALTH	☐ e.0	CHRONIC HEALTH	216
AVERAGE DAILY AM	OUNT 217	MAXIMUM	DAILY AMOUNT	218	ANNUAL V	WASTE AMOUNT	219 S7	TATE WASTE CODE	220
Four Ga	llons	Fou	r Gallons			N/A		N/A	
UNITS* (Check one ite), amount must	and the second second	DOLINDS		221	DAYS	ON SITE:	222
STORAGE CONTAINER		b. CUBIC	FEET L C.	. POUNDS		d. TONS	٠	365	223
a. ABOVE GRO	UND TANK e. F		NMETALLIC DRU	100.00	FIBER DE				
b. UNDERGROU				□ j. □ k.		☐ o. TOTE B		LE r. OTHER	1
☐ c. TANK INSIDE☐ d. STEEL DRUM		CARBOY		_	CYLINDE				
STORAGE PRESSURE			7						224
STORAGE TEMPERATU	☐ a. AMBIE	NT L	b. ABOVE AMB	BIENI	C. BEL	LOW AMBIENT			225
	a. AMBI		b. ABOVE AMB			LOW AMBIENT	☐ d. C	CRYOGENIC	
%WT	HAZARDOUS C	OMPONEN	T (For mixture or	r waste only		EHS (RS)		CAS#	
1 N/A					227	Yes □No 228			229
2 230					231	Yes □No 232			233
3 234					235	Yes □No 236			237
4 238					239	Yes □No 240			241
5 242					243	Yes □No 244			245
	mponents are present a	t greater tha	n 1% by weight if	non-carcinog	enic, or 0.	.1% by weight if carcin	ogenic, a	ttach additional sheet	s of
1 1 6	required information. LLY COLLECTED INF	ORMATION	ı						246
]
If EPCRA, Please Sign									
	hemicals subject to EPC	RA reporting	thresholds must sig	gn each Chemi	cal Descrip	ption page for each EPC	RA repo	rted chemical.)	
OFFICIAL USE ONLY	DATE RECEIVED	1	KEVIEWEDBI						

UNIFIED PROGRAM (UP) FORM CONSOLIDATED CONTINGENCY PLAN

COVER PAGE

For Year 2006

FACILITY IDENTIFICATION

	DIA A ADVANTAGE	ACIALOIT			
BUSINESS NAME			3	FACILITY ID#	1
Fry's Electronics, Inc.				0074	5
SITE ADDRESS	103	CITY	104	ZIP CODE	105
2311 No. Hollywood Way		Burb	ank	9150	5

The Consolidated Contingency Plan provides businesses a format to comply with the emergency planning requirements of the following three written hazardous materials emergency response plans required in California:

- Hazardous Materials Business Plan (HSC Chapter 6.95 Section 25504 (b) and 19 CCR Sections 2729-2732),
- Hazardous Waste Generator Contingency Plan (22 CCR Section 66264.52), and,
- Underground Storage Tank Emergency Response Plan and Monitoring Program (23 CCR Sections 2632 and 2641).

This format is designed to reduce duplication in the preparation and use of emergency response plans at the same facility, and to improve the coordination between facility response personnel and local, state, and federal emergency responders during an emergency. Use the chart below to determine which sections of the Consolidated Contingency Plan need to be completed for your facility. If you are unsure as to which programs your facility is subject to, refer to the Business Activities Page.

PROGRAMS	SECTION(S) TO BE COMPLETED
Hazardous Materials Business Plan (HMBP)	Cover Page, Section I, and Site Map(s)
Hazardous Waste Generator (HWG)	Cover Page, Section I, and Site Map(s)
Underground Storage Tank (UST)	Cover Page, Sections I and II, and Site Map(s)
HMBP, HWG, UST	Cover Page, Sections I and II, and Site Map(s)

Underground Storage Tank (UST)	Cover Page, Sections I and II, and Site Map(s)				
HMBP, HWG, UST	Cover Page, Sections I and II, and Site Map(s)				
	A and at least one copy of the plan shall be maintained at the facility by the local agency. Describe below where a copy of your Contingency Map(s), is located at your business:				
	CERTIFICATION ed and I am familiar with the information provided by this plant and to the				
PRINTED NAME OF OWNER/ OPERATOR	TITLE OF OWNER/OPERATOR				
SIGNATURE OF OWNER OPERATOR We appreciate the effort of local businesses in completing the	DATE DATE DATE DATE DATE DESCRIPTION D				
questions, please contact your local CUPA or PA. OFFICIAL USE ONLY DATE RECEIVED REVIEWED BY	icse plans and will assist in every possible way. If you have any				

UNIFIED PROGRAM (UP) FORM CONSOLIDATED CONTINGENCY PLAN

SECTION I: BUSINESS PLAN AND CONTINGENCY PLAN

I. FACILITY IDENTIFICATION

BUSINESS NAME Fry's Electronics, Inc.		FACILITY ID # 1 00745			
SITE ADDRESS 2311 No. Hollywood Way	103	CITY Burbank	10	ZIP CODE 91505	105

II. EMERGENCY CONTACTS

PRIMARY	SECONDARY	
NAME 123 John Goyette	NAME 128 Maria Everett	
TITLE 124 Store Manager	TITLE Loss Prevention Safety Manager	
BUSINESS PHONE 125 (818) 526-8159	BUSINESS PHONE 130 (818) 526-8155	
24-HOUR PHONE 126 (818) 526-8159	24-HOUR PHONE 131 (818) 526-8155	
PAGER # 127 (818) 318-2408	PAGER # (818) 450-4501	

III. EMERGENCY RESPONSE PLANS AND PROCEDURES

A. Notifications

Your business is required by State Law to provide an immediate verbal report of any release or threatened release of a hazardous material to local fire emergency response personnel, this Unified Program Agency (CUPA or PA), and the Office of Emergency Services. If you have a release or threatened release of hazardous materials, immediately call:

FIRE / PARAMEDICS / POLICE / SHERIFF

PHONE: 911

91505

AFTER the local emergency response personnel are notified, you shall then notify this Unified Program Agency and the Office of Emergency Services.

Local Unified Program Agency: (818) 238-3475

State Office of Emergency Service: (800) 852-7550 or (916) 262-1621

National Response Center: (800) 424-8802

Information to be provided during Notification:

- Your name and the telephone number from where you are calling.
- Exact address of the release or threatened release.
- Date, time, cause, and type of incident (e.g. fire, air release, spill etc.)
- Material and quantity of the release, to the extent known.
- Current condition of the facility.
- Extent of injuries, if any.
- Possible hazards to public health and/ or the environment outside of the facility.

B. Emergency Medical Facility

List the local emergency medical facility that will be used by your business in the event of an accident or injury caused by a release or threatened release of hazardous material

HOSPITAL/CLINIC:
St. Joseph Occupational Health Center
ADDRESS:
3413 Pacific Avenue

CITY:
PHONE:
(818) 953-4402

OFFICIAL USE ONLY	DATE RECEIVED	REVIEWED BY	

Burbank, Calfornia

UNIFIED PROGRAM (UP) FORM CONSOLIDATED CONTINGENCY PLAN

SECTION I: BUSINESS PLAN AND CONTINGENCY PLAN

C n. Jane Processor Domina						
C. Private Emergency Response n/a	The state of the s					
DOES YOUR BUSINESS HAVE A PRIVATE ON-SITE EMERGENCY RESPONSE TEAM? Yes No If yes, provide an attachment that describes what policies and procedures your business will follow to notify your on-site emergency response team in the event of a release or threatened release of hazardous materials.						
CLEANUP/DISPOSAL CONTRACTOR						
List the contractor that will provide cleanup services in the event of a release.						
NAME OF CONTRACTOR	PHONE NO					
ADDRESS						
CITY	ZIP CODE					
D. Arrangements With Emergency Responders						
n/a						
If you have made special (i.e. contractual) arrangements with any police department, fire department, hospital, contractor, or State or local emergency response team to coordinate emergency services, describe those arrangements on the lines below:						
E. Evacuation Plan						
1. The following alarm signal(s) will be used to begin evacuation of the facility (check all which	apply):					
☑ Verbal ☑ Telephone (including cellular) ☑ Alarm System ☑ Public Address System ☑ Intercom ☐ Pagers ☐ Portable Radio ☐ Other (specify):						
2. Evacuation map is prominently displayed throughout the facility.						
3. A Individual(s) responsible for coordinating evacuation including spreading the alarm and confirming the business has been evacuated:						
Store Manager. Loss Pervention & Safety Department						
F. Earthquake Vulnerability						
Identify areas of the facility where releases could occur or would require immediate inspection or isolation because of the vulnerability to earthquake related ground motion.						
Hazardous Waste/ Hazardous Materials Storage Areas Bench / Lab Waste Treatment Production Floor Other						
Identify mechanical systems where releases could occur or would require immediate inspection or isolation because of the vulnerability to						
earthquake related ground motion. Utilities Sprinkler Systems Cabinets Shelves						
Racks Pressure Vessels Gas Cylinders	☐ Tanks					
☐ Process Piping ☐ Shutoff Valves ☐ Other:						

UNIFIED PROGRAM (UP) FORM CONSOLIDATED CONTINGENCY PLAN

SECTION I: BUSINESS PLAN AND CONTINGENCY PLAN

G. Emergency Procedures
Briefly describe your business standard operating procedures in the event of a release or threatened release of hazardous
materials:
SEE ATTACHED
1. PREVENTION (prevent the hazard) - Describe the kinds of hazards associated with the hazardous materials present at your facility. What
actions would your business take to prevent these hazards from occurring? You may include a discussion of safety and storage procedures. The only potential hazard would be in relation to the tanks of Helium and Propane stored at this location.
The Helium tank is secured with two chains in the customer service department cage. The Propane tank is stored
under supervised conditions in the mobile electronics installation department. Both tanks are inspected on a
monthly basis.
2. MITIGATION (reduce the hazard) - Describe what is done to lessen the harm or the damage to person(s), property, or the environment, and
prevent what has occurred from getting worse or spreading. What is your immediate response to a leak, spill, fire, explosion, or airborne
release at your business? Fry's regularly inspects these tanks to ensure that they are secured with proper valves and covers. In the event
of a release or explotion, Fry's personnel would implement the Contingency and Training Program by
immediately evacuating the store and contacting the emergency services.
3. ABATEMENT (remove the hazard) - Describe what you would do to stop and remove the hazard. How do you handle the complete
process of stopping a release, cleaning up, and disposing of released materials at your facility? Fry's does not handle this procedure directly. Instead, Fry's would allow emergency services to abate the hazard.
However, Fry's would provide any/all assistance to emergency services as directed or required.

UNIFIED PROGRAM (UP) FORM CONSOLIDATED CONTINGENCY PLAN

SECTION I: BUSINESS PLAN AND CONTINGENCY PLAN

IV. EMERGENCY EQUIPMENT

22 CCR, Section 66265.52(e) [as referenced by Section 66262.34(a)(3)] requires that emergency equipment at the facility be listed. Completion of the following Emergency Equipment Inventory Table meets this requirement

	EMERGENCY EQUIPMI	ENT INVENTO	RYTABLE
1. Equip Category	2. Equipment Type	3. Location *	4. Description**
Personal	☐ Cartridge Respirators		
Protective,	☐ Chemical Monitoring Equipment (describe)		
Equipment,	☐ Chemical Protective Aprons/Coats		
Safety	☐ Chemical Protective Boots		
Equipment,	☐ Chemical Protective Gloves		
and First Aid	☐ Chemical Protective Suits (describe)		
Equipment	☐ Face Shields		
Equipment	☐ First Aid Kits/Stations (describe)	café/	Install (Expect First Aid Kit)
	☐ Hard Hats		
	☑ Plumbed Eye Wash Stations	Rec/	Install (Encon One Each Location)
	☐ Portable Eye Wash Kits (i.e. bottle type)		
	Respirator Cartridges (describe)		
	☐ Safety Glasses/Splash Goggles		
	☐ Safety Showers		
	☐ Self-contained Breathing Apparatuses (SCBA)		
	Other (describe)		
Fire	Automatic Fire Sprinkler Systems	ThroghtOut	(Over Head)
Extinguishing	☐ Fire Alarm Boxes/Stations		
Systems	Fire Extinguisher Systems (describe)	ThroughOut	(16 Hand Held)
	Other (describe)		
Spill	Absorbents (describe)		
Control	☐ Berms/Dikes (describe)		
Equipment	☐ Decontamination Equipment (describe)		
and	Emergency Tanks (describe)		
Decontamination	☐ Exhaust Hoods		
Equipment	☐ Gas Cylinder Leak Repair Kits (describe)		
	☐ Neutralizers (describe)		
	Overpack Drums		
	Sumps (describe)		
	Other (describe)		
Communications	☐ Chemical Alarms (describe)		
and		ThroughOut	
Alarm	☑ Portable Radios	LP &	Manager Office (Mortola)
Systems	□ Telephones	35	
	☐ Underground Tank Leak Detection Monitors		
11700 - 1170 - 1170 - 1170 - 1170 - 1170 - 1170 - 1170 - 1170 - 1170 - 1170 - 1170 - 1170 - 1170 - 1170 - 1170	Other (describe)		
Additional			
Equipment			
(Use Additional			
Pages if			
Needed.)			

- * Use the Location Codes (LC) from the Site Map(s) prepared for your Contingency Plan.
- ** Describe the equipment and its capabilities. If applicable, specify any testing/maintenance procedures/intervals. Attach additional pages, numbered appropriately, if needed.

CHEMICALS IDENTIFIED AT:

00745 FRY'S ELECTRONCIS - 2311 No. HOLLYWOOD WAY BURBANK

As of February 20, 2006, the following is a list of inventory found in the janitors' closet.

- (1) Three gallons Pink Hand Soap;
- (2) One gallon Cove Base; (Dry Wall Plaster)
- (3) Two gallon Multi Purpose Cleaner;
- (4) One gallon Glass Cleaner;
- (5) One 12.5 OZ. Can Furniture Polish;
- (6) One gallon Metal Coil Cleaner;
- (7) Four/Five gallon cans Floor Stripper;
- (8) Twelve/Seven OZ. Cans Room Deodorant;
- (9) Two dozen Toilet Bowl Deodorant Blocks;
- (10) Four 50lbs Bags Polymer Repair.

Fy's ELECTRONICS

EMERGENCY PROCEDURES MANUAL

KEEP AT PIC PODIUM

TABLE OF CONTENTS

SUBJECT	SECTION
Emergency Communication Guidelines	Page 2
Emergency Phone Numbers	1
Map of Electrical, Gas, & Water Shut-Offs	2
Armed Robbery	3
Robbery Report	3
Bomb Threat	4
Bomb Threat Worksheet	4
Earthquake	5
Evacuation Plan – Stores	6
Evacuation Plan – Home Office	7
Fire	8
Gas Leak	9
Hazardous Materials	10
Power Failure	11
Severe Weather	12
Water Leak	13
Code Adam Program	14

EMERGENCY COMMUNICATIONS

In an emergency, it is imperative that accurate information is quickly relayed to the proper decision-makers at the Home Office. When multiple individuals are communicating different information to different decision-makers, the risk of poor or slow decisions being made increases.

Every emergency situation is unique and the task of communicating information is extremely important. Therefore, our goal is as follows:

TO ESTABLISH ONE CENTRALIZED LINE OF COMMUNICATION OUT OF THE STORE, TO ONE CENTRALIZED COMMUNICATIONS CENTER IN THE HOME OFFICE ... AS QUICKLY AS POSSIBLE.

To accomplish this, follow the below listed guidelines:

- 1. Call 911 first, whenever an emergency situation warrants it.
- 2. Then, the Store Manager/PIC and Loss Prevention department should call the Director of Loss Prevention & Safety.
- Once communication has been established, the Store Manager and one member of the Loss Prevention department will remain together during the emergency if possible, and discontinue any communication to any other associate at the Home Office.
- 4. The Director of Loss Prevention and Safety will establish communication with the Executive Vice President, President, or CEO.
- 5. If the Director of Loss Prevention & Safety is unreachable then call the Executive Vice President, President, or CEO.

SECTION 1 - EMERGENCY PHONE NUMBERS

Fire Department
Police Department
Emergency Clinic
Power Company
Gas Company
Water Company
Store Manager Home
Store Manager Cell
Asst. Store Manager Home
Asst. Store Manager Cell
District Manager of Loss Prevention Cell
District Manager of Store M&O Cell
Director of Loss Prevention & Safety Cell

POST AT THE PIC PODIUM AND LP OFFICE

SECTION 5 - EARTHQUAKE

A. When the Shaking Starts

- Move away from windows, hanging light fixtures, hanging signs, and high shelving.
- 2. Take cover under a desk or strong table.
- Don't run.
- Don't run outside the building.
- 5. Don't panic.
- Don't use telephones.

B. When the Shaking Stops

- Follow the Store Manager or PIC's instructions.
- The Store Manager or PIC will assess the situation and proceed according to the below listed guidelines.

C. If The Earthquake Is Severe

Evacuate the building following the Evacuation Plan, and notify the Store M&O District Manager and the Loss Prevention & Safety District Manager as soon as possible.

IF TIME AND SAFETY PERMIT, DO THE FOLLOWING:

- Check for injuries (Do not move the injured unless it is life threatening to keep them there).
- 2. Shut off the gas main. (Refer to Section 9, Gas Leak)
- Shut off the electrical main if there is damage to the internal wiring.
- Secure cash registers and high-value merchandise.
- 5. Clean up chemical spill with heavy-duty rubber gloves. (Refer to Section 10, Hazardous Materials)
- Check for water or sewage leaks or broken electrical wiring.
- 7. If bathroom fixtures, water fountains, or landscaping sprinklers are leaking, shut off the domestic water.
- 8. If there is no fire and if fire sprinkler pipes are leaking, and it appears that substantial water damage will occur, you may shut off the fire riser. If the threat of fire is great and the leak is not major, you may not want to shut them off.
- 9. Prepare the store for aftershocks. (Is there a potential hazard that could cause major damage with another good aftershock?)
- Secure all exits and set the alarm.

- 11. To turn electrical back on first, turn each individual breaker to the "off" position. Next, turn the electrical main on and one by one, turn on each individual breaker. If no problems occur as each breaker is turned on, continue to the next breaker.
- 12. Do not turn the gas on at this time. Wait for the gas company or Maintenance to give the approval to turn it back on.

D. Basic Communication Information

- Check all phones and fax machines to make sure they are on the hook.
- 2. Use the phone for emergency communications only.
- 3. If you must dial the phone, pick up the receiver and leave it off the hook until you receive a dial tone.
- 4. Do not flash the receiver hook! This will only delay the call.
- 5. Dial the number immediately after receiving the dial tone or else you will not be able to make the call.
- 6. Do not walk away from the phone with the receiver off. You will receive a dial tone if the equipment is not damaged.

SECTION 6 - EVACUATION PLAN - STORES

- 1. Designate a primary meeting place outside the building where all associates will meet. This place should be far enough away from the building and away from potential hazards, like power lines. A secondary meeting place should also be designated in the event that the primary meeting place is not safe.
- Loss Prevention will place the Evacuation Map at all DSC podiums, the PIC podium, Customer Relations, and break room. The map must show the associate meeting place.
- Call Randy Fry, Kathy Kolder or John Fry for permission to evacuate if circumstances permit. The decision to
 evacuate will be made by the Store/Asst. Manager or PIC when circumstances warrant it.
- 4. The PIC will make an announcement using the example language, "Attention Fry's Customers and Associates. We ask that you evacuate the building. Please calmly walk to the nearest emergency exit. Fry's Associates, go to the associate meeting place." Repeat as often as necessary and as long as is safe to do so. Stores without a centralized paging system should make the announcement from each DSC podium throughout the store.
- 5. Associates must provide additional assistance to any disabled customers or associates to ensure they exit the building safely.
- 6. If safe to do so, Loss Prevention will check the bathrooms, offices, and presentation rooms to make sure all individuals are exiting the building.
- 7. Each DSC will take the Daily Coverage Report with them to the associate meeting place.
- 8. Each DSC will be responsible to account for all of their associates at the meeting place.
- 9. The DSC will inform the PIC when all associates are accounted for or who is missing.
- 10. All associates are to remain in the meeting place until the PIC gives notification that it is safe to return to the store or leave the premises.
- 11. The PIC must be alert to determine if new hazards (downed power lines, ruptured gas lines etc.) have made the evacuation itself unsafe, or if the primary meeting place is not safe. If the primary meeting place is unsafe, the PIC will decide to meet in the secondary place.
- 12. If prolonged evacuation is required and it is safe to do so, Loss Prevention will secure the building and set the alarm.
- 13. Loss Prevention will determine with the Store Manager if it is necessary to have a Loss Prevention Officer remain at the site, if it is safe, to watch the building.

SECTION 7 – EVACUATION PLAN – HOME OFFICE

- 1. Loss Prevention will post an Evacuation Map in each department and in the associate break room.
- 2. The designated meeting place for each department is on the map.
- 3. If safe to do so, Loss Prevention will check the bathrooms and offices to make sure all associates have exited the building.
- Each department will quickly and quietly exit the building and meet in the pre-designated area outside the
 office.
- 5. The department supervisor will account for each person in their department.
- 6. The department supervisor will be alert to determine if any new hazards (downed power lines, ruptured gas lines, etc.) have made the evacuation itself unsafe. If the primary meeting place is unsafe, the supervisor will determine a secondary meeting place.
- 7. Loss Prevention will meet with each group to ensure all associates are accounted for.
- 8. All associates are to remain in the meeting area until Loss Prevention gives notification that is safe to go back into the building or leave the premises.

SECTION 8 - FIRE

NOTE: The safety of our customers and associates must be the primary consideration at all times when dealing with emergency situations. All associates should know the location of all fire exits and fire extinguishers. All associates should receive prior teaching of what to do in case they detect a fire.

A. If You Smell Smoke

- 1. Notify the PIC immediately.
- 2. The PIC will ask Loss Prevention to assist in investigating the source of the smell.

B. If A Fire Is Detected

- Call the Fire Department by dialing 911.
- 2. Have an associate meet the Fire Department outside to direct them to the location of the fire.
- 3. If it is safe to do so, locate a fire extinguisher and attempt to put out the fire.
- 4. If you are unable to put out the fire quickly with an extinguisher, the PIC will take steps to evacuate the building following Fry's Evacuation Plan.
- If safe to do so, attempt to minimize any property damage.
- 6. Loss Prevention will document the incident, including the cause of the fire and the damage done.
- 7. Loss Prevention will take photographs and send them to the Home Office Legal Department along with any videotape if applicable.

SECTION 9 - GAS LEAK

A. If You Smell Gas

- 1. Notify the PIC immediately.
- 2. The PIC will ask Loss Prevention to assist in investigating the source of the smell.

B. If a Gas Leak is Reported (Do all of the following at the same time.)

- 1. Shut off the gas by following the below listed procedure:
 - · Get a crescent wrench from Loss Prevention.
 - · Go to the gas main.
 - Turn the shut-off valve a quarter turn.
- 2. Evacuate the area of the leak.
- 3. Do your best to prevent sparks of any kind.
- 4. Air out the building.

Call the gas company before turning the gas back on.

SECTION 10 - HAZARDOUS MATERIALS

Each chemical has its own unique method of cleaning up spills, so refer to the Material Safety Data Sheets for the chemicals we use and sell for the appropriate clean-up procedures. In case of a spill, proceed as follows:

- 1. Identify the material, its properties, and clean-up procedures.
- 2. You should have kitty litter available in your store for simple spills, like motor oil.
- 3. If you are unsure on how to clean up a chemical spill, consult the local Hazardous Materials Team or Fire Department for additional information.
- 4. Use the appropriate personal protective equipment.
- 5. If there are noxious fumes, evacuate the area.
- 6. Seek medical care immediately if someone is contaminated with a hazardous material.
- 7. If safe, mitigate or eliminate the source of the spill (close valves, cap bottles, etc.).
- 8. Do not let material go down a drain, or into a waterway, basement, or confined space.
- 9. Complete notifications to regulatory agencies if required.

SECTION 11 - POWER FAILURE

A. If There Is A Power Failure

- 1. Notify the District Manager of Store M&O. If the District Manager is not available, contact the President or Executive Vice President.
- 2. Notify the I.S. department.
- 3. Inform all the above about the following conditions:
 - Is the back up power working?
 - ♦ How much of the store is lit?
 - ♦ How much natural light is in the store?
 - What are the weather conditions?
 - Are there any factors that would negatively impact the safety of our customers or the protection of our assets?
 - If any of the variables change that would affect the store's ability to stay open during the outage, contact the District Manager of Store M&O for instructions.
- Have all associates acquire a flashlight from their DSC podium or the PIC.
- 5. Have all associates immediately give "TK" service to all customers in the store by staying with them with the flashlight to guide them safely while the lights are out.
- 6. All associates not with a customer should move to the front of the store and escort customers one at a time using a flashlight. The associate will stay with the customer the entire time they are shopping and then return to the front for the next customer.
- 7. Associates are not to store-use flashlights and batteries without the PIC's approval.
- 8. Assign one responsible associate to guard each fire exit door for the entire duration that the power is out.
- 9. The Loss Prevention and store management teams will check the store to remove any safety hazards.
- 10. Call Randy Fry, Kathy Kolder, or John Fry for permission to evacuate if circumstances permit. The decision to evacuate will be made by the Store/Asst. Manager or PIC when circumstances warrant it.

SECTION 13 - WATER LEAK

A. DOMESTIC WATER - This is the water that is used in the café, drinking fountains, bathrooms, and the landscape sprinklers.

- All PIC's and Loss Prevention should know where the emergency shut off valve is located. (Refer to Section 2, Map of Electrical, Gas, & Water Shut-Offs)
- 2. Shut off the water valve when you have major leaks.
- B. FIRE SPRINKLER WATER This is a separate system from the domestic water.
- 1. There will typically be 3-4 pipes that are 6"-12" in diameter. Each pipe (riser) will disperse water to the sprinkler heads in a different part of the building.
- 2. A map should be posted at the risers that show which risers control which part of the building.
- 3. PIC's and Loss Prevention should be trained on this procedure before the need occurs to execute it.

When an actual emergency occurs, there is no time for indecision. Following the correct procedure may save thousands of dollars worth of merchandise from being ruined. If a sprinkler head is broken or the pipes are leaking, you MUST do the following:

C. Water Shut Off

- 1. Turn the shut-off valve that is located on the front of the riser to the OFF position. (This stops the flow of water into the pipe, however a lot of water is already in the pipes.)
- Locate the "MAIN (a.k.a. AUXILIARY) DRAIN VALVE." (It may be next to the shut-off valve in some stores or outside in others.)
- 3. OPEN the Main (Auxiliary) Drain valve. (This drains the water that is already in the sprinkler pipes. If you don't do this, water will continue to drain from the sprinkler head for 30–60 minutes.)
- 4. The water will stop flowing in approximately 1 minute.
- 5. The fire alarm will activate when the water begins flowing. Alarms will also activate showing that the valve is closed. If it is a false alarm, notify the alarm company and instruct them to **not** send the Fire Department
- 6. To reset the system, close the main (auxiliary) drain valve and SLOWLY open the riser shut-off valve. (If you open the valve all the way quickly, it may create too much pressure and damage the pipes.)
- 7. Check for leaks.
- Call the alarm company and reset the fire alarm system.

HAZARDOUS MATERIALS COMMUNICATION PROGRAM

WHAT'S IN THIS POLICY?

- A. You Have a Right To Know
- **B.** List of Hazardous Substances
 - 1. Café
 - 2. Sales Floor
 - 3. Janitorial
 - Outside Janitorial Company
 - ♦ Fry's Associates
 - 4. Car Electronics Installation
 - 5. Proposition 65 (California Only)
- C. Material Safety Data Sheets (MSDS)
- D. Labeling
- E. Health Hazard Data Key Words
- F. Associate Information & Training
- G. Informing Contractors
- H. Inquiries and Questions

A. You Have a Right To Know

In 1983, the Federal Government established the OSHA Hazard Communication Standard. This standard is designed to protect employees who use hazardous materials on the job. The Hazard Communication Standard states that companies which use hazardous materials must provide their employees with information and training on the proper handling and use of these materials.

You, as an associate of Fry's Electronics, have a Right To Know about the hazardous materials used in your work area and the potential effects of these materials upon your health and safety.

In compliance with Federal OSHA guidelines, Fry's Electronics has conducted an assessment of the hazards in the workplace. The Director of Loss Prevention & Safety has full authority and responsibility for implementing and maintaining this program. The Director of Loss Prevention & Safety has prepared and will keep current an inventory list of all known hazardous substances present in Fry's workplace.

NO OTHER CHEMICAL MAY BE USED IN OUR STORES UNLESS IT HAS BEEN APPROVED BY THE DIRECTOR OF LOSS PREVENTION & SAFETY. THIS INCLUDES CHEMICALS THAT CAN BE PURCHASED AT A GROCERY STORE.

Chemicals can cause serious harm to you and therefore Fry's Electronics will only allow approved chemicals into our building. Some chemicals we sell to customers and others we use. This policy is designed to educate you about what chemicals are allowed in the building, the proper use of those chemicals and the appropriate personal protective equipment needed when working with chemicals. All authorized chemicals will have a Material Safety Data Sheet available in the Store Manager's office. There are MSDS's also available in the café for the chemicals that are present there. These sheets have important information about hazardous components, spill/leak procedures, first aid information, protective measures, and more. Familiarize yourself with these sheets for your own protection.

B. LIST OF HAZARDOUS SUBSTANCES

USED IN CAFÉ DEPT. – CHEMICALS PRESENT AND PERSONAL PROTECTIVE EQUIPMENT NEEDED

NAME OF CHEMICAL	HEALTH HAZARD	GLOVES	SPLASH GOGGLES
LIQUID DETERGENT CONCENTRATE	DANGER	YES	YES
LIQUID RINSE CONCENTRATE	CAUTION	NO	NO
LIQUID SANITIZER CONCENTRATE	DANGER	YES	YES
POT & PAN DETERGENT CONCENTRATE	WARNING	YES (IF PROLONGED OR REPEATED EXPOSURE)	YES (IF SPLASHING MAY OCCUR)
POT & PAN SANITIZER CONCENTRATE	DANGER	YES	YES
FRUIT & VEGGIE WASH CONCENTRATE	DANGER	YES	YES
GLASS CLEANER CONCENTRATE	WARNING	YES	YES
ALL PURPOSE CLEANER CONCENTRATE	CAUTION	NO	NO
FLOOR CLEANER CONCENTRATE	CAUTION	NO	NO
FOOD CONTACT SANITIZER CONCENTRATE	DANGER	YES	YES
HAND SOAP	CAUTION	NO	NO
ESPRESSO MACHINE CLEANER	CAUTION	NO	NO
BLEACH	DANGER	YES	YES
COMPRESSED CO2 GAS-(EXPLOSIVE HAZARD) CYLINDERS MUST BE ATTACHED TO THE WALLS WITH CHAINS OR STRAPS.		NO	NO

Most of these chemicals are used in the EcoLab system. The concentrated chemical is placed in the dispenser and the associate uses a diluted form of the chemical in a secondary container. USE CAUTION WHEN WORKING WITH THE CONCENTRATE. ALL CONTAINERS MUST BE LABELED WITH THE CHEMICAL THAT IS INSIDE. Fry's uses this system in order to limit your exposure to chemicals.

Chemicals should be stored in an orderly fashion on lower shelves in order to prevent spills.

2. SALES FLOOR

We sell many chemicals in our store. Each one has an MSDS in a binder in the Store Manager's Office.

We also have compressed gas (Helium) in the Customer Service Sales area. This is an explosive hazard.

Helium cylinders must be attached to the walls with chains or straps.

3. JANITORIAL

 CHEMICALS USED BY OUTSIDE JANITORIAL SERVICE – NOT BY FRY'S ASSOCIATES - AND PERSONAL PROTECTIVE EQUIPMENT NEEDED. (Note: Fry's associates should not remove these items from the janitorial service area. Fry's associates should not use these chemicals at any time.)

NAME OF CHEMICAL	HEALTH HAZARD	GLOVES	SPLASH GOGGLES
1030 FLOOR FINISH	WARNING	YES	YES
1140 FLOOR FINISH	WARNING	YES	YES
808 FINISH STRIPPER	WARNING	YES	YES
815 FINISH STRIPPER	WARNING	YES	YES
1000 maintainer/ restorer	CAUTION	YES	YES
JOHNSON WAX	CAUTION	NO	NO
TOP FLITE PLUS ALL PURPOSE CLEANER	WARNING	YES	YES
DEEP BLUE GLASS & SURFACE CLEANER	WARNING	YES	YES
M.A.D. MILD ACID DETERGENT	DANGER	YES	YES
CONSUME	CAUTION	YES	YES
BIG D AEROSOL DEODORANTS	CAUTION	YES	YES
PUSH LIQUID BACTERIA/DIGESTER	CAUTION	NO	NO
AF315 NEUTRAL PH DISINFECTANT	WARNING	YES	YES
PH7 NEUTRAL CLEANER	CAUTION	YES	YES
BONBET LIQUID DRY CARPET CLEANER	WARNING	YES	YES (MAKE SURE VENTILATION IS ADEQUATE)
es-steam extraction cleaner	WARNING	YES	YES (MAKE SURE VENTILATION IS ADEQUATE)
NILODOR POLYMER URINAL SCREEN	CAUTION	NO	OPTIONAL

NAME OF CHEMICAL	HEALTH HAZARD	GLOVES	SPLASH GOGGLES
ALL PURPOSE DILUTED CLEANER FROM CAFE	CAUTION	NO	NO
WINDEX	NONE	NO	NO
FURNITURE POLISH	CAUTION	YES (FOR PROLONGED USE)	YES
STAINLESS STEEL CLEANER	CAUTION	NO	NO
GOO-GONE	CAUTION	YES (IF SIGNIFICANT SPLASHING)	YES (FOR PROLONGED USE)

4. CAR ELECTRONICS INSTALLATION

NAME OF CHEMICAL	HEALTH HAZARD	GLOVES	SPLASH GOGGLES
SPRAY ADHESIVE	WARNING	YES	YES
GLUE STICKS	CAUTION	YES (IF WORKING WITH MOLTEN MATERIAL)	YES (IF WORKING WITH MOLTEN MATERIAL)
3M STRIP CAULK	CAUTION	NO	NO

PROP. 65 (CALIFORNIA ONLY)

There are chemicals in our store that are known to the state of California to cause cancer, birth defects, or other reproductive harm.

- Carbonless paper (receipt tape)
- Diesel fuel (trucks and emergency generators)
- Solder (on salesfloor)
- Chemical lead
- Plastic coated cables (coax, data cables etc...)

To address exposures to Proposition 65 chemicals, the Director of Loss Prevention & Safety has provided clear and reasonable warnings to individuals prior to exposure by means of signs that are posted on each side of the aisles where these products are sold or used.

C. MATERIAL SAFETY DATA SHEETS (MSDS)

Federal law requires that copies of these sheets are available to our associates. The chemical manufacturer provides these sheets that contains detailed information about a specific hazardous material that is on the materials inventory. An MSDS contains the following information:

- Identity (name of the substance)
- Physical Hazards
- Health Hazards
- Routes of body entry
- Permissible Exposure limits (PEL)
- Carcinogenic Factors (cancer causing)
- Safe Handling Procedures
- Data of Sheet Preparation
- Control Measures (Personal Protective Equipment)
- Emergency First Aid
- Contact information (for the preparer of the sheet)
- Special Instructions

The Director of Loss Prevention & Safety is responsible for obtaining the MSDS's, reviewing them for completeness, and maintaining the data sheet system for the company. In the reviewing of incoming sheets, if new and significant health/safety information becomes available, this new information is passed on immediately to the affected associates by additional training sessions, posted memos, and other means of communication.

If MSDS's are missing or new hazardous substance(s) in use do not have MSDS's, please contact the Director of Loss Prevention & Safety at 408-487-4500. A new MSDS will be requested from the manufacturer.

You must read these sheets so that you have all the information that you need to work safely. There are copies in the café and a copy in the MSDS binder in the Store Manager's office.

You would use an MSDS, for example, if you spilled the Quaternary Food Contact Surface Sanitizer concentrate. Specific instructions for cleaning up a spill are written in the MSDS.

D. LABELING

ALL containers of hazardous materials must have legible labels identifying the material and warning associates of its potential hazards. The label must be placed in a conspicuous location on the container. Never use unlabeled containers to store any of the chemicals that are on this list. Every container must be properly labeled so that you know exactly what is inside the container. Never place one chemical in to a container that is labeled for a different container.

Fry's policy is all primary and secondary containers are labeled as follows:

LABEL INFORMATION	PRIMARY CONTAINER	SECONDARY CONTAINER
THE PRODUCT NAME	✓	✓
A WARNING STATEMENT, MESSAGE OR SYMBOL	~	~
NAME AND ADDRESS OF THE MANUFACTURER	~	

Containers must be re-labeled if damaged or defaced.

E. HEALTH HAZARD DATA KEY WORDS

Each chemical we use will have the following hazard description name or number on the MSDS and on the label.

HEALTH HAZARD	HEALTH HAZARD	DESCRIPTION
CLASSIFICATION	CLASSIFICATION	
NAME	NUMBER	
DEADLY	4	THIS MEANS THE CHEMICAL MAY BE DEADLY.
		THIS MEANS THAT THE CHEMICAL MAY BE TOXIC, CORROSIVE, OR
EXTREME	3	FLAMMABLE. THE CHEMICAL MAY CAUSE PERMANENT BLINDNESS
DANGER		OR CHEMICAL BURNS. IT WOULD BE HARMFUL OR FATAL IF
		SWALLOWED.
WARNING	2	CAUSES MODERATE IRRITATION. PROLONGED EXPOSURE CAUSES
(DANGEROUS)		IRRITATION OR NAUSEA STOMACH DISTRESS IF SWALLOWED.
CAUTION	1	THIS MEANS THE CHEMICAL MAY CAUSE IRRITATION TO SKIN AND
(SLIGHT HAZARD)		EYES. IF SWALLOWED, MAY CAUSE STOMACH DISTRESS, NAUSEA,
		OR VOMITING.
NONE	0	NO HAZARD

F. ASSOCIATE INFORMATION AND TRAINING

Associates are to attend a health and safety training session set up by the Loss Prevention and Safety Department Manager prior to starting work. This training session will provide information on the following:

- The requirements of the hazard communication regulation, including the associate's rights under the regulation.
- The location and availability of the written hazard communication program.
- ♦ Any operation in the work area, including non-routine tasks, where hazardous substances or Prop 65 carcinogens/reproductive toxins are present and exposures are likely to occur.
- Methods and observation techniques used to determine the presence or release of hazardous substances in the work area.
- Protective practices the company has taken to minimize or prevent exposure to these substances.
- ♦ How to read labels and review MSDS's to obtain hazard information.
- Physical and health effects of the hazardous substances.
- Symptoms of overexposure.
- ♦ Emphasizes associates' need to practice reducing and preventing exposure to these hazardous substances by engineering controls, work practices, and use of personal protective equipment.
- Emergency and first-aid procedures to follow if associates are exposed to hazardous substances.
- The location and interpretation of warning signs or placards to communicate that a chemical known to cause cancer or reproductive toxicity is used in the workplace.

Associates will receive additional training when a new hazard is introduced into the workplace.

G. INFORMING CONTRACTORS

To ensure that outside contractors (janitorial employees) work safely in our stores and to protect our associates from chemicals used by outside contractors, the Director of Loss Prevention and Safety is responsible for giving and receiving the following information from contractor:

- Hazardous substances, including Proposition 65 chemicals, to which they may be exposed while on the job site as well as substances they will be bringing into the workplace. We will provide contractors with information on our labeling system and access to the MSDS's.
- Precautions and protective measures our associates may take to minimize the possibility of exposure.

H. INQUIRIES AND QUESTIONS

If anyone has questions about this plan, please contact the Director of Loss Prevention and Safety at the Home Office. Our Plan will be maintained by the Director of Loss Prevention and Safety to ensure that the policies are carried out and the plan is effective.

▼ Summary

AIN: 2463-001-019 ³

Situs Address:

2311 N HOLLYWOOD WAY

BURBANK CA 91505-1125

Commercial Parcel Type: Use Type:

Regular Fee Parcel 02530 Tax Rate Area:

ACTIVE 12/13/1995 Parcel Status:

Create Date:

CURRENT Year Defaulted: Delete Date: Tax Status:

None Exemption: Building (0102) & Land Overview

1350 2700 Quality Class: Design Type: Use Code:

0 0/0 345,000 **Building SqFt:** Beds/Baths: # of Units:

Effective Year: Year Built:

446,273 Land SqFt:

(http://assessormap.co.la.ca.us/Geocortex/Essentials/REST/sites/PAIS/VirtualDirectory/AssessorMaps/ViewMap.html?val=2463-001)

Parcel Map (http://assessormap.co.la.ca.us/Geocortex/Essentials/REST/sites/PAIS/VirtualDirectory/AssessorMaps/ViewMap.html?val=2463-001) / Map Index (http://maps.assessor.lacounty.gov/Geocortex/Essentials/REST/sites/PAIS/v/irtualDirectory/AssessorMaps/ViewMap.html?val=2463-NDX)

9,114,233 \$			במ	1996 B	1996 Base Value
	8,935,523	-	1996	€	6,000,000
3,618,882 \$	3,547,924	⊢	1996	€	2,386,000
12,733,115 \$	12,483,447			€9	8,386,000


1/6

Assessor's Responsible Division
District:
Region: 24
Cluster: 24632 N H

North District Office 24 24632 N HOLLYWD/BRBNK

Sylmar, CA 91342

Phone: (818) 833-6000 Toll Free: 1 (888) 807-2111 M-F 7:30 am to 5:00 pm

2311 N Hollywood Way, Burbank, CA 91505-1125

© 2017 Eagleview

▼ Building and Land Characteristics

Land Information

Use Code = 1350 (Commercial)

446,273 Total SqFt (GIS): Total SqFt (PDB):

456,940 0 × 0 Usable SqFt: Land W' x D': Acres:

Sewers:

Yes No No No Flight Path: Freeway: X-Traffic:

Yes No None Corner Lot: **Golf Front:** Horse Lot: View:

(Refer Issuing Agency) No None Code Split: Zoning:

Impairment:

Situs Address: 2311 N HOLLYWOOD WAY BURBANK CA 91505-1125

Legal Description (for assessment purposes): P M 269-99-100 LOT 1

Use Code: 1350 (Commercial)

3 = Department Store 1 = Commercial

5 = Warehouse Store (Costco, etc.)

0 = One Story

Building Information

0102 2700 Design Type: Quality Class: SUBPART:

of Units:

0 0/0 345,000 **Building SqFt:** Beds/Baths:

Effective Year: Year Built:

0// Depreciation:

\$ 379,500 \$ 824,274 RCN Other: RCN Other Trended:

1987 Year Change:

Design Type: 2700

7 = Parking Lot (Commercial or Patron) 2 = Commercial

0 = Unused or Unknown Code (No Meaning)

0 = Unused or Unknown Code (No Meaning)

SUBPART:

0202 1300 CX Design Type: Quality Class: 0 0/0 101,566 **Building SqFt:** Beds/Baths: # of Units:

Year Built:

1962 1967 //0 Effective Year: Depreciation:

0 \$ 0 RCN Other Trended: RCN Other:

Year Change:

1997

Design Type: 1300

3 = Department Store 1 = Commercial

0 = Unused or Unknown Code (No Meaning)

0 = Unused or Unknown Code (No Meaning)

SUMMARY:

Total

0 0/0 101,566 Beds/Baths: # of Units:

Building SqFt: Avg SqFt/Unit:

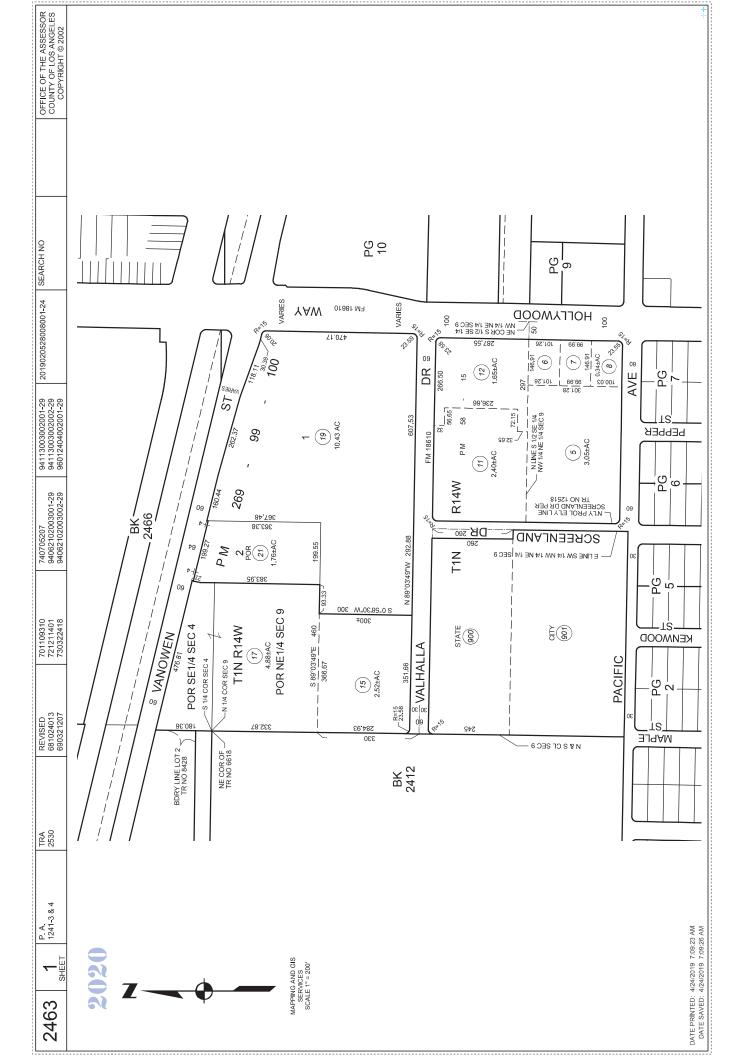
▼ Events History

Parcel Change () Ownership ()

Show Re-Assessable Only:

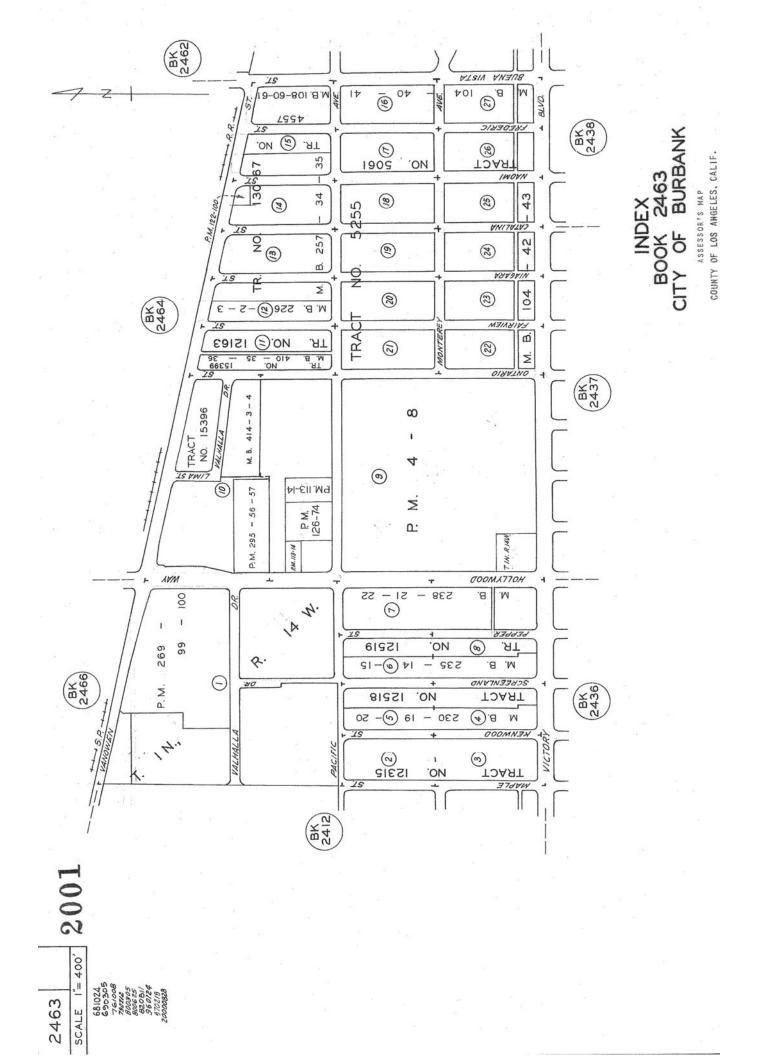
9/9

▼ Assessment History


Seq. #	# Re-Assessec	pess	# Parcels	%	Ver. Code	DTT Sale Price	Assessed Value
	Yes		_	0-%00	×	\$ 8,200,082 \$	8,200,000
50	Yes			0-%00		€	0 \$ 4,966,095
	Yes		_		_	\$ 1,360,013 \$	0

Bill Number	Bill Type	Bill Status	Date to Auditor	Recording Date	Total Value	Land Value	Improvement Value
220-PSEG				12/29/1995	\$ 12,733,115 \$	9,114,233 \$	3,618,882
2190000	22	A	07/01/2019	12/29/1995	\$ 12,483,447 \$	8,935,523 \$	3,547,924
2180000	œ	4	07/19/2018	12/29/1995	\$ 12,238,674 \$	8,760,317 \$	3,478,357
2170000	œ	A	06/26/2017	12/29/1995	\$ 11,998,701	8,588,547 \$	3,410,154
2160000	œ	A	07/05/2016	12/29/1995	\$ 11,763,434 \$	8,420,145 \$	3,343,289
2150000	œ	A	06/23/2015	12/29/1995	\$ 11,586,737 \$	8,293,667 \$	3,293,070
2140000	œ	A	06/24/2014	12/29/1995	\$ 11,359,770 \$	8,131,206 \$	3,228,564
2130000	œ	A	06/25/2013	12/29/1995	\$ 11,308,431	8,094,458 \$	3,213,973
2120000	œ	A	06/27/2012	12/29/1995	\$ 11,086,698 \$	7,935,744 \$	3,150,954
2110000	<u>~</u>	A	07/06/2011	12/29/1995	\$ 10,869,313 \$	7,780,142 \$	3,089,171

© 2017- Los Angeles County Assessor Contact Us (https://assessor.lacounty.gov/contact-us/) | Disclaimer (disclaimer) | FAQ (faq) PDB Effective Date: 04/12/2020


f (https://facebook.com/LACAssessor)

(https://www.twitter.com/LACASSESSOR) in (https://www.linkedin.com/company/los-angeles-county-office-of-the-assessor)

Map Search - Los Angeles County Assessor Portal

4/16/2020

Department of Toxic Substances Control

Meredith Williams, Ph.D.

Sacramento, California 95812-0806 1001 "I" Street P.O. Box 806 Director

Environmental Protection

Jared Blumenfeld Secretary for

Gavin Newsom Governor

EPA ID PROFILE

<u>Map</u> ID Number:

County: Name:

NAICS:

CAD982504052 LOCKHEED MARTIN CORPORATION LOS ANGELES

Record Entered: Inactive Date: Status:

Last Updated:

6/30/1998 12:00:00 AM 6/29/1990 12:00:00 AM 8/10/2004 11:17:55 AM INACTIVE

	Name	Address	City	State	Zip Code	Phone
Location	LOCKHEED MARTIN CORPORATION	B76-76A 2311 N HOLLYWOOD WY	BURBANK	CA	915050000	
Mailing		2550 N HOLLYWOOD WAY STE 301	BURBANK	CA	915051055	
Owner	LOCKHEED MARTIN CORPORATION	6801 ROCKLEDGE DR	ВЕТНЕЅDА	M	208170000	8188762000

1/3

EPA ID Profile

4/19/2020

8188476927
915050000
CA
BURBANK
INACTIVE PER VQ98 - BMI
perator/Contact R N HELGERSON
Operator/Contact

Based Only Upon ID Number:

CAD982504052

Transporter Registration?	N/A
Non Calif. Manifests?	N/A
Calif. Manifests?	Yes

California and Non California Manifest Tonnage Total and Waste Code by Year Matrix by Entity Type (if available) are on the next page

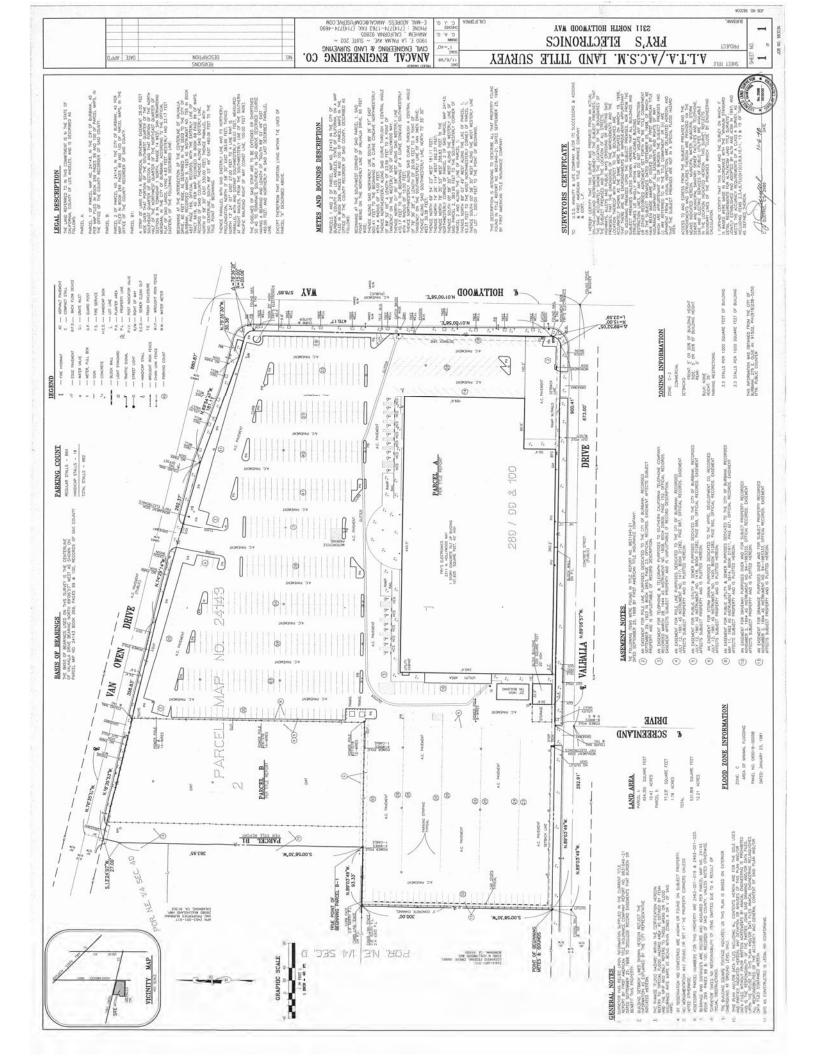
Calif. Manifest Counts and Total Tonnage

Top line represents Manifest Count and Bottom line represents Total Tonnage

Year	Generator	Trans. 1	Trans. 2	TSDF	ALT. TSDF
1993	3	0	0	0	0
000	167.71720	0.00000	0.00000	0.00000	0.0000
1004	1	0	0	0	0
466	28.99600	000000	0.00000	0.00000	000000
4005	99	0	0	0	0
C66	1145.88280	0.00000	0.00000	0.00000	0.0000

Non California Manifest Total Tonnage

No Records Found


	77.191		
	(١	ļ
	2		
	(1	ļ
	7		
	•		
(
,	(1	
	(

California	Generator	Trans. 1	Trans. 2	TSDE	Alt. TSDF
RCRA	Generator	Trans. 1	Trans. 2	TSDE	Alt. TSDF

Waste Code Matrix as a spreadsheet

The Department of Toxics Substances Control (DTSC) takes every precaution to ensure the accuracy of data in the Hazardous Waste Tracking System (HWTS). However, because of the large number of manifests handled, inaccuracies in the submitted data, limitations of the manifest system and the technical limitations of the database, DTSC cannot guarantee that the data accurately reflect what was actually transported or produced.

Report Generation Date: 04/19/2020


```
******* STATE BOARD ASSIGNED CONTAINER ID NUMBER; 00000061240001 *******
                                                                                                                                                                                                                                                               REPAIR/FUEL DISPENSI
                                                                                                                                                                                                       TYPE OF BUSINESS
NO. OF CONTAINERS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    F. CURRENTLY USED : YES IF YES WHEN : SECURRENTLY USED : YES IF NO, YEAR OF LAST USE: G. STORES : PRODUCT : YES CONTAINS: UNLEADED H. MOTOR VEHICLE FUEL/WASTE OIL : YES CONTAINS: UNLEADED
3484
HAZARDOUS SUBSTANCE STORAGE CONTAINER INFURMATION FOR LOS ANGELES COMMY
CONTAINER TYPES: 12,345
(1=FARM MOTOR VEHICLE FUEL TANKS, 2=ALL OTHER PRODUCT TANKS, 3=WASTE TANKS, 4=SUMPS, 5=PITS, PONDS, LAGOONS & OFHERS)
                                                                                                                                                                                                     DEALER / FOREMAN / SUPERVISOR
                                                                                                                                                                                                                                                               CW4 GEORGE A. MCLEARY
                                                                                                                                                                                                                                                                                                   (818) 845-5284
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               C. WALLING: UNKNOWN
                                                                                                                                           95821
                                                                                                                                                                                                                                                                                                                                                                                   NIGHT: SAME
                                                                                                                                               3
                                                                                                                                                                                                                                                                                   91504
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      /1950
                                                                                                                                                                                                                                                                                     3
                                                                                                                                                                                                     MAILING ADDRESS
TOWNSHIP/RANGE/SECTION
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             B. VAULTING: NON-WAULTED
                                                                                                                                                                                                                                                                                                                                                                               (818) 846-3118
                                                                                                                                                                                                                                                             3800 VALHALLA P.S.
                                                                                                                                             SACHIMENTO
                                                                                                                                                                                                                                                                                                                                                                                                                                                              DESCRIPTION
A. CONTAINER TYPE
B. MANUFACTURER/YR OF MFG: NATIONAL TANK
C. YEAR INSTALLED
D. CAPACITY (GALLONS)
3,000
                                                                                                                                                                                                                                                                                                                                                                                                                        ****** OWNER ASSIGNED CONTAINER MUMBER:
                                                                                                                                                                                                                                                                                                                                                           24-HR. CONTACT PERSON / TELEPHONE DAY: MCLEARY, GEORGE A.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 IS CONTAINER LOCATED ON A FARM : NO
                                                                                                                                                                                                                                                             CA 91504
                                                                                                                                                                                                                      ORGANIZATIONAL MAINT SHOP #13
3800 VALMALLA DR. CA 9150
BURBANK CA 9150
                                                                                                  OWNER
CALIFORNIA MATIONAL GUARD
P.O. 90X 21,405
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       CONTAINER CONSTRUCTION
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           A. THICKNESS:
D. MATERIAL: UNKUNOWN
E. LINING: UNLINED
F. WRAPPING: UNKONOWN
                                                                                                                                                                                                                                                                                                    CROSS STREET :
                                                                                                                                                                                 II FACILITY
 3484
 PAGE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                 2
                                                                                                                                                                                                                                                                                                                                                                III
```

VIII CHEMICAL COMPOSITION OF SUBSTANCES CURRENTLY STORED IN CONTAINER 12031

VII LEAK DETECTION STOCK INVENTORY

PIPING

ĭ

A. ABOVEGROUND PIPING : SUCTION C. REPAIRS : NONE IF YES, YEAR OF MOST RECENT REPAIR:

```
REPAILS
CURRENTL' USED : YES IF NO, YEAR OF LAST USE:
STORES
MASTE
MOTOR VEHICLE FUEL/WASTE OIL : YES CONTAINS: OIL, GREASE, DI
                                                                                                              ******* STATE BOARD ASSIGNED CONTAINER ID NUMBER: 000'0000 1240002 ********
    OK./01/RR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               ****** STATE BOALD ASSIGNED CONTAINER ID NUMBER: COCUCL-512:0003 *******
                                                                                                                                                                                F. CURRENTLY USED : NOME IF YES WHEN : USE: G. STORES : PRODUCT : YES ONTAINS: DIESEL HOTOR VEHICLE FUEL/WASTE OIL : YES CONTAINS: DIESEL
3485
HAZARDOUS SUBSTANCE STORAGE CONTAINER INFORMATION FOR LOS ANGELES COUNTY
CONTAINER TYPES: 12,345
(1=FARM MOTOR VEHICLE FUEL TANKS, 2=ALL OTHER PRODUCT TANKS, 3=445TE TANKS, 4=SUMPS, 5=PITS, FONDS, LAGOONS & OTHERS)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   G : B. UNDERGROUND PIPING : GRAVITY IF YES, YEAR OF MOST RECENT REPAIR: 1976
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              IF YES, YEAR OF MOST RECENT REPAIR:
                                                                                                                                                                                                                                                                                                                                                                           C. WALLINS: UMKNOWN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        C. WALLING: SINGLE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          VIII CHEMICAL COMPOSITION OF SUBSTANCES CURRENTLY STORED IN CONTAINER
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             VIII CHEMICAL COMPOSITION OF SUBSTANCES CURRENTLY STORED IN CONTAINER 12034
                                                                                                                                                                                                         11350
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          /1958
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        INCHES B. VAULTING: MON-VAULTED
                                                                                                                                                                                                                                                                                                                                                                           B. VAULTING: NON-VAULTED
                                                                                                                                                          DESCRIPTION
A. CONTAINER TYPE
B. MAMUFACTURER/YR OF MFG: NATIONAL TANK
C. YEAR INSTALLED
D. CAPACITY (GALLONS)
: 1950
2,000
                                                                                                                ******* ONNER ASSIGNED CONTAINER NUMBER: 2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 ****** OWNER ASSIGNED CONTAINER NUMBER: 3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           DESCRIPTION
A. CONTAINER TYPE
B. MANUFACTURES/YR OF MFG:
C. YEAR INSTALLED
D. CAPACITY (GALLONS):
                                                                                                                                                                                                                                                                                                     IS CONTAÎNER LOCATED ON A FARM : NO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                IS CONTAINER LOCATED ON A FARM : NO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              V CONTAINER CONSTRUCTION
A. THICKNESS: 3
D. MATERIAL : CONCRETE
E. LINING : UNLINED
F. WRAPPING : NONE
                                                                                                                                                                                                                                                                                                                                                 V CONTAINER CONSTRUCTION
A. THICKNESS:
D. MATERIAL : LNGONON
E. LINING : UNLINED
F. WRAPPING : UNKNOWN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   A. ABOVEGROUND PIPING
C. REPAIRS : YES
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    C. REPAIRS : NONE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        VII LEAK DETECTION
STOCK INVENTORY
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       VII LEAK DETECTION NONE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           PIPING
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                PIPING
  3485
  PAGE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              7
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           5
```

CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD LOS ANGELES REGION

101 CENTRE PLAZA DRIVE MONTEREY PARK, CA 91754-2156 (213) 266-7500 FAX: (213) 266-7600

July 5, 1995

Mr. Ron N. Helgerson Lockheed Martin Corporation Burbank Program Office 2550 N. Hollywood Way, Suite 506 Burbank, CA 91505-1055

SOIL REMEDIATION FINAL REPORT, LOCKHEED PLANT A-1 SOUTH, BUILDING 76A (File No. 104.0675)(Cleanup and Abatement Order No. 87-161)

Your May 25, 1995, letter transmitted the "Final Report of Soil Remediation for Building 76A, Lockheed Plant A-1 South".

Based on our review of the report, no further remediation is required as it appears that the contaminated areas identified by previous site investigations have been remediated to the extent possible that would greatly reduce the threat to the groundwater beneath the site. Confirmatory soil samplings and testings have indicated that this site has been remediated in accordance with Cleanup and Abatement Order No. 87-161 issued by this Regional Board on December 10, 1987.

As a result, the Lockheed Plant A-1 South site is hereby excluded from requirements set forth in Cleanup and Abatement Order No. 87-161. This does not release any other Lockheed sites from this Order. In addition, Lockheed should continue monitoring the groundwater monitoring well at the site. In the event that Lockheed sells this property, the new owner(s) must provide Lockheed and their consultants continued access to the property for the purpose of monitoring the on-site well.

Please call Alex Carlos at (213) 266-7583 if you have any questions.

ROBERT P. GHIRELLI, D.Env.

Hex P. Glirelli

Executive Officer

Mr. Ron N. Helgerson July 5, 1995 Page 2

CC: David Seter, USEPA, Region IX
Jorge Leon, SWRCB, Office of the Chief Counsel
John Lewis, RWQCB, Region 4
Hamid Saebfar, CALEPA, DTSC, Region 3
Mel Blevins, ULARA Watermaster
John Johnsen, Lockheed Martin Corporation, Burbank Program Office
Scott Warren, Lockheed Martin Corporation, Burbank Program Office
Carol Yuge, Lockheed Martin Corporation, Burbank Program Office

Detections Summary

Client: Tetra Tech, Inc.

Work Order: Project Name: 17-04-0729

301 E. Vanderbilt Way, Suite 450 San Bernardino, CA 92408-3562 Project Name: LMC BOU Received: 04/10/17

Attn: Robert Sabater

Page 2 of 3

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
A-1-CW05-N-17Q2 (17-04-0729-6)						
Chromium	0.000622		0.000402*	m a /l	EPA 6020	EPA 3020A Total
Dichlorodifluoromethane	0.000622	J		mg/L		EPA 5030C
Tetrachloroethene		J	0.40*	ug/L	EPA 8260B	
	4.0		0.50	ug/L	EPA 8260B	EPA 5030C
Trichloroethene	0.44	J	0.29*	ug/L	EPA 8260B	EPA 5030C
1,4-Dioxane	2.3		1.0	ug/L	EPA 8270C (M) Isotope Dilution	EPA 3510C
A-1-CW05-FD-17Q2 (17-04-0729-7)						
Chromium	0.000512	J	0.000402*	mg/L	EPA 6020	EPA 3020A Total
Acetone	4.4	J	4.0*	ug/L	EPA 8260B	EPA 5030C
Dichlorodifluoromethane	0.85	J	0.40*	ug/L	EPA 8260B	EPA 5030C
Tetrachloroethene	4.3		0.50	ug/L	EPA 8260B	EPA 5030C
Trichloroethene	0.50		0.50	ug/L	EPA 8260B	EPA 5030C
1,4-Dioxane	2.7		1.0	ug/L	EPA 8270C (M) Isotope Dilution	EPA 3510C
A-1-CW04-N-17Q2 (17-04-0729-8)						
Chromium, Hexavalent	0.88		0.020	ug/L	EPA 218.6	N/A
Chromium	0.00164		0.00100	mg/L	EPA 6020	EPA 3020A Total
1,1,2-Trichloro-1,2,2-Trifluoroethane	1.3		0.50	ug/L	EPA 8260B	EPA 5030C
1,1,2-Trichloroethane	7.4		0.50	ug/L	EPA 8260B	EPA 5030C
1,1-Dichloroethene	0.76		0.50	ug/L	EPA 8260B	EPA 5030C
1,2,3-Trichloropropane	17		1.0	ug/L	EPA 8260B	EPA 5030C
1,2-Dichloroethane	0.42	J	0.20*	ug/L	EPA 8260B	EPA 5030C
1,2-Dichloropropane	0.50		0.50	ug/L	EPA 8260B	EPA 5030C
Acetone	4.7	J	4.0*	ug/L	EPA 8260B	EPA 5030C
Carbon Tetrachloride	0.91		0.50	ug/L	EPA 8260B	EPA 5030C
Chloroform	3.6		0.50	ug/L	EPA 8260B	EPA 5030C
Dichlorodifluoromethane	0.88	J	0.40*	ug/L	EPA 8260B	EPA 5030C
Tetrachloroethene	5.2		0.50	ug/L	EPA 8260B	EPA 5030C
Trichloroethene	4.8		0.50	ug/L	EPA 8260B	EPA 5030C
1,2,3-Trichloropropane	25		2.5	ug/L	EPA 8260B SIM	EPA 5030C
1,4-Dioxane	2.0		1.0	ug/L	EPA 8270C (M) Isotope Dilution	EPA 3510C

^{*} MDL is shown

Detections Summary

Client: Tetra Tech, Inc.

Work Order: Project Name: 17-04-0729

301 E. Vanderbilt Way, Suite 450 San Bernardino, CA 92408-3562 Project Name: LMC BOU Received: 04/10/17

Attn: Robert Sabater

Page 2 of 3

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
A-1-CW05-N-17Q2 (17-04-0729-6)						
Chromium	0.000622		0.000402*	m a /l	EPA 6020	EPA 3020A Total
Dichlorodifluoromethane	0.000622	J		mg/L		EPA 5030C
Tetrachloroethene		J	0.40*	ug/L	EPA 8260B	
	4.0		0.50	ug/L	EPA 8260B	EPA 5030C
Trichloroethene	0.44	J	0.29*	ug/L	EPA 8260B	EPA 5030C
1,4-Dioxane	2.3		1.0	ug/L	EPA 8270C (M) Isotope Dilution	EPA 3510C
A-1-CW05-FD-17Q2 (17-04-0729-7)						
Chromium	0.000512	J	0.000402*	mg/L	EPA 6020	EPA 3020A Total
Acetone	4.4	J	4.0*	ug/L	EPA 8260B	EPA 5030C
Dichlorodifluoromethane	0.85	J	0.40*	ug/L	EPA 8260B	EPA 5030C
Tetrachloroethene	4.3		0.50	ug/L	EPA 8260B	EPA 5030C
Trichloroethene	0.50		0.50	ug/L	EPA 8260B	EPA 5030C
1,4-Dioxane	2.7		1.0	ug/L	EPA 8270C (M) Isotope Dilution	EPA 3510C
A-1-CW04-N-17Q2 (17-04-0729-8)						
Chromium, Hexavalent	0.88		0.020	ug/L	EPA 218.6	N/A
Chromium	0.00164		0.00100	mg/L	EPA 6020	EPA 3020A Total
1,1,2-Trichloro-1,2,2-Trifluoroethane	1.3		0.50	ug/L	EPA 8260B	EPA 5030C
1,1,2-Trichloroethane	7.4		0.50	ug/L	EPA 8260B	EPA 5030C
1,1-Dichloroethene	0.76		0.50	ug/L	EPA 8260B	EPA 5030C
1,2,3-Trichloropropane	17		1.0	ug/L	EPA 8260B	EPA 5030C
1,2-Dichloroethane	0.42	J	0.20*	ug/L	EPA 8260B	EPA 5030C
1,2-Dichloropropane	0.50		0.50	ug/L	EPA 8260B	EPA 5030C
Acetone	4.7	J	4.0*	ug/L	EPA 8260B	EPA 5030C
Carbon Tetrachloride	0.91		0.50	ug/L	EPA 8260B	EPA 5030C
Chloroform	3.6		0.50	ug/L	EPA 8260B	EPA 5030C
Dichlorodifluoromethane	0.88	J	0.40*	ug/L	EPA 8260B	EPA 5030C
Tetrachloroethene	5.2		0.50	ug/L	EPA 8260B	EPA 5030C
Trichloroethene	4.8		0.50	ug/L	EPA 8260B	EPA 5030C
1,2,3-Trichloropropane	25		2.5	ug/L	EPA 8260B SIM	EPA 5030C
1,4-Dioxane	2.0		1.0	ug/L	EPA 8270C (M) Isotope Dilution	EPA 3510C

^{*} MDL is shown

Detections Summary

Client: Tetra Tech, Inc.

Work Order: 17-04-0840
Project Name: LMC BOU

301 E. Vanderbilt Way, Suite 450 San Bernardino, CA 92408-3562

Received: 04/11/17

Attn: Robert Sabater Page 1 of 2

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	Method	Extraction
A 4 OMOO NI 4700 (47 04 0040 4)						
A-1-CW09-N-17Q2 (17-04-0840-1)	4.4		0.000	/1	EDA 040 0	NI/A
Chromium, Hexavalent	1.4		0.020	ug/L	EPA 218.6	N/A
Chromium	0.00224		0.00100	mg/L	EPA 6020	EPA 3020A Total
1,1,2-Trichloro-1,2,2-Trifluoroethane	1.9		0.50	ug/L	EPA 8260B	EPA 5030C
1,1,2-Trichloroethane	7.5		0.50	ug/L	EPA 8260B	EPA 5030C
1,1-Dichloroethene	0.74		0.50	ug/L	EPA 8260B	EPA 5030C
1,2,3-Trichloropropane	10		1.0	ug/L	EPA 8260B	EPA 5030C
1,2-Dichloroethane	0.38	J	0.20*	ug/L	EPA 8260B	EPA 5030C
1,2-Dichloropropane	0.52		0.50	ug/L	EPA 8260B	EPA 5030C
Carbon Tetrachloride	1.1		0.50	ug/L	EPA 8260B	EPA 5030C
Chloroform	3.8		0.50	ug/L	EPA 8260B	EPA 5030C
Tetrachloroethene	5.9		0.50	ug/L	EPA 8260B	EPA 5030C
Trichloroethene	5.9		0.50	ug/L	EPA 8260B	EPA 5030C
Methyl-t-Butyl Ether (MTBE)	0.44	J	0.20*	ug/L	EPA 8260B	EPA 5030C
1,2,3-Trichloropropane	15		1.2	ug/L	EPA 8260B SIM	EPA 5030C
1,4-Dioxane	3.7		1.0	ug/L	EPA 8270C (M) Isotope Dilution	EPA 3510C
C-1-CW02-N-17Q2 (17-04-0840-2)						
Chromium	0.000600	J	0.000402*	mg/L	EPA 6020	EPA 3020A Total
Dichlorodifluoromethane	0.86	J	0.40*	ug/L	EPA 8260B	EPA 5030C
LTB-20170411 (17-04-0840-3)						
Acetone	4.6	J	4.0*	ug/L	EPA 8260B	EPA 5030C
A-1-CW02-N-17Q2 (17-04-0840-4)						
Chromium	0.00365		0.00100	mg/L	EPA 6020	EPA 3020A Total
1,1,2-Trichloro-1,2,2-Trifluoroethane	0.41	J	0.24*	ug/L	EPA 8260B	EPA 5030C
Chloroform	0.29	J	0.20*	ug/L	EPA 8260B	EPA 5030C
Tetrachloroethene	21		0.50	ug/L	EPA 8260B	EPA 5030C
Trichloroethene	4.2		0.50	ug/L	EPA 8260B	EPA 5030C
B-6-CW08-N-17Q2 (17-04-0840-5)						
Chromium, Hexavalent	0.028		0.020	ug/L	EPA 218.6	N/A
Chromium	0.000834	J	0.000402*	mg/L	EPA 6020	EPA 3020A Total
1,1,2-Trichloro-1,2,2-Trifluoroethane	0.43	J	0.24*	ug/L	EPA 8260B	EPA 5030C
Chloroform	0.27	J	0.20*	ug/L	EPA 8260B	EPA 5030C
Tetrachloroethene	12		0.50	ug/L	EPA 8260B	EPA 5030C
Trichloroethene	3.2		0.50	ug/L	EPA 8260B	EPA 5030C
Methyl-t-Butyl Ether (MTBE)	0.24	J	0.20*	ug/L	EPA 8260B	EPA 5030C
	· ·	-		'S'	_:	

^{*} MDL is shown

August 31, 2017

Gary Riley Lieutenant, U.S. Public Health Service U.S. EPA Region IX, Superfund Division 75 Hawthorne Street, SFD-7-2 San Francisco, CA 94105-3901

Via Electronic Mail

SUBJECT: Transmittal - Annual Groundwater Monitoring Report, Second Quarter

2017, Burbank Operable Unit, Burbank, California

Dear Mr. Riley:

On Behalf of Lockheed Martin Corporation please find enclosed a copy of the Annual Groundwater Monitoring Report, Second Quarter 2016, Burbank Operable Unit, Burbank, California. This report presents the second quarter groundwater elevation measurements and groundwater quality data from the BOU monitoring well network including the Pacific Airmotive Corporation monitoring wells. A tabulation of the volume of groundwater extracted by the BOU for the reporting period is also included.

As discussed, a response to the comments provided by the U.S. EPA [EPA Review of "Annual Groundwater Monitoring Report Second Quarter 2016, Burbank Operable Unit, Burbank, California" (August 2016)] on 01 May 2017 is provided as Attachment 1 to this letter. The 2017 BOU Report has been modified based on those comments that would apply to this year's report.

If you have any questions regarding the enclosed document, please contact Stan Phillips at robert.s.phillips@lmco.com or (817) 495-0251 or myself at Thomas.villeneuve@tetratech.com or 9093825109.

Sincerely, TETRA TECH, INC.

Thomas J. Villeneuve, P.E.

BOU and Burbank Soils Program Manager

- Flower f. Willow-

Attachment 1 – Lockheed Martin response to EPA Review of "Annual Groundwater Monitoring Report Second Quarter 2016, Burbank Operable Unit, Burbank, California" (August 2016)

Enclosure

cc: William Mace, City of Burbank Water and Power

Paul Williams, State Water Board Division of Drinking Water Gloria Pak, Los Angeles Regional Water Quality Control Board

Glenn Bruck, USEPA

Lisa Hamilton, AMEC representing General Electric

Sonja Donaldson, OTIE Kevin Murdock, CH2MHill Stan Phillips, Lockheed Martin Tom Davis, CDMSmith

Response to EPA Comments dated May 1, 2017 to the August 2016 Annual Groundwater Monitoring Report, Second Quarter 2016, Burbank Operble Unit, Burbank, California

	EDA Community	
	EPA Comments	Response It was agreed in communications with the EPA that because of the timing of the comments on the 2016 BOU Groundwater Monitoring Report, the 2016 document would not be modified, but their comments would be used to modify the 2017 Annual BOU Groundwater Monitoring Report as appropriate.
1	Section 1.0, Introduction, Page 1-1 – Third paragraph states the activities were conducted in accordance with the Revised Operational Sampling Plan (OSP). The Sampling and Analysis Plan Addendum (Tetra Tech, 2016) for low flow sampling should also be referenced here.	The OSP was updated in early 2017 and is referenced in Section 1.0 and in other places in the text were appropriate.
2	Section 2.2.1, Pump Removal, Page 2-1 – Please add a description regarding the decontamination and disposal procedures for the pumps and associated piping.	The August 2017 report (Section 2.5.1, Low-Flow Pump Installation) includes a description of how the pumps and associated piping (pulled from the wells that were modified to low-flow pumps) were decontaminated and stored for off-site disposal. It notes that the pumps and piping were were pressure washed and placed in roll-off bins for offsite disposal. Based on information provided by the Off-Site Rule (OSR) contact for USEPA Region IX, the pumps and piping will be taken to Clean Harbors in Buttonwillow, California, (one of USEPA's approved CERCLA waste facilities) after the waste profiles have been completed.
3	Section 2.4.1, Low-Flow Sampling, Pages 2-4 and 2-5 — Please add a description regarding any deviations to the SAP Addendum for low flow sampling, similar to Section 2.5 for the OSP.	section 2.9 of the report.
4	Section 4.1, Groundwater Elevations, Page 4-1 (and Table 1) – An EPA comment on the 2015 annual groundwater monitoring report noted that water levels were collected over a 3-week period and suggested that water levels be measured over a shorter timeframe (generally 1-2 days). Per Table 1, most Spring 2016 water levels were measured over the period of April 4-7, although some measurements were collected on April 2 (1), April 9 (6), April 13 (1), April 15 (2), and April 18 (1). Although the overall window for measurements (about 2 weeks) is an improvement over 2015, efforts	Not all wells are accessable during the gauging event. The field crews do what they can to collect the measurements in as short a time frame as possible. Water level measurements were collected during the April 2017 monitoring event on April 18, 19, and 20. Monitoring wells 3872R, MW-04, MW-05, MW-06, SW-1, SW-5, OW-VO1R, OW-VO2R,
	should be made in the future to further compress this range. Monitoring wells 3872R, MW-04, MW-05, MW-06, SW-1, and SW-5 have not been surveyed. These wells should be surveyed prior to the next groundwater monitoring event.	and OW-V03R were surveyed on May 25, 2017 and OW-V08 was surveyed on June 6, 2017. The survey data was utilized in this report to calculate groundwater elevations and plot their locations. This is documented in section 2.4 of the monitoring report.
5	Section 4.2.7, Results of Stratification Testing, Pages 4-7 and 4-8 – This section describes the results of the stratification testing, notes that overall higher concentrations were found in the deeper samples compared to the shallow samples, and state that future samples will be collected from the deeper zone in these wells. Based on the data presented, EPA agrees with this approach for these wells.	Comment noted.
6	Section 6.3.2, Horizontal Gradients, Page 6-7 – This section refers to the water level evaluation for the WT HSU using the triangulated irregular network (TIN) approach, as depicted on Figure 30. However, the text should acknowledge that the direction of the horizontal gradient in triangles U, V, W, and X is to the southeast, indicating that groundwater in the area generally south of Burbank Boulevard is not likely being captured by the extraction wells.	The TIN values for those triangles that cross or are below the capture line will be acknowledged in future documents. In 2017, the groundwater contours and the TINs support that capture from the BOU extraction wells extends south to approximately West Allan and Wyoming Avenue in the central-western portion of the BOU and Chandler Boulevard in the eastern portion of the BOU. The horizontal gradients calculated for triangles EE, FF, GG, and HH support partial capture in those regions. The horizontal gradients in triangles KK and LL do not support capture in those regions.
7	Sections 6.4 (Chemicals of Concern Concentration Trends) and 6.5 (Capture Zone Summary) – These sections focus on the four identified well pairs south of Burbank Boulevard. Well 3872N is not part of the four well pairs, but is identified in the OSP as essential for capture zone evaluation, mass flux evaluation, and characterization. This well showed a significant increase in PCE from 612 µg/L (2015) to 1,890 µg/L (2016). Further monitoring is required to evaluate whether this constitutes a long-term increasing trend. Please include this well in the discussion in these sections, including a possible explanation for the increased PCE concentration.	The concentration of PCE in 2017 in monitoring well 3872N was 310 ug/l. This concentration is more consistent with historical concentrations. The trend analysis for PCE in this well indicates the concentrations in the well are stable. The 2016 concentration appears anomalous. As we do with all monitoring wells that are located south of the BOU extractions wells, we will continue to watch the concentraton trends in 3872N as more data is collected.
8	Table 2 – Second Quarter 2016 Groundwater Elevation Data – It appears that the table should consist of the first three pages only; the last three pages should be deleted as they appear to repeat content from the first three pages, but have incomplete screened interval values for several wells.	
9.1	Table 4 - Second Quarter 2016 Groundwater Well Maintenance Table The proposed maintenance items appear to capture most, but not all, of the primary maintenance related items noted in the field data sheets provided in Appendix B. For example, many of the wells were noted to have gasket seals that required replacement, which is included in Table 4. However, other problems such as missing bolts, missing locks, cracked surface pads, and standing water are not captured in Table 4. Please revise Table 4 to include all significant maintenance items.	The majority of the maintenanace items noted in 2016 field logs have been remedied and are documented in the 2017 report. In the 2017 report, the table (now Table 2) has been modified to include additional details based on the well inspection activities conducted in April 2017.
9.2	Table 4 should include a schedule to address the required repairs. Repairs should be completed in a timely manner. In addition, completed repairs can be documented in the "Prior Well Repairs" column to serve as an updated maintenance log.	Table 2 in the August 2017 report has been revised to include the prior repairs to serve as an updated maintenance log. The monitoring wells identified for repair in the 2017 report will be repaired prior to the April 2018 monitoring event.
9.3	Please identify the specific wells and approximate schedule for installation of dedicated low-flow sampling pumps in Table 4. The wells initially selected for low-flow pump installation were identified in the initial version of this table, as included in the LMC letter dated March 21, 2016 (Response to USEPA Comments - Annual Groundwater Monitoring Report Second Quarter 2015).	The installation of the new low-flow pumps is acknowledged in the 2017 report. Any new pump installations will be identifed and documented in future monitoring reports. New wells are being equiped with low flow pumps.
11	Appendix B — Field Data Sheets —The "final pump depth" should be populated for wells with dedicated pumps to meet the OSP requirement of groundwater sample collection depth. The depth can be included from known sources, such as Table 1 for low-flow pump intake depths, and/or confirmed in the field with a depth sounder. This is particularly important for wells sampled with portable low-flow pumps, such as SW-1 and SW-5, to verify that the pump is placed at the desirable depth.	The field data sheets included in the August 2017 report include the final pump intake depth of the newly installed low-flow pumps and the intake depth of any portable pumps used to collect the samples.

ANNUAL GROUNDWATER MONITORING REPORT SECOND QUARTER 2017 BURBANK OPERABLE UNIT BURBANK, CALIFORNIA

Prepared for: Lockheed Martin Corporation Corporate Energy, Environment, Safety & Health Burbank, California

Prepared by: Tetra Tech 3475 East Foothill Blvd Pasadena, California 91107

August 2017

Thomas J. Villeneuve (PE 53735) Project Manager

Robert Sabater

Deputy Project Manager

TABLE OF CONTENTS

Section		Page
Executive	Summary	viii
Section 1	Introduction	1-1
1.1	Historical Overview	1-1
1.2	Current Groundwater Monitoring Program Objectives	1-3
1.3	Report Organization	1-3
Section 2	Summary of Groundwater Monitoring	2-1
2.1	Groundwater Monitoring Well Replacement Evaluation	2-1
2.2	Installation of Groundwater Monitoring Wells at Former Plant B-1	2-1
2.3	Installation of Observation Wells OW-VO1R, OW-VO2R, OW-VO3R, at VO8 and Repair of OW-VO6	
2.4	Survey of Groundwater Monitoring wells	2-2
2.5	Monitoring Well Maintenance Activities	2-2
2.5.1	Low-Flow Pump Installation	2-2
2.5.2	Well Redevelopment	2-3
2.5.3	Groundwater Monitoring Well Inspections and Maintenance	2-4
2.6	Groundwater-Level Measurements.	2-4
2.7	Transducer Measurements	2-5
2.8	Groundwater Sampling	2-5
2.8.1	Low-Flow Sampling	2-5
2.8.2	Quality Assurance and Quality Control	2-5
2.9	Deviations from the Revised Operational Sampling Plan	2-6
Section 3	Groundwater Sampling Data Validation	3-7
Section 4	Groundwater Monitoring Results	4-1
4.1	Groundwater Elevations	4-1
4.1.1	Water Table Hydrostratigraphic Units	4-1
4.1.2	B-Zone Hydrostratigraphic Unit	4-2

4.1.3	Groundwater-Level Trends	4-2
4.2	Analytical Data Summary	4-3
4.2.1	Tetrachloroethene	4-4
4.2.2	Trichloroethene	4-4
4.2.3	1,2,3-Trichloropropane	4-5
4.2.4	1,4-Dioxane	4-5
4.2.5	Total Chromium	4-6
4.2.6	Hexavalent Chromium	4-6
Section 5 S	Statistical Trend Analyses	5-7
5.1	Statistical analysis Methods	5-7
5.1.1	Mann-Kendall Analysis	5-7
5.1.2	Linear Regression Analysis	5-7
5.2	Statistical Trend Categories	5-8
5.3	Results of Statistical Analyses.	5-9
5.3.1	Tetrachloroethene	5-10
5.3.2	Trichloroethene	5-10
5.3.3	1,2,3-Trichloropropane	5-11
5.3.4	1,4-Dioxane	5-13
5.3.5	Total Chromium	5-15
5.3.6	Hexavalent Chromium	5-16
5.4	Compounds of Concern Comparison	5-18
	Capture Zone Evaluation	
6.1	BOU Extraction System	6-1
6.2	Measured Groundwater Levels	6-2
6.3	Hydraulic Gradients	6-5
6.3.1	Vertical Gradients	6-5
6.3.2	Horizontal Gradients	6-6

6.4	Chemicals of Concern Concentration Trends	6-7
6.4.	Tetrachloroethene Concentration Trends	6-8
6.4.7	2 Trichloroethene Concentration Trends	6-8
6.4.3	1,2,3-Trichloropropane Concentration Trends	6-8
6.4.4	1,4-Dioxane Concentration Trends	6-8
6.4.5	Total Chromium Concentration Trends	6-9
6.4.0	Hexavalent Chromium Concentration Trends	6-9
6.5	Capture Zone Summary	6-9
Section 7	Conceptual Site Model Evaluation	7-1
Section 8	Summary and Conclusions	8-1
8.1	Groundwater Monitoring Well Maintenance	8-1
8.2	Groundwater Elevations and Gradients	8-1
8.3	Water Quality Results	8-2
8.4	Statistical Trend Analyses	8-4
8.5	Capture Zone Evaluation	8-5
8.6	Burbank Operable Unit Extraction system Performance	8-6
8.7	Recommendations	8-7
Section 9	References	9-1

APPENDICES

APPENDIX A	CONCEPTUAL SITE MODEL
APPENDIX B	FIELD DATA SHEETS
APPENDIX C	HYDROGRAPHS FOR SELECT MONITORING WELLS
APPENDIX D	DATA VALIDATION SUMMARY
APPENDIX E	TREND ANALYSIS
APPENDIX F	BOU EXTRACTION WELL PERFORMANCE
APPENDIX G	LABORATORY ANALYTICAL REPORTS

LIST OF TABLES

Table 1 Wells Scheduled for Low-Flow Sampling Table 2 Second Quarter 2017 Groundwater Well Maintenance Table Table 3 Second Quarter 2017 Groundwater Elevation Data Table 4 Second Quarter 2017 Sampling Matrix Second Quarter 2017 Groundwater Analytical Data Table 5 Table 6 Second Quarter 2017 Summary of Chemicals Detected Table 7 Summary of Mann-Kendall Test Results Table 8 Summary of Mann-Kendall and Linear Regression Results for Increasing Trend Wells Table 9 Noted Changes in Concentrations in Second Quarter 2017 Table 10 BOU Production Well Summary (May 2016 – April 2017) Table 11 BOU Mass Removal Summary May 2016 – April 2017 Table 12 Second Quarter 2017 Vertical Gradient Calculations

LIST OF FIGURES

Figure 1	Site Location Map
Figure 2	Monitoring Well Network
Figure 3	Second Quarter 2017 Water Table Elevation Map
Figure 4	Second Quarter 2017 B-Zone Potentiometric Surface Elevation Map
Figure 5	Annual Precipitation and Select BOU Hydrographs
Figure 6	Tetrachloroethene Concentrations in WT-HSU Wells, Second Quarter 2017
Figure 7	Tetrachloroethene Concentrations in B-HSU Wells, Second Quarter 2017
Figure 8	Trichloroethene Concentrations in WT-HSU Wells, Second Quarter 2017
Figure 9	Trichloroethene Concentrations in B-HSU Wells, Second Quarter 2017
Figure 10	1,2,3-Trichloropropane Concentrations in WT-HSU Wells, Second Quarter 2017
Figure 11	1,2,3-Trichloropropane Concentrations in B-HSU Wells, Second Quarter 2017
Figure 12	1.4-Dioxane Concentrations in WT-HSU Wells, Second Ouarter 2017

- Figure 13 1,4-Dioxane Concentrations in B-HSU Wells, Second Quarter 2017
- Figure 14 Total Chromium Concentrations in WT-HSU Wells, Second Quarter 2017
- Figure 15 Total Chromium Concentrations in B-HSU Wells, Second Quarter 2017
- Figure 16 Hexavalent Chromium Concentrations in WT-HSU Wells, Second Quarter 2017
- Figure 17 Hexavalent Chromium Concentrations in B-HSU Wells, Second Quarter 2017
- Figure 18 Tetrachloroethene Concentration Trends in WT-HSU Wells, 1996 2017
- Figure 19 Tetrachloroethene Concentration Trends in B-HSU Wells, 1996 2017
- Figure 20 Trichloroethene Concentration Trends in WT-HSU Wells, 1996 2017
- Figure 21 Trichloroethene Concentration Trends in B-HSU Wells, 1996 2017
- Figure 22 1,2,3-Trichloropropane Concentration Trends in WT-HSU Wells, 1996 2017
- Figure 23 1,2,3-Trichloropropane Concentration Trends in B-HSU Wells, 1996 2017
- Figure 24 1,4-Dioxane Concentration Trends in WT-HSU Wells, 1996 2017
- Figure 25 1,4-Dioxane Concentration Trends in B-HSU Wells, 1996 2017
- Figure 26 Total Chromium Concentration Trends in WT-HSU Wells, 1996 2017
- Figure 27 Total Chromium Concentration Trends in B-HSU Wells, 1996 2017
- Figure 28 Hexavalent Chromium Concentration Trends in WT-HSU Wells, 1996 2017
- Figure 29 Hexavalent Chromium Concentration Trends in B-HSU Wells, 1996 2017
- Figure 30 BOU Groundwater Production and Transducer Data from Select Monitoring Wells
- Figure 31 Second Quarter 2017 Hydraulic Gradients in the Water Table Hydrostratigraphic Unit
- Figure 32 Second Quarter 2017 Hydraulic Gradients in the B-Zone Hydrostratigraphic Unit

ACRONYMS

bgs below ground surface

B HSU B-zone hydrostratigraphic unit

BOU Burbank Operable Unit

btoc below top of casing

Caltrans California Department of Transportation

COV coefficient of variation (Mann-Kendall analysis)

DO dissolved oxygen

DQO data quality objective

DWNL California Department of Public Health drinking water notification

level

EC electrical conductivity

gpm gallons per minute

HSU hydrostratigraphic unit

LARWQCB California Regional Water Quality Control Board, Los Angeles

Region

LCS laboratory control sample

LCSD laboratory control sample duplicate

Lockheed Martin Corporation

MAROS Monitoring and Remediation Optimization System

MCL California Department of Public Health maximum contaminant level

MS matrix spike

MSD matrix spike duplicate

MSL mean sea level

MTA Metropolitan Transportation Agency

μg/kg micrograms per kilogram

μg/L micrograms per liter

μg/L/yr micrograms per liter per year

mg/kg milligrams per kilogram

NA not applicable

ND non-detect

ORP oxidation-reduction potential

OSP Revised Operational Sampling Plan

PCE tetrachloroethene

%/yr percent per year

PVC polyvinyl chloride

QA quality assurance

QC quality control

RPD relative percent difference

S Mann-Kendall statistic

TCE trichloroethene

TD total depth

TIN triangulated irregular network

1,2,3-TCP 1,2,3-trichloropropane

USEPA United States Environmental Protection Agency

VOCs volatile organic compounds

WT water table

WT HSUs water table hydrostratigraphic units

EXECUTIVE SUMMARY

The Burbank Operable Unit (BOU) is part of the North Hollywood National Priorities List site in the San Fernando Valley. Lockheed Martin monitors groundwater within the BOU to comply with the provisions of the United States Environmental Protection Agency (USEPA) Consent Decree (Docket No. 91-4527-MRP [Tx]) filed on March 25, 1992, and California Regional Water Quality Control Board, Los Angeles Region (LARWQCB) Cleanup and Abatement Order No. 87-161, dated December 17, 1987.

The Second Quarter 2017 BOU groundwater monitoring event was implemented in accordance with the 2017 Revised OSP; (Tetra Tech, 2017b). The intent of the program is to provide the data necessary to evaluate groundwater conditions at the BOU, including the near-field and far-field effects of the extraction well field pump and treat system.

Groundwater Monitoring Well Maintenance

In preparation for the second quarter 2017 groundwater monitoring event, several monitoring well maintenance activities were completed in March and April, 2017:

- The dedicated high-volume pumps and associated piping were removed from 52 monitoring wells and replaced with dedicated low-flow pumps.
- A total of 9 groundwater monitoring wells were redeveloped or cleaned out. This includes A-1-CW07, B-5-CW03, B-6-CW16, C-1-CW05, C-1-CW06, 3852L, 3852M, and 4949C.
- Well maintenance activities were completed at 70 of the BOU monitoring wells. This included replacement of well lid gaskets, adding or replacing well tags, re-tapping the existing bolt holes, and replacing the standard six-point bolts with five-point bolts.
- Five new groundwater monitoring wells (B-1-CW30 through B-1-CW34) were constructed in October and November 2016 within the former Plant B-1 facility, as described in the Supplemental Site Investigation Report, Former Lockheed Martin Plant B-1, Burbank, California (Tetra Tech, 2017a).
- Three observation wells (OW-VO1R, OW-VO2R, and OW-VO3R) were installed to replace existing wells, one new observation well (OW-VO8) was installed, and one observation well (OW-VO6) was repaired within the BOU between February and April 2017, in accordance

with Work Plan – Well Installation and Replacement, Burbank Operable Unit, Burbank, California (Tetra Tech, 2016d).

Groundwater Elevations and Gradients

During the second quarter 2017 groundwater monitoring event, groundwater levels were measured in 98 monitoring wells. Based on those measurements, the local shallow groundwater flow direction was predominantly southeasterly in the northwest portion of the BOU and southerly in the northeast portion of the BOU, and it converged in a flow direction toward the cones of depression created by the operation of the BOU extraction wells. The second quarter 2017 groundwater elevation data indicate that the dominant direction of shallow groundwater flow immediately south of the BOU extraction wells was reversed from its natural southeasterly flow direction, to a northerly flow direction in response to the extraction well pumping (northeasterly flow direction in the western portion of the BOU). These groundwater trends extend to Victory Boulevard in the western portion of the BOU, West Allan and Wyoming Avenue in the central-western portion of the BOU, and to Chandler Boulevard in the eastern portion of the BOU. Beyond these boundaries the groundwater flow direction shows influence from pumping, but ultimately reverts to its natural southeasterly direction.

The local groundwater flow direction in the B HSU during the second quarter 2017 groundwater monitoring event was generally the same as the local groundwater flow direction observed in the WT HSUs with a couple exceptions. The groundwater flow does not converge on BOU extraction wells VO1 through VO7 as it does in the WT HSUs but you do see a groundwater depression centered on BOU extraction well VO8.

Groundwater-elevation data for selected monitoring wells were used to evaluate horizontal hydraulic gradients (direction and magnitude) within the BOU using a TIN. This horizontal hydraulic gradient analysis was completed using data collected in the April 2017 gauging event and a TIN defined by monitoring wells distributed in the WT HSU. The TIN map prepared for the WT HSUs shows that the hydraulic gradient in the area immediately to the south of the groundwater extraction well system is directly influenced by pumping, showing very steep gradients and in some instances a reversal from the regional trend and indicating very strong hydraulic capture. Farther to the south the direction of groundwater flow appears to be affected by extraction, but the hydraulic

gradient is not as steep. The degree of hydraulic capture dissipates and may be absent completely south of most of the BOU southern boundary.

Water Quality Results

Sixty-five groundwater monitoring wells were sampled during the Second Quarter 2017 monitoring event, 42 completed in the WT HSU and 23 completed in the B HSU. The samples collected were tested for VOCs, 1,2,3-TCP, 1,4-dioxane, total chromium, and hexavalent chromium. Twenty-one organic and two inorganic analytes were detected. Isoconcentration maps were prepared for six primary chemicals of concern: PCE, TCE, 1,2,3-TCP, 1,4-dioxane, total chromium, and hexavalent chromium. Results for the primary chemicals of concern were as follows:

- PCE was detected in 59 of the primary (non-duplicate) samples, 37 of which exceeded the MCL (5 μg/L). Concentrations in the WT HSUs ranged from <0.20 μg/L to 630 μg/L (monitoring well B-1-CW33). Concentrations exceeding the MCL extended over much of the BOU with the highest concentrations detected at the northwest corner of the former Plant B-1 and trending southeast beneath former Plant B-1 and extending to Magnolia Boulevard. Concentrations in the B HSU ranged from <0.20 μg/L to 48 μg/L (monitoring well 3850R). Concentrations exceeding the MCL were not as widely distributed as in the shallower HSUs, with the highest concentrations detected adjacent to the extraction wells on Vanowen Street.
- TCE was detected in 53 of the samples, 35 of which exceeded the MCL. The detected concentrations ranged from 0.29 μg/L (monitoring well C-1-CW05) to 240 μg/L (monitoring wells 3872L and B-1-CW13). Concentrations exceeding the MCL extended over much of the BOU with the highest concentrations detected downgradient of former Building 85 and extending to Magnolia Boulevard. Concentrations in the B HSU ranged from <0.29 μg/L to 32 μg/L (monitoring well 3862E). Concentrations exceeding the MCL were not as widely distributed as in the shallower HSUs, with the highest concentrations detected south of the BOU. Additionally, elevated concentrations were detected in the southern portion of the former Plant B-6 area and continuing southeast beneath former Building 85 and extending to Vanowen Street.
- 1,2,3-TCP was detected in 31 of the samples, 30 of which exceeded the DWNL (0.005 μg/L). Concentrations in the WT HSUs ranged from <0.0025 μg/L to 87 μg/L (monitoring well A-1-CW08). Concentrations exceeding the DWNL extended over much of the BOU with the highest concentrations detected down gradient of the former Plant B-6 area, north of former Building 85, and along Vanowen Street. Concentrations in the B HSU ranged from <0.0025 μg/L to 0.29 μg/L (monitoring well 3852H). Concentrations exceeding the DWNL were not as widely distributed as in the WT HSUs, with the highest concentrations detected near Burbank Boulevard.</p>
- 1,4-Dioxane was detected in 11 of the samples, 11 of which exceeded the DWNL (1.0 μg/L). Concentrations in the WT HSUs ranged from <0.28 μg/L to 3.7 μg/L (monitoring well A-1-CW09). Concentrations exceeding the DWNL are spare, but spread out through the BOU

specifically at former Plants A-1-S, B-1, and C-1 as well as downgradient of Former Building 371. Concentrations in the B HSU ranged from <0.28 μ g/L to 2.3 μ g/L (monitoring well A-1-CW05). Similar to the WT HSUs, concentrations exceeding the DWNL extended around the former Plant B-6 and A-1 areas of the BOU, with the highest concentrations detected at the former Plant A-1-S.

- Total chromium was detected in 65 of the samples, 2 of which exceeded the MCL (50 μg/L). Concentrations in the WT HSUs ranged from 1.05 J (A-1-CW03R) to 82.9 μg/L (monitoring well C-1-CW07). One sample from the eastern portion of the BOU near the former Weber Aircraft facility and one sample near former Plant C-1 had concentrations detected exceeding the MCL. Concentrations in the B HSU ranged from 0.600 μg/L (monitoring well C-1-CW02 to 7.85 μg/L (3872S). No concentrations were detected that exceeded the MCL.
- Hexavalent Chromium was detected in 58 samples, 5 of which exceeded the MCL ($10 \mu g/L$). Concentrations in the WT HSUs range from $0.010 \mu g/L \mu g/L$ (monitoring well A-1-CW03R) to $20 \mu g/L$ (monitoring well B-1-CW17). Four of the 5 samples that exceeded the MCL are located in the central to southern portions of former Plant B-1. The other sample that exceeded the MCL is located immediately outside of the northeastern boundary of the BOU. Concentrations in the B HSU ranged from $0.021 \mu g/L$ (monitoring well 3850R) to $7.9 \mu g/L$ (monitoring well 3872S). No concentrations were detected above the MCL.

Statistical Trend Analyses

Statistical trend analyses were conducted using chemical data from the 65 monitoring wells sampled during the second quarter 2017 BOU groundwater monitoring event. The analysis was performed for the six primary chemicals of concern: PCE, TCE, 1,2,3-TCP, 1,4-dioxane, total chromium, and hexavalent chromium. Therefore, a total of 390 trends were tested. The MAROS, developed by the Air Force Center for Environmental Excellence (Air Force Center for Environmental Excellence, 2006), was used for the analyses. The MAROS is a statistical database application developed to assist with groundwater quality data trend analysis and long-term monitoring optimization at contaminated groundwater sites. BOU data from first quarter 1996 to second quarter 2017 were analyzed.

Statistical analysis indicated that for various reasons (insufficient data, no statistical trend, or no detections), a significant trend could not be determined for 43% of the datasets that were tested, particularly for 1,2,3-TCP, 1,4-dioxane, total chromium, and hexavalent chromium. Statistical analysis also indicated that 29% of the datasets had decreasing or probably decreasing concentration trends, 17% were stable, and 11% had increasing concentration trends. The trend analysis showed that those trends that were significant were generally small. Over half of the decreasing concentrations trends were for TCE and PCE concentrations, scattered throughout the BOU; about

half of the stable trends were for total chromium and hexavalent chromium concentrations; and 1,2,3-TCP and 1,4-dioxane concentrations upgradient of the BOU extraction wells in the former Plant B-6 area are generally increasing. With the exception of the increasing 1,2,3-TCP trend in monitoring wells 3852M and 3872L, all monitoring wells with increasing trends for one or more of the compounds of concern are upgradient of the BOU extraction wells or within the area captured by the extraction wells. The magnitude of the changes in concentration of 1,2,3-TCP in monitoring wells 3852M and 3872L are small (0.016 μ g/L/yr and 0.006 μ g/L/yr, respectively).

Capture Zone Evaluation

Several lines of evidence were examined to evaluate the extent of capture resulting from the BOU extraction system and assess the effectiveness of the system in hydraulically containing the various chemical of concern plumes within the BOU. The results of the evaluation were as follows:

- The operational data from the extraction system indicated that groundwater is being extracted and that VOC mass is still being removed from the aquifer.
- Vertical hydraulic gradients indicated that pumping from the WT HSUs is inducing or increasing upward vertical gradients between the B HSU and the WT HSUs.
- The WT-HSU potentiometric map developed from the groundwater level measurements supports that the BOU extraction wells capture groundwater across most of the BOU north of Vanowen Street and south of the extraction wells toward Chandler Boulevard and Wyoming and West Allan Avenue.
- The TIN was developed from the same data as the potentiometric maps. The TIN for the WT HSUs supports that capture from the BOU extraction wells extends south to approximately Wyoming and West Allan Avenue in the central-western portion of the BOU and Chandler in the eastern portion of the BOU.
- The trend analysis for the eight downgradient performance monitoring wells yielded the following results: insufficient data (none), decreasing (16 results), increasing (2 results), no trend (14 results), probably decreasing (3 results), probably increasing (none), stable (8 results), and ND (5 results). The two increasing trends (1,2,3-TCP in monitoring wells 3852M and 3872L) had a limited data set (at least five analyses from each well from 2007 to 2017) and the magnitude of the change was small.

The lines of evidence suggest that the BOU extraction system exerts hydraulic control on the plumes originating from the BOU and it extends to Wyoming and West Allan Avenue in the central-western portion of the BOU and Chandler Boulevard in the eastern portion of the BOU, and the extraction system inhibits the migration of site-related chemicals of concern.

Burbank Operable Unit Extraction System Performance

Based on the data from the BOU monthly operation reports for the current reporting period (May 2016 through April 2017), an estimated 3,129,230,274 gallons of groundwater was extracted (average extraction rate of 5,937 gallons per minute) and approximately 3,697 pounds of volatile organic compounds (VOCs) were treated by the Burbank Operable Unit (BOU) treatment system. Multiple lines of evidence suggest that at current extraction rates the BOU extraction system exerts hydraulic control in the WT HSUs that extends to West Allan and Wyoming Avenue in the central-western portion of the BOU and Chandler Boulevard in the eastern portion of the BOU, and inhibits the migration of site-related chemicals of concern.

The upward hydraulic gradient (potentially pulling contaminant mass from the B HSU to the WT HSUs) exhibited in much of the southern portion of the BOU inhibits the migration of site-related chemicals of concern, where present, in the deeper HSU. The data also indicates that groundwater in the B HSU proximal to BOU extraction well VO8 is being captured by the pumping at this well.

While the BOU extraction system produces groundwater that is treated and deliver for consumption, water quality data from the treatment plant was not presented or reviewed as part of this report and therefore the second objective cannot be discussed as part of this report.

SECTION 1 INTRODUCTION

On behalf of Lockheed Martin Corporation (Lockheed Martin), Tetra Tech has prepared this report to present the results of the ongoing annual groundwater-quality monitoring for the Burbank Operable Unit (BOU) monitoring well field. The BOU is located in Burbank, California (Figure 1).

The BOU is part of the North Hollywood National Priorities List site in the San Fernando Valley. Lockheed Martin monitors groundwater within the BOU to comply with the provisions of the United States Environmental Protection Agency (USEPA) Consent Decree (Docket No. 91-4527-MRP [Tx]) filed on March 25, 1992, and California Regional Water Quality Control Board, Los Angeles Region (LARWQCB) Cleanup and Abatement Order No. 87-161, dated December 17, 1987.

The second quarter 2017 groundwater monitoring activities were conducted in accordance with the *Revised Operational Sampling Plan* (OSP; Tetra Tech, 2017b), which describe the objectives, decision process, analytical methods, and procedures for sampling the groundwater monitoring well network. The purposes of the BOU groundwater monitoring program are to monitor the chemical plume conditions and the performance of hydraulic capture by the ongoing groundwater treatment system. The site background and current conceptual site model for the BOU are presented in Appendix A.

1.1 HISTORICAL OVERVIEW

Groundwater monitoring was first initiated at the BOU in 1986. Since the late 1990s, the Groundwater Monitoring Plan has been implemented in accordance with the 1997 *Draft Phase 2 Operational Sampling Plan* (HSI Geotrans, 1997) and with modifications requested by the regulatory community. The Groundwater Monitoring Plan has evolved to incorporate additional requests by the USEPA and the LARWQCB. The following list presents the modifications made to the Groundwater Monitoring Plan.

 June 28, 2001 – USEPA Method 8260B for volatile organic compounds (VOCs), including Freon-113 and methyl-tert-butyl ether, replaced USEPA Methods 8010 and 8020 for halogenated volatile organic and purgeable aromatic compounds, respectively. LARWQCB directed analysis of hexavalent chromium by USEPA Method 218.6 (LARWQCB, 2001).

- March 28, 2002 Analysis for 1,2,3-trichloropropane (1,2,3-TCP) was added to the Groundwater Monitoring Plan (LARWQCB, 2002a).
- November 18, 2002 Monitoring wells B-6-CW01, B-6-CW02, B-6-CW03, B-6-CW03R, and B-6-CW16 were added to the Groundwater Monitoring Plan to be sampled for VOCs and heavy metals, and 1,2,3-TCP was to be included in the discussion and analysis of chemicals of concern in the groundwater monitoring reports (LARWQCB, 2002b).
- December 16, 2003 A LARWQCB letter required Lockheed Martin to sample for emergent chemicals (perchlorate, n-nitrosodimethylamine, 1,4-dioxane) in addition to 1,2,3-TCP and hexavalent chromium as part of the BOU Groundwater Monitoring Plan, and to prepare a separate technical report summarizing the results (LARWQCB, 2003).
- September 2004 The USEPA Five-Year Review Report for Burbank Operable Unit, San Fernando Valley (Area 1) Superfund Site, Los Angeles County, California required that Lockheed Martin continue to "monitor upgradient wells for emerging contaminants" and "evaluate the spatial distribution and concentration of emergent contaminants with respect to the BOU" (USEPA, 2004).
- December 8, 2004 An LARWQCB letter to Lockheed Martin provided comments on the *Technical Report on Emergent Chemicals within the Burbank Operable Unit, Burbank, California* and reduced emergent chemical sampling to specific wells (LARWQCB, 2004).
- April 27, 2005 A Lockheed Martin letter to USEPA, with a copy to LARWQCB, requested
 a change in BOU Groundwater Monitoring Plan sampling schedule from first and third
 quarter to second and fourth quarter (Lockheed Martin, 2005).
- October 20, 2005 A USEPA letter to General Electric requested sampling of eight monitoring wells at the former Pacific Airmotive Corporation site (USEPA, 2005). Due to a settlement agreement between Lockheed Martin and Pacific Airmotive Corporation (an indirect wholly owned subsidiary of General Electric), Lockheed Martin is responsible for monitoring and reporting for these wells. The Pacific Airmotive Corporation groundwater monitoring event is now conducted concurrently with the BOU Groundwater Monitoring Plan on a semiannual basis.
- February 10, 2006 A USEPA letter to Lockheed Martin requested sampling of nine BOU monitoring wells in the vicinity of former Plants B-5 and C-1 (USEPA, 2006a).
- November 3, 2006 A USEPA letter to Lockheed Martin concurred with proposed changes to sampling frequency for specific constituents (USEPA, 2006b; USEPA, 2007).
- October 22, 2010 A USEPA letter to Lockheed Martin requested monitoring of 14 BOU wells as part of the North Hollywood Operable Unit Baseline Sampling Program (USEPA, 2010b).
- November 3, 2010 A USEPA email to Lockheed Martin and General Electric approved their request to combine Pacific Airmotive Corporation and BOU semiannual reports (USEPA, 2010c).
- February 25, 2011 A USEPA letter requested Lockheed Martin and other potentially responsible parties within the San Fernando Valley to change sampling schedules to April

and October in order to coincide with basin-wide remedial investigation sampling events (USEPA, 2011).

- April, 2013 A comprehensive sampling event was performed at the BOU (Arcadis, 2013). The goal was to collect contemporaneous data for emerging compounds with detection limits for the BOU consistent with the larger San Fernando Valley Superfund site.
- March 26, 2014 An OSP was prepared for the BOU and submitted to the USEPA (Arcadis, 2014).
- February 16, 2016 A monitoring well replacement evaluation was prepared and submitted to the USEPA (Tetra Tech, 2016a). This document detailed the evaluation for the replacement of three monitoring wells that were destroyed in 2015 due to California Department of Transportation (Caltrans) and Metrolink construction activities.
- March 21, 2016 A Sampling and Analysis Plan Addendum was prepared for the BOU to describe procedures for low-flow sampling and submitted to the USEPA (Tetra Tech, 2016c).
- March 31, 2017 the OSP was updated and a revised document was submitted to the US EPA (Tetra Tech 2017).

1.2 CURRENT GROUNDWATER MONITORING PROGRAM OBJECTIVES

The 2017 OSP (Tetra Tech, 2017b) presents a groundwater monitoring program that provides the data necessary to evaluate groundwater conditions at the BOU, including the near-field and far-field effects of the BOU extraction well field. The four primary objectives of the long-term groundwater monitoring program are to accomplish the following:

- Verify containment of the 5 micrograms per liter (μ g/L) tetrachloroethene (PCE) and 100 μ g/L trichloroethene (TCE) plumes in groundwater
- Collect sufficient data to evaluate groundwater extraction system performance with respect to mass removal
- Characterize the nature and extent of emerging compounds
- Characterize the nature and extent of the primary chemicals of concern (PCE and TCE) to refine and update the conceptual site model

1.3 REPORT ORGANIZATION

This report is organized into the following sections:

• <u>Section 1 – Introduction</u>: This section presents the purpose of the BOU Groundwater Monitoring Plan and provides a brief description of the regulatory history at the BOU.

- <u>Section 2 Summary of Groundwater Monitoring</u>: This section provides a description of groundwater monitoring, measurements, and quality assurance and quality control procedures.
- <u>Section 3 Groundwater Sampling Data Validation</u>: This section summarizes compliance with the data quality objectives and requirements.
- <u>Section 4 Groundwater Monitoring Results</u>: This section presents the analytical results of the groundwater monitoring activities.
- <u>Section 5 Statistical Trend Analyses</u>: This section assesses statistical trends in site chemicals of concern over time.
- <u>Section 6 Capture Zone Evaluation</u>: This section provides an evaluation of the groundwater treatment system's effectiveness in maintaining hydraulic capture.
- <u>Section 7 Summary and Conclusions</u>: This section presents analyses and conclusions with recommendations, where appropriate, for additional or reduced future monitoring.
- <u>Section 8 References</u>: This section provides a list of documents referenced in this report.

Tables and figures are presented at the conclusion of the report, and in the order in which they are introduced in the text. With one exception, the appendices are presented at the conclusion of the report, and in the order in which they are introduced in the text. The laboratory reports appear in Appendix G.

SECTION 2 SUMMARY OF GROUNDWATER MONITORING

This section summarizes the second quarter 2017 groundwater monitoring and quality assurance (QA) and quality control (QC) procedures conducted at the BOU. The results from this monitoring event are discussed in Section 4. The BOU monitoring well network is shown on Figure 2.

2.1 GROUNDWATER MONITORING WELL REPLACEMENT EVALUATION

In 2016, Lockheed Martin prepared a monitoring well replacement evaluation for the replacement of monitoring wells 3860H, 4959J, and 4959H. Nearby facility monitoring wells SW-1 and SW-5 were selected to replace former monitoring wells 4959H and 4959J, respectively, and these monitoring wells were sampled as part of the current groundwater monitoring event (Tetra Tech, 2016d). A new monitoring well (to be designated as 3860HR) will be installed in the vicinity of former monitoring well 3860H; this work is anticipated to take place in summer 2017.

2.2 INSTALLATION OF GROUNDWATER MONITORING WELLS AT FORMER PLANT B-1

Between October and November 2016, five new groundwater monitoring wells (B-1-CW30 through B-1-CW34) were constructed within the former Plant B-1 facility, as described in the *Supplemental Site Investigation Report, Former Lockheed Martin Plant B-1, Burbank, California* (Tetra Tech, 2017a). The locations of the groundwater monitoring wells are shown on Figure 2. As required by the LARWQCB, the groundwater monitoring wells will be monitored quarterly for one year for total chromium, hexavalent chromium, volatile organic compounds, and emerging contaminants. After one year, the wells will be included in the routine BOU groundwater monitoring program and the constituents to be tested for and the frequency of groundwater monitoring will be reevaluated. Because these wells were sampled concurrently with the annual BOU groundwater monitoring activities, the groundwater elevations and analytical data from these wells are included in this report.

2.3 INSTALLATION OF OBSERVATION WELLS OW-VO1R, OW-VO2R, OW-VO3R, AND OW-VO8 AND REPAIR OF OW-VO6

From February through early April 2017, three observation wells (OW-VO1R, OW-VO2R, and OW-VO3R) were installed to replace existing wells, one new observation well (OW-VO8) was installed, and one observation well (OW-VO6) was repaired within the BOU in accordance with *Work Plan – Well Installation and Replacement, Burbank Operable Unit, Burbank, California (Tetra Tech, 2016d)*. The location of these wells are presented on Figure 2.

- Observation wells OW-VO2R and OW-VO3R were installed and the packer within OW-VO6 was replaced because the vertical differences in hydraulic head between the water table aquifer and deeper units measured in these wells appear to be inconsistent with expected hydraulic conditions within the groundwater monitoring network.
- Observation well OW-VO1 was originally to be rehabilitated; however, because of the well condition a new well OW-V01R was installed and OW-VO1 was abandoned.
- A new observation well was installed adjacent to extraction VO-8. The purpose OW-VO8 was evaluate the influence of VO-8 within the water table and deeper zone.

A report presenting the details of the well installations, abandonments, and repairs will be submitted under separate cover and will include the installation of replacement well 3860H-R (Section 2.1).

2.4 SURVEY OF GROUNDWATER MONITORING WELLS

On May 25 and June 6, 2017, Lockheed Martin surveyed the new observation well locations as well as the six monitoring well locations (3872R, MW-04, MW-05, MW-06, SW-1, and SW-5) identified during the April 2016 sampling event as requiring resurveying. The survey data was used to calculate groundwater elevation data at these well and will be incorporated into the EPA's database.

2.5 MONITORING WELL MAINTENANCE ACTIVITIES

2.5.1 Low-Flow Pump Installation

In November 2016, *Revised Technical Memorandum – Low-Flow Pump Intake Selection, Burbank Operable Unit, Burbank California* (Tetra Tech, 2016e) was prepared to document the transition from a high-volume to low-volume groundwater sampling protocol in 52 monitoring wells that are a part of the BOU. These 52 monitoring wells are identified on Table 1.

In March 2017, the high-flow pumps were removed in all 52 monitoring wells. However, low-flow pumps were only installed in 48 of the 52 monitoring wells. No pumps were install in the remaining

four wells (B-1-CW29, B-5-CW03, B-6-CW17, and C-1-CW06) because these wells were dry at the time of installation. All high-flow pumps and the associated piping removed from the 52 wells were pressure washed and placed in bins for offsite disposal. Based on information provided by the Off-Site Rule (OSR) contact for USEPA Region IX, the pumps and piping will be taken to Clean Harbors in Buttonwillow, California, which is on the USEPA's approved list of disposal facilities for CERCLA waste.

2.5.2 Well Redevelopment

Prior to the installation of the dedicated low-flow pumps, the 52 monitoring wells shown on Table 1 were gauged to determine if debris had accumulated in the monitoring wells. Based on the gauging results (shown on Table 1), 9 of the 52 monitoring wells had accumulated debris that completely filled the sumps (most monitoring wells have 5-feet-long sumps underlying the screened intervals) and partially obstructed the screens. The development results are described below:

- A-1-CW07: The well construction details for the well notes a total depth (TD) of 229 feet bgs. The well was noted to be dry with an initial measured TD of 214.30 feet bgs. A magnet was used to clean out any metallic debris that may have accumulated at the bottom of the well. After pulling up approximately one third of a 5-gallon bucket of debris, TD was remeasured at 210.52 feet bgs. Based on the condition of the well casing, the well was likely collapsing. Further evaluation for a replacement for A-1-CW07 is recommended.
- B-5-CW03: The well was noted to be dry during the redevelopment activities with a measured TD of 228.93 feet bgs. Alternating the use of an overshot tool to stir up the debris at the bottom of the well and a magnet was used to pull up rust and metal fragments. Overall, less than 0.25 feet of metallic debris was pulled from the bottom of the well. Approximately 2 feet of debris remains in the well.
- B-6-CW16: The well was redeveloped by bailing, swabbing with a surge block, bailing again, and pumping until water quality parameters stabilized. All debris within the screened section of the well casing appears to have been removed. Approximately 6.5 feet of sediment was removed with 2.5 feet of debris remaining in the sump.
- C-1-CW03: The well was redeveloped by bailing, swabbing with a surge block, bailing again, and pumping until water quality parameters stabilized. All debris within the screened section of the well casing appears to have been removed. Approximately 3 feet of sediment was removed with less than 0.5 feet of debris remaining in the sump.
- C-1-CW05: The well was redeveloped by bailing, swabbing with a surge block, bailing again, and pumping until water quality parameters stabilized. All debris within the screened section of the well casing appears to have been removed. Approximately 1 foot of sediment was removed with 1 foot of debris remaining in the sump.

- C-1-CW06: The well was noted to be dry during the redevelopment activities with a measured TD of 247.80 feet bgs. Alternating the use of an overshot tool to stir up the debris at the bottom of the well and a magnet was used to pull up metallic debris. No metallic debris was recovered during the use of the magnet.
- 3852L: The well was redeveloped by bailing, swabbing with a surge block, bailing again, and pumping until water quality parameters stabilized. All debris within the screened section of the well casing appears to have been removed. Approximately 2 feet of sediment was removed.
- 3852M: The well was redeveloped by bailing, swabbing with a surge block, bailing again, and pumping until water quality parameters stabilized. All debris within the screened section of the well casing appears to have been removed. Approximately 1.5 feet of sediment was removed with 2.5 feet of debris remaining in the sump.
- 4949C: The well was redeveloped by bailing, swabbing with a surge block, bailing again, and pumping until water quality parameters stabilized. All debris within the screened section of the well casing appears to have been removed. Approximately 9 feet of sediment was removed.

2.5.3 Groundwater Monitoring Well Inspections and Maintenance

The conditions of the monitoring wells that were scheduled for water level gauging or groundwater sampling were assessed during the monitoring period. The field inspection forms are included in Appendix B.

The maintenance items previously identified in 2016 were also completed in 70 of the BOU monitoring wells during the reporting period. These items included replacement of well lid gaskets, adding or replacing well tags, re-tapping the existing bolt holes, and replacing the standard six-point bolts with five-point bolts.

All 105 of the wells included in the April monitoring event were inspected as part of the monitoring event. Field logs documenting the condition of each well and the recommended maintenance are included in Appendix B. A summary of the well inspections and maintenance conducted during this reporting period are provided in Table 2.

2.6 GROUNDWATER-LEVEL MEASUREMENTS.

Groundwater levels were measured in 105 BOU monitoring wells in April 2017. Groundwater-level measurements and calculated elevation data for the second quarter of 2017 are summarized in Table 3. The procedures utilized to measure water levels are described in the *Revised Operational*

Sampling Plan (OSP; Arcadis, 2014). The field data sheets compiled during the elevation measurements are included in Appendix B.

2.7 TRANSDUCER MEASUREMENTS

Transducers are installed in 23 monitoring wells selected to collect continuous water level data (at 15-minute increments) throughout the year. During monitoring well sounding activities, data recorded by data-logging pressure transducers at the selected groundwater monitoring wells were downloaded and analyzed for the purposes of evaluating the downgradient capture boundary. Transducer data were adjusted with barometric pressure measurements and confirmed with field measurements collected with a hand-held water level meter at the time data were downloaded. The transducer data are presented in Appendix C.

2.8 GROUNDWATER SAMPLING

2.8.1 Low-Flow Sampling

A total of 74 monitoring wells were identified for sampling during the second quarter 2017 groundwater monitoring event using a low-flow sampling methodology in accordance with the procedures specified in the revised OSP (Tetra Tech, 2017b),. This includes five new groundwater monitoring wells installed in October and November 2016 at the former Plant B-1 under the direction of the LARWQCB. These wells were sampled concurrently with the OSP monitoring wells.

Groundwater samples were successfully collected from 65 monitoring wells during the second quarter 2017 groundwater monitoring event with 42 completed in the WT HSU and 23 completed in the B HSU. The remaining nine wells (3850M, 3860J, 4949C, A-1-CW07, B-1-CW29, B-5-CW03, B-6-CW17, C-1-CW06, and MW-01) were not sampled because the wells were either dry or did not have enough water for the pumps to draw a sampling. The list of monitoring wells sampled and the analytical program are presented in Table 4. Field purge logs are presented in Appendix B.

2.8.2 Quality Assurance and Quality Control

In accordance with the OSP's QA/QC guidance, duplicate samples, trip blanks, and equipment blanks were collected for each applicable analytical method to assess reproducibility and whether cross-contamination of the environmental samples occurred during sampling and handling or while

in transit. Duplicate samples were collected at a frequency of 10% to assess sampling and analytical precision. Trip blanks for VOC and 1,2,3-TCP analyses were provided by the laboratory and placed inside each cooler containing groundwater samples to be analyzed for VOCs and/or 1,2,3-TCP.

Because dedicated low-flow pumps were used, no equipment blanks were collected as part of the second quarter 2017 sampling activities. The data validation findings are discussed in Section 3.

2.9 DEVIATIONS FROM THE REVISED OPERATIONAL SAMPLING PLAN

There were some deviations from the OSP and SAP Addendum, as follows:

- Monitoring well 3850S was not gauged because the monitoring well vault was unable to be
 opened. The monitoring well has been added to the maintenance list and the well vault will
 be serviced or removed prior to the next sampling event.
- Monitoring wells A-1-CW07, B-1-CW29, B-5-CW03, B-6-CW17, C-1-CW06 and MW-01 were dry during the monitoring event. Therefore, the monitoring wells were not sampled.
- Monitoring well 3850M, 3860J, and 4949C had insufficient water to sample.

SECTION 3 GROUNDWATER SAMPLING DATA VALIDATION

The objective of data validation is to identify any questionable or invalid laboratory measurements. Data validation entails a review of the QC data and the raw data or summary data to verify that the laboratory was operating within required limits and that the analytical results were correctly transcribed from the instrument readouts. In addition, data validation indicates which, if any, environmental samples were related to out-of-control QC samples.

The data were validated using the most recent versions of the USEPA's National Functional Guidelines for data validation available at the time of project initiation, where appropriate (USEPA, 2016b and 2016c). These procedures and criteria may be modified, as necessary, to address project-specific and method-specific criteria, control limits, and procedures. Data validation consists of data screening, checking, reviewing, editing, and interpretation to document analytical data quality and to determine whether the quality is sufficient to meet the data quality objectives (DQOs).

The data validator verifies that reduction of laboratory measurements and laboratory reporting of analytical parameters is in accordance with the procedures specified for each analytical method and/or as specified in the OSP. Any deviations from the analytical method or any special reporting requirements apart from those specified in the OSP are documented.

In order to assess the suitability of analytical results to support groundwater monitoring decisions, the BOU groundwater monitoring program QC manager undertook the following procedures:

- Checked extraction and analysis holding time
- Reviewed laboratory reports and chain-of-custody documentation for errors and omissions
- Checked laboratory reports for correct reporting limits and units
- Checked surrogate, laboratory control sample (LCS), laboratory control sample duplicate (LCSD), and matrix spike (MS), and matrix spike duplicate (MSD) results
- Assessed blank results and noted any detected analytes, their respective concentrations, and any impact to associated samples
- Assessed sample internal standard responses and surrogate recoveries

- Reviewed instrument calibrations
- Compared laboratory and field duplicate sample results and noted any significant variations

Specific QA indicators were evaluated to assess the overall usability of the data. These indicators included accuracy, precision, representativeness, comparability, and completeness. The parameters are described below

- Accuracy is established by reviewing spiked sample analysis. The LCS measures the accuracy of the instrument, and the LCS results for this dataset were all found to be within control limits. Therefore, the accuracy for the sampling event was satisfactory.
- Precision is established by calculating the relative percent difference (RPD) values for MS/MSD pairs and field duplicates. The RPD values calculated for the sampling event show that greater than 95% of the RPDs calculated were within control limits. Therefore, the precision for the sampling event was satisfactory.
- Representativeness is established by using standard field sampling techniques. Because the field sampling was conducted in accordance with the OSP and by following established standard operating procedures, the sampling is judged to have adequate representativeness. Therefore, the representativeness for the sampling event was satisfactory.
- Comparability of the data is preserved if the analytical analyses are conducted under approved and vetted USEPA analytical methods. Because the USEPA methods are constructed with comparability built into the methods, by using approved analytical methods for the BOU project, the BOU data are comparable. Therefore, the comparability for the sampling event was satisfactory.
- Completeness is measured by determining the amount of valid data produced by the laboratory as compared to the total possible data from the chain. This dataset had no rejected data, and all samples were analyzed as per the chains. The data completeness is 100%, which exceeds the 90% criterion. Therefore, the completeness for the sampling event was satisfactory.

Based upon the data review, the data are considered usable as qualified. A QA/QC summary is presented in Appendix D. Data validation summary tables are included in Appendix D as well. All testing was provided by the Eurofins Calscience, a California Department of Public Health-accredited environmental laboratory. The laboratory analytical data packages, which include all environmental, field QC, and laboratory QC results, are provided in Appendix G.

SECTION 4 GROUNDWATER MONITORING RESULTS

This section provides the results and interpretations of the groundwater monitoring event.

4.1 GROUNDWATER ELEVATIONS

Groundwater elevations for the second quarter 2017 monitoring event are presented in Table 3. Potentiometric maps based on the groundwater elevation data are shown on Figures 3 and 4 for the WT HSUs and B HSU, respectively. The potentiometric surface maps were generated using an historic understanding of groundwater flow and data from current extraction system operations.

		Daily Total Pumped (gallons)						
Extraction Well	Date Observation Well was Measured	16-Apr- 17	17-Apr- 17	18-Apr- 17	19-Apr- 17	20-Apr- 17	21-Apr- 17	
VO1	4/19/2017	0	0	0	0	0	0	
VO2	4/19/2017	1,725,798	1,717,897	1,661,598	1,729,045	1,729,484	1,728,935	
VO3	4/19/2017	0	0	0	0	0	0	
VO4	4/20/2017	1,124,398	1,117,581	1,075,935	1,132,763	1,135,808	1,134,567	
VO5	4/20/2017	1,674,028	1,681,589	1,675,570	1,713,193	1,714,287	1,712,318	
VO6	4/20/2017	0	0	0	0	0	0	
VO7	4/20/2017	1,678,693	1,670,613	871,700	0	0	0	
VO8	4/19/2017	0	0	832,967	1,763,441	1,737,906	1,725,718	

4.1.1 Water Table Hydrostratigraphic Units

The local groundwater flow direction during the second quarter 2017 groundwater monitoring event was predominantly southeasterly in the northwest portion of the BOU and southerly in the northeast portion of the BOU, and it converged in a flow direction toward the cones of depression created by the operation of the BOU extraction wells. The second quarter 2017 groundwater elevation data indicate that the dominant direction of groundwater flow immediately south of the BOU extraction wells was reversed from its natural southeasterly flow direction, to a northerly flow direction in response to the extraction well pumping (northeasterly flow direction in the western portion of the

BOU). These groundwater trends extend to Victory Boulevard in the western portion of the BOU, West Allan and Wyoming Avenue in the central-western portion of the BOU, and to at least Chandler Boulevard in the eastern portion of the BOU. Beyond these boundaries the groundwater flow direction shows influence from pumping, but ultimately reverts to its natural southeasterly direction.

Groundwater extraction appeared to be the dominant influence on groundwater flow within the monitoring well network. Groundwater extraction created a northwest-aligned trough with respect to the water table surface, creating a series of coalescing cones of depression surrounding the BOU extraction wells, as shown on Figure 3.

4.1.2 B-Zone Hydrostratigraphic Unit

The local groundwater flow direction in the B HSU during the second quarter 2017 groundwater monitoring event, as shown on Figure 4, was generally the same as the local groundwater flow direction observed in the WT HSUs. The greater drawdown observed at extraction well V08 in the second quarter 2017 compared with the second quarter 2016 is due to the inclusion of data from new observation well OW-V08B.

4.1.3 Groundwater-Level Trends

Groundwater elevation trends were evaluated by examining annual precipitation data, cumulative pumping data from the BOU extraction system, and hydrographs for the monitoring wells included in the monitoring program. Hydrographs showing piezometric surface elevations over time were used to evaluate long-term trends in groundwater elevations (Appendix C). The hydrographs are generally dominated by a few long-term trends, as described below.

- The groundwater elevation within the BOU generally declined from 1988 to late 1992.
- The trend reversed in 1992, and groundwater elevations generally rose through early 1996 (with a minor dip in 1995).
- From early 1996 (the beginning of groundwater extraction at the BOU) through 2004, groundwater elevation generally decreased.
- From 2004 through early 2007, groundwater elevation rose.
- From early 2006 through 2010, groundwater elevation stabilized (on average).
- Groundwater elevation rose from late 2010 to the second quarter of 2013.

• Groundwater elevation declined from the second quarter of 2013 to the second quarter of 2017.

Figure 5 shows hydrographs from three clustered sets of monitoring wells and annual precipitation on the same graph. The three monitoring well clusters are from north of the extraction system in the Plant B-6 area, from near the extraction system in the Plant B-1 area, and from south of the extraction system. Each paired set of monitoring wells includes a monitoring well completed in one of the WT HSUs and one completed in the B HSU. The precipitation data are from the Valley Pumping Plant and/or the Bob Hope Airport in Burbank (Weather Warehouse, 2011; Weather Underground, 2017). Although the data are limited, prior to the startup of the BOU extraction system in 1996 there appears to be some correlation between precipitation and general water-level elevation. However, the dominant factor driving groundwater elevation changes is likely groundwater extraction in the basin and at nearby extraction wells, rather than a direct relationship to precipitation. This can be observed in the steepening hydraulic gradient between the upgradient Plant B-6 cluster and the Plant B-1 cluster after pumping began. While there are slight differences between how the monitoring well clusters from the different areas of the BOU respond over time, they generally track together. A review of the hydrographs also reveal an increase in the upward vertical gradient between all three paired monitoring wells after the BOU extraction system was started up, particularly in the B-1 pair that are nearest to the extraction system.

4.2 ANALYTICAL DATA SUMMARY

Sixty-five groundwater monitoring wells were sampled during the second quarter 2017 monitoring event. The samples collected were tested for VOCs, 1,2,3-TCP, 1,4-dioxane, total chromium, and hexavalent chromium. Twenty-one organic and two inorganic analytes were detected. A summary by monitoring well of the validated laboratory analytical results for the analytes detected during the water quality monitoring event is presented in Table 5. Only results for analytes that were detected at concentrations above their respective method detection limits are shown in Table 5. Analytical results that were above a regulatory threshold (i.e., California Department of Public Health maximum contaminant level [MCL] or California Department of Public Health drinking water notification level [DWNL]) are shown in bold type and the cell is highlighted in Table 5. A further summary of the analytes detected, associated regulatory thresholds, number of exceedances, and the range of concentrations detected is presented in Table 6.

Figures 6 through 17 show isocontours of PCE, TCE, 1,2,3-TCP, 1,4-dioxane, total chromium, and hexavalent chromium in the WT HSUs and the B HSU based on the analytical results from the 2017 sampling event. These compounds were selected for contouring because they are considered either primary or emerging chemicals of concern. Initial contours for the groundwater concentration data were generated with C Tech's Earth Volumetric Studio software using a kriging algorithm. These contours were then adjusted by hand based on professional judgment.

4.2.1 Tetrachloroethene

PCE has an MCL of 5 μ g/L. It was detected in 59 of the primary (non-duplicate) samples, 37 of which exceeded the MCL. The detected concentrations ranged from 0.20 μ g/L (monitoring well B-6-CW05) to 630 μ g/L (monitoring well B-1-CW33).

Concentrations in the WT HSUs ranged from $<0.20 \,\mu\text{g/L}$ to $630 \,\mu\text{g/L}$ (monitoring well B-1-CW33). Concentrations exceeding the MCL extended over much of the BOU with the highest concentrations detected at the northwest corner of the former Plant B-1 and trending southeast beneath former Plant B-1 and extending to Magnolia Boulevard (Figure 6).

Concentrations in the B HSU ranged from $<0.20 \mu g/L$ to $48 \mu g/L$ (monitoring well 3850R). Concentrations exceeding the MCL were not as widely distributed as in the shallower HSUs, with the highest concentrations detected adjacent to the extraction wells on Vanowen Street (Figure 7).

4.2.2 Trichloroethene

TCE has an MCL of 5 μ g/L. It was detected in 53 of the samples, 35 of which exceeded the MCL. The detected concentrations ranged from 0.29 μ g/L (monitoring well C-1-CW05) to 240 μ g/L (monitoring wells 3872L and B-1-CW13).

Concentrations in the WT HSUs ranged from <0.29 μ g/L to 240 μ g/L (monitoring wells 3872L and B-1-CW13). Concentrations exceeding the MCL extended over much of the BOU with the highest concentrations detected downgradient of former Building 85 and extending to Magnolia Boulevard (Figure 8).

Concentrations in the B HSU ranged from <0.29 μ g/L to 32 μ g/L (monitoring well 3862E). Concentrations exceeding the MCL were not as widely distributed as in the shallower HSUs, with the highest concentrations detected south of the BOU. Additionally, elevated concentrations were

detected in the southern portion of the former Plant B-6 area and continuing southeast beneath former Building 85 and extending to Vanowen Street (Figure 9).

4.2.3 1,2,3-Trichloropropane

The analyte 1,2,3-TCP has a DWNL of $0.005~\mu g/L$. It was detected in 31 of the samples, 30 of which exceeded the DWNL. The detected concentrations ranged from $0.0045~\mu g/L$ (monitoring well 3861F) to 87 $\mu g/L$ (monitoring well A-1-CW08).

Concentrations in the WT HSUs ranged from <0.0025 μ g/L to 87 μ g/L (monitoring well A-1-CW08). Concentrations exceeding the DWNL extended over much of the BOU with the highest concentrations detected down gradient of the former Plant B-6 area, north of former Building 85, and along Vanowen Street (Figure 10).

Concentrations in the B HSU ranged from $<0.0025 \mu g/L$ to $0.29 \mu g/L$ (monitoring well 3852H). Concentrations exceeding the DWNL were not as widely distributed as in the WT HSUs, with the highest concentrations detected near Burbank Boulevard (Figure 11).

4.2.4 1,4-Dioxane

The analyte 1,4-dioxane has a DWNL of 1.0 μ g/L. It was detected in 11 of the samples, 11 of which exceeded the DWNL. The detected concentrations ranged from 1.0 μ g/L (monitoring well B-1-CW11) to 3.7 μ g/L (monitoring well A-1-CW09).

Concentrations in the WT HSUs ranged from <0.28 μ g/L to 3.7 μ g/L (monitoring well A-1-CW09). Concentrations exceeding the DWNL are limited but spread out through the BOU specifically at former Plants A-1-S, B-1, and C-1 as well as downgradient of Former Building 371(Figure 12).

Concentrations in the B HSU ranged from <0.28 μ g/L to 2.3 μ g/L (monitoring well A-1-CW05). Similar to the WT HSUs, concentrations exceeding the DWNL extended around the former Plant B-6 and A-1 areas of the BOU, with the highest concentrations detected at the former Plant A-1-S (Figure 13).

4.2.5 Total Chromium

Total chromium has an MCL of 50 μ g/L. It was detected in 65 of the samples, 2 of which exceeded the MCL. The detected concentrations ranged from 0.600 μ g/L (monitoring well C-1-CW02) to 82.9 μ g/L (monitoring well C-1-CW07).

Concentrations in the WT HSUs ranged from 1.05 J (A-1-CW03R) to 82.9 μ g/L (monitoring well C-1-CW07). One sample from the eastern portion of the BOU near the former Weber Aircraft facility and one sample near former Plant C-1 had concentrations detected exceeding the MCL (Figure 14).

Concentrations in the B HSU ranged from 0.600 μ g/L (monitoring well C-1-CW02 to 7.85 μ g/L (3872S). No concentrations were detected that exceeded the MCL (Figure 15).

4.2.6 Hexavalent Chromium

Hexavalent chromium has an MCL of 10 μ g/L. It was detected in 58 samples, 5 of which exceeded the MCL. The detected concentrations ranged from 0.010 μ g/L μ g/L (monitoring well A-1-CW03R) to 20 μ g/L (monitoring well B-1-CW17).

Concentrations in the WT HSUs range from $0.010~\mu g/L~\mu g/L$ (monitoring well A-1-CW03R) to 20 $\mu g/L$ (monitoring well B-1-CW17). Four of the 5 samples that exceeded the MCL are located in the central to southern portions of former Plant B-1. The other sample that exceeded the MCL is located immediately outside of the northeastern boundary of the BOU (Figure 16).

Concentrations in the B HSU ranged from 0.021 μ g/L (monitoring well 3850R) to 7.9 μ g/L (monitoring well 3872S). No concentrations were detected above the MCL (Figure 17).

SECTION 5 STATISTICAL TREND ANALYSES

Statistical trend analyses were conducted using chemical data from the 65 monitoring wells sampled as part of the 2017 BOU groundwater monitoring program. The analysis was performed for the six primary chemicals of concern: PCE, TCE, 1,2,3-TCP, 1,4-dioxane, total chromium, and hexavalent chromium. Therefore, a total of 390 trends were tested. The Monitoring and Remediation Optimization System (MAROS), developed by the Air Force Center for Environmental Excellence (Air Force Center for Environmental Excellence, 2006), was used for the analyses. MAROS is a statistical database application developed to assist with groundwater quality data trend analysis and long-term monitoring optimization at contaminated groundwater sites. BOU data from first quarter 1996 (i.e., full-scale implementation of the groundwater extraction system) to second quarter 2017 were analyzed. A summary of the statistical-trend analyses is provided in Appendix E.

5.1 STATISTICAL ANALYSIS METHODS

The software performs parametric and nonparametric trend analyses to evaluate temporal and spatial contaminant trends using Mann-Kendall and linear regression methods. Brief descriptions of the methods follow.

5.1.1 Mann-Kendall Analysis

This statistical procedure was used to evaluate the data for trends. It is a nonparametric statistical procedure that is well suited for analyzing trends in data over time. The Mann-Kendall test for trend is suitable for analyzing data that follow a normal or non-normal distribution pattern. The Mann-Kendall test has no distributional assumptions and allows for irregularly spaced measurement periods or missing data. The advantage with this approach involves the cases where outliers in the data would produce biased estimates of the least squares estimated slope.

5.1.2 Linear Regression Analysis

This parametric statistical procedure was used to calculate the magnitude of the trends. A parametric statistical procedure is typically used for analyzing trends in data over time and requires a normal statistical distribution of the data.

5.2 STATISTICAL TREND CATEGORIES

There are seven statistical concentration trend types derived from Mann-Kendall analysis: 1) decreasing, 2) increasing, 3) no trend (displaying two sets of conditions), 4) probably decreasing, 5) probably increasing, 6) stable, and 7) non-detect (ND; all sample results are below the detection limit). If a location has fewer than four quarters of data, then the Mann-Kendall analysis cannot be run and not applicable (NA) would be applied to the results. These statistical concentration trend types are determined by the following conditions:

Mann-Kendall Statistic (S)	Confidence in Trend	Concentration Trend
S > 0	> 95%	Increasing
S > 0	90 - 95%	Probably Increasing
S > 0	< 90%	No Trend
S ≤ 0	< 90% and COV ≥ 1	No Trend
S ≤ 0	< 90% and COV < 1	Stable
S < 0	90 - 95%	Probably Decreasing
S < 0	> 95%	Decreasing
ND	-	Non-detect
NA	-	Not applicable

Notes: > - Greater than

< - Less than

 \leq - Less than or equal to

COV - Coefficient of Variation

S - Mann-Kendall statistic

ND - All results non-detect

NA - Not applicable, less than four quarters of data

The Mann-Kendall statistic (S) measures the trend in the data. Positive values indicate an increase in constituent concentrations over time, whereas negative values indicate a decrease in constituent concentrations over time. The strength of the trend is proportional to the magnitude of the Mann-Kendall Statistic (i.e., large magnitudes indicate a strong trend).

The Coefficient of Variation (COV) is a statistical measure of how the individual data points vary about the mean value. Values less than or near 1.00 indicate that the data form a relatively close

group about the mean value. Values larger than 1.00 indicate that the data show a greater degree of scatter about the mean.

"Confidence in Trend" is the statistical confidence that the constituent concentration is increasing (S>0) or decreasing (S<0).

If there were insufficient data or fewer than four sampling events, then "not applicable (NA)" was applied to the results.

5.3 RESULTS OF STATISTICAL ANALYSES

The overall results of the Mann-Kendall trend analyses are presented on Table 7. The breakdown of the overall trends were similar to 2016 but the number of stable trends decreased by approximately 5% and the number of decreasing trends increased by 5%. The number of analysis indicting insufficient data increased because of the addition of the new wells. The statistical analysis tested 390 datasets to evaluate for trends. The statistical analysis yielded a result of either insufficient data, ND, or no trend for 169 of the datasets tested. The decreasing or probably decreasing trend monitoring wells totaled 115, and the magnitude of the trends ranged from -182 to -0.0013 micrograms per liter per year (µg/L/yr). The decreasing trends as a percentage for the period analyzed ranged from -24 to -0.47 percent per year (%/yr). Sixty-six monitoring wells demonstrated a stable trend. Forty monitoring wells demonstrated an increasing or probably increasing trend, and the magnitude of the trends ranged from 0.00062 to 8.76 µg/L/yr. The increasing trends as a percentage for the period analyzed ranged from 0.82 to 88%/yr. Four of the increasing trends as a percentage change were 20%/yr or higher. The magnitudes of the trends are discussed by chemical of concern in the following subsections. Table 8 provides a more detailed summary of the trend analysis by monitoring well for those monitoring wells demonstrating an increasing or probably increasing trend for one or more of the primary chemicals of concern. Historical chemical of concern data for each monitoring well sampled are provided in Appendix E. The table of historical data includes a summary by monitoring well of all analytical results for the six chemicals of concern.

Time versus concentration graphs for the 17 monitoring wells identified in the OSP are presented in Appendix E; monitoring well 3860H was also identified in the OSP, but the monitoring well was destroyed in 2015 so a time versus concentration graph was not included.

5.3.1 Tetrachloroethene

Figures 18 and 19 summarize the trend analysis results for PCE in the WT HSUs and B HSU, respectively. The statistical analysis for PCE yielded a result of either insufficient data, ND, or no trend for 12 of the monitoring wells tested. The decreasing or probably decreasing trend monitoring wells totaled 37, and the magnitude of the trends ranged from -182 to -0.07. The decreasing trends as a percentage for the period analyzed ranged from -18.3 to -2.01%/yr. The decreasing trends in the WT were scattered throughout the BOU. The decreasing trends in the B HSU are primarily adjacent to the BOU extraction wells and to the north near former the Plant B-6 area. Thirteen monitoring wells demonstrated a stable trend. Three monitoring wells demonstrated an increasing or probably increasing trend, and the magnitude of the trends ranged from 0.02 to 3.80 μg/L/yr. The increasing trends as a percentage for the period analyzed ranged from 2.92 to 3.65%/yr. There were no increasing or probably increasing trends identified in the WT HSU wells. Three increasing trend wells were identified in the B HSU. Two wells were adjacent to the BOU extraction wells and one well was upgradient of the BOU extraction wells. All three monitoring wells are within the area captured by the BOU extraction wells. The magnitude of the increasing trends and the percentage these changes in concentration represent are not large.

The following B-HSU monitoring wells exhibited increasing or probably increasing trends:

- 3850R: The 2017 concentration in this well was 48 micrograms per liter ($\mu g/L$). This well is located between extraction well VO6 and VO7 and upgradient of VO8. The magnitude of the increasing trend is 3.80 $\mu g/L/yr$ and represents a change of 2.92%/yr over the period analyzed.
- B-1-CW28: The 2017 concentration in this well was 13 μ g/L. This well is located between BOU extraction wells VO5 and VO6 and upgradient of VO8. The magnitude of the increasing trend is 0.91 μ g/L/yr and represents a change of 3.65%/yr over the period analyzed.
- B-6-CW02: The 2017 concentration in this well was 0.56 μ g/L. This well is located upgradient of the BOU extraction wells. The magnitude of the increasing trend is 0.02 μ g/L/yr and represents a change of 3.29%/yr over the period analyzed. The analyte PCE has never been detected in this well at a concentration exceeding the MCL.

5.3.2 Trichloroethene

Figures 20 and 21 show the trend analysis results for TCE in the WT HSUs and the B HSU, respectively. The statistical analysis for TCE yielded a result of either insufficient data, ND, or no trend for 16 of the monitoring wells tested. The decreasing or probably decreasing trend monitoring

wells totaled 39, and the magnitude of the trends ranged from -50 to -0.02 μ g/L/yr. The decreasing trends as a percentage for the period analyzed ranged from -22 to -0.47%/yr. The decreasing trends in the WT HSUs were scattered throughout the BOU. The decreasing trends in the B HSU are primarily adjacent to or south of the BOU extraction wells. Eight monitoring wells demonstrated a stable trend. Two monitoring wells demonstrated an increasing or probably increasing trend, and the magnitude of the trends ranged from 0.14 to 2.38 μ g/L/yr. The increasing trends as a percentage for the period analyzed ranged from 1.41 to 3.83%/yr. The single increasing or probably increasing trend in the WT HSUs was 3830S, located south of former Plant B-5 and is upgradient of the BOU extraction system. The increasing trend in the B HSU was adjacent to the BOU extraction wells (within the area captured by the BOU extraction wells). The magnitude of the increasing trend and the percentage this change in concentration represent is not large.

The following WT-HSU monitoring well exhibited a probably increasing trend:

• 3830S: The 2017 concentration in this well was 85 μg/L. This well is located south of former Plant B-5 and is upgradient of the BOU extraction system. The magnitude of the probably increasing trend is 2.38 μg/L/yr and represents a change of 3.83%/yr over the period analyzed.

The following B-HSU monitoring well exhibited an increasing trend:

• 3850R: The 2017 concentration in this well was 7.8 μg/L. This well is located between extraction well VO6 and VO7 and upgradient of VO8. The magnitude of the increasing trend is 0.14 μg/L/yr and represents a change of 1.41%/yr over the period analyzed.

5.3.3 1,2,3-Trichloropropane

The analyte 1,2,3-TCP has historically been analyzed by two methods: as part of the standard VOC analyses (currently USEPA Method 8260B), which has a higher detection limit, and by low-level 1,2,3-TCP analyses (currently USEPA Method 8260B SIM), which has a lower detection limit. All 1,2,3-TCP data from 1996 to 2000 was a result of the VOC analyses (i.e., higher detection limits, generally several orders of magnitude higher than current 1,2,3-TCP concentrations). The MAROS application assigns a value of one-half of the detection limit in the case of non-detects. Therefore, the MAROS application would assign higher 1,2,3-TCP concentrations to the early 1,2,3-TCP non-detects which would skew the statistical analysis. To account for this, non-detects with high detection limits were not included in the 1,2,3-TCP statistical analysis.

Figures 22 and 23 show the trend analysis results for 1,2,3-TCP in the WT HSUs and the B HSU, respectively. The statistical analysis for 1,2,3-TCP yielded a result of either insufficient data, ND, or no trend for 44 of the monitoring wells tested. The decreasing or probably decreasing trend monitoring wells totaled 7, and the magnitude of the trends ranged from -1.01 to -0.006 µg/L/yr. The decreasing trends as a percentage for the period analyzed ranged from -14.6 to -5.11%/yr. The decreasing trends in the WT HSUs were located at or upgradient of the extraction wells, the southwest boundary, and just south of the southern boundary of the BOU. There were no decreasing trends in the B HSU. Two monitoring wells demonstrated a stable trend. Twelve monitoring wells demonstrated an increasing or probably increasing trend, and the magnitude of the trends ranged from 0.00062 to 1.41 µg/L/yr. The increasing trends as a percentage for the period analyzed ranged from 2.56 to 29%/yr. The increasing trends in the WT HSUs are scattered throughout the BOU and are within the area captured by the BOU extraction wells or upgradient of them, with the exception of monitoring wells 3852L, 3852M, and 3872N. The single increasing or probably increasing trend in the B HSUs was 3850R, located between extraction wells VO6 and VO7 and upgradient of VO8. With the exception of some of the Pacific Airmotive Corporation monitoring wells and monitoring well A-1-CW04, the magnitude of the increasing trends and the percentage these changes in concentration represent are not large.

The following WT-HSU monitoring wells exhibited increasing or probably increasing trends:

- MW-03: The 2017 concentration in this well was 0.93 µg/L. This well is located within the former Pacific Airmotive Corporation/Plant B-6 area and is upgradient of the BOU extraction wells. The magnitude of the increasing trend is 0.43 µg/L/yr and represents a change of 13.5%/yr over the period analyzed.
- MW-04: The 2017 concentration in this well was 0.96 μg/L. This well is located within the former Pacific Airmotive Corporation/Plant B-6 area and is upgradient of the BOU extraction wells. The magnitude of the increasing trend is 0.22 μg/L/yr and represents a change of 20%/yr over the period analyzed.
- MW-07: The 2017 concentration in this well was 0.60 μg/L. This well is located within the former Pacific Airmotive Corporation/Plant B-6 area and is upgradient of the BOU extraction wells. The magnitude of the increasing trend is 0.07 μg/L/yr and represents a change of 18.1%/yr over the period analyzed.
- MW-08: The 2017 concentration in this well was 0.93 μg/L. This well is located within the former Pacific Airmotive Corporation/Plant B-6 area and is upgradient of the BOU extraction wells. The magnitude of the increasing trend is 0.20 μg/L/yr and represents a change of 15.7%/yr over the period analyzed.

- 3852L: The 2017 concentration in this well was $0.032 \mu g/L$. This well is located 4,000 feet south of the nearest BOU extraction well and is at the edge of the area captured by the BOU extraction wells. The magnitude of the increasing trend is $0.0080 \mu g/L/yr$ and represents a change of 8.94 %/yr over the period analyzed.
- 3852M: The 2017 concentration in this well was 0.21 μg/L. This well is located 5,000 feet south of the nearest BOU extraction well and appears to be south of the area of influence of the BOU extraction wells. The magnitude of the increasing trend is 0.016 μg/L/yr and represents a change of 12.4%/yr over the period analyzed.
- 3872L: The 2017 concentration in this well was 0.095 μ g/L. This well is located 4,750 feet south of the nearest BOU extraction well and appears to be south of the area of influence of the BOU extraction wells. The magnitude of the increasing trend is 0.006 μ g/L/yr and represents a change of 11.7%/yr over the period analyzed.
- A-1-CW04: The 2017 concentration in this well was 25 μg/L. This well is located in the former Plant A-1 area and is upgradient of BOU extraction well VO7. The magnitude of the increasing trend is 1.78 μg/L/yr and represents a change of 29%/yr over the period analyzed.
- A-1-CW08: The 2017 concentration in this well was 87 μg/L. This well is located downgradient of the former Plant B-6 and upgradient of the BOU extraction system. The magnitude of the increasing trend is 1.41 μg/L/yr and represents a change of 2.56%/yr over the period analyzed.
- A-1-CW09: The 2017 concentration in this well was 15 μ g/L. This well is located is located in the former Plant A-1 area and is upgradient of BOU extraction well VO7. The magnitude of the probably increasing trend is 0.30 μ g/L/yr and represents a change of 6.75%/yr over the period analyzed.
- B-1-CW13: The 2017 concentration in this well was 13 μg/L. This well is located between and within the influence of BOU extraction wells VO5 and VO6 and upgradient of VO8. The magnitude of the increasing trend is 0.88 μg/L/yr and represents a change of 5.48%/yr over the period analyzed.

The following B-HSU monitoring well exhibited an increasing trend:

• 3850R: The 2017 concentration in this well was 0.0074 μg/L. This well is located between extraction well VO6 and VO7 and upgradient of VO8. The magnitude of the increasing trend is 0.00062 μg/L/yr and represents a change of 7.67%/yr over the period analyzed.

5.3.4 1,4-Dioxane

Figures 24 and 25 show the trend analysis results for 1,4-dioxane in the WT HSUs and the B HSU, respectively. The statistical analysis for 1,4-dioxane yielded a result of either insufficient data, ND, or no trend for 30 of the monitoring wells tested. The decreasing or probably decreasing trend monitoring wells totaled 11, and the magnitude of the trends ranged from -24 to -0.01 μ g/L/yr. The decreasing trends as a percentage for the period analyzed ranged from -24 to -2.92%/yr. The

decreasing trends in the WT HSUs are scattered throughout the BOU. There was one probably decreasing trends in the B HSU, 3850R, located between extraction well VO6 and VO7 and upgradient of VO8. Thirteen monitoring wells demonstrated a stable trend. Eleven monitoring wells demonstrated an increasing or probably increasing trend, and the magnitude of the trends ranged from 0.003 to 0.53 µg/L/yr. The increasing trends as a percentage for the period analyzed ranged from 1.08 to 11.5%/yr. The increasing trends in the WT and B HSUs were generally adjacent to and north of the extraction wells. All of the increasing trend monitoring wells are upgradient of the extraction wells or within the area captured by the BOU extraction wells. The magnitude of the increasing trends and the percentage these changes in concentration represent are not large.

The following WT-HSU monitoring wells exhibited increasing or probably increasing trends:

- MW-03: The analyte 1,4-dioxane was not detected in this well in 2017. This well is located within the former Pacific Airmotive Corporation/Plant B-6 area and is upgradient of the BOU extraction wells. The magnitude of the increasing trend is 0.07 μg/L/yr and represents a change of 7.12%/yr over the period analyzed.
- MW-04: The analyte 1,4-dioxane was not detected in this well in 2017. This well is located within the former Pacific Airmotive Corporation/Plant B-6 area and is upgradient of the BOU extraction wells. The magnitude of the increasing trend is 0.06 μg/L/yr and represents a change of 7.67%/yr over the period analyzed.
- MW-08: The analyte 1,4-dioxane was not detected in this well in 2017. This well is located within the former Pacific Airmotive Corporation/Plant B-6 area and is upgradient of the BOU extraction wells. The magnitude of the increasing trend is 0.53 μg/L/yr and represents a change of 11.0%/yr over the period analyzed.
- 3852F: The 2017 concentration in this well was 1.5 μ g/L. This well is located 5,000 feet south of the nearest BOU extraction well and appears to be south of the area of influence of the BOU extraction wells. The magnitude of the increasing trend is 0.06 μ g/L/yr and represents a change of 10.6%/yr over the period analyzed.
- A-1-CW09: The 2017 concentration in this well was 3.7 μ g/L. This well is located in the former Plant A-1 area and upgradient of BOU extraction well VO7. The magnitude of the probably increasing trend is 0.16 μ g/L/yr and represents a change of 9.49%/yr over the period analyzed.
- B-1-CW13: The 2017 concentration in this well was 2.0 μg/L. This well is located between and within the influence of BOU extraction wells VO5 and VO6 and upgradient of VO8. The magnitude of the increasing trend is 0.05 μg/L/yr and represents a change of 5.66%/yr over the period analyzed.
- B-1-CW17: The 2017 concentration in this well was 2.9 μg/L. This well is located on the downgradient edge of the influence of the extraction well VO1. The magnitude of the

increasing trend is $0.09~\mu g/L/yr$ and represents a change of 8.94%/yr over the period analyzed.

• C-1-CW08: The analyte 1,4-dioxane was not detected in this well in 2017. This well is located within the former Plant C-1 area and is upgradient of the BOU extraction wells. The magnitude of the increasing trend is 0.04 μ g/L/yr and represents a change of 4.4%/yr over the period analyzed.

The following B-HSU monitoring wells exhibited increasing or probably increasing trends:

- B-6-CW14: The 2017 concentration in this well was 1.8 μ g/L. This well is located in the former Plant B-1 area and upgradient of the BOU extraction system. The magnitude of the increasing trend is 0.10 μ g/L/yr and represents a change of 11.5%/yr over the period analyzed.
- C-1-CW02: The analyte 1,4-dioxane was not detected in this well in 2017. This well is located upgradient of the former Plant C-1 area and is upgradient of the BOU extraction wells. The magnitude of the increasing trend is 0.02 μg/L/yr and represents a change of 4.75%/yr over the period analyzed.
- C-1-CW05: The analyte 1,4-dioxane was not detected in this well in 2017. This well is located east of the former Plant B-5 area. The magnitude of the increasing trend is 0.003 μg/L/yr and represents a change of 1.08%/yr over the period analyzed. The analyte 1,4-dioxane has never been detected in this well at a concentration exceeding the notification level.

5.3.5 Total Chromium

Figures 26 and 27 show the trend analysis results for total chromium in the WT HSUs and the B HSU, respectively. The statistical analysis for total chromium yielded a result of either insufficient data, ND, or no trend for 40 of the monitoring wells tested. The decreasing or probably decreasing trend monitoring wells totaled ten, and the magnitude of the trends ranged from -15.3 to -0.10 μg/L/yr. The decreasing trends as a percentage for the period analyzed ranged from -11.0 to -0.77%/yr. The decreasing trends in the WT and B HSUs are scattered throughout the BOU. Twelve monitoring wells demonstrated a stable trend. Three monitoring wells demonstrated an increasing or probably increasing trend, and the magnitude of the trends ranged from 0.13 to 0.42 μg/L/yr. The increasing trends as a percentage for the period analyzed ranged from 5.29 to 7.85%/yr. All of the increasing trend monitoring wells in the WT and B HSUs are located adjacent to or upgradient of the BOU extraction wells, and within the area captured by the extraction wells. The magnitude of the increasing trends and the percentage these changes in concentration represent are not large.

The following WT-HSU monitoring wells exhibited increasing or probably increasing trends:

- 3860K: The 2017 concentration in this well was 3.44 μg/L. This well is located is located downgradient of the former Pacific Airmotive Corporation/Plant B-6 area and is upgradient of the BOU extraction wells. The magnitude of the probably increasing trend is 0.22 μg/L/yr and represents a change of 5.48%/yr over the period analyzed. Total chromium has never been detected in this well at a concentration exceeding the MCL.
- B-6-CW16: The 2017 concentration in this well was 28.9 μg/L. This well is located downgradient of the former Plant B-6 and upgradient of the BOU extraction system. The magnitude of the increasing trend is 0.42 μg/L/yr and represents a change of 7.85%/yr over the period analyzed. Total chromium has never been detected in this well at a concentration exceeding the MCL.

The following B-HSU monitoring well exhibited a probably increasing trend:

• B-6-CW02: The 2017 concentration in this well was 2.95 μg/L. This well is located within the former Pacific Airmotive Corporation/Plant B-6 area and is upgradient of the BOU extraction wells. The magnitude of the probably increasing trend is 0.13 μg/L/yr and represents a change of 5.29%/yr over the period analyzed. Total chromium has never been detected in this well at a concentration exceeding the MCL.

5.3.6 Hexavalent Chromium

Figures 28 and 29 show the trend analysis results for hexavalent chromium in the WT HSUs and the B HSU, respectively. The statistical analysis for hexavalent chromium yielded a result of either insufficient data, ND, or no trend for 27 of the monitoring wells tested. The decreasing or probably decreasing trend monitoring wells totaled 11, and the magnitude of the trends ranged from -2.81 to -0.01 μ g/L/yr. The decreasing trends as a percentage for the period analyzed ranged from -12.6 to -2.19%/yr. The decreasing trends in the WT HSUs are scattered across the BOU. The three decreasing trends in the B HSU are located at Building 371 and just immediately south of the BOU extraction wells. Eighteen monitoring wells demonstrated a stable trend. Nine monitoring wells demonstrated increasing or probably increasing trends, and the magnitude of the trends ranged from 0.03 to 8.76 μ g/L/yr. The increasing trends as a percentage for the period analyzed ranged from 0.82 to 88 %/yr. The trends in the WT HSUs appear to be primarily located adjacent to or upgradient of the BOU extraction wells, and within the area captured by the extraction wells. The increasing trends in the B HSU are primarily south of the extraction wells and appears to be outside of the area captured by the extraction wells.

The following WT-HSU monitoring wells exhibited increasing or probably increasing trends:

• MW-04: The 2017 concentration in this well was 2.2 μg/L. This well is located within the former Pacific Airmotive Corporation/Plant B-6 area and is upgradient of the BOU extraction wells. The magnitude of the increasing trend is 0.05 μg/L/yr and represents a

- change of 3.65%/yr over the period analyzed. Hexavalent chromium has never been detected in this well at a concentration exceeding the MCL.
- MW-08: The 2017 concentration in this well was 2.1 μg/L. This well is located within the former Pacific Airmotive Corporation/Plant B-6 area and is upgradient of the BOU extraction wells. The magnitude of the increasing trend is 0.10 μg/L/yr and represents a change of 7.12%/yr over the period analyzed. Hexavalent chromium has never been detected in this well at a concentration exceeding the MCL.
- 3870D: The 2017 concentration in this well was 17 μg/L. The well is located in the northeast corner of the BOU east of Interstate 5. The well appears to be upgradient of the BOU extraction system. The magnitude of the increasing trend is 8.76 μg/L/yr and represents a change of 88%/yr over the period analyzed.
- 3872N: The 2017 concentration in this well was 6.7 µg/L. This well is located 4,750 feet south of the nearest BOU extraction well and appears to be south of the area of influence of the BOU extraction wells. The magnitude of the increasing trend is 2.49 µg/L/yr and represents a change of 80%/yr over the period analyzed. Hexavalent chromium has never been detected in this well at a concentration exceeding the MCL.
- C-1-CW03: The 2017 concentration in this well was 0.88 μg/L. This well is located upgradient of the former Plant C-1 area and is upgradient of the BOU extraction wells. The magnitude of the increasing trend is 0.03 μg/L/yr and represents a change of 7.67%/yr over the period analyzed. Hexavalent chromium has never been detected in this well at a concentration exceeding the MCL.

The following B-HSU monitoring well exhibited a probably increasing trend:

- 3851N: The current concentration in this well is $1.2 \,\mu g/L$. The well is located 2000 feet south of the nearest BOU extraction well. The magnitude of the increasing trend is $0.01 \,\mu g/L/yr$ and represents a change of $2.19 \,\%/yr$ over the period analyzed. Hexavalent chromium has never been detected in this well at a concentration exceeding the MCL.
- 3852H: The 2017 concentration in this well was 1.1 μ g/L. This well is located 4,750 feet south of the nearest BOU extraction well and appears to be south of the area of influence of the BOU extraction wells. The magnitude of the probably increasing trend is 0.01 μ g/L/yr and represents a change of 0.82%/yr over the period analyzed. Hexavalent chromium has never been detected in this well at a concentration exceeding the MCL.
- 3861F: The 2017 concentration in this well was 4.9 μg/L. The well is located 1600 feet south of the nearest BOU extraction well and appears to be on the downgradient edge of the influence of the BOU extraction wells. The magnitude of the increasing trend is 0.04 μg/L/yr and represents a change of 1.41 %/yr over the period analyzed. Hexavalent chromium has never been detected in this well at a concentration exceeding the MCL.
- B-6-CW02: The 2017 concentration in this well was 2.5 μg/L. This well is located upgradient of the BOU extraction wells. The magnitude of the increasing trend is 0.03 μg/L/yr and represents a change of 4.02%/yr over the period analyzed. Hexavalent chromium has never been detected in this well at a concentration exceeding the MCL.

5.4 COMPOUNDS OF CONCERN COMPARISON

During the USEPA's review of the 2013 BOU Annual Groundwater Monitoring and Emerging Compounds Report (Arcadis 2013), the USEPA requested that the analytical results for the compounds of concern (PCE, TCE, 1,2,3-TCP, 1,4-dioxane, total chromium, and hexavalent chromium) be compared to previous results to look for increases in concentrations. The concern was that limited or variable datasets can be problematic for statistical analysis and that inspection of the most recent data may identify a possible increasing trend before statistical analysis will. Specifically it was requested that the data be evaluated for the three following criteria:

- Criteria 1- Determine if detected concentration represents a new maximum for that monitoring well
- Criteria 2 Determine if detected concentration exceeds the water-quality objectives for the first time in a period of two years
- Criteria 3 Determine if the concentration is greater than the previous reported concentration by a factor of 50% or more and if it is in excess of the water quality objectives

Sixty-five monitoring wells were sampled and tested in 2017 and there are six primary compounds of concern, therefore, each of the three criteria were applied against 390 datasets. The same datasets used for the statistical analysis (January 1996 to the present) was used for this evaluation as well. Table 9 presents the result of the analysis and the matrix below summarizes the results.

- Criteria 1 40 of the 390 results represented a new maximum
- Criteria 2 3 of the 390 results represented a new exceedance of the MCL/DWNL since May 2014
- Criteria 3 29 of the 390 results represented an exceedance of the MCL/DWNL and the concentration was more than 50% higher than the last known concentration for that monitoring well.

Summary of Data Comparison								
	Wells That Met Criteria 1: New Maximum Concentration		Wells That Met Criteria 2: New Exceedance of MCL/DWNL since March 2016		Wells That Met Criteria 3: Exceedance of the MCL/DWNL and 50% Higher than Last Measured Concentration			
Analyte	Number of Wells	Concentration Range (µg/L)	Number of Wells	Concentration Range (µg/L)	Number of wells	Concentration Range (µg/L)		
PCE	5	13.0 - 630	0	NA	7	14.0 - 630		
TCE	5	0.29 - 200	0	NA	11	12.0 - 240		
1,2,3-TCP	5	0.0011 - 25	0	NA	5	0.057 - 25		
1,4-Dioxane	5	1.5 - 3.7	1	1.5	4	1.5 - 3.7		
Total Chromium	2	0.028 - 17	1	16	1	16		
Hexavalent Chromium	15	29 - 47	1	82.9	1	82.9		
Total	40	NA	3	NA	29	NA		

Note: NA – not applicable

The following observations were made while compiling these data:

- Several of the cases where one or more of these criteria were met were for monitoring wells where analytical detection limits have decreased, resulting in current detections at concentrations well below the former detection limits. The reduced detection limits are generally due to increased sensitivities of the analytical methods.
- Many monitoring wells have limited datasets (as few as four or five analyses since 1996) and provide less perspective over time or previous data for comparison.
- Some of the cases where these criteria were met were in areas where there is likely downgradient migration from higher concentration areas; or small upward changes in concentration in areas of known impacts.
- Five new wells were installed in the Plant B-1 area 2016. Twelve of the criteria 1 and eight of the criteria 3 exceedances were associated with those new wells.

Neither criteria 1, 2, or 3 identified any changes in concentration or plume morphology beyond those already presented on the isoconcentration maps or identified in the trend analysis that warrant further investigation at this time.

SECTION 6 CAPTURE ZONE EVALUATION

The systematic approach outlined in the USEPA guidance document *A Systematic Approach for Evaluation of Capture Zones at Pump and Treat Systems* (USEPA, 2008) was followed to assess the current status of hydraulic capture at the BOU. Data collected from October 2016 through early April 2017 were evaluated to assess capture. The lines of evidence collected from the site and used to complete the evaluation included the following: summation of extraction system operation, evaluation of the measured groundwater levels, analysis of hydraulic gradients (horizontal and vertical), concentration trend analyses, and a review of water-level trends during the reporting period. The following sections present a summary of each of these diagnostic components.

6.1 BOU EXTRACTION SYSTEM

The City of Burbank compiles extraction well discharge rates and water treatment plant operational data in monthly operations reports that are provided to the California Department of Public Health and the USEPA. These reports include the total daily volume of water pumped from each of the BOU extraction wells and the influent/effluent concentrations of the contaminants of concern. Table 10 provides a summary of monthly groundwater production from each of the eight groundwater extraction wells from May 2016 through April 2017.

Based on the data from the BOU monthly operation reports for the current reporting period (May 2016 through April 2017), an estimated 3,129,230,274 gallons of groundwater was extracted (average extraction rate of 5,937 gallons per minute) and approximately 3,697 pounds of volatile organic compounds (VOCs) were treated by the Burbank Operable Unit (BOU) treatment system (see Table 11). The estimated mass of VOCs removed by the BOU extraction wells and treatment system are based on the average monthly influent concentrations of total VOCs and the total volume of influent to the water treatment plant.

Since inception of the treatment system in 1996 through April 2017, the BOU has extracted an estimated 64,387,442,880 gallons of groundwater and removed approximately 259,422 pounds of VOCs. A summary of the cumulative volume of water and estimated mass of VOCs treated by year from 1996 through April 2017 is provided in Appendix F.

All eight BOU extractions wells operated during the period reported. Extraction wells VO2, VO4, VO6, and VO8 were operating 91%, 79%, 78% and 80% of the period reported, respectively, and produced approximately 65% of the total volume pumped. The remaining four extraction wells were operating 34% to 52% of the period reported, and produced approximately 5% to 12% of the total volume pumped.

6.2 MEASURED GROUNDWATER LEVELS

Figures 3 and 4 present the potentiometric surface contours in the WT HSUs and the B HSU, respectively. Elevation data shown on both figures indicate that groundwater flows from northwest toward southeast across the BOU. The best indication of the steady-state hydraulic gradient (absent the effects of groundwater extraction) is shown in the western area of the Bob Hope Airport where groundwater flows from northwest to southeast at a gradient of 0.002 foot/foot.

Groundwater extraction appeared to be the dominant influence on groundwater flow within the monitoring well network. Groundwater extraction created a northwest-aligned trough with respect to the water table, creating a series of coalescing cones of depression beneath the BOU extraction wells. All of the BOU extraction wells are located in a linear alignment along or projecting east of Vanowen Street with the exception of VO8, which is located one block south of VO6. Figure 3 shows, in detail, the considerable cone of depression formed by the BOU extraction well system to capture contaminated groundwater present in the WT HSUs. Figure 3 also shows that the dominant direction of groundwater flow immediately south of the BOU was reversed from its natural southeasterly flow direction, as it followed a northerly flow direction into the cones of depression created by the BOU extraction wells. The influence of VO8 can be seen in the southward extension of the extraction system cone of depression apparent to the south of VO5 and VO6 toward Victory Boulevard (Figure 3 and 4).

The local groundwater flow direction in the B HSU was generally the same as the local groundwater flow direction observed in the WT HSUs: toward the southeast and converging on the area of groundwater extraction.

There appears to be a hydraulic divide in the vicinity of monitoring wells 3862D and 3872Q, in which the water table elevation contours exhibited changes in direction. These changes in direction

indicate the approximate location of the southern limit of hydraulic capture, which is shown on Figure 3.

The data from select monitoring wells equipped with pressure transducers were converted to hydrographs and are presented in Appendix C. The result is a series of very detailed hydrographs for the reporting period from October 2016 through April 2017. From October 2016 through early April 2017, the groundwater levels in BOU monitoring wells generally declined.

The following observations are based upon a review of the data presented in the hydrographs in Appendix C:

- Graph C-7: Groundwater monitoring wells 3851M (WT HSUs) and 3851N (B HSU), located approximately 1,300 feet southwest of extraction well VO8, 2,000 feet southwest of extraction well VO6, and 1,800 feet south of extraction well VO7, exhibited influence from changes in pumping in all three BOU extraction wells. The influence from changes in pumping was up to 0.6 feet in magnitude. The greatest influence seems to be from changes in pumping at VO8. There was consistently approximately 0.5 feet of head difference between these two monitoring wells indicating an upward vertical gradient.
- Graph C-9: Groundwater monitoring well 3852L (WT HSUs), located approximately 2,800 feet south of extraction well VO8, 4,000 feet south of extraction well VO6, and 4,200 feet south of extraction well VO7, exhibited a slight response to changes in pumping in VO8. There was no observable response to changes in pumping in VO6 or VO7.
- Graph C-12: Groundwater monitoring well 3861D (WT HSUs), located approximately 190 feet southwest of extraction well VO3, 180 feet south of extraction well VO4, and 2,500 feet east of extraction well VO8, exhibited response to changes in pumping in all three extraction wells. The response to pumping was typically less than 0.5 feet in magnitude. Groundwater monitoring well 3861F (B HSU), co-located with 3861D, exhibited response to changes in pumping in all three BOU extraction wells. The response to changes in pumping was up to 1 foot in magnitude, and the greatest influence appeared to be from VO8. There was consistently approximately 4 feet of head difference between these two monitoring wells indicating a vertical gradient upward.
- Graph C-15: Groundwater monitoring well 3871H (WT HSUs), located approximately 2,300 feet south of extraction well VO1 and 2,700 feet southeast of extraction well VO2, exhibited response to changes in pumping in both VO1 and VO2. The response to changes in pumping in VO1 was greater (up to 1.25 feet, compared to 1 foot from pumping in VO2). Water levels fluctuated up to 2.5 feet when both pumps were operating.
- Graph C-19: Groundwater monitoring well 3880 (WT HSUs), located approximately 2,600 feet northeast of extraction well VO1, exhibited a slight response to changes in pumping in VO1.
- Graph C-22: Groundwater monitoring well A-1-CW04 (WT HSUs), located approximately 1,100 feet west of extraction well VO7 and 2,600 feet northwest of extraction well VO8,

exhibited significant response to changes in pumping in VO7 and slight response to changes in pumping in VO8. Groundwater monitoring well A-1-CW05 (B HSU), approximately colocated with A-1-CW04, exhibited response to pumping in both VO7 and VO8. There was consistently approximately 1 foot or more of head difference between these two monitoring wells indicating an upward vertical gradient.

- Graph C-24: Groundwater monitoring well B-1-CW12 (WT HSUs), located approximately 600 feet east of extraction well VO1, historically exhibited significant response to pumping in VO1, with fluctuations up to 2 feet or more in magnitude when pumping stops and starts in extraction well VO1. Groundwater monitoring well B-1-CW11 (B HSU), co-located with B-1-CW12, exhibited responses to pumping rate changes in VO1, with fluctuations generally on the order of 1 to 1.5 feet in magnitude. There is consistently more than 5 feet of head difference between these two monitoring wells indicating a vertical gradient upward. The shallow WT HSU is controlled by pumping from the western end of the groundwater extraction system. While pumping influenced the B HSU, water levels in the both zones declined during the reporting period.
- Graph C-25: Groundwater monitoring well B-1-CW13 (WT HSUs), located approximately 500 feet west of extraction well VO5 and 800 feet east of extraction well VO6, exhibited response to changes in pumping in both VO5 and VO6. The response to changes in pumping in VO5 was greater (2.5 feet or greater, compared to 1.5 feet from changes in pumping in VO6). The water levels fluctuated up to 3 feet when both pumps were operating.
- Graph C-27: Groundwater monitoring well B-1-CW17 (WT HSUs), located approximately 2,000 feet southeast of extraction well VO1, exhibited some response to changes in pumping in VO1, with fluctuations up to 0.2 feet in magnitude. Groundwater monitoring well B-1-CW20 (B HSU), located approximately 1,500 feet southeast of extraction well VO1, appeared to exhibit a larger response to changes in pumping in VO1, with fluctuations generally on the order of 0.75 feet in magnitude.
- Graph C-28: Groundwater monitoring well B-1-CW25 (WT HSUs), located approximately 300 feet east of extraction well VO4 and 600 feet west of extraction well VO3, exhibited response to changes in pumping in both VO3 and VO4. The response to changes in pumping in VO4 was greater (up to 3 feet). The largest influence was when both extraction wells were pumping.

Figure 30 shows changes in the elevation of the WT HSUs from six monitoring wells within the BOU: monitoring wells B-6-CW-17 and 3850V (upgradient of the BOU extraction wells); monitoring well B-1-CW25 (between BOU extraction wells VO3 and VO4); and monitoring wells 3861D and Tt-PW-02 (downgradient of the BOU extraction wells VO3 and VO4). Unfortunately B-6-CW-17 is dry and the data is not useable. These monitoring wells represent a line that approximately parallels the direction of groundwater flow from northwest (upgradient) to southeast (downgradient). Water levels in the upgradient monitoring wells were higher than either the downgradient or extraction system monitoring wells. Due to their proximity to the BOU extraction wells, the water levels in the extraction well monitoring wells showed the greatest fluctuations from

changes in pumping. Data presented in Figure 30 also show that the water level in Tt-PW-02, the farthest downgradient monitoring well on the hydrograph, is higher than the extraction system monitoring wells. The water level in 3861D, located between the extraction system monitoring wells and Tt-PW-02, was general higher than the water level in the extraction system monitoring wells and lower than monitoring well Tt-PW-02. Supporting that during the period represented, the groundwater along the profile represented by the graph is flowing toward the extraction system.

6.3 HYDRAULIC GRADIENTS

6.3.1 Vertical Gradients

Groundwater-elevation data for selected monitoring well-cluster sets were used to evaluate the vertical hydraulic gradient at various points in the BOU and potential vertical groundwater flow. The vertical gradient (i) between the B HSU and the WT HSUs was calculated for the monitoring well-cluster sets by the following formula:

i = dh/dl

where dh equals the difference between the groundwater elevations in the B HSU and overlying HSU, and dl equals the distance between the midpoint of the B HSU monitoring well screen and the midpoint of the saturated portion of the overlying HSU monitoring well screen. The direction and magnitude of the vertical gradient between the B HSU and the overlying WT HSUs at each monitoring well-cluster set are presented in Table 12.

The results indicate that there was a predominately upward vertical gradient over much of the BOU. This upward gradient is caused by the influence due to groundwater extraction (due to the fact that the BOU extraction wells are predominantly drawing from the WT HSUs), which lowers the WT HSUs' water level to elevations below the top of the B HSU's potentiometric surface. The magnitude of the upward gradient was generally greater in the monitoring well clusters that are closer to the BOU extraction wells.

A number of the transducers were installed in monitoring well clusters so the vertical hydraulic gradient can be evaluated. Monitoring well clusters near BOU extraction wells (B-1-CW12 [WT HSUs] and B-1-CW11 [B HSU]; Appendix C, Graph C-24) appear to show an upward vertical hydraulic gradient as a result of pumping from the WT HSUs. Similar upward gradients are observed

on the hydrographs for B-1-CW17 (WT HSUs) and B-1-CW20 (B HSU); 3861D (WT HSUs) and 3861F (B HSU); and 3851M (WT HSUs) and 3851N (B HSU); and A-1-CW04 (WT HSUs) and A-1-CW05 (B HSU) (Appendix C, Graphs C-27, C-12, C-7, and C-22, respectively). It should be noted that upward vertical hydraulic gradients are demonstrated over the full six-month period, suggesting that all pumping configurations from October 2016 through early April 2017 were capable of maintaining upward gradients for these subsets of monitoring wells.

6.3.2 Horizontal Gradients

Groundwater-elevation data for selected monitoring wells were used to evaluate horizontal hydraulic gradients (direction and magnitude) within the BOU using a triangulated irregular network (TIN). This horizontal hydraulic gradient analysis was completed using data collected during the April 2017 gauging event and TINs defined by monitoring wells distributed in the WT HSUs and the B HSU. The TIN segments established for this evaluation are shown on Figures 31 and 32 for the WT HSUs and the B HSU, respectively. As shown on these figures, the TIN cells are located adjacent to and immediately downgradient of the BOU extraction system. Consequently, the application of this diagnostic tool can help determine the near-well and downgradient extent of capture generated by the BOU extraction system.

A total of 38 TIN segments were defined for the WT HSUs (A through LL) and 25 TIN segments were defined for the B HSU (A through Y) to determine the direction and magnitude of the horizontal hydraulic gradients in the respective HSUs (Figures 31 and 32).

6.3.2.1 WT HSU TIN Results

Based on review of Figure 31, the hydraulic gradient in the area immediately to the south and east of the groundwater extraction well system are directly influenced by pumping, showing steep gradients and in some instances a reversal from the southeast-oriented regional trend, indicating strong hydraulic capture.

South of Victory Boulevard (triangles AA, BB, and CC), the direction of groundwater flow appears to ultimately result in flow toward the extraction system, but the hydraulic gradient is not as steep. Further to the south, the horizontal gradients calculated for triangles EE, FF, GG, and HH support partial capture in this region. However, the horizontal gradients in triangles KK and LL do not support capture in those regions.

6.3.2.2 B-Zone HSU TIN Results

The TIN map prepared for the B HSU (Figure 32) shows that groundwater directly adjacent to extraction well VO8 is influenced by pumping, and the influence quickly dissipates to the south, southwest, and west.

6.4 CHEMICALS OF CONCERN CONCENTRATION TRENDS

Concentration trends constitute another element in the evaluation of hydraulic capture. Per the guidance provided in *A Systematic Approach for Evaluation of Capture Zones at Pump and Treat Systems* (USEPA, 2008), contaminant concentrations should be monitored at locations downgradient of the capture zone to demonstrate capture. Contaminant concentrations can be monitored at two types of downgradient locations: sentinel monitoring wells or downgradient performance monitoring wells. Sentinel monitoring wells are located downgradient of the capture zone and concentrations are below background concentrations. Downgradient performance monitoring wells are located downgradient of the capture zone and are impacted above background concentrations. Four monitoring well pairs completed in both the WT-HSU and the B-HSU have been identified as downgradient performance monitoring wells: 3852M (WT HSUs) and 3852N (B HSU), 3862D (WT HSUs) and 3872E (B HSU), 3872L (WT HSUs) and 3872M (B HSU), and 3872Q (WT HSUs) and 3872S (B HSU). All of these monitoring wells are located south of Burbank Boulevard.

Results of the statistical trend analyses for the chemicals of concern are presented on Figures 18 through 29. Results presented on these figures correspond to the Mann-Kendall and the linear regression tests performed on data points covering the time period from first quarter 1996 to the most recent sampling event in April 2017, as presented in Section 5 and Appendix E. As discussed in Section 5 of this report, there are seven statistical concentration trend types that can be derived for the Mann-Kendall analysis: 1) decreasing, 2) increasing, 3) no trend (displaying two sets of conditions), 4) probably decreasing, 5) probably increasing, 6) stable, and 7) non-detect (ND; all sample results are below the detection limit). If a location has fewer than four quarters of data, then the Mann-Kendall analysis cannot be run and not applicable (NA) would be applied to the results. Trends for the 4 pairs of monitoring wells identified above are discussed by analyte below.

Page 6-7

6.4.1 Tetrachloroethene Concentration Trends

The trend analysis for the eight downgradient performance monitoring wells yielded the following results: insufficient data (none), decreasing (six monitoring wells: 3852M, 3852N, 3862D, 3862E, 3872M, and 3872Q), increasing (none), no trend (one monitoring well: 3872L), probably decreasing (one monitoring well: 3872S), probably increasing (none), stable (none), and ND (none). The magnitudes of the decreasing and probably decreasing trends ranged from -34 to -0.93 micrograms per liter per year (μ g/L/yr) in the WT HSUs and from -3.5 to -0.09 μ g/L/yr in the B HSU.

6.4.2 Trichloroethene Concentration Trends

The trend analysis for the eight downgradient performance monitoring wells yielded the following results: insufficient data (none), decreasing (seven monitoring wells: 3852M, 3852N, 3862D, 3862E, 3872M, 3872Q, and 3872S), increasing (none), no trend (one monitoring well: 3872L), probably decreasing (none), probably increasing (none), stable (none), and ND (none). The magnitudes of the decreasing trends were -30 to -0.42 μ g/L/yr in the WT HSUs and -1.64 to -0.03 μ g/L/yr in the B HSU.

6.4.3 1,2,3-Trichloropropane Concentration Trends

The trend analysis for the eight downgradient performance monitoring wells yielded the following results: insufficient data (none), decreasing (one monitoring well: 3872Q), increasing (two monitoring wells: 3852M and 3872L), no trend (five monitoring wells: 3852N, 3862D, 3862E, 3872M, and 3872S), probably decreasing (none), probably increasing (none), stable (none), and ND (none). The magnitude of the single decreasing trend was -0.023 μg/L/yr in the WT HSUs. The magnitude of the increasing trend wells in the WT HSUs was 0.006 μg/L/yr and 0.016 μg/L/yr.

6.4.4 1,4-Dioxane Concentration Trends

The trend analysis for the eight downgradient performance monitoring wells yielded the following results: insufficient data (none), decreasing (one monitoring well: 3862D), increasing (none), no trend (none), probably decreasing (none), probably increasing (none), stable (two monitoring wells: 3852M and 3862E), and ND (five monitoring wells: 3852N, 3872L, 3872M, 3872Q, and 3872S). The magnitude of the single decreasing trend in the WT HSUs was -0.01 µg/L/yr.

Page 6-8

6.4.5 Total Chromium Concentration Trends

The trend analysis for the eight downgradient performance monitoring wells yielded the following results: insufficient data (none), decreasing (none), increasing (none), no trend (three monitoring wells: 3852N, 3862E, and 3872Q), probably decreasing (two monitoring wells: 3852M and 3862D), probably increasing (none), stable (three monitoring wells: 3872L, 3872M, and 3872S), and ND (none). The magnitude of the decreasing trend wells was -0.14 μ g/L/yr and -0.11 μ g/L/yr (WT HSUs).

6.4.6 Hexavalent Chromium Concentration Trends

The trend analysis for the eight downgradient performance monitoring wells yielded the following results: insufficient data (none), decreasing (one monitoring well: 3862D), increasing (none), no trend (four monitoring wells: 3852M, 3852N, 3872L, and 3872M), probably decreasing (none), probably increasing (none), stable (three monitoring wells: 3862E, 3872Q, and 3872S), and ND (none). The magnitude of the decreasing trend was -0.50 μ g/L/yr (WT HSUs).

6.5 CAPTURE ZONE SUMMARY

For this report, several lines of evidence were examined to evaluate the extent of capture resulting from the BOU extraction system and assess the effectiveness of the system in hydraulically containing the various chemical of concern plumes within the BOU. The lines of evidence included the following:

- The operational data from the extraction system indicated that groundwater is being extracted and that significant VOC mass is being removed from the aquifer.
- Vertical hydraulic gradients indicated that pumping from the WT HSUs is inducing or increasing upward vertical gradients between the B HSU and the WT HSUs.
- The WT-HSU potentiometric map developed from the groundwater level measurements supports that the BOU extraction wells capture groundwater across most of the BOU north of Vanowen Street and south of the extraction wells toward Chandler Boulevard and Wyoming and West Allan Avenue (Figure 3).
- The TIN for the WT HSUs were developed from the same data as the potentiometric maps. The TIN supports that capture from the BOU extraction wells extends south to approximately West Allan and Wyoming Avenue in the central-western portion of the BOU and Chandler Boulevard in the eastern portion of the BOU.

Page 6-9

• The trend analysis for the eight downgradient performance monitoring wells yielded the following results: insufficient data (none), decreasing (16 results), increasing (2 results), no trend (14 results), probably decreasing (3 results), probably increasing (none), stable (8 results), and ND (5 results). The two increasing trends (1,2,3-TCP in monitoring wells 3852M and 3872L) had a limited data set (at least five analyses from each well from 2007 to 2017) and the magnitude of the change was small.

The lines of evidence suggest that the BOU extraction system exerts lateral hydraulic control for the extent of contaminants of concern within the BOU. The BOU extraction system can be expected to inhibit the migration of site-related chemicals of concern that are present within the WT HSUs upgradient (north) of the southern limits of hydraulic control in each hydrostratigraphic unit. This interpretation is consistent with past BOU groundwater monitoring reports and recent modelling within the San Fernando Valley (Tetra Tech, 2015c).

SECTION 7 CONCEPTUAL SITE MODEL EVALUATION

The groundwater monitoring results for the second quarter 2017 do not materially differ from results obtained during previous groundwater monitoring events, with the exception that as shown in Figure 5 the overall groundwater elevation at the site continues to drop, also drawdown in the vicinity of extraction well V08 is now depicted on the potentiometric surface maps (Figure 3 and 4). This difference is due to the inclusion of water level data from newly-installed observation wells OW-V08A and OW-V08B rather than changes in field conditions, and represents an improvement in the accuracy of depiction of the cone of depression around the BOU extraction well field. This new data helps better define the influence extraction well VO8 is having on both the water table and the B HSUs. The repair and/or replacement of OWVO1, OW-VO2, OW-VO3, and OW-VO6 has helped to better define the influence of their associated BOU extraction wells. The new wells at Plant B-1 have refined the potentiometric and the isoconcentration mapping in that area as well.

SECTION 8 SUMMARY AND CONCLUSIONS

The Second Quarter 2017 BOU groundwater monitoring event was implemented in accordance with the 2017 Revised OSP; (Tetra Tech, 2017b). The intent of the program is to provide the data necessary to evaluate groundwater conditions at the BOU, including the near-field and far-field effects of the extraction well field.

8.1 GROUNDWATER MONITORING WELL MAINTENANCE

In preparation for the second quarter 2017 groundwater monitoring event, several monitoring well maintenance activities were completed in March and April, 2017:

- The dedicated high-volume pumps and associated piping were removed from 52 monitoring wells and replaced with dedicated low-flow pumps.
- A total of 9 groundwater monitoring wells were redeveloped, cleaned out, or attempted to be cleaned out. This includes A-1-CW07, B-5-CW03, B-6-CW16, C-1-CW05, C-1-CW06, 3852L, 3852M, and 4949C.
- Additional well maintenance activities were completed at 70 of the BOU monitoring wells. This included replacement of well lid gaskets, adding or replacing well tags, re-tapping the existing bolt holes, and replacing the standard six-point bolts with five-point bolts.

8.2 GROUNDWATER ELEVATIONS AND GRADIENTS

During the second quarter 2017 groundwater monitoring event, groundwater levels were measured in 105 monitoring wells. Groundwater elevation contours for the WT HSUs and B HSU are shown on Figures 3 and 4, respectively. Based on those measurements, the local shallow groundwater flow direction was predominantly southeasterly in the northwest portion of the BOU and southerly in the northeast portion of the BOU, and it converged in a flow direction toward the cones of depression created by the operation of the BOU extraction wells. The second quarter 2017 groundwater elevation data indicate that the dominant direction of groundwater flow immediately south of the BOU extraction wells was reversed from its natural southeasterly flow direction, to a northerly flow direction in response to the extraction well pumping (northeasterly flow direction in the western portion of the BOU). These groundwater trends extend to Victory Boulevard in the western portion of the BOU, West Allan and Wyoming Avenue in the central-western portion of the BOU, and to at

least Chandler Boulevard in the eastern portion of the BOU. Beyond these boundaries the groundwater flow direction shows influence from pumping, but ultimately reverts to its natural southeasterly direction.

The local groundwater flow direction in the B HSU during the second quarter 2017 groundwater monitoring event was generally the same as the local groundwater flow direction observed in the WT HSUs. The greater drawdown observed at extraction well V08 in the second quarter 2017 compared with the second quarter 2016 is due to the inclusion of data from new observation well OW-V08B.

Groundwater-elevation data for selected monitoring wells were used to evaluate horizontal hydraulic gradients (direction and magnitude) within the BOU using a TIN. This horizontal hydraulic gradient analysis was completed using data collected during the April 2017 gauging event and TINs defined by monitoring wells distributed in the WT HSUs and the B HSU. These TIN cells are located adjacent to and immediately downgradient of the BOU extraction system. Consequently, the application of this diagnostic tool can help determine the near-well and downgradient extent of capture generated by the BOU extraction system.

Based on the TIN map for the WT HSUs, the hydraulic gradient in the area immediately to the south and east of the groundwater extraction well system are directly influenced by pumping, showing steep gradients and in some instances a reversal from the southeast-oriented regional trend, indicating strong hydraulic capture. Farther to the south, the direction of groundwater flow appears to ultimately result in flow toward the extraction system, but the hydraulic gradient is not as steep. The degree of hydraulic capture dissipates along the southwestern operable unit boundary during the second quarter 2017 monitoring event.

Based on the TIN map for the B HSU, groundwater directly adjacent to extraction well VO8 is influenced by pumping, and the influence quickly dissipates to the south, southwest, and west.

8.3 WATER QUALITY RESULTS

Sixty-five groundwater monitoring wells were sampled during the Second Quarter 2017 monitoring event, 42 completed in the WT HSU and 23 completed in the B HSU. The samples collected were tested for VOCs, 1,2,3-TCP, 1,4-dioxane, total chromium, and hexavalent chromium.

The data were validated using the most recent versions of the USEPA's *National Functional Guidelines* for data validation available at the time of project initiation, where appropriate (USEPA, 2008 and 2010a). Based upon the data review, the data are considered usable as qualified. All testing was provided by the Eurofins Calscience, a California Department of Public Health-accredited environmental laboratory.

Twenty-one organic and two inorganic analytes were detected. Isoconcentration maps were prepared for six primary chemicals of concern: PCE, TCE, 1,2,3-TCP, 1,4-dioxane, total chromium, and hexavalent chromium.

- PCE was detected in 59 of the primary (non-duplicate) samples, 37 of which exceeded the MCL (5 μg/L). Concentrations in the WT HSUs ranged from <0.20 μg/L to 630 μg/L (monitoring well B-1-CW33). Concentrations exceeding the MCL extended over much of the BOU with the highest concentrations detected at the northwest corner of the former Plant B-1 and trending southeast beneath former Plant B-1 and extending to Magnolia Boulevard. Concentrations in the B HSU ranged from <0.20 μg/L to 48 μg/L (monitoring well 3850R). Concentrations exceeding the MCL were not as widely distributed as in the shallower HSUs, with the highest concentrations detected adjacent to the extraction wells on Vanowen Street.</p>
- TCE was detected in 53 of the samples, 35 of which exceeded the MCL. The detected concentrations ranged from 0.29 μg/L (monitoring well C-1-CW05) to 240 μg/L (monitoring wells 3872L and B-1-CW13). Concentrations exceeding the MCL extended over much of the BOU with the highest concentrations detected downgradient of former Building 85 and extending to Magnolia Boulevard. Concentrations in the B HSU ranged from <0.29 μg/L to 32 μg/L (monitoring well 3862E). Concentrations exceeding the MCL were not as widely distributed as in the shallower HSUs, with the highest concentrations detected south of the BOU. Additionally, elevated concentrations were detected in the southern portion of the former Plant B-6 area and continuing southeast beneath former Building 85 and extending to Vanowen Street.
- 1,2,3-TCP was detected in 31 of the samples, 30 of which exceeded the DWNL (0.005 μg/L). Concentrations in the WT HSUs ranged from <0.0025 μg/L to 87 μg/L (monitoring well A-1-CW08). Concentrations exceeding the DWNL extended over much of the BOU with the highest concentrations detected down gradient of the former Plant B-6 area, north of former Building 85, and along Vanowen Street. Concentrations in the B HSU ranged from <0.0025 μg/L to 0.29 μg/L (monitoring well 3852H). Concentrations exceeding the DWNL were not as widely distributed as in the WT HSUs, with the highest concentrations detected near Burbank Boulevard.</p>
- 1,4-Dioxane was detected in 11 of the samples, 11 of which exceeded the DWNL (1.0 μg/L). Concentrations in the WT HSUs ranged from <0.28 μg/L to 3.7 μg/L (monitoring well A-1-CW09). Concentrations exceeding the DWNL are spare, but spread out through the BOU specifically at former Plants A-1-S, B-1, and C-1 as well as downgradient of Former Building 371. Concentrations in the B HSU ranged from <0.28 μg/L to 2.3 μg/L (monitoring well A-1-CW05). Similar to the WT HSUs, concentrations exceeding the DWNL extended

around the former Plant B-6 and A-1 areas of the BOU, with the highest concentrations detected at the former Plant A-1-S.

- Total chromium was detected in 65 of the samples, 2 of which exceeded the MCL (50 μg/L). Concentrations in the WT HSUs ranged from 1.05 J (A-1-CW03R) to 82.9 μg/L (monitoring well C-1-CW07). One sample from the eastern portion of the BOU near the former Weber Aircraft facility and one sample near former Plant C-1 had concentrations detected exceeding the MCL. Concentrations in the B HSU ranged from 0.600 μg/L (monitoring well C-1-CW02 to 7.85 μg/L (3872S). No concentrations were detected that exceeded the MCL.
- Hexavalent Chromium was detected in 58 samples, 5 of which exceeded the MCL ($10 \,\mu g/L$). Concentrations in the WT HSUs range from $0.010 \,\mu g/L \,\mu g/L$ (monitoring well A-1-CW03R) to $20 \,\mu g/L$ (monitoring well B-1-CW17). Four of the 5 samples that exceeded the MCL are located in the central to southern portions of former Plant B-1. The other sample that exceeded the MCL is located immediately outside of the northeastern boundary of the BOU. Concentrations in the B HSU ranged from $0.021 \,\mu g/L$ (monitoring well 3850R) to $7.9 \,\mu g/L$ (monitoring well 3872S). No concentrations were detected above the MCL.

8.4 STATISTICAL TREND ANALYSES

Statistical trend analyses were conducted using chemical data from the 65 monitoring wells sampled during the second quarter 2017 BOU groundwater monitoring event. The analysis was performed for the six primary chemicals of concern: PCE, TCE, 1,2,3-TCP, 1,4-dioxane, total chromium, and hexavalent chromium. Therefore, a total of 390 trends were tested. The MAROS, developed by the Air Force Center for Environmental Excellence (Air Force Center for Environmental Excellence, 2006), was used for the analyses. The MAROS is a statistical database application developed to assist with groundwater quality data trend analysis and long-term monitoring optimization at contaminated groundwater sites. BOU data from first quarter 1996 to second quarter 2017 were analyzed.

Statistical analysis indicated that for various reasons (insufficient data, no statistical trend, or no detections), a significant trend could not be determined for 43% of the datasets that were tested, particularly for 1,2,3-TCP, 1,4-dioxane, total chromium, and hexavalent chromium. Statistical analysis also indicated that 29% of the datasets had decreasing or probably decreasing concentration trends, 17% were stable, and 11% had increasing concentration trends. The trend analysis showed that those trends that were significant were generally small. Over half of the decreasing concentrations trends were for TCE and PCE concentrations, scattered throughout the BOU; about half of the stable trends were for total chromium and hexavalent chromium concentrations; and 1,2,3-TCP and 1,4-dioxane concentrations upgradient of the BOU extraction wells in the former Plant B-6 area are generally increasing. With the exception of the increasing 1,2,3-TCP trend in

monitoring wells 3852M and 3872L, all monitoring wells with increasing trends for one or more of the compounds of concern are upgradient of the BOU extraction wells or within the area captured by the extraction wells. The magnitude of the changes in concentration of 1,2,3-TCP in monitoring wells 3852M and 3872L are small (0.016 μ g/L/yr and 0.006 μ g/L/yr, respectively).

8.5 CAPTURE ZONE EVALUATION

Several lines of evidence were examined to evaluate the extent of capture resulting from the BOU extraction system and assess the effectiveness of the system in hydraulically containing the various chemical of concern plumes within the BOU. The lines of evidence included the following:

- The operational data from the extraction system indicated that groundwater is being extracted and that VOC mass is still being removed from the aquifer.
- Vertical hydraulic gradients indicated that pumping from the WT HSUs is inducing or increasing upward vertical gradients between the B HSU and the WT HSUs.
- The WT-HSU potentiometric map developed from the groundwater level measurements supports that the BOU extraction wells capture groundwater across most of the BOU north of Vanowen Street and south of the extraction wells toward Chandler Boulevard and Wyoming and West Allan Avenue.
- The TIN for the WT HSUs were developed from the same data as the potentiometric maps. The TIN supports that capture from the BOU extraction wells extends south to approximately West Allan and Wyoming Avenue in the central-western portion of the BOU and Chandler Boulevard in the eastern portion of the BOU.
- The trend analysis for the eight downgradient performance monitoring wells yielded the following results: insufficient data (none), decreasing (16 results), increasing (2 results), no trend (14 results), probably decreasing (3 results), probably increasing (none), stable (8 results), and ND (5 results). The two increasing trends (1,2,3-TCP in monitoring wells 3852M and 3872L) had a limited data set (at least five analyses from each well from 2007 to 2017) and the magnitude of the change was small.

The lines of evidence suggest that the BOU extraction system exerts hydraulic control on the plumes originating from the BOU and it extends to near West Allan and Wyoming Avenue in the central-western portion of the BOU and Chandler Boulevard in the eastern portion of the BOU, and the extraction system inhibits the migration of site-related chemicals of concern.

8.6 BURBANK OPERABLE UNIT EXTRACTION SYSTEM PERFORMANCE

Based on the data from the BOU monthly operation reports for the current reporting period (May 2016 through April 2017), an estimated 3,129,230,274 gallons of groundwater was extracted (average extraction rate of 5,937 gallons per minute) and approximately 3,697 pounds of volatile organic compounds (VOCs) were treated by the Burbank Operable Unit (BOU) treatment system. Per the 1997 Explanation of Significant Difference (USEPA, 1997), the USEPA contends that:

The City of Burbank can substantially accept and has committed to accept, an average of 9,000 gpm from the interim remedy facilities.

Due to elimination of reinjection from the project, the Burbank OU groundwater extraction rate will not be a continuous 9,000 gpm. The instantaneous extraction rate will fluctuate with the City of Burbank's water demand. In recognition of the likelihood that it will not be possible to extract groundwater at a rate of 9,000 gpm, twenty-four hours a day, three hundred and sixty-five days a year, EPA is specifying that the new extraction rate will be achieved as an average rate, not an instantaneous rate.

EPA has also decided to suspend the 9,000 gpm extraction rate requirement during times when nitrate levels in the extracted groundwater exceed 50 mg/L as nitrate.

Multiple lines of evidence suggest that at current extraction rates the BOU extraction system exerts hydraulic control in the WT HSUs that extends to near to near West Allan and Wyoming Avenue in the central-western portion of the BOU and Chandler Boulevard in the eastern portion of the BOU, and inhibits the migration of site-related chemicals of concern. The upward hydraulic gradient (potentially pulling contaminant mass from the B HSU to the WT HSUs) exhibited in much of the southern portion of the BOU inhibits the migration of site-related chemicals of concern, where present, in the deeper HSU.

The Revised Operational Sampling Plan (Tetra Tech, 2017b) states the following:

The Record of Decision for the Burbank Operable Unit was signed in June 1989. An Explanation of Significant Difference was signed in November 1990 and a second Explanation of Significant Difference was signed in February 1997. The selected remedy

addressed the volatile organic compound- contaminated groundwater plume in the Burbank area. As described in the Record of Decision and Explanations of Significant Differences, the interim remedial action selected for the Burbank Operable Unit was designed to achieve two objectives:

- 1. To partially control the movement and spread of groundwater contaminants in the Burbank Operable Unit area, while contributing to aquifer restoration
- 2. To address the public health threat posed by contamination of the City of Burbank's public water supply wells by providing residents in the area with a water supply that meets State and Federal drinking water standards.

Based on the data and the analyses presented in this report, Tetra Tech concludes that the first objective of the remedial action is being met. While the BOU extraction system produces groundwater that is treated and deliver for consumption, water quality data from the treatment plant was not presented or reviewed as part of this report and therefore the second objective cannot be discussed as part of this report.

8.7 RECOMMENDATIONS

The following recommendations are proposed for the BOU groundwater monitoring program:


- Implement the repairs identified during the monitoring well inspections.
- Continue performing the monitoring well inspections annually.
- Install and sample the replacement monitoring well for 3860H (as described in the *Work Plan Well Installation and Replacement* (Tetra Tech, 2016d).
- Evaluate a replacement monitoring well for A-1-CW07.
- Reduce the transducer recording frequency. Currently, transducers record data in 15-minute increments. Recommend changing the frequency to record data every 6 hours.
- Remove transducer from B-6-CW17 and evaluate placement nearby well.

SECTION 9 REFERENCES

- 1. Air Force Center for Environmental Excellence, 2006. Monitoring and Remediation Optimization System (MAROS) Software Version 2.2 User's Guide. Air Force Center for Environmental Excellence. Updated March 2006.
- 2. Arcadis, 2013. 2013 Annual Groundwater Monitoring and Emerging Compound Report, Burbank Operable Unit, Burbank, California. August
- 3. Bedrossian, T.L. and Roffers, P.D., 2012 "Geologic Compilation of Quaternary Surficial Deposits in Southern California, Los Angeles 30' x 60' Quadrangle (Revised)". California Geological Survey Special Report 217, Plate 9. July.
- 4. HSI Geotrans, 1997. Draft Phase 2 Operational Sampling Plan, Burbank Operable Unit, Burbank, California. Prepared for Lockheed Martin, 2550 North Hollywood Way, Suite 306, Burbank, California 91505.
- 5. Lockheed Martin Corporation (LMC) 2005. Letter to the U.S. Environmental Protection Agency. April 27, 2005.
- 6. Los Angeles Regional Water Quality Control Board (LARWQCB), 2001. Comments on the *Semiannual Groundwater Monitoring Report, Second Quarter and Third Quarter 2000, Burbank Operable Unit*. Letter to Earth Tech dated June 28.
- 7. LARWQCB, 2002a. Heavy Metals in Soils and Groundwater, former Lockheed Martin Plant B-1 (File No. 104.0676)(Cleanup and Abatement Order No. 87-161). Letter to Lockheed Martin Corporation dated March 28.
- 8. LARWQCB, 2002b. Comments on the *Semiannual Groundwater Monitoring Report*, Fourth Quarter 2001 and First Quarter 2002, Burbank Operable Unit. Letter to Lockheed Martin Corporation dated November 18.
- 9. LARWQCB, 2003. Requirement for a Technical Report on Emergent Chemicals Sampling, Pursuant to California Water Code Section 13267, Burbank Operable Unit. Letter to Lockheed Martin Corporation dated December 16.
- 10. LARWQCB, 2004. Comments on the *Technical Report on Emergent Chemicals within the Burbank Operable Unit, Burbank, California*. Letter to Lockheed Martin dated December 8.
- 11. Tetra Tech, 2015a. Annual Groundwater Monitoring Report, Second Quarter 2015, Burbank Operable Unit, Burbank, California. August.
- 12. Tetra Tech, 2015b. Revised Summary of Monitoring Well Destruction Activities along San Fernando Road, Burbank Operable Unit, Burbank, California. September 15.

- 13. Tetra Tech, 2015c. Technical Memorandum Capture Analysis at the Burbank Operable Unit, San Fernando Valley Basin, California. November.
- 14. Tetra Tech, 2016a. Revised Well Replacement Evaluation, Burbank Operable Unit, Burbank, California. February.
- 15. Tetra Tech, 2016b. *Technical Memorandum Pump Intake Selection, Burbank Operable Unit, Burbank, California*. March 9.
- 16. Tetra Tech, 2016c. *Technical Memorandum Sampling and Analysis Plan Addendum*. March 21.
- 17. Tetra Tech, 2016d. Work Plan Well Installation and Replacement, Burbank Operable Unit, Burbank, California. April.
- 18. Tetra Tech, 2016e. Revised Technical Memorandum Low-Flow Pump Intake Selection, Burbank Operable Unit, Burbank, California. November 10.
- 19. Tetra Tech, 2017a. Supplemental Site Investigation Report, Former Lockheed Martin Plant B-1, Burbank, California. January.
- 20. Tetra Tech, 2017b. Revised Operational Sampling Plan Addendum, Burbank Operable Unit, Burbank, California. February.
- 21. United States Environmental Protection Agency (USEPA), 1997. *EPA Superfund Explanation of Significant Differences: San Fernando Valley (Area 1), EPA ID: CAD980894893, OU 03, North Hollywood, CA, 02/12/1997. EPA/ESD/R09-97/037.* February 12.
- 22. USEPA, 2004. U.S. EPA Five-Year Review Report for Burbank Operable Unit, San Fernando Valley (Area 1) Superfund Site, Los Angeles County, California. September.
- 23. USEPA, 2005. Letter to General Electric Company. October 20.
- 24. USEPA, 2006a. Letter to Lockheed Martin Corporation. February 10.
- 25. USEPA, 2006b. Letter to Lockheed Martin Corporation. November 3.
- 26. USEPA, 2007. Letter to General Electric Company. June 8.
- 27. USEPA, 2008. U.S. EPA Contract Laboratory Program National Functional Guidelines for Organic Methods Superfund Data Review. OSWER 9240.1-48 EPA-540-R-08-01. June.
- 28. USEPA, 2010a. U.S. EPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review. OSWER 9240.1-51, EPA-540-R-10-011). October.
- 29. USEPA, 2010b. Letter to Lockheed Martin Corporation. October 22.

- 30. USEPA, 2010c. Email correspondence to Lockheed Martin Corporation and General Electric Company. November 3.
- 31. USEPA, 2011. Letter to Lockheed Martin and Potentially Responsible Parties. February 25.
- 32. USEPA, 2013. Second Five-Year Review Report for San Fernando Valley (Area 1) Superfund Site, North Hollywood and Burbank, Los Angeles County, California. September 30.
- 33. USEPA, 2016a. RE: Recommendation from the Second Five-Year Review Report for San Fernando Valley (Area 1) Superfund Site, North Hollywood and Burbank, Los Angeles County. August 9.
- 34. USEPA, 2016b. *National Functional Guidelines for Inorganic Superfund Methods Data Review*. OLEM 9355.0-133, EPA-540-R-2016-001, September.
- 35. USEPA, 2016c. *National Functional Guidelines for Superfund Organic Methods Data Review*. OLEM 9355.0-134, EPA-540-R-2016-002, September.
- 36. Weather Underground, 2017. "Precipitation Data for Burbank, CA". Website: http://www.wunderground.com/history/airport/KBUR. Accessed on April 29.
- 37. Weather Warehouse, 2011. "Burbank Valley Pump Precipitation Data 1991-2010". Website: http://weather-warehouse.com. Accessed on March 3.
- 38. Well Survey: KDM Meridian, Inc. 2012.Projection: NAD83 NSRS2007 State Plane California V,FIPS0405 FT US.

Table 1 Wells Scheduled for Low-Flow Sampling Lockheed Martin Corporation Burbank Operable Unit, Burbank, California

Well ID	Casing Diameter (inches)	Proposed Pump Composition	April 2017 Depth to Groundwater (feet btoc)	Total Depth of Well (feet btoc)	Selected Depth of Pump Intake (feet btoc)
3830Q	5	PVC	235.16	235.16	344.5
3830S	5	PVC	235.31	235.31	250.5
3831Q	5	PVC	198.30	198.30	239.5
3850M	5	PVC	228.15	228.15	226.5
3850N	5	PVC	203.31	203.31	209.5
3850R	5	PVC	198.35	198.35	341.5
3850U	5	PVC	228.25	228.25	228.5
3851M	5	PVC	191.19	191.19	207.2
3851N	5	PVC	184.37	190.49	314.5
3852F	5	PVC	142.77	148.03	166.6
3852Н	5	PVC	146.25	149.65	291.0
3852L	5	PVC	156.93	164.95	173.1
3852M	5	PVC	132.62	136.91	217.5
3852N	5	PVC	137.32	137.94	292.5
3860J	5	PVC	197.06	203.34	204.5
3860K	5	Stainless Steel	204.45	212.21	224.5
3861D	5	PVC	157.67	164.20	174.5
3862D	5	PVC	127.27	133.36	183.5
3862E	5	PVC	124.68	130.38	270.5
3871H	5	PVC	131.22	138.19	220.0
3871J	5	PVC	127.26	132.80	278.5
3872L	5	PVC	105.09	110.68	174.5
3872M	5	PVC	100.88	106.58	296.0
3872N	5	Stainless Steel	102.68	108.49	133.5
3872Q	5	PVC	114.70	120.81	127.5
3872S	5	PVC	111.32	117.30	284.5
3880	5	PVC	151.50	157.24	164.5
4949C	5	PVC	258.59	268.00	266.5
A-1-CW02	5	PVC	216.20	222.80	354.5
A-1-CW03R	5	PVC	219.75	226.96	264.5
A-1-CW04	5	PVC	211.19	217.52	232.4
A-1-CW05	5	PVC	209.70	216.18	365.5

Table 1 Wells Scheduled for Low-Flow Sampling Lockheed Martin Corporation Burbank Operable Unit, Burbank, California

Well ID	Casing Diameter (inches)	Proposed Pump Composition	April 2017 Depth to Groundwater (feet btoc)	Total Depth of Well (feet btoc)	Selected Depth of Pump Intake (feet btoc)
A-1-CW08	5	PVC	217.86	226.60	229.5
A-1-CW09	5	PVC	209.92	217.67	221.5
B-1-CW11	5	PVC	144.80	150.40	322.0
B-1-CW12	5	PVC	151.22	155.58	164.5
B-1-CW17	5	PVC	135.64	140.51	157.3
B-1-CW20	5	PVC	134.75	140.55	294.5
B-1-CW25	5	PVC	178.16	185.95	184.5
B-1-CW27	5	PVC	172.68	178.36	323.5
B-1-CW28	5	PVC	185.4	191.69	335.5
B-1-CW29	5	PVC	165.43	Dry Well	165.5
B-5-CW02	5	PVC	226.37	232.6	344.5
B-5-CW03	5	PVC	226.07	Dry Well	225.5
B-6-CW02	5	PVC	227.02	234.04	334.5
B-6-CW14	5	PVC	232.58	240.76	354.5
B-6-CW17	5	PVC	266.63	Dry Well	264.5
C-1-CW02	5	PVC	264.23	270.59	386.5
C-1-CW03	5	PVC	264.43	271.01	274.5
C-1-CW05	5	PVC	246.39	251.71	380.5
C-1-CW06	5	PVC	Dry	Dry Well	246.5
C-1-CW07	5	PVC	256.78	264.71	312

Notes:

bgs = below ground surface

btoc = below top of casing

Table 2 Second Quarter 2017 Groundwater Well Maintenance Table

Proposed Maintenance				2017: Repair apron surrounding well monument. Low priority, complete in near future.																														
Notes					Notify property owner/tenant 24 hours prior to arrival. Nomex shirt and hard hat required.	Traffic control required	Traffic control required	Traffic control required	Traffic control required	Missing 230V plug on pump power lead	Traffic control required	Traffic control required									Pump plug needs rewiring						Notify property owner/tenant 24 hours prior to arrival							
Well Repairs to Date	2017; Installed low-flow pump; replaced well gasket; replaced interior well tag; replaced bolts (penta-bolts).		2017: Installed Iow-flow pump; replaced well gasket; replaced interior well tag; replaced bolts (penta-bolts).	2017; Installed low-flow pump; replaced well gasket; replaced interior well tag; replaced bolts (penta-bolts).	2017: Installed low-flow pump; replaced well gasket; replaced interior well tag; replaced bolts (penta-bolts).	2017: Installed low-flow pump: replaced well gasket; replaced interior well tag; replaced bolts (penta-bolts).			2017: Installed low-flow pump; replaced well gasket; replaced interior well tag; replaced bolts (penta-bolts).			2017; Installed low-flow pump; replaced well gasket; replaced interior well tag; replaced bolts (penta-bolts).			2017: Installed low-flow pump; replaced well gasket; replaced interior well tag; replaced bolts (penta-bolts).	2017: Installed low-flow pump; replaced well gasket; replaced interior well tag; replaced bolts (penta-bolts).		2017: Installed low-flow pump; replaced well gasket; replaced interior well tag; replaced bolts (penta-bolts).		2017: Installed low-flow pump; replaced well gasket; replaced interior well tag; replaced bolts (penta-bolts).			2017: Installed low-flow pump; replaced well gasket; replaced interior well tag; replaced bolts (penta-bolts).	2017: Installed low-flow pump; replaced well gasket; replaced interior well tag; replaced bolts (penta-bolts).	2017; Installed low-flow pump, replaced well gasket; replaced interior well tag; replaced bolts (penta-bolts).	2017: Installed low-flow pump; replaced well gasket; replaced interior well tag, replaced bolts (penta-bolts).	2017; Installed low-flow pump; replaced well gasket; replaced interior well tag; replaced bolts (penta-bolts).	2017: Installed low-f	2014: Obstruction removed from well	2016: High-volume pump removed and low-flow pump installed 2017: Replaced well gasket; replaced interior well tag: replaced bolts.	2006: Pump serviced - January 26, 2006 2017: Installed low-flow pump; replaced well gasket; replaced interior well	tag; replaced bolts (perna-bolts). 2017: Installed low-flow pump; replaced well gasket; replaced interior well	tag; replaced bolts (penta-bolts).	2010: Low-tlow pump installed 2017: replaced interior well tag
Screen Interval (feet bgs)	335 - 355	291 - 311	218 - 258	230-250	182 - 232	165 - 215	231 - 251	277 - 317	337 - 347	183 - 233	194 - 239	189 - 234	203 - 243	200 - 240	165 - 215	305 - 325	370 - 380	125 - 175	196 - 216	269 - 299	257 - 277	213 - 233	139 - 179	208 - 228	283 - 303	170 - 210	180 - 230	130 - 180	201 - 241	303 - 323	90 - 130	256_276	014-004	140 - 190
Total Depth (feer bgs)	360	316	263	255	237	220	256	322	352	238	244	239	248	245	220	330	385	185	221	304	282	238	184	233	308	215	235	185	248	328	135	96 186	707	195
Depth of Low- Flow Pump Intake (feet bgs)	344.5		250.5	239.5	226.5	209.5			341.5			228.5			207.2	314.5		166.6		291			173.1	217.5	292.5	204.5	224.49	174.5		314	000	183.5	2.014	182.5
Dedicated Low-Flow Pump Model	BESST P200		BESST P200	BESST P200	BESST P200	BESST P200			BESST P200			BESST P200			BESST P200	BESST P200	000000	BESST P200		BESST P200			BESST P200	BESST P200	BESST P200	BESST P200	BESST P200	BESST P200		ŒĎ	BESST	P200 BESST	P200	ŒĎ
Dedicated High- Volume Pump Model		1 HP / 230 V					3/4 HP / 230 V	1 HP / 230 V		1/2 HP / 230 V	1/2 HP / 230 V		1/2 HP / 230 V	1/2 HP / 230 V			1 HP / 230 V		1/2 HP / 230 V		1/2 HP / 230V	3/4 HP / 230 V							3/4 HP / 230 V		1/2 HP / 230 V			
Dedicated Pump Type							•	•		•	•		•	•			•				•	•							•		•	\dagger	1	
Wells With Nitrogen Well Packers																													П		Ť	T	T	
Wells With Transducer													•		•	•					Barologger		•									•		
Property Owner					Burbank Public Works										City of Burbank	City of Burbank	City of Burbank									City of Burbank	Los Angeles County							
Property Description	Sidewalk	Sidewalk	Sidewalk	Sidewalk	Burbank Water and Power Yard	Street	Street	Street	Street	Street	Street	Street	Street	Street	Parking Lot	Parking Lot	Parking Lot	Sidewalk	Sidewalk	Sidewalk	Sidewalk	Sidewalk	Sidewalk	Sidewalk	Sidewalk	Street	LA Fire Station							
	Clybourn Ave. south of Vanowen Street	Clybourn Ave. south of Vanowen Street	Clybourn Ave. south of Vanowen Street	Clybourn Ave north of W. Victory Blvd.	Winona Ave, east of N Ontario Street	Vanowen Street west of N. Ontario Street	Vanowen Street west of N. Ontario Street	Vanowen Street west of N. Ontario Street	Vanowen Street west of N. Ontario Street	mton Avenue east of N. Niagra St.	Ontario Street north of Burton Ave.	N. Ontario Street south of Winona Ave.	N. California Street cul de sac	N. Onfario Street north of Floyd	N. Hollywood Way parking lot of BOU	N. Hollywood Way parking lot of BOU	ofBOU	N Avon Street south of Burbank Blvd.	N Avon Street south of Burbank Blvd.	N Avon Street south of Burbank Blvd.	Lima Street east sw at grammar school	Lima Street east sw at grammar school	Lima Street east sw at grammar school	N. Catalina Street north of Chandler Blvd.	N. Catalina Street north of Chandler Blvd.	Lincoln Street and Rosita Ave.	N. Naomi Ave Fire Department							Irving Dr. at Kaeler St
Street Address	Clybou	Clybc	Clybo	Clybo	Win	Vanowen Sti	Vanowen St	Vanowen St	Vanowen S	Thornton	z	z	Z.	z	N. Hollyw	N. Hollyw	N. Hollyn		_	_				A. Catalina	J. Catalin	ī								

Table 2 Second Quarter 2017 Groundwater Well Maintenance Table

Proposed Maintenance																						2017: Recommend abandonment and replacement of well.		2017: Apron surrounding well monument may need to be repaired. Low priority, complete in near future.					2017: Requires larger gasket replacement due to size of manhole cover. Replace with new gasket before April 2018 monitoring event.	2017: Requires larger gasket replacement due to size of manhole cover. Replace with new gasket before April 2018 monitoring event.
Notes	No pump												Located in railroad ROW	Located in railroad ROW. Pump not functioning (2016)		Notify property owner/tenant prior to arrival	Generally dry	Notify property owner/tenant prior to arrival	Provide 2-day notice (prefers email contact) to property owner/tenant prior to arrival			Unable to get to water table because of debris/obstruction. Well has likely collapsed.	Provide 2-day notice to property owner/tenant prior to arrival.	2013				Pump is potentially bad	Traffic control required cover	201 cover
Well Repairs to Date	2005: Punn serviced - November 22, 2005	2017: Installed low-flow pump; replaced well gasket; replaced interior well tag; replaced bolts (penta-bolts).	2017: Installed low-flow pump; replaced well gasket; replaced interior well tag; replaced bolts (penta-bolts).	2017: Installed low-flow pump; replaced well gasket; replaced interior well tag: replaced bolts (penta-bolts).	,	2017: Installed low-flow pump; replaced well gasket; replaced interior well tag; replaced bolts (penta-bolts).	2017: Installed low-flow pump; replaced well gasket; replaced interior well tag; replaced bolts (penta-bolts).		2016: Ant colony cleared 2017: Installed low-flow pump; replaced well gasket; replaced interior well tag; replaced bolts (penta-bolts).	2017: Surveyed	2017: Installed low-flow pump; replaced well gasket; replaced interior well tag; replaced bolts (penta-bolts).	2017: Installed low-flow pump; replaced well gasket; replaced interior well tag; replaced bolts (penta-bolts).	2012-2013: Pump removed 2016: low-flow pump installed 2017: replaced well gasket; replaced interior well tag; replaced bolts.	2017: Installed low-flow pump; replaced well gasket; replaced interior well tag; replaced bolts (penta-bolts).		2017: Installed low-flow pump; replaced well gasket; replaced interior well tag; replaced bolts (penta-bolts).		2017: Installed low-flow pump; replaced well gasket; replaced interior well tag; replaced bolts (penta-bolts).	2017: Installed low-flow pump; replaced well gasket; replaced interior well tag; replaced bolts (penta-bolts).	2017: Installed low-flow pump; replaced well gasket; replaced interior well tag; replaced bolts (penta-bolts).		2014 Well developed and pump removed April 2014 2017: Well dry; replaced well box; replaced interior well tag. Used magnet to clear metal debris in well.	2017: Installed low-flow pump; replaced well gasket; replaced interior well tag; replaced bolts (penta-bolts).	2017: Installed low-flow pump; replaced well gasket; replaced interior well tag; replaced bolts (penta-bolts).	2017: Installed low-flow pump; replaced well gasket; replaced interior well tag; replaced bolts (penta-bolts).	2017: Installed low-flow pump; replaced well gasket; replaced interior well tag; replaced bolts (penta-bolts).	2014: Well developed April 2014; pump removed April 2014, low-flow pump installed 2016. Replaced well gasket, replaced interior well tag; replaced bolts.	2005: Pump serviced - November 29, 2005	2017: Installed low-flow pump; replaced interior well tag; replaced bolts (penta-bolts).	2017: Installed low-flow pump; replaced interior well tag; replaced bolts (penta-bolts).
Screen Interval (feet bgs)	475 - 515 95 - 135	I _	274 - 284	70 - 120	061 - 091	274 - 304 2	124 - 144	229 - 249	93 - 133 2	193 - 223	275 - 295 2	120 - 170 2	247 - 297	222 - 272	560 - 570	350 - 360	175 - 195	245 - 285 2	200 - 240	336 - 376	522 - 552	174 - 224	175 - 235	187 - 227	300 - 330	120 - 170	150 - 210	140 - 190	125 - 165	285 - 305
Total Depth (feer bgs)	520	246	289	125	195	309	149	254	138	228	300	175	302	277	570	362	200	285	245	381	557	229	240	232	335	175	215	195	170	310
Depth of Low- Flow Pump Intake (feet bgs)		220	278.5	174.5		296	133.5		127.5		284.5	164.5	291.5	266.5		354.5		264.5	232.4	365.5			229.5	221.5	322	164.5	205.5		157.3	294.5
Dedicated Low-Flow Pump Model		BESST P200	BESST P200	BESST P200		BESST P200	BESST P200		BESST P200		BESST P200	BESST P200	ĢED	BESST P200		BESST P200		BESST P200	BESST P200	BESST P200			BESST P200	BESST P200	BESST P200	BESST P200	•		BESST P200	BESST P200
Dedicated High- Volume Pump Model	1/2 HP / 230 V				1/2 HP / 230 V			1/2 HP / 230 V		1/2 HP / 230 V					1.0 HP / 230V		1/2 HP / 230 V				1/2 HP / 115 V							1/2 HP / 230 V		
Dedicated Pump Type					•												•											•		
Wells With Nitrogen Well Packers																														
Wells With Transducer		•				_						•							•	•					•	•	•		•	•
Property Owner													SCRRA / Metrolink	SCRRA / Metrolink					LA Graphic Company	Budget Car Rental Company		Yahoo	City of Burbank				Kid's Castle	The Walt Disney Co.	Costco	
Property Description												Sidewalk	Railroad right- of-way	Railroad right- of-way		Private Parking Lot	Private Parking Lot		Private Parking Lot	Airport Budget Car Rental Parking Lot		Yahoo Parking Lot	Airport Parking Lot C				Kid's Castle Parking Lot	Disney Parking Lot	Costco Parking Lot	Dirt Lot
Street Address	Irving Dr. at Kaeler St											Amherst Drive south of N 3rd Street	Along San Fernando Road	Along San Fernando Road		Located in VSP airport Pr	Located in VSP airport Pr parking lot	Located in VSP airport parking lot	d	2220 N. Hollywood Way, Burbank, CA R		Located in Yahoo parking lot	Bob Hope Airport				Located in Kid's Castle parking lot	Located in Disney Parking lot	Located in Costco parking lot	
Well ID	3870E 3871G	3871H	3871J	3872K	38721	3872M	3872N	3872P	3872Q	3872R	3872S	3880	4948	4949C	A-1-CW01	A-1-CW02	A-1-CW03	A-1-CW03R	A-1-CW04	A-1-CW05	A-1-CW06	A-1-CW07	A-1-CW08	A-1-CW09	B-1-CW11	B-1-CW12	B-1-CW13	B-1-CW16	B-1-CW17	B-1-CW20

Table 2 Second Quarter 2017 Groundwater Well Maintenance Table

Proposed Maintenance	2017: Replace lid. Current lid does not have holes to bolt lid onto the monument. Replace lid and add gasket before April 2018 monitoring event			2017; Requires larger gasket replacement due to size of manhole cover. Replace with new gasket before April 2018 monitoring event.																	2017: Apron surrounding well monument may need to be repaired. Low priority, complete in near future.			
Notes	20 H			City size well lid, 100 ft NW of Hometown Buffer, traffic control required	2016; well installed.	2016: well installed.	2016: well installed.	2016; Well installed. 2016; well installed.		10/13/12. AEC installed combo lock: 1717/to access with big trailer.				Generally dry	Pump requires 230V extension cord for sampling. No starter box required	Notify property owner/tenant 24 hours prior to access	Notify property owner/tenant 24 hours prior to access	Notify property owner/tenant 24 hours prior to access				Notify property owner/tenant 24 hours prior to access	Notify property owner/tenant 24 hours prior to access.	
Well Repairs to Date	2017: Installed low-flow pump; placed well gasket; placed interior well tag	2017: Installed low-flow pump; replaced well gasket; replaced interior well tag; replaced bolts (penta-bolts).	2017: Installed low-flow pump; replaced well gasket; replaced interior well tag; replaced bolts (penta-bolts).	2017: Replaced interior well tag. Pump not placed because well is dry.						2017, Installed low-flow pump; replaced well gasket; replaced interior well use. replaced boils (perma-boils).	2012. Doup pipe repaired 2012. Doup pipe repaired 2017: eplaced well gasket; replaced interior well mag replaced bolts Pump not placed because well was dry.		2017: Installed low-flow pump; replaced well gasket; replaced interior well	(0)	2005: Pump serviced - November 23, 2005		2016: Low-flow pump installed 2017: Replaced well gasket, replaced interior well tag, replaced bolts.			2016: Pump removed and low-flow pump installed 2017: replaced well gasket; replaced interior well tag; replaced bolts.		2014: Obstruction removed April 2014 2016: low-flow pump installed 2017: replaced well gasket; replaced interior well tag: replaced bolts.	2017: Installed low-flow pump; replaced well gasket; replaced interior well tag; replaced bolts (penta-bolts).	
Screen Interval (feet bgs)	150 - 190	314 - 334	326 - 346	131 - 171	156 - 196	165 - 206	140 - 180	145 - 185	542 - 552	340 - 350	211 - 231	580 - 590	330 - 340	185 - 215	240 - 260	510 - 520	345 - 355	215 - 235	492 - 502	361-371	242 - 262	203 - 253	325 - 365	260 - 610
Total Depth (feer bgs)	961	339	351	176	961	202	180	185	552	350	231	290	340	215	265	520	355	235	205	371	262	258	370	615
Depth of Low- Flow Pump Intake (feet bgs)	184.5	323.5	335.5	165.5	183	188.5	163.6	169		344.5	225.5		334.5				349.5			366		249	354.5	
Dedicated Low-Flow Pump Model	BESST P200	BESST P200	BESST P200	BESST P200	ŒD		GEO	GED GED		BESST P200	BESST P200		BESST							•			BESST P200	
Dedicated High- Volume Pump Model									1 1/2 HP / 230 V			1 1/2 HP / 230 V		1/2 HP / 230 V	1/2 HP / 230 V	2 HP / 230 V		1/2 HP / 230 V	1 1/2 HP / 230V		1/2 HP / 230 V			3/4 HP / 230 V
Dedicated Pump Type															•	•		•	•					
Wells With Nitrogen Well Packers						Ī																		
Wells With Transducer										•	•													
Property Owner	City of Burbank	City of Burbank	Kid's Castle						Union Pacific	Union Pacific	Union Pacific						Ford	Ford						
Property Description	Street		Kid's Castle Parking Lot	Hometown Buffet Parking Lot			1		Southwest Parking Lot	Southwest Parking Lot	Southwest Parking Lot				Trucking/Movie Parking Lot		Commercial - Ford Property	Commercial - Ford Property		Private Parking Lot	Private Parking Lot	Airport Parking Lot A	Airport Parking Lot A	
Street Address	Within the line of production wells on Vanowen Street	Within the line of production wells on Vanowen Street		100 ft NW of NW comer of building (City size well lid)					4400 block of Empire Avenue	4400 block of Empire Avenue	4400 block of Empire Avenue				Located in a trucking/movie parking lot Tr. (Spots 187 and 241)					Bob Hope Airport	Pob Hope Airport	Bob Hope Airport	Bob Hope Airport	
	B-1-CW25	B-1-CW27	B-1-CW28	B-1-CW29	B-1-CW30	1	1	B-1-CW33	B-5-CW01	B-5-CW02	B-5-CW03	B-6-CW01	B-6-CW02	B-6-CW03	B-6-CW03R	B-6-CW04	B-6-CW05	B-6-CW06	B-6-CW07	B-6-CW08	B-6-CW09	B-6-CW10	B-6-CW14	B-6-CW15

Table 2 Second Quarter 2017 Groundwater Well Maintenance Table

Proposed Maintenance																		2017: Need to repair cap. Repair cap prior to April 2018 monitoring event.					2017: Install transducer prior to April 2018 monitoring event	2017. Histall bandared proc to the control of the c	_	
Notes			Notify property owner/tenant 24 to 48 hours prior to access	Notify property owner/tenant 24 hours prior to access						No pump; padlock combination 6752; generally dry	No pump; padlock combination 6752; generally dry	Padlock combination 6722; generally dry		dund oN	No pump	Notify property owner/tenant 48 hours prior to access. Tenant prefers morning sampling.	Notify property owner/tenant 48 hours prior to access. Tenant prefers morning sampling.			Traffic control required. No Pump.	Traffic control required. No Pump.					
Well Repairs to Date	2017; placed interior well tag. Pump not placed because well was dry.		2017: Installed low-flow pump; replaced well gasket; replaced interior well tag; replaced bolts (penta-bolts).	2017: Installed low-flow pump; replaced well gasket; replaced interior well tag; replaced bolts (penta-bolts).		2017: Installed low-flow pump; replaced well gasket; replaced interior well tag; replaced bolts (penta-bolts).	2017: replaced well gasket; replaced interior well tag; replaced bolts (penta bolts). Pump not placed because well was dry.	2017; Installed low-flow pump; replaced well gasket; replaced interior well tag: replaced bolts (penta-bolts).	2015: Pump removed 2016: low-flow pump installed 2017: Replaced well gasket; replaced interior well tag; replaced bolts.			2014: Well developed and pump removed 2016: low-flow pump installed	2016: Low-flow pump installed 2017: Surveyed.	Surveyed 2017	Surveyed 2017	Low-flow pump installed 2016	Low-flow pump installed 2016	2016: Well developed 2017: Surveyed	2016; Well developed 2017; Surveyed	2017; Added well tag	2017: Added well tag	2017. Abandonded 2017. Abandonded	2017: Installed and developed	2017: Installed and developed	2017: Abandonded 2017: Abandonded	2017: Installed and developed
Screen Interval (feet bgs)	240 - 270		382 - 392	259 - 280	652 - 662		232 - 252	290 - 320	245 - 285	180 - 240	180 - 240	220 - 280	200 - 260	205 - 265	200 - 260	195 - 255	195 - 255	207 - 237	196 - 226	185 - 225	179 - 219	76 - 263	140 - 250	300 - 325	303 322	150 - 260
Total Depth (feer bgs)	275		392	280	662	386	248	336	292	242	242	283	265	270	265	260	260	267	258	235	235	330	325	325	330	320
Depth of Low- Flow Pump Intake (feet bgs)	264.5		386.5	274.5		380.5	246.5	312	277			267	255			250	243.5									
Dedicated Low-Flow Pump Model	BESST P200		BESST P200	BESST P200		BESST P200	BESST P200	BESST P200	•			•				•	•	•	•							
Dedicated High- Volume Pump Model		2 HP / 230 V			2 HP / 230 V																					
Dedicated Pump Type		•																						Ī	Ī	
Wells With Nitrogen Well Packers																										
Wells With Transducer	•																				•					
Property Owner								Atlantic Charter Burbank Regional Planes Airport Authority	Burbank Regional Airport Authority	General Electric (formerly PAC site)	General Electric (formerly PAC site)	General Electric (formerly PAC site)	General Electric (formerly PAC site)	General Electric (formerly PAC site)	General Electric (formerly PAC site)	General Electric (formerly PAC site)	General Electric (formerly PAC site)			City of Burbank	City of Burbank					
Property Description	Private Parking Lot; between stall 187 & 241		Private Parking Lot	Private Parking Lot				Mantic Charter Planes	Atlantic Charter Planes	Commercial	Commercial	Commercial	Commercial	Commercial	Commercial	Commercial - Within Kino Flo property	Commercial - Within Kino Flo property			Street	Street					
Street Address	1		124					Bob Hope Airport	Bob Hope Airport	3003 North Hollywood Way, Burbank, CA	3003 North Hollywood Way, Burbank, CA	3003 North Hollywood Way, Burbank, CA	2940 North Hollywood Way, Burbank, CA	2940 North Hollywood Way, Burbank, CA	2940 North Hollywood Way, Burbank, CA	2840 North Hollywood Way, Burbank, CA	2840 North Hollywood Way, Burbank, CA			Located S. curbside on Kittridge Street at Buena Vista	Located W. curbside on Lincoln Street at Burbank Blvd					
Well ID	B-6-CW17	C-1-CW01	C-1-CW02	C-1-CW03	C-1-CW04	C-1-CW05	C-1-CW06	C-1-CW07	C-1-CW08	MW-01	MW-02	MW-03	MW-04	MW-05	MW-06	MW-07	MW-08	SW-1	SW-5	Tt-PW-01	Tt-PW-02	OW-VOIA OW-VOIB	OW-VOLAR	OW-VOIBR	OW-VO2B	OW-VO2AR

Table 2 Second Quarter 2017 Groundwater Well Maintenance Table

				onitoring event.		onitoring event.		onttoring event.		omioring eveni.		onitoring event.		omtoring event.													
Proposed Maintenance			01001.	prior to April 2018 m	0.000	prior to April 2018 m	0.000	prior to April 2018 m	0	prior to April 2016 in	-	prior to April 2018 m		prior to April 2010													
Proj				2017; Install transducer prior to April 2018 monitoring event.		2017: Install transducer prior to April 2018 monitoring event.	1000	2017; instani transducer prior to Aprii 2018 monitoring event	100 lin v	2017: IIIstali transducei		2017: Install transducer prior to April 2018 monitoring event.		ZOLV. Illistati transducer													
Notes							Traffic control required	Traffic control required	Traffic control required	Traffic control required	Traffic control required	Traffic control required	Key to gate on west side of the facility (Ontario St.) is	available for cheek out at the BOU treatment facility.													
Well Repairs to Date	2017: Abandonded	2017: Abandonded	2017: Installed and developed	2017: Installed and developed					Concrete apron surrounding manhole repaired, replaced packer.	Concrete apron surrounding manhole repaired; replaced packer.					ndo Valley darabase.												
Screen Interval (feet bgs)	79 - 271	310 - 329	160 - 270	315 - 335	110 - 282	320 - 350	110 - 283	321 - 360	120 - 273	312 - 350	120 - 273	312 - 350	170-280	325-345	gency San Ferna												
Total Depth (feer bgs)	340	340	335	335	360	360	370	370	360	360	360	360	345	345	rotection Ag												
Depth of Low- Flow Pump Intake (feet bgs)															nvironmental P												
Dedicated I Low-Flow Pump Model															nited States E												
Dedicated High- Volume Pump Model															tained from the Ur												
Dedicated Pump Type															information ob												
Wells with Nitrogen Well Packers							•	•	•	•	•	•	•	•	19/14/11 and i												
Wells With Transducer															eed Martin, date												
Property Owner							City of Burbank	City of Burbank	City of Burbank	City of Burbank	City of Burbank	City of Burbank	Burbank FD	Burbank FD	ovided by Lockh											OURED WELL	
Property Description							Street	Street	Street	Street	Street	Street	Burbank FD Yard	Burbank FD Yard	of information p											OL BOARD RE	
Street Address							Located on Vanowen Street	Located on Vanowen Street	Located on Vanowen Street	Located on Vanowen Street	Located on Vanowen Street	Located on Vanowen Street	Located in Burbank Fire Department Training Facility Yard	Located in Burbank Fire Department Training Facility Yard	Theorem in formation included in this matrix is a collaboration of information provided by Lockbeed Marcin, dated 9/14/11 and information obtained from the United States Environmental Protection Agency San Fernando Valley danbase. By Each ground surface. By = Born growth Sarriage. By = BVNIRONMENTAL PROTECTION AGENCY	ABLE	NR = NON-ROUTINE O = OPERATIONAL MONITORING WELL	aphic unit	OSP = Operational Sampling Plan PAC = Pacific Airmotive Cornoration	TOTAL OF THE PROPERTY OF THE P	R = ROUTINE MONITORING WELL	DATILE ORGANIC COMPOUND SPROPANE	TDS = TOTAL DISSOLVED SOLIDS	SCRRA = Southern CaliforniaRegional Rail Authority	V = VOIL VOC = VOLATILE ORGANIC COMPOUND	WB =CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD REQUIRED WELL	WT = water table
Well ID	OW-VO3A	OW-VO3B	OW-VO3AR	OW-VO3BR	OW-VO4A	OW-VO4B	OW-VO5A	OW-VO5B	OW-VO6A	OW-VO6B	OW-VO7A	OW-VO7B	OW-VO8A	OW-VO8B	Historical information includ bgs = below ground surface btoc = below top of casing EPA = ENVIRONMENTAL	HP = horsepower NA = NOT APPLICABLE	NR = NON-ROUTINE O = OPERATIONAL M	HSU = ydrostratigraphic unit	= Operational = Pacific Airm	WELL	SOUTINE MO.	SVOC = SEMI-VOLATILE ORG TCP = TRICHLOROPROPANE	= TOTAL DIS	SCRRA = Southern	oit = VOLATILE	=CALIFORNL	WT = water table

Tetra Tech

Table 3 Second Quarter 2016 Groundwater Elevation Data

Well ID	Screened HSU	Screened Interval (feet bgs)	Date Measured	Time Measured	Well Casing Elevation (feet MSL)	Depth to Groundwater (feet btoc)	Groundwater Elevation (feet MSL)
3830Q	В	335 - 355	4/18/2017	15:01	702.56	235.16	467.40
3830S	X/A (WT)	218 - 258	4/18/2017	15:10	702.37	235.31	467.06
3831Q	A (WT)	230 - 250	4/18/2017	10:22	660.31	198.30	462.01
3850M	X (WT)	182 - 232	4/20/2017	10:02	684.67	228.15	456.52
3850N	X (WT)	165 - 215	4/20/2017	11:11	658.07	203.31	454.76
3850Q	Y	277 - 317	4/20/2017	11:13	655.87	198.88	456.99
3850R	В	337 - 347	4/20/2017	11:14	657.49	198.35	459.14
3850S	A'/X (WT)	183 - 233	NA	NA	668.04	NA	NA
3850T	A'/X (WT)	194 - 239	4/19/2017	14:28	680.30	224.58	455.72
3850U	A'/X (WT)	189 - 234	4/19/2017	14:14	684.83	228.25	456.58
3850V	A'/X (WT)	203 - 243	4/18/2017	9:55	693.20	233.75	459.45
3850W	A'/X (WT)	200 - 240	4/18/2017	13:43	693.01	233.45	459.56
3851M	X/A (WT)	165 - 215	4/19/2017	10:12	650.35	191.19	459.16
3851N	В	305 - 325	4/19/2017	10:09	650.10	190.49	459.61
3852F	X (WT)	125 - 175	4/18/2017	10:01	607.65	148.03	459.62
3852G	A (WT)	196 - 216	4/18/2017	10:34	607.85	147.71	460.14
3852H	В	269 - 299	4/18/2017	10:10	607.93	149.65	458.28
3852L	X (WT)	139 - 179	4/18/2017	9:45	623.05	164.95	458.10
3852M	A (WT)	208 - 228	4/18/2017	9:15	593.45	136.91	456.54
3852N	В	283 - 303	4/18/2017	9:21	593.47	137.94	455.53
3860J	X (WT)	170 - 210	4/18/2017	8:01	660.22	203.34	456.88
3860K	A'/X (WT)	180 - 230	4/18/2017	10:28	667.57	212.21	455.36
3861D	X (WT)	130 - 180	4/19/2017	9:40	617.88	164.20	453.68
3861E	A (WT)	201 - 241	4/19/2017	9:44	615.96	163.60	452.36
3861F	В	303 - 323	4/19/2017	9:37	617.46	159.94	457.52
3862D	A (WT)	174 - 194	4/18/2017	8:31	587.50	133.36	454.14
3862E	В	256 - 276	4/18/2017	8:35	587.35	130.38	456.97
3870D	K (WT)	140 - 190	4/18/2017	7:47	639.78	169.28	470.50
3871H	A (WT)	200 - 241	4/18/2017	8:46	591.34	138.19	453.15
3871J	В	274 - 284	4/18/2017	8:52	591.14	132.80	458.34
3872L	A (WT)	160 - 190	4/18/2017	8:08	562.68	110.68	452.00
3872M	B/OA	274 - 304	4/18/2017	8:12	564.35	106.58	457.77
3872N	X (WT)	124 - 144	4/18/2017	8:20	560.77	108.49	452.28
3872Q	A' (WT)	93 - 133	4/18/2017	7:49	575.25	120.81	454.44
3872R	A (WT)	193 - 223	4/18/2017	7:54	575.00	120.87	454.13
3872S	В	275 - 295	4/18/2017	7:57	574.95	117.30	457.65
3880	K (WT)	120 - 170	4/18/2017	7:35	620.06	157.24	462.82
4948	A/Y (WT)	247 - 297	4/19/2017	7:22	763.46	291.49	471.97

Table 3 Second Quarter 2016 Groundwater Elevation Data

Well ID	Screened HSU	Screened Interval (feet bgs)	Date Measured	Time Measured	Well Casing Elevation (feet MSL)	Depth to Groundwater (feet btoc)	Groundwater Elevation (feet MSL)
4949C	A (WT)	222 - 272	4/19/2017	7:30	733.32	268.00	465.32
A-1-CW02	В	350 - 360	4/19/2017	10:45	684.64	222.80	461.84
A-1-CW03R	A (WT)	245 - 285	4/19/2017	10:42	685.09	226.96	458.13
A-1-CW04	A (WT)	200 - 240	4/19/2017	14:03	677.81	217.52	460.29
A-1-CW05	В	336 - 376	4/19/2017	14:14	677.91	216.18	461.73
A-1-CW07	X (WT)	174 - 224	4/19/2017	14:45	674.35	Dry Well	TD 210.54
A-1-CW08	X (WT)	175 - 235	4/19/2017	14:35	682.74	226.60	456.14
A-1-CW09	X (WT)	187 - 227	4/18/2017	12:17	673.80	217.67	456.13
B-1-CW11	В	300 - 330	4/19/2017	7:37	610.05	150.40	459.65
B-1-CW12	A' (WT)	120 - 170	4/19/2017	7:35	609.85	155.58	454.27
B-1-CW13	X (WT)	150 - 210	4/20/2017	8:17	651.49	200.05	451.44
B-1-CW16	A' (WT)	140 - 190	4/19/2017	10:29	639.07	186.94	452.13
B-1-CW17	A'/X (WT)	125 - 165	4/19/2017	9:09	596.35	140.51	455.84
B-1-CW20	В	285 - 305	4/19/2017	9:21	600.23	140.55	459.68
B-1-CW25	A' (WT)	150 - 190	4/19/2017	8:20	636.54	185.95	450.59
B-1-CW27	В	314 - 334	4/19/2017	8:16	636.93	178.36	458.57
B-1-CW28	В	326 - 346	4/20/2017	8:30	650.15	191.69	458.46
B-1-CW29	A' (WT)	131 - 171	4/19/2017	7:57	623.12	Dry Well	171.65
B-1-CW30	A' (WT)	156 - 196	4/19/2017	7:51	622.10	169.80	452.30
B-1-CW31	A' (WT)	165 - 205	4/19/2017	7:44	620.89	170.59	450.30
B-1-CW32	A' (WT)	139 - 179	4/19/2017	9:14	602.92	148.16	454.76
B-1-CW33	A' (WT)	178 - 218	4/19/2017	8:07	639.96	189.80	450.16
B-1-CW34	A' (WT)	144 - 184	4/19/2017	7:30	609.47	154.32	455.15
B-5-CW02	В	340 - 350	4/18/2017	14:32	697.67	232.60	465.07
B-5-CW03	A (WT)	211 - 231	4/18/2017	14:40	697.26	Dry Well	TD 228.35
B-6-CW02	В	330 - 340	4/18/2017	10:06	699.99	234.04	465.95
B-6-CW05	В	345 - 355	4/18/2017	13:23	725.42	258.07	467.35
B-6-CW08	В	361 - 371	4/19/2017	12:56	727.06	259.90	467.16
B-6-CW09	X/A (WT)	242 - 262	4/19/2017	12:59	727.04	Dry Well	TD 257.95
B-6-CW10	X (WT)	203 - 253	4/19/2017	15:06	710.11	247.00	463.11
B-6-CW14	В	325 - 365	4/19/2017	14:08	704.79	240.76	464.03
B-6-CW16	X/A (WT)	210 - 260	4/18/2017	14:00	714.62	250.78	463.84
B-6-CW17	A/Y (WT)	240 - 270	4/19/2017	13:31	742.39	Dry Well	NA
C-1-CW02	В	382 - 392	4/18/2017	12:57	740.07	270.59	469.48
C-1-CW03	A (WT)	259 - 280	4/18/2017	13:00	740.39	271.01	469.38
C-1-CW05	В	376 - 386	4/18/2017	12:31	720.87	251.71	469.16
C-1-CW06	A (WT)	232 - 252	4/18/2017	12:40	720.91	Dry Well	TD 247.12
C-1-CW07	Y (WT)	290 - 320	4/19/2017	9:39	729.74	264.71	465.03

Table 3 Second Quarter 2016 Groundwater Elevation Data

2016 BOU Annual Groundwater Monitoring Report Lockheed Martin Corporation Burbank Operable Unit, Burbank, California

Well ID	Screened HSU	Screened Interval (feet bgs)	Date Measured	Time Measured	Well Casing Elevation (feet MSL)	Depth to Groundwater (feet btoc)	Groundwater Elevation (feet MSL)
C-1-CW08	A (WT)	245 - 285	4/19/2017	9:30	731.72	264.40	467.32
MW-01	A'/X (WT)	180 - 240	4/18/2017	9:01	719.39	Dry Well	TD 240.25
MW-02	A'/X (WT)	180 - 240	4/18/2017	8:55	720.05	Dry Well	TD 238.71
MW-03	X/A (WT)	220 - 280	4/18/2017	8:45	720.63	257.09	463.54
MW-04	X/A (WT)	200 - 260	4/18/2017	9:27	702.29	240.90	461.39
MW-05	X/A (WT)	205 - 265	4/18/2017	9:09	705.34	243.04	462.30
MW-06	X/A (WT)	200 - 260	4/18/2017	9:15	705.67	Dry Well	TD 241.04
MW-07	X/A (WT)	195 - 255	4/18/2017	9:44	698.00	237.82	460.18
MW-08	X/A (WT)	195 - 255	4/18/2017	9:34	702.95	243.26	459.69
OW-VO1A-R	WT	140 - 250	4/19/2017	8:03	619.15	167.62	451.53
OW-VO1B-R	В	300 - 325	4/19/2017	8:57	619.13	162.48	456.65
OW-VO2A-R	WT	150 - 260	4/19/2017	8:43	622.82	179.15	443.67
OW-VO2B-R	В	305 - 320	4/19/2017	8:47	622.84	164.71	458.13
OW-VO3A-R	WT	160 - 270	4/19/2017	8:27	627.12	176.72	450.40
OW-VO3B-R	В	315 - 335	4/19/2017	8:30	627.14	169.19	457.95
OW-VO4A	WT	110 - 282	4/20/2017	8:52	639.72	185.85	453.87
OW-VO4B	В	320 - 350	4/20/2017	8:55	639.66	182.23	457.43
OW-VO5A	WT	110 - 283	4/20/2017	11:03	645.68	199.13	446.55
OW-VO5B	В	321 - 360	4/20/2017	11:04	645.61	188.40	457.21
OW-VO6A	WT	120 - 273	4/20/2017	11;10	656.45	202.23	454.22
OW-VO6B	В	312 - 350	4/20/2017	11:09	656.38	197.72	458.66
OW-VO7A	WT	120 - 273	4/20/2017	11:19	668.65	211.99	456.66
OW-VO7B	В	312 - 350	4/20/2017	11:25	668.86	209.95	458.91
OW-VO8A	WT	170 - 280	4/19/2017	9:55	645.70	192.61	453.09
OW-VO8B	В	325 - 345	4/19/2017	9:08	645.67	191.44	454.23
Tt-PW-01	A	185 - 225	4/20/2017	11:31	611.96	156.66	455.30
Tt-PW-02	A	179 - 219	4/20/2017	11:48	603.18	147.45	455.73
SW-1	X/A (WT)	207 - 237 242 - 262	4/18/2017	8:15	714.71	244.75	469.96
SW-5	X/A/Y (WT)	196 - 226 231 - 251	4/18/2017	8:27	694.59	235.37	459.22

Notes:

A = A hydrostratigraphic unit

A' = A' hydrostratigraphic unit B = B hydrostratigraphic unit

btoc = below top of casing HSU = hydrostratigraphic unit

MSL - mean sea level

OA = older alluvium

NA = not available

WT = water table

X = X hydrostratigraphic unit

Y = Y hydrostratigraphic unit

					La	boratory Ana	lyses		
Well ID	HSU	October Water Level Wells	April Water Level Wells	VOCs (USEPA Method 8260B)	1,2,3-TCP (USEPA Method 8260B SIM)	Hexavalent Chromium (USEPA Method 218.6)	Total Chromium (USEPA Methods 6010B)	1,4-Dioxane (USEPA Method 8270C[M] Isotope Dilution)	Identified in Draft 2014 OSP for Time v. Concentration Evaluation
3830Q	В		•	X	X	X	X	X	
3830R	Y (WT)								
3830S	X/A (WT)		•	X	X	X	X	X	
3831Q	A (WT)	•	•	X	X	X	X	X	Potential trending of TCE plume; BOU boundary
3850M	X (WT)		•	X	X	X	X	X	
3850N	X (WT)		•	X	X	X	X	X	Potential trending of TCE plume; near pumping zone
3850P	A (WT)								
3850Q	Y (WT)		•						
3850R	В	•	•	X	X	X	X	X	
3850S	A'/X (WT)		•						
3850T	A'/X (WT)		•						
3850U	A'/X (WT)		•	X	X	X	X	X	
3850V	A'/X (WT)	• T	• T						
3850W	A'/X (WT)		•						
3851M	X/A (WT)	• T	• T	X	X	X	X	X	
3851N	В	• T	• T	X	X	X	X	X	
3851P	OA								
3852F	X (WT)		•	X	X	X	X	X	
3852G	A (WT)	•	•						
3852Н	В		•	X	X	X	X	X	
3852J	Y (WT)								
3852K	A (WT)								
3852L	X (WT)	• T	• T	X	X	X	X	X	Capture zone boundary
3852M	A (WT)	•	•	X	X	X	X	X	
3852N	В	•	•	X	X	X	X	X	
3860J	X (WT)		•	X	X	X	X	X	

					Lai	boratory Ana	lyses		
Well ID	HSU	October Water Level Wells	April Water Level Wells	VOCs (USEPA Method 8260B)	1,2,3-TCP (USEPA Method 8260B SIM)	Hexavalent Chromium (USEPA Method 218.6)	Total Chromium (USEPA Methods 6010B)	1,4-Dioxane (USEPA Method 8270C[M] Isotope Dilution)	Identified in Draft 2014 OSP for Time v. Concentration Evaluation
3860K	A'/X (WT)		•	X	X	X	X	X	
3861D	X (WT)	• T	• T	X	X	X	X	X	Capture zone evaluation
3861E	A (WT)		•						
3861F	В	• T	• T	X	X	X	X	X	
3862C	A' (WT)								
3862D	A (WT)	•	•	X	X	X	X	X	Increasing TCE and PCE trends
3862E	В	•	•	X	X	X	X	X	
3870D	K (WT)		•	X	X	X	X	X	
3870E	K								
3871G	A'(WT)								
3871H	A (WT)	• T	• T	X	X	X	X	X	Increasing TCE and PCE trends
3871J	В		•	X	X	X	X	X	
3872K	A'(WT)	•							
3872L	A (WT)		•	X	X	X	X	X	
3872M	B/OA	•	•	X	X	X	X	X	
3872N	X (WT)		•	X	X	X	X	X	
3872P	Y (WT)								
3872Q	A'(WT)	•	•	X	X	X	X	X	
3872R	A (WT)		•						
3872S	В	•	•	X	X	X	X	X	
3880	K (WT)	• T	• T	X	X	X	X	X	
4948	A/Y (WT)		•	X	X	X	X	X	
4949C	A (WT)		•	X	X	X	X	X	
A-1-CW01	OA								
A-1-CW02	В		•	X	X	X	X	X	

					Lai	boratory Ana	lyses		
Well ID	HSU	October Water Level Wells	April Water Level Wells	VOCs (USEPA Method 8260B)	1,2,3-TCP (USEPA Method 8260B SIM)	Hexavalent Chromium (USEPA Method 218.6)	Total Chromium (USEPA Methods 6010B)	1,4-Dioxane (USEPA Method 8270C[M] Isotope Dilution)	Identified in Draft 2014 OSP for Time v. Concentration Evaluation
A-1-CW03	X (WT)								
A-1-CW03R	A (WT)		•	X	X	X	X	X	
A-1-CW04	A (WT)	• T	• T	X	X	X	X	X	
A-1-CW05	В	• T	• T	X	X	X	X	X	
A-1-CW06	OA								
A-1-CW07	X (WT)		•	X	X	X	X	X	Elevated COC concentrations and upgradient capture zone evaluation
A-1-CW08	X (WT)		•	X	X	X	X	X	
A-1-CW09	X (WT)	•	•	X	X	X	X	X	Cross-gradient capture zone analysis
B-1-CW11	В	• T	• T	X	X	X	X	X	
B-1-CW12	A' (WT)	• T	• T	X	X	X	X	X	Elevated COC concentrations and adjacent to pumping zone
B-1-CW13	X (WT)	• T	• T	X	X	X	X	X	
B-1-CW16	A'/X (WT)		•						
B-1-CW17	A'/X (WT)	• T	• T	X	X	X	X	X	Elevated COC concentrations and hydraulic capture
B-1-CW20	В	• T	• T	X	X	X	X	X	
B-1-CW25	A' (WT)	• T	• T	X	X	X	X	X	Elevated COC concentrations and adjacent to pumping zone
B-1-CW27	В	•	•	X	X	X	X	X	
B-1-CW28	В	•	•	X	X	X	X	X	
B-1-CW29	A' (WT)		•	X	X	X	X	X	Elevated COC concentrations and upgradient capture zone evaluation
B-1-CW30	A' (WT)		•	X	X	X	X	X	
B-1-CW31	A' (WT)		•	X	X	X	X	X	
B-1-CW32	A' (WT)		•	X	X	X	X	X	
B-1-CW33	A' (WT)		•	X	X	X	X	X	
B-1-CW34	A' (WT)		•	X	X	X	X	X	
B-5-CW01	OA								
B-5-CW02	В	• T	• T	X	X	X	X	X	
B-5-CW03	A (WT)	• T	• T	X	X	X	X	X	1,2,3-TCP trend and cross gradient capture zone

					La	boratory Ana	lyses		
Well ID	HSU	October Water Level Wells	April Water Level Wells	VOCs (USEPA Method 8260B)	1,2,3-TCP (USEPA Method 8260B SIM)	Hexavalent Chromium (USEPA Method 218.6)	Total Chromium (USEPA Methods 6010B)	1,4-Dioxane (USEPA Method 8270C[M] Isotope Dilution)	Identified in Draft 2014 OSP for Time v. Concentration Evaluation
B-6-CW01	OA								
B-6-CW02	В	• T	• T	X	X	X	X	X	
B-6-CW03	X (WT)								
B-6-CW03R	A (WT)								
B-6-CW04	OA								
B-6-CW05	В		•	X	X	X	X	X	
B-6-CW06	X (WT)								
B-6-CW07	OA								
B-6-CW08	В		•	X	X	X	X	X	
B-6-CW09	X/A (WT)		•						
B-6-CW10	X (WT)		•	X	X	X	X	X	
B-6-CW14	В		•	X	X	X	X	X	
B-6-CW15	OA								
B-6-CW16	X/A (WT)		•	X	X	X	X	X	
B-6-CW17	A/Y (WT)	• T	• T	X	X	X	X	X	
C-1-CW01	OA								
C-1-CW02	В	• T	• T	X	X	X	X	X	
C-1-CW03	A (WT)		•	X	X	X	X	X	
C-1-CW04	OA								
C-1-CW05	В		•	X	X	X	X	X	
C-1-CW06	A (WT)		•	X	X	X	X	X	Elevated TCE concentrations and western BOU boundary
C-1-CW07	Y (WT)		•	X	X	X	X	X	Chromium detections and upgradient capture evaluation
C-1-CW08	A (WT)		•	X	X	X	X	X	Chromium detections and upgradient capture evaluation
MW-01	A'/X (WT)		•	X	X	X	X	X	Elevated COC concentrations and potential mass flux zone
MW-02	A'/X (WT)								
MW-03	X/A (WT)		•	X	X	X	X	X	
MW-04	X/A (WT)		•	X	X	X	X	X	
MW-05	X/A (WT)		•						

2016 BOU Annual Groundwater Monitoring Report Lockheed Martin Corporation Burbank Operable Unit, Burbank, California

					Lai	boratory Ana	lyses		
Well ID	HSU	October Water Level Wells	April Water Level Wells	VOCs (USEPA Method 8260B)	1,2,3-TCP (USEPA Method 8260B SIM)	Hexavalent Chromium (USEPA Method 218.6)	Total Chromium (USEPA Methods 6010B)	1,4-Dioxane (USEPA Method 8270C[M] Isotope Dilution)	Identified in Draft 2014 OSP for Time v. Concentration Evaluation
MW-06	X/A (WT)		•						
MW-07	X/A (WT)		•	X	X	X	X	X	
MW-08	X/A (WT)		•	X	X	X	X	X	
SW-1	X/A (WT)		•	X	X	X	X	X	
SW-5	X/A/Y (WT)		•	X	X	X	X	X	
Tt-PW-01	A (WT)		•						
Tt-PW-02	A (WT)	• T	• T						

Notes:

B = B hydrostratigraphic unit

BOU = Burbank Operable Unit

COC = chemical of concern

HSU = hydrostratigraphic unit

PCE = tetrachloroethene

T = well with transducer

TCE - trichloroethene
TCP = trichloropropane

VOCs = volatile organic compounds

USEPA = United States Environmental Protection Agency

WT = water table

?? = screened HSU information not available

Table 5 Second Quarter 2017 Groundwater Analytical Data

2017 Annual Groundwater Monitoring Report Lockheed Martin Corporation Burbank Operable Unit, Burbank, CA

1,4-Dioxane		<0.28	<0.28	<0.28		<0.28	<0.28	1.4	\$7.05 <0.28	1.5	<0.28	<0.28	<0.28	<0.28		<0.28	<0.28	<0.28	<0.28	<0.28	<0.28	<0.28	<0.28	<0.28	<0.28	<0.28	<0.28	<0.28	<0.28	<0.28	0000	\$C 0>	2.0	2.3		<0.28	3.7	1.0	<0.28	2.0	<0.05	<0.28	<0.28	<0.28		<0.28	<0.28	<0.28	1.2	<0.28
1,2,3- Trichloro- propane		<0.0025	<0.0025	0.011		0.56 J-c	0.0074	1.6 Jc	<0.000>	0.027	0.29	0.032	0.21	<0.0025		32	0.0056	0.0045 Jq	0.023	0.013	<0.0025	0.084	<0.0025	0.095	<0.0025	0.31	0.045	<0.0025	<0.0025	<0.0025	30000	6.00.02	25 J+c	<0.0025		87	15	<0.0025	<0.0025	3+f CI	<0.0005	0.022	<0.0025	<0.0025		<0.0025	<0.0025	0.011	0.87 J-c	<0.0025
Trichloro- fluoro- methane		<0.20	<0.80	<0.20		0.20	0.40	0.20	0.20	<0.20	<0.20	<0.20	<0.20	<0.20		<2.0	<0.20	<0.20	<0.40	<0.20	<0.20	<1.6	<0.20	<0.20	<0.20	<0.20	<0.80	<0.20	<0.20	<0.20	05.00	02.00	<0.20	<0.20		0.40	<0.20	0.29 Jq	0.20	0.00	<0.00	0.20	<0.20	<0.20		<2.0	<0.40	08.0	0.4.0	<0.20
Trichloro-		<0.29	85	9.2		19	8.7	61	71 0 20	0.58	7.2	1.3	12	2.6		210	160 J-c	4.1	68	32	<0.29	140	<0.29	240	2:0	120	30	<0.29	<0.29	1.3	ç	77	4.8	0.44 Jq		69	5.9	0.78	14	040	<0.00	16	2.3	3.2		200	47	110	180	<0.29
1,1,2-Trichloro- ethane		<0.20	<0.80	<0.20		0.43 Jq	<0.40	<0.20	07:0>	<0.20	0.29 Jq	<0.20	0.25 Jq	<0.20		<2.0	<0.20	<0.20	<0.40	<0.20	<0.20	<1.6	<0.20	<0.20	<0.20	<0.20	<0.80	<0.20	<0.20	<0.20	0.30	0.00	7.4	<0.20		<0.40	7.5	<0.20	0.20	08.07	<0.20	<0.20	<0.20	<0.20		<2.0	<0.40	08.0	4.0	<0.20
1,1,1-Trichloro-		<0.20	<0.80	<0.20		<0.20	<0.40	0.23 Jq	02:05	<0.20	<0.20	<0.20	<0.20	<0.20		<2.0	<0.20	<0.20	<0.40	<0.20	<0.20	<1.6	<0.20	<0.20	<0.20	<0.20	<0.80	<0.20	<0.20	<0.20	00.00	<0.20 <0.20	<0.20	<0.20		<0.40	<0.20	<0.20	<0.20	0.80	<0.30	<0.20	<0.20	<0.20		<2.0	<0.40	<0.80	<4.0	<0.20
ģ ģ	ethane	<0.24	>0.96	<0.24		0.27 Jq	<0.48	6.4	<0.24	<0.24	<0.24	<0.24	<0.24	<0.24		8.5	<0.24	<0.24	<0.48	<0.24	<0.24	<1.9	<0.24	<0.24	<0.24	<0.24	96:0>	<0.24	<0.24	<0.24	0.41 To	0:+1 Jd	1.3	<0.24		<0.48	1.9	<0.24	<0.24	3.1	<0.20	0.92	<0.24	<0.24		<2.4	<0.48	>0.96	15	<0.24
Toluene		<0.20	<0.80	<0.20		0.20	<0.40	02.00	0:05 O>	<0.20	<0.20	<0.20	<0.20	<0.20		<2.0	0.41 Jq	<0.20	<0.40	<0.20	<0.20	<1.6	<0.20	<0.20	<0.20	<0.20	<0.80	<0.20	<0.20	<0.20	92.07	02.0	<0.20	<0.20		<0.40	<0.20	<0.20	0.20	08.00	<0.00	<0.20	<0.20	<0.20		<2.0	<0.40	<0.80	0.4.0	<0.20
Tetrachloro- ethene		0.50	2.9	1.2	:	13	48	17	7.7	0.1	1.5	<0.20	8.8	3.8		200	24	7.0	14	15	<0.20	120	0.25 Jq	300	3.9	310	83	<0.20	<0.20	3.8	11	17	5.2	4.0		28	5.9	2.3	5.5	20	0.34 To	72	4.0	13		110	55	14	630	0.70
Naphthalen 7		<0.40	>1.6	<0.40		0.40	08.00	0.40	0.40	<0.40	<0.40	<0.40	<0.40	<0.40		<4.0	<0.40	<0.40	<0.80	<0.40	<0.40	<3.2	<0.40	<0.40	<0.40	<0.40	9.1>	<0.40	<0.40	<0.40	07.07	0.40	<0.40	<0.40		<0.80	<0.40	<0.40	<0.40	977	<0.40	<0.40	<0.40	<0.40		<4.0	<0.80	9:1>	0.80	<0.40
1,2-Dichloro propane		<0.20	<0.80	<0.20		0.21 Jq	<0.40	0.20	0.20	<0.20	<0.20	<0.20	<0.20	<0.20		<2.0	<0.20	<0.20	<0.40	<0.20	<0.20	<1.6	<0.20	<0.20	<0.20	<0.20	<0.80	<0.20	<0.20	<0.20	00.00	07.07	0.50	<0.20		<0.40	0.52	<0.20	0.20	08.00	<0.00	<0.20	<0.20	<0.20		<2.0	<0.40	08.0	6.0	<0.20
cis-1,2- Dichloro- ethene	stated.	0.51	08.0>	0.40 Jq		0.26 Jq	0.38 Jq	pr cc.0	0.02 OS	<0.20	<0.20	<0.20	<0.20 UJF	<0.20		2.3 Jq	0.21 Jq	<0.20	<0.40	0.21 Jq	<0.20	<1.6	<0.20	0.23 Jq	<0.20	<0.20	<0.80	<0.20	<0.20	<0.20	00.00	0.20 0.46 Io	<0.20	<0.20		<0.40	<0.20	0.95	1.1	3.7	<0.00	<0.20	<0.20	<0.20		<2.0	<0.40	1.1	78 78	<0.20
1,1- Dichloro- ethene	unless otherwise stated.	<0.28	1.1	<0.28		0.87	<0.56	6.9	(C.0)	<0.28	<0.28	<0.28	69:0	<0.28		17	<0.28	<0.28	<0.56	0.58	<0.28	<2.2	<0.28	<0.28	<0.28	<0.28	1.1	<0.28	<0.28	<0.28	00.00	0.45 Io	97.0	<0.28		4.	0.74	<0.28	6.1	6.0	<0.28	0.62	<0.28	<0.28		<2.8	<0.56	<u>-</u>	0.50	<0.28
1,2- Dichloro- ethane	rted in ug/L ui	<0.20	<0.80	<0.20		0.38 Jq	0.440	0.44 Jq	02.020	<0.20	2.1	<0.20	1.0	<0.20		<2.0	<0.20	<0.20	<0.40	<0.20	<0.20	<1.6	<0.20	<0.20	<0.20	<0.20	<0.80	<0.20	<0.20	<0.20	00.00	02.0>	0.42 Jq	<0.20		<0.40	0.38 Jq	0.21 Jq	<0.20	8 6	<0.00	<0.20	<0.20	<0.20		<2.0	<0.40	<0.80	<4.0	<0.20
1,1- Dichloro- ethane	results are repo	_	08.0≻	0.21 Jq		0.20	0.40	07.00	0.28 To	<0.20	<0.20	<0.20	<0.20	<0.20		<2.0	<0.20	<0.20	<0.40	<0.20	<0.20	<1.6	<0.20	<0.20	<0.20	<0.20	<0.80	<0.20	<0.20	<0.20	02.07	07.07	<0.20	<0.20		<0.40	0.20	<0.20	90.20	08.0	00.00	<0.20	<0.20	<0.20		<2.0	<0.40	08.0	4.0	<0.20
Dichloro- difluoro- methane	All re	0.78 Jq	>1.6	<0.40		0.40	<0.80	04.0	1.5	! =	0.91 Jq	<0.40	<0.40	<0.40		<4.0	7.1	<0.40	1.5 Jq	0.87 Jq	<0.40	<3.2	<0.40	<0.40	<0.40	<0.40	<1.6	<0.40	<0.40	<0.40	97.07	040	0.88 Jq	0.84 Jq		08.0>	<0.40	5.6	2.5	9 7	<0.40	<0.40	<0.40	<0.40		<4.0	<0.80	9.1>	0.85	0.91 Jq
Chloro- form		<0.20	1.4 Jq	99'0		3.2	<0.40	670	70.0>	0.51	6.9	0.46 Jq	1.5	<0.20		<2.0	1.2	0.39 Jq	0.89 Jq	0.29 Jq	<0.20	9.1>	<0.20	0.59	<0.20	0.70	<0.80	<0.20	<0.20	0.33 Jq	0 00 C	21	3.6	<0.20		30	3.8	0.48 Jq	1.5	43	00.00	2.6	0.32 Ja	0.35 Jq		<2.0	<0.40	9.6	<4.0 1.4	<0.20
Carbon Tetra- chloride		<0.20	<0.80	0.28 Jq		8.1	<0.40	pt cs.0	0.05 0.00	0.44 Jq	1.6	0.28 Jq	1.2	<0.20		<2.0	0.41 Jq	<0.20	1:1	0.40 Jq	<0.20	<1.6	<0.20	<0.20	<0.20	<0.20	<0.80	<0.20	<0.20	<0.20	02.07	0.42 Io	16.0	<0.20		0.1	17	<0.20	0.20	08.00	<0.00	0.20	<0.20	<0.20		<2.0	<0.40	<0.80	4.0	<0.20
Methyl-tert- butyl-ether		<0.20	pt 9.1	<0.20		0.20	<0.40	<0.20	07.0>	<0.20	<0.20	<0.20	<0.20	<0.20		<2.0	<0.20	<0.20	<0.40	<0.20	<0.20	<1.6	<0.20	<0.20	<0.20	<0.20	<0.80	<0.20	<0.20	<0.20	92.07	<0.20	<0.20	<0.20		<0.40	0.44 Jq	<0.20	<0.20	08.07	<0.30	<0.20	<0.20	<0.20		<2.0	<0.40	08.0	<4.0 0.23 In	<0.20
Bromo- dichloro- methane		<0.20	<0.80	<0.20		<0.20	<0.40	07.00	<0.20	0.20 Jq	<0.20	<0.20	<0.20	<0.20		<2.0	<0.20	<0.20	<0.40	<0.20	<0.20	<1.6	<0.20	<0.20	<0.20	<0.20	<0.80	<0.20	<0.20	<0.20	02.07	02.0>	<0.20	<0.20		<0.40	<0.20	<0.20	0.20	08.0%	<0.00	<0.20	<0.20	<0.20		<2.0	<0.40	<0.80	4.0	<0.20
Acetone		<4.0	91>	<4.0		0.4.0	0.80	0.4.0	57 In	<4.0	×4.0	4.5 Jq	<5.4 UJk, f	<7.4 Uk		<40	4.1 Jq	7.2 Jq	<8.0	<4.0	<4.0	<32	5.5 Jq	<4.0	<4.7 UK	<9.3 UK	91>	<4.0	<4.0	¢4.0	0 1/	9 5	4.7 Jq	<4.0 UJf		<8.0	<4.0	<4.0	0.4.0	01/2	<40	4.1 Jf. a	<4.0	<4.0		<40	<8.0	91>	080	c4:0
Hexavalent		0.19	0.93	6600'0>		0.60	0.021	1.0	5 1	2.7	1:1	1.8	0.63	2.5		1.9	8.9	4.9	8.5	1.0	17	9.6	3.8	4.4	4.4	6.7	89:0	7.9	6.7	0.82	0000	<0.0099	88.0	<0.0099		1.2	4.1	2.7	= 3	0.7	2.1		5.2	6600'0>		0.59	16	8:8	0.44	<0.0099
Chromium, Total		0.770 Jq	4.03	21.3		10.1	0.00 Jq	9.19	5:03	3.15	2.32	4.48	1.53 JF	3.22		3.44	8.94	5.56	9.01	99'1	9.81	11.4	4.47	5.90	4.87	7.88	1.26	7.85	7.94	5.03	37 6	5.02	1.64	0.622 Jq		1.76	2.24	3.19	11.5	24.6	3.46	8.01	6.11	0.983 Jq		33.3	21.7	47.4	14.9	0.679 Jq
		4/4/2017	4/4/2017	4/4/2017	Not sampled	4/13/2017	4/15/2017	4/25/2017	4/4/2017	4/12/2017	4/12/2017	4/5/2017	4/3/2017	4/3/2017	Not sampled	4/4/2017	4/7/2017	4/7/2017	4/5/2017	4/10/2017	4/5/2017	4/7/2017	4/7/2017	4/3/2017	4/3/2017	4/3/2017	4/5/2017	4/5/2017	4/5/2017	4/14/2017 Not gonnaled	ACT LOOK	4/13/2017	4/10/2017	4/10/2017	Not sampled	4/6/2017	4/11/2017	4/5/2017	4/4/2017	4/12/2017	4/13/2017	4/24/2017	4/10/2017	4/12/2017	Not sampled	4/6/2017	4/6/2017	4/5/2017	4/6/2017	4/10/2017
Screened HSU		В	X/A (WT)	A (WT)	X (WT)	X(WI)	B A LOV CAUTED	A/A (W.T.)	A/A (w.1.)	X (WT)	В	X (WT)	A (WT)	В	X (WT)	A'X (WT)	X (WT)	В	A (WT)	В	K (WT)	A (WT)	В	A (WT)	B/OA	X (WT)	A' (WT)	В	K (WT)	A/Y (WT)	A(WI)	A (WT)	A (WT)	В	X (WT)	X(WI)	(Iw) X	m	A'(WI)	A'X (WT)	B	A'(WT)	В	В	A' (WT)	A' (WT)	A'(WT)	A' (WT)	A' (WT)	B
Sampling Location Screened HSU Sample Date		38300	3830S	3831Q	3850M	3850N	3850K	38200	3851M	3852F	3852H	3852L	3852M	3852N	3860J	3860K	3861D	3861F	3862D	3862E	3870D	3871H	3871J	3872L	3872M	3872N	3872Q	3872S	3880	4948	4949C	A-1-CW03P	A-1-CW04	A-1-CW05	A-1-CW07	A-1-CW08	A-1-CW09	B-1-CW11	B-1-CW12	B-1-CW17	B-1-CW20	B-1-CW25	B-1-CW27	B-1-CW28	B-1-CW29	B-1-CW30	B-1-CW31	B-1-CW32	B-1-CW33	B-5-CW02

Table 5 Second Quarter 2017 Groundwater Analytical Data

1,4-Dioxane			<0.28	<0.28	<0.28	<0.28	1.8	<0.28		<0.28	<0.28	<0.28		2.8	<0.28		<0.28	<0.28	<0.28	<0.28	<0.28	<0.28	1(1)
1,2,3- Trichloro- propane			<0.0025	<0.0025	<0.0025	1.5 J+c	<0.0025	<0.0025		<0.0025	<0.0025	<0.0025		<0.0025	<0.0025		0.93	96.0	09.0	0.93	<0.0025	<0.0025	0.005 (1)
Trichloro- fluoro- methane			<0.20	<0.20	<0.20	<0.20	<0.20	<0.20		<0.20	<0.20	<0.20		<0.20	<0.20		0.34 Jq	0.34 Jq	<0.20	<0.20	<0.20	<0.40	150
Trichloro- ethene			<0.29	<0.29	3.2	13	5.1	3.9		<0.29	<0.29	0.29 Jq		0.72	0.36 Jq		12	21	17	24	<0.29	32	2
.1,2-Trichloro-			<0.20	<0.20	<0.20	<0.20	<0.20	<0.20		<0.20	<0.20	<0.20		<0.20	<0.20		<0.20	<0.20	<0.20	<0.20	<0.20	<0.40	5
(1,1-Trichloro 1,1,2-Trichloro- ethane ethane			<0.20	<0.20	<0.20	<0.20	<0.20	0.42 Jq		<0.20	<0.20	<0.20		<0.20	<0.20		<0.20	<0.20	<0.20	<0.20	<0.20	<0.40	200
Trichloro- 1,2,2- Trifluoro- ethane			<0.24	<0.24	0.43 Jq	0.34 Jq	<0.24	1.3		<0.24	<0.24	<0.24		<0.24	<0.24		2.9	1.3	3.9	3.4	<0.24	3.1	1,200
Toluene			<0.20	<0.20	<0.20	<0.20	<0.20	<0.20		<0.20	<0.20	<0.20		<0.20	<0.20		<0.20	<0.20	<0.20	<0.20	<0.20	<0.40	150
,2-Dichloro Naphthalen Tetrachloro- e ethene			95'0	0.20 Jq	12	30	22	6.9		<0.20	pt 86.0	89'0		3.2	1.5		32	67	34	1.1	<0.20	51	5
Naphthalen e			<0.40	<0.40	<0.40	<0.40	<0.40	<0.40		<0.40	<0.40	<0.40		<0.40	<0.40		<0.40	0.82 Jq	<0.40	0.45 Jq	<0.40	<0.80	17 (1)
1,2-Dichloro propane			<0.20	<0.20	<0.20	<0.20	<0.20	<0.20		<0.20	<0.20	<0.20		<0.20	<0.20		<0.20	<0.20	<0.20	<0.20	<0.20	<0.40	5
cis-1,2- Dichloro- ethene	se stated.		<0.20	<0.20	<0.20	0.35 Jq	<0.20	<0.20		<0.20	<0.20	0.30 Jq		<0.20	<0.20		0.25 Jq	<0.20	<0.20	<0.20	<0.20	<0.40	9
1,1- Dichloro- ethene	All results are reported in µg/L unless otherwise stated.		<0.28	<0.28	<0.28	<0.28	<0.28	8.4		<0.28	<0.28	<0.28		0.44 Jq	0.48 Jq		7.2	2.5	2.9	2.1	<0.28	3.8	9
1,2- Dichloro- ethane	orted in µg/L v		<0.20	<0.20	<0.20	<0.20	<0.20	<0.20		<0.20	<0.20	<0.20		<0.20	<0.20		0.32 Jq	0.22 Jq	0.23 Jq	<0.20	<0.20	<0.40	0.5
1,1- Dichloro- ethane	esults are rep		<0.20	<0.20	<0.20	<0.20	<0.20	<0.20		<0.20	<0.20	1.1		<0.20	<0.20		<0.20	<0.20	<0.20	<0.20	<0.20	0.60 Jq	2
Dichloro- difluoro- methane	Allr		<0.40	<0.40	<0.40	<0.40	<0.40	<0.40		pt 98.0	<0.40	1.9		0.94 Jq	pt 66:0		<0.40	<0.40	<0.40	<0.40	<0.40	<0.80	1000(1)
Chloro- form			0.35 Jq	0.27 Jq	0.27 Jq	1.7	0.29 Jq	0.84		<0.20	0.74	<0.20		0.29 Jq	0.33 Jq		5.6	1.5	1.9	4.3	3.3	0.94 Jq	08
Carbon Tetra-			<0.20	<0.20	<0.20	0.50	<0.20	0.46 Jq		<0.20	<0.20	<0.20		0.37 Jq	0.52		0.78	1.1	0.34 Jq	0.57	<0.20	0.67 Jq	0.5
Methyl-tert- butyl-ether			<0.20	0.24 Jq	0.24 Jq	<0.20	<0.20	<0.20		<0.20	<0.20	<0.20		<0.20	<0.20		<0.20	<0.20	<0.20	<0.20	<0.20	<0.40	13
Bromo- dichloro- methane			<0.20	<0.20	<0.20	<0.20	<0.20	<0.20		<0.20	0.34 Jq	<0.20		<0.20	<0.20		<0.20	<0.20	<0.20	<0.20	08'0	<0.40	- 08
Acetone			<4.0 UJf	<4.0	<4.0	<4.0	4.5 Jq	<4.0		<4.0	<4.0	<4.0		<4.0	<4.0		4.1 Jq	11	4.0 Jq	6.3 Jq	<4.0	11 Jq	
Hexavalent			2.5	0.10	0.028	0.28	1.2	1.4		6600:0>	0.88	0.18		<0.0099	1.1		2.7	2.2	1.9	2.1	5.6	4.7	10
Chromium, Total			2.95	1.72	0.834 Jq	2.55	1.77	28.9		pt 009:0	2.66	0.735 Jq		82.9	7.57		2.97	2.49	2.62	2.81	6.53	57	50
Sample Date		Not sampled	4/6/2017	4/11/2017	4/11/2017	4/24/2017	4/6/2017	4/25/2017	Not sampled	4/11/2017	4/25/2017	4/6/2017	Not sampled	4/12/2017	4/12/2017	Not sampled	4/7/2017	4/10/2017	4/7/2017	4/7/2017	4/25/2017	4/10/2017	
Screened HSU		A (WT)	В	В	В	X (WT)	В	X/A (WT)	A/Y (WT)	В	A (WT)	В	A (WT)	Y (WT)	A (WT)	A/X (WT)	X/A (WT)	X/A (WT)	X/A (WT)	X/A (WT)	X/A (WT)	X/A/Y (WT)	MCL/DWNL (µg/L)
Sampling Location Screened HSU Sample Date		B-5-CW03	B-6-CW02	B-6-CW05	B-6-CW08	B-6-CW10	B-6-CW14	B-6-CW16	B-6-CW17	C-1-CW02	C-1-CW03	C-1-CW05	C-1-CW06	C-1-CW07	C-1-CW08	MW-01	MW-03	MW-04	MW-07	MW-08	SW-1	SW-5	MCL

Only analytes positively detected are presented in this table. For a complete list, refer to the laboratory datan package, agalt – miscrograms per liter — A — A maybe not detected mented detection limit concentration is shown.

A = A hydrostratigraphic unit
A = A hydrostratigraphic unit
B = B hydrostratigraphic unit
C = A hydrostratigraphic unit
Y = Y hydrostratigraphic unit

Bold - MCL or DWNL exceeded

HSU = hydrostratigraphic unit
WT = water table
DWNL. - California Department of Public Health drinking water notification level
MACL - California Department of Public Health maximum contaminant level
MDL - Method detection limit

(1)-DWNL

"--MCL or DWNL not available.

"L. A. Hr. The analyse was positively deturified, but the analyse concentration is an estimated value. The "J" qualifier may also be accompanied by a "y" sign or a ""-sign which indicates a positive or negative bias of the qualified result

U - The analyse as found in a field biant, the detection in the field sample expected as coming from cross contamination not narrive to he sample, and the detection level was raised and the data was qualified as not detected and the sample quantitation or detection limit is mentionate quantity and the detection level was raised and the data was qualified as not detected in the sample quantitation or detection limit is encountered generated partial splate Diplicate (MSD) recoverts were outside control limits

p - The chapticas earnighes Relative Detected Difference (RPD) was outside the control limit

p - The result was qualified based on professional judgment

q - The unalyte was found in a field blank

k - The unalyte was found in a field blank

Table 6 Second Quarter 2016 Summary of Chemicals Detected

Organic Analytes Detected	Total Number of Samples Analyzed ⁽¹⁾	Total Number of Detections ⁽¹⁾	Number of Detections Exceeding MCL or DWNL (1)	MCL / DWNL (µg/L)	Minimum Concentration Detected (µg/L)	Maximum Concentration Detected (μg/L)
1,4-Dioxane	99	11	11	1 (2)	1.0	3.7
Acetone	99	13	0		4.0	11
Bromodichloromethane	65	3	0	(3)	0.20	08.0
Methyl tert-Butyl Ether	65	5	0	13	0.230	1.6
Carbon Tetrachloride	65	25	15	0.5	0.280	3.1
Chloroform	65	45	0	80 (3)	0.27	6.9
Dichlorodifluoromethane	99	16	0	$1,000^{(2)}$	0.78	7.1
1,1-Dichloroethane	99	5	0	5	0.21	1.1
1,2-Dichloroethane	99	10	2	0.5	0.21	2.1
1,1-Dichloroethene	65	24	9	9	0.44	17
cis-1,2-Dichloroethene	65	19	1	9	0.21	7.8
1,2-Dichloropropane	65	3	0	5	0.21	0.52
Naphthalene	65	2	0	17 (2)	0.45	0.82
Tetrachloroethene	65	59	37	5	0.20	630
Toluene	99	2	0	150	0.35	0.41
1,1,2-Trichloro- 1,2,2-Trifluoro-ethane	59	17	0	1,200	0.27	8.5
1,1,1-Trichloroethane	65	2	0	200	0.23	0.42
1,1,2-Trichloroethane	59	5	2	5	0.25	7.5
Trichloroethene	99	53	35	5	0.29	240
Trichlorofluoromethane	99	3	0	150	0.29	0.34
1,2,3-Trichloropropane	99	31	30	$0.005^{(2)}$	0.0045	87
Inorganic Analytes Detected	Total Number of Samples Analyzed (1)	Total Number of Detections ⁽¹⁾	Number of Detections Exceeding MCL or DWNL (1)	MCL / DWNL (μg/L)	Minimum Concentration Detected (µg/L)	Maximum Concentration Detected (μg/L)
Total Chromium	99	65	2	50	0.600	82.9
Hexavalent Chromium	99	58	3	10	0.010	20.0
Notes: DWNL -	California Depart	ment of Public He	DWNL - California Department of Public Health drinking water notification level			
MCL -	California Depart	ment of Public He	MCL - California Department of Public Health maximum contaminant level			
	MCL or DWNL not established	not established				
(1)	Number of detect	ions excludes sam	(1) - Number of detections excludes sample duplicates, secondary stratification samples, trip blanks, and equipment blanks	samples, trip l	blanks, and equipmen	ıt blanks
(2)	(2) - DWNL					
- (F)	(3) - MCL for total trihalomethanes	nalomethanes				
μg/L -	ug/L - micrograms per liter	iter				

Table 6_Second Quarter 2017 Summary of Chemicals of Concern

Table 7 Summary of Mann-Kendall Test Results

2017 Annual Groundwater Monitoring Report Lockheed Martin Corporation Burhank Operable Unit. Burhank. CA

		B	Burbank Operable Unit, Burbank, CA	able Unit,	Burbank, C	V			
	Wells	Insufficient			Decreasing	Probably Decreasing	Stable	Probably Increasing	Increasing
Analyte	Tested	Data	Non-detect	No Trend	Trend	Trend	Trend	Trend	Trend
1,2,3-Trichloropropane	65	5	L	32	5	2	2	3	6
1,4-Dioxane	65	5	13	12	8	3	13	5	9
Tetrachlorothene	99	5	2	5	35	2	13	0	3
Trichloroethene	99	5	3	8	35	4	8	1	1
Hexavalent Chromium	99	5	0	22	<i>L</i>	4	18	4	5
Total Chromium	65	5	0	35	5	5	12	1	2
Total Analysis	390	30	25	114	95	20	99	14	26

 $Table \ 8 \\ Summary \ of \ Mann-Kendall \ and \ Linear \ Regression \ Results \ for \ Increasing \ Trend \ Wells$

May 1000 May 2000		Analyte:		1,2,3-Trichloropropane		1,4	1,4-Dioxane		T	Tetrachlorothylene	ne ne	Trichl	Trichloroethylene		Hexavai	Hexavalent Chromium		Total	Total Chromium	
X, X, Y, Y, No.	Sample Location	Screened	Trend	Magnitude (%/yr)	Magnitude (µg/L/y)	Trend	Magnitude (%/yr)	Magnitude (μg/L/y)	Trend	Magnitude (%/yr)	Magnitude (µg/L/y)	Trend	Magnitude (%/yr)	Magnitude (µg/L/y)	Trend	Magnitude (%/yr)	Magnitude (μg/L/y)	Trend	Magnitude (%/yr)	Magnitude (µg/L/y)
N. V.	3830S	П	No Trend			No Trend			Decreasing	-3.83	-0.61	Probably Increasing	3.83	2.38	No Trend			No Trend		
M. V. M. Dickelly Decreage -143 O. H. Dickelly Decreage -143 O. H. Tondon's Decreage -143 Dickerolar Decreage -143 Di	3850R		Probably Increasing	79.7	0.00062	No Trend		-	ncreasing	2.92	3.80	Increasing	1.41	0.14	No Trend			No Trend		
X VATI Discussibility controlled by	8851N		Probably Decreasing	-10.8	-0.0013	Stable			Decreasing	-14.4	4.18	Decreasing	-14.8	-1.32	Probably Increasing	2.19	0.01	No Trend		
X.V.Y.I. Blockelely Increasing 3.10 Act. VII. Place blockely Increasing 2.30 4.03 Broad blockely Increasing 0.31 Control of the contro	3852F	П	No Trend			Probably Increasing	10.6		stable			No Trend			No Trend			No Trend		
(AVIV) Description processing 4.40 pm Control processing 6.41 pm Control processing 6.42 pm Control processing 2.43 pm Control processing 2.40 pm Control processing 2.40 pm Control processing 2.41 pm Control processing 2.42 pm Control processing 2.42 pm Control processing 2.40 pm Control processing 2.40 pm Control processing 2.41 pm Control processing 2.42 pm Control processing 2.43 pm Control processing 2.43 pm Control processing 2.43 pm Control processing 2.44 pm	3852H	В	No Trend			Probably Decreasing	-3.10	Г	Decreasing	-2.92	-0.53	Decreasing	-2.01	-0.36	Probably Increasing	0.82	0.01	No Trend		
A (W) My Interesting 1.24 Goldsong 2.29 GAPS Concessing 2.37 GAPS Goldsong ASP ASP (W) My Interesting ASP (W) My Int	3852L		Probably Increasing	8.94	0.0080	Decreasing	-4.02		No Trend			No Trend			No Trend			No Trend		
N. V.	3852M		Increasing	12.4	0.016	Stable		_)ecreasing	-2.92	-0.93	Decreasing	-2.01	-0.42	No Trend			Probably Decreasing	3.47	-0.14
(N FW) Normodes Assistant 4.5% 1.41 Decembled Processing 1.41 0.04 No Trond No. Trond A (N FW) Somewhole 1.12 Condended 1.12 Condended 1.2 Somewhole 4.5% No Trond No Trond No. Trond	3860K	$\overline{}$	No Trend			Stable			Decreasing .	-4.93	-182	Decreasing	-2.37	-16.4	Stable			Probably Increasing	5.48	0.22
K (WT) Non-electet Decreasing 1/3 40/97 Non-electet Non-electet Non-elected Non-elected </td <td>3861F</td> <td>Γ</td> <td>No Trend</td> <td></td> <td></td> <td>Non-detect</td> <td></td> <td>ĺ</td> <td>Decreasing</td> <td>-4.56</td> <td>-1.41</td> <td>Decreasing</td> <td>-4.02</td> <td>-0.52</td> <td>Probably Increasing</td> <td>1.41</td> <td>0.04</td> <td>No Trend</td> <td></td> <td></td>	3861F	Γ	No Trend			Non-detect		ĺ	Decreasing	-4.56	-1.41	Decreasing	-4.02	-0.52	Probably Increasing	1.41	0.04	No Trend		
A (WT) Interesting 117 Good Mon-Select No Flend	3870D		Non-detect			Decreasing	-17.3		Von-detect			Non-detect			Increasing	88	8.76	No Trend		
X (WT) No. Trend Stable Stab	3872L	A (WT)	Increasing	11.7	9000	Non-detect		1	No Trend			No Trend			No Trend			Stable		
A (WT) Increasing 2.56 L13 Solute -4.64 Decreasing -3.47 -6.42 Sandre -3.67 -1.64 Stable -9 No. Trend No. Trend No. Trend No. Trend X (WT) Processing 6.25 0.30 Increasing 5.46 0.04 1.64 Stable -9.49 -10.4 No. Trend No. Trend<	3872N	Т	No Trend			Stable			Stable			Stable			Increasing	80	2.49	Stable		
X (WT) Processing 2.56 1.41 No Trend 3.47 6.53 Stable 3.40 Mort Trend No Trend	A-1-CW04	П	Increasing	29	1.78	Stable			Decreasing	-10.6	-64	Decreasing	-9.67	-16.4	Stable			No Trend		
X(WT) Increasing 6.45 0.46 Lock of classing -1.04 No. Trends -9.49 -1.04 Decreasing -3.49 -1.04 No. Trends No. Trends No. Trends No. Trends No. Trends No. Trends -3.73 Decreasing -3.47 -3.73 Decreasing -3.74 -3.74 -3.75 -3.74 -3.75 -3.74 -3.75 -3.74 -3.75 -3.74 -3.75 -3.74 -3.75 -3.74 -3.75 -3.74 -3.75 -3.74 -3.75 -3.74 -3.75 -3.74 -3.75 -3.74 -3.74 -3.75 -3.74 -3.74 -3.75 -3.74 -3.7	A-1-CW08		Probably Increasing	2.56	1.41	No Trend		1	Decreasing	-3.47		Stable			Stable			No Trend		
X/V(WT) Increasing 5.66 0.05 Decreasing -6.13 -8.1 Decreasing -4.75 -3.7 Stable No Trend B NV (WT) No Trend AX (WT) No Trend A.0 Stable -9.23 Decreasing -4.0 5.0 Stable -1.28 Decreasing -2.10 Decreasing -2.10 Decreasing -2.1 Decreasing -1.6 No Trend -1.5 -1.0 No Trend -1.6 No Trend	A-1-CW09	П	Increasing	6.75	0.30	Increasing	9.49	Г	Decreasing	-10.4	-32	Decreasing	9.49	-10.4	No Trend			No Trend		
A.Y. (WT) No. Trend A.Y. (WT) No. Trend	B-1-CW13	П	Increasing	5.48	88.0	Increasing	5.66		Decreasing (-6.75	-81	Decreasing	-4.75	37	Stable			No Trend		
B No Trend Stable And Freed And Freed<	B-1-CW17					Increasing	8.94		Stable			Decreasing	-4.02	-9.23	Decreasing	-3.47	-1.28	Decreasing	-2.19	-0.90
B Non-detect	B-1-CW28		No Trend			Stable			ncreasing	3.65	0.91	Decreasing	-0.47	-0.02	Stable			No Trend		
Material Materia	B-6-CW02		No Trend			Non-detect			ncreasing	3.29	0.02	Non-detect			Probably Increasing	4.02	0.03	Increasing	5.29	0.13
XA (WT) No Trend As increasing 4.75 Occreasing -6.75 -7.43 Decreasing -6.39 -1.66 No Trend No Trend Increasing 7.87 A.72 -0.07 Bable -7.50	B-6-CW14		No Trend			Increasing	11.5		No Trend			No Trend			Stable			Probably Decreasing	3.47	-0.10
Q2 B No Trend No Trend A Forebably Increasing 4.75 0.07 Stable -2.52 -0.07 Stable -0.25 -0.07 Stable -0.25 -0.07 Increasing -2.56 -0.07 Increasing -2.52 -0.07 Increasing -2.56 -0.02 Increasing -2.52 -0.03 No Trend -2.52 -0.02 Increasing -2.52 -0.03 No Trend -2.52 -0.03 No Trend -2.52 -0.03 No Trend -2.52 -0.01 No Trend -2.52 -0.03 No Trend -2.52 -0.03 No Trend -2.52 -0.01 No Trend -2.52 -0.03 No Trend -2.52 -0.03 No Trend -2.52 -0.03 No Trend -2.52 -0.03 No Trend -2.52 -0.04 No Trend -2.52 -0.05 No Trend -2.52 -0.04 No Trend -2.52 -0.05 No Trend -2.52 -0.04 No Trend -2.52 -0.04 No Trend -	B-6-CW16	X/A (WT)	No Trend			Stable		Ī	Decreasing	-6.75	-7.43	Decreasing	6.39	-1.66	No Trend			Increasing	7.85	0.42
03 A (WT) No Trend Decreasing -3.5 (a) -0.29 (b) Decreasing -2.56 (a) -0.25 (a) -0.02 (b) Decreasing -3.29 (a) -0.25 (a) -0.02 (b) Increasing -1.51 (a) No Trend -1.50 (b) No Trend -1.51 (a) No Trend -1.52 (a) -0.02 (b) Decreasing -1.51 (a) No Trend -1.52 (a) -0.02 (a) No Trend -1.51 (a) No Trend -1.52 (a) -1.52 (a) </td <td>C-1-CW02</td> <td></td> <td>No Trend</td> <td></td> <td></td> <td>Probably Increasing</td> <td>4.75</td> <td></td> <td>Decreasing</td> <td>-2.92</td> <td></td> <td>Stable</td> <td></td> <td></td> <td>No Trend</td> <td></td> <td></td> <td>No Trend</td> <td></td> <td></td>	C-1-CW02		No Trend			Probably Increasing	4.75		Decreasing	-2.92		Stable			No Trend			No Trend		
05 B No Trend Avi Trend No Trend Avi Trend No Trend Avi Trend No Trend Avi Trend	C-1-CW03		No Trend			Decreasing	-3.83		Decreasing	-3.29	0.29	Decreasing	2.56	-0.02	Increasing	79.7	0.03	No Trend		
08 A (WT) No Trend 1.5 Probably Increasing 4.4 0.04 Decreasing -13.1 -1.59 Probably Decreasing 2.92 -0.01 XA (WT) Increasing 1.5 0.4 Increasing 7.1 0.07 Stable 2.9 0.5 No Trend 7.7 0.0 XA (WT) Increasing 1.5 0.2 Probably Increasing 7.5 No Trend 3.6 0.0 XA (WT) Increasing 1.8 0.7 No Trend 3.6 0.0 3.6 0.0 XA (WT) Increasing 1.8 0.7 No Trend 3.6 0.0 3.6 0.0 XA (WT) Increasing 1.5 0.2 No Trend 3.6 0.0 3.6 0.0 XA (WT) Increasing 1.5 0.2 Increasing 3.6 0.2 0.2 0.2 0.2 0.2	C-1-CW05		No Trend			Probably Increasing	1.08		Stable			No Trend			Stable			Decreasing	-4.75	-0.11
XA (WT) Increasing 13.5 0.43 Increasing 7.12 0.07 Stable Decreasing -2.92 -0.55 No Trend Profusion XA (WT) Increasing 18.1 0.07 Profusing 7.47 Processing -2.92 -0.44 Increasing 3.65 0.05 XA (WT) Increasing 18.1 0.07 Increasing 11.0 0.53 Decreasing -3.47 Probably Decreasing -3.83 -1.69 Increasing 0.10	C-1-CW08		No Trend			Probably Increasing	4.4		Decreasing	-13.1	-8.02	Decreasing	-16.1	-1.59	Probably Decreasing	-2.92	10.0	No Trend		
XA (WT) Increasing 20 Q-22 Probably Increasing 7.67 0.06 Stable Sable Decreasing -2.92 -0.44 Increasing 3.65 0.05 XA (WT) Increasing 1.81 0.07 No Trend 1.81 0.07 No Trend 1.81 0.07 No Trend 1.81 0.23 1.69 Increasing -3.47 Probably Decreasing -3.83 -1.69 Increasing 7.12 0.10	MW-03		Increasing	13.5	0.43	Increasing	7.12		stable			Decreasing	-2.92	-0.55	No Trend			No Trend		
XA (WT) Increasing 18.1 0.07 No Trend Stable Stable 3.47 3.47 Probably Decreasing -2.56 -0.25 No Trend 7.12 0.10 XA (WT) Increasing 15.7 0.20 Increasing 1.69 Increasing 7.12 0.10	MW-04		Increasing	20	0.22	Probably Increasing	7.67		Stable			Decreasing	-2.92	-0.44	Increasing	3.65	0.05	Stable		
XA (WT) Increasing 15.7 0.20 Increasing 11.0 0.53 Decreasing 3.47 Probably Decreasing 3.83 1.69 Increasing 7.12 0.10	MW-07	X/A (WT)	Increasing	18.1	0.07	No Trend			Stable			Decreasing	-2.56	-0.25	No Trend			Stable		
	MW-08	X/A (WT)	Increasing	15.7	0.20	Increasing	11.0		Decreasing	-3.47	-3.47	Probably Decreasing	-3.83	-1.69	Increasing	7.12	0.10	Stable		

Notes:

Shading identifies increasing and probably increasing trends

Highlighting indicates locations where the magnitude of the increasing or probably increasing trend represents greater than a 20% change per year

#/yr - percent diagnet per year

A - A hydrostratigraphic unit

A - A hydrostratigraphic unit

B - B hydrostratigraphic unit

X - X hydrostratigraphic unit

HSU - hydrostratigraphic unit

WIT - water table

Table 9 Noted Changes In Concentrations in Second Quarter 2017

2017 Annual Groundwater Monitoring Report Lockheed Martin Corporation Burbank Operable Unit, Burbank, CA

Sampling Location	Screened HSU	Sample Date	Compound	Q2 2017 Concentration (µg/L)	New Maximum Concentration (Y/N)	Exceeds MCL/DWNL First Time in Two Years (Y/N)	>1.5X Increase Since Most Recently Reported Concentration and Exceeds MCL/DWNL	Comments
3851M	X/A (WT)	4/3/2017	1,2,3-TCP	0.057	Z	Z	Y	Concentration was similar in 2015 (0.053 µg/L) and the concentration in 2016 was (0.034 µg/L); trend analysis indicates the concentration are stable
3872L	A (WT)	4/3/2017	1,2,3-TCP	0.095	Y	Z	Y	Trend analysis identified an increasing trend with a magnitude of
A-1-CW04	A (WT)	4/10/2017	1,2,3-TCP	25	Y	Z	Y	Trend analysis identified an increasing trend with a magnitude of
A-1-CW09	X (WT)	4/11/2017	1,2,3-TCP	15.0	Y	Z	Z	Trend analysis identified an increasing trend with a magnitude of
B-1-CW32	A' (WT)	4/5/2017	1,2,3-TCP	0.011	Y	Z	Z	New well installed in late 2016, this is the second time it has been sampled; first result was 0.0086 µg/L
B-6-CW10	X (WT)	4/24/2017	1,2,3-TCP	1.50	Y	Z	Y	Concentration in 2014 (0.981 μ g/L) and the concentration was 0.485 μ g/L in 2016; trend analysis indicates there is no trend
MW-08	X/A (WT)	4/7/2017	1,2,3-TCP	0.93	Z	Z	Y	Trend analysis identified an increasing trend with a magnitude of
3852F	X (WT)	4/12/2017	1,4-Dioxane	1.50	Y	Y	Y	This well has been tested for this compound seven times and it has been detected near the detection limits twice (0.75 µg/L in 2016 and 1.5 µg/L in 2017); trend analysis identified a probably increasing trend with a magnitude of (0.06 µg/L/yr)
A-1-CW04	A (WT)	4/10/2017	1,4-Dioxane	2.00	Z	Z	Ā	Concentrations detected in 2014 and 2015 were very similar; trend analysis indicates the concentration are stable
A-1-CW09	X (WT)	4/11/2017	1,4-Dioxane	3.70	Ā	Z	Ā	Trend analysis identified an increasing trend with a magnitude of
B-1-CW13	X (WT)	4/12/2017	1,4-Dioxane	2.00	Y	Z	Ā	Trend analysis identified an increasing trend with a magnitude of
B-1-CW17	A'X (WT)	4/4/2017	1,4-Dioxane	2.90	Y	Z	N	Trend analysis identified an increasing trend with a magnitude of
B-6-CW14	В	4/6/2017	1,4-Dioxane	1.80	Y	Z	Z	Trend analysis identified an increasing trend with a magnitude of
3851N	В	4/4/2017	Hex Chrome	1.20	Y	Z	Z	Trend analysis identified a probably increasing trend with a magnitude of (0.01 $\mu g L/y r$)

Table 9

Noted Changes In Concentrations in Second Quarter 2017

2017 Annual Groundwater Monitoring Report Lockheed Martin Corporation Burbank Operable Unit, Burbank, CA

Sampling Location	Screened HSU	Sample Date	Compound	Q2 2017 Concentration (µg/L)	New Maximum Concentration (Y/N)	Exceeds MCL/DWNL First Time in Two Years (Y/N)	>1.5X Increase Since Most Recently Reported Concentration and Exceeds MCL/DWNL	Comments
3852F	X (WT)	4/12/2017	Hex Chrome	2.70	Y	Z	Z	Concentration was similar in 2013 (2.5 $\mu g/L$) and the concentration in 2016 was (1.57 $\mu g/L$); trend analysis indicates no trend
3852N	В	4/3/2017	Hex Chrome	2.50	Y	Z	Z	Concentration in 2015 was (2.1 µg/L) and the concentration in 2016 was (1.5 µg/L); trend analysis indicates no trend
3861D	X (WT)	4/7/2017	Hex Chrome	6.80	Y	N	N	Concentration in 2004 was (5.8 μ g/L), in 2014 the concentration was (4.3 μ g/L) and the concentration in 2016 was (3.03 μ g/L); trend analysis indicates the concentrations are stable
3861F	В	4/7/2017	Hex Chrome	4.90	Y	N	N	The concentration in 2016 was (3.89 µg/L); trend analysis identified an probably increasing trend with a magnitude of (0.04 µg/L/yr)
3870D	K (WT)	4/5/2017	Hex Chrome	17.00	Y	Z	Z	The concentration in 2015 was (16.3 µg/L); trend analysis identified an increasing trend with a magnitude of (8.76 µg/L/yr)
3871H	A (WT)	4/7/2017	Hex Chrome	09.6	Y	Z	Z	Concentration in 2004 was (7.8 μ g/L), in 2015 the concentration was (6.21 μ g/L) and the concentration in 2016 was (2.81 μ g/L); trend analysis indicates no trend
3872L	A (WT)	4/3/2017	Hex Chrome	4.40	Y	Z	Z	Concentration in 2015 the concentration was (3.78 µg/L) and the concentration in 2016 was (2.93 µg/L); trend analysis indicates no trend
3872M	B/OA	4/3/2017	Hex Chrome	4.40	Y	N	Z	Concentration in 2015 the concentration was $(3.97 \mu g/L)$ and the concentration in 2016 was $(3.13 \mu g/L)$; trend analysis indicates no trend
3872N	X (WT)	4/3/2017	Hex Chrome	6.70	Y	N	N	Concentration in 2015 the concentration was (5.51 $\mu g/L$) and the concentration in 2016 was (2.84 $\mu g/L$); trend analysis identified an increasing trend with a magnitude of (2.49 $\mu g/L$ /yr)
3872S	В	4/5/2017	Hex Chrome	7.90	Y	N	Z	Concentration in 2007 was (7.4 μ g/L), in 2015 the concentration was (6.38 μ g/L) and the concentration in 2016 was (4.47 μ g/L); trend analysis indicates the concentrations are stable
B-1-CW27	В	4/10/2017	Hex Chrome	5.20	Y	Z	Z	Concentration in 2006 was (4.5 µg/L) and the concentration in 2016 was (3.89 µg/L); trend analysis indicates no trend
B-1-CW31	A' (WT)	4/6/2017	Hex Chrome	16.0	Y	Y	Y	New well installed in late 2016, this is the second time it has been sampled; first result was $(6.0~\mu \mathrm{g/L})$

Table 9
Noted Changes In Concentrations in Second Quarter 2017

2017 Annual Groundwater Monitoring Report Lockheed Martin Corporation Burbank Operable Unit, Burbank, CA

Sampling Location	Screened HSU	Sample Date	Compound	Q2 2017 Concentration (µg/L)	New Maximum Concentration (Y/N)	Exceeds MCL/DWNL First Time in Two Years (Y/N)	>1.5X Increase Since Most Recently Reported Concentration and Exceeds MCL/DWNL	Comments
B-6-CW02	В	4/6/2017	Hex Chrome	2.50	Y	Z	Z	Trend analysis identified an probably increasing trend with a magnitude of (0.03 µg/L/yr)
C-1-CW08	A (WT)	4/12/2017	Hex Chrome	1.10	Y	Z	Z	Concentrations have been similar in the past; trend analysis identified a probably decreasing trend with a magnitude of (-0.01 µg/L/yr); trend is likely a result of past elevataed detection
3872L	A (WT)	4/3/2017	PCE	300	N	Z	Y	Concentration has been an order of magnitude higher in the past; trend analysis identified no trend
B-1-CW30	A' (WT)	4/6/2017	PCE	110	Ā	Z	Y	New well installed in late 2016, this is the second time it has been sampled; first result was $(54.0 \mu g/L)$
B-1-CW31	A' (WT)	4/6/2017	PCE	55	Ā	Z	Y	New well installed in late 2016, this is the second time it has been sampled; first result was (15.0 µg/L)
B-1-CW32	A' (WT)	4/5/2017	PCE	14.0	Y	N	Y	New well installed in late 2016, this is the second time it has been sampled; first result was $(8.5 \mu g/L)$
B-1-CW33	A' (WT)	4/6/2017	PCE	989	Ā	Z	Y	New well installed in late 2016, this is the second time it has been sampled; first result was $(390.0 \mu g/L)$
B-1-CW34	A' (WT)	4/5/2017	PCE	13.0	Ā	Z	Z	New well installed in late 2016, this is the second time it has been sampled; first result was $(8.7 \mu g/L)$
MW-08	X/A (WT)	4/7/2017	PCE	71	Z	Z	Y	Concentrations were two orders of magnitude higher in the past; concentration in 2015 was (150 μ g/L); trend analysis identified a decreasing trend with a magnitude of (-3.47 μ g/L/yr)
SW-5	X/A/Y (WT) 4/10/2017	4/10/2017	PCE	51	Z	Z	Y	Concentrations were two orders of magnitude higher in the past; this is the third time it has been sampled in the recent past; trend analysis identified a decreasing trend with a magnitude of $(-12.3 \mu g/L/yr)$
3851M	X/A (WT)	4/3/2017	TCE	12.0	Z	Z	Y	Concentrations were three orders of magnitude higher in the past; concentration in 2016 was (8 ug/L); trend analysis identified a decreasing trend with a magnitude of (-2.11 µg/L/yr)
3861D	X (WT)	4/7/2017	TCE	160	Z	Z	Y	Concentrations were an order of magnitude higher in the past; concentration in 2014 was (604 ug/L); trend analysis identified a decreasing trend with a magnitude of (-48 µg/L/yr)

Table 9

Noted Changes In Concentrations in Second Quarter 2017

2017 Annual Groundwater Monitoring Report Lockheed Martin Corporation Burbank Operable Unit, Burbank, CA

Tetra Tech

Noted Changes In Concentrations in Second Quarter 2017

2017 Annual Groundwater Monitoring Report Lockheed Martin Corporation Burbank Operable Unit, Burbank, CA

	Comments	Concentration in 2016 (11.7 $\mu g/L$), trend analysis identified no trend
Exceeds	MCL/DWNL	Y
Two Years	(Y/N)	Ā
Concentration	(Y/N)	N
	(µg/L)	82.9
	Compound	Total Chrome
Sample	Date	C-1-CW07 Y (WT) 4/12/2017
Screened		Y (WT)
Sampling	Location	C-1-CW07
	Screened Sample Concentration Concentration Two Years	Compound (µg/L) (Y/N) (Y/N) MCL/DWNL

Notes: DWNL - California Department of Public Health drinking water notification level

MCL - California Department of Public Health maximum contaminant level

μg/L - micrograms per liter

ug/L/yr - micrograms per liter per year

ND - non-detect

N - no concentration is not a new maximum or does not exceed criteria identified

A - A hydrostratigraphic unit

A' - A' hydrostratigraphic unit

B - B hydrostratigraphic unit

HSU - hydrostratigraphic unit

OA - older alluvium

X - X hydrostratigraphic unit WT -water table

- Concentration does exceed criteria identified Y - Y hydrostratigraphic unit

 \mathfrak{C}

37

29

Table 10 BOU Production Well Summary (May 2016 - April 2017)

	Ĺ										
					Total Mo	Fotal Monthly Production (gallons)	ı (gallons)				Average Extraction Rate (gallons per
	Well ID	V01	V02	V03	V04	V05	90A	VO7	80A	Total by Month	minute)
_	May	28,616,295	37,208,392	27,394,427	41,072,402	40,542,979	20,637,562	41,451,497	49,320,176	286,243,730	6,412
	June	571,681	53,445,131	24,811,787	39,301,456	37,640,906	51,694,036	20,270,469	60,314,584	288,050,050	899'9
	July	1	59,185,274	32,240,131	42,138,516	34,179,392	40,985,136	43,564,857	63,706,435	315,999,741	620,7
_	August	1	60,585,079	38,791,661	38,526,405	13,019,758	61,282,842	45,196,555	65,848,687	323,250,987	7,241
_	September	26,730,150	55,059,895	37,591,086	12,976,492	27,376,333	50,482,522	31,388,050	64,173,133	305,777,661	7,078
	October	34,943,823	51,271,534	21,517,247	17,017,096	54,008,821	50,470,789	7,662,822	65,959,475	302,851,607	6,784
	November	23,820,148	45,063,453	36,761,590	19,494,567	21,034,408	51,299,476	21,632,647	62,648,411	281,754,700	6,522
_	December	32,955,587	47,295,508	36,525,519	38,095,851	19,804,424	54,303,409	21,728,022	3,062,537	253,770,857	5,685
	January	1,152,352	50,469,832	15,728,860	23,962,929	50,986,876	22,826,682	29,503,661	1,059,593	195,690,785	4,384
_	February	3,817,474	29,802,263	3,048,151	25,921,324	24,685,919	30,252,631	11,931,934	44,424,476	173,884,172	4,164
_	March	102,292	43,611,211	1	30,838,723	26,157,378	49,977,025	7,821,701	52,037,951	210,546,281	4,717
	April	-	42,226,358	-	27,767,266	32,980,590	28,343,824	15,323,277	44,768,388	191,409,703	4,431
	Total by Well	152,709,802	575,223,930	274,410,459	357,113,027	382,417,784	512,555,934	297,475,492	577,323,846	3,129,230,274	5,937

Table 11 BOU Mass Removal Summary May 2016 - April 2017

2016 Annual Groundwater Monitoring Report Lockheed Martin Corporation Burbank Operable Unit, Burbank, CA

Reporting Month	Volume of Water Extracted by Month (gallons)	Average Influent Total VOCs Concentration (μg/L)	VOC Mass Removed (lbs)	
May 2016	286,243,730	110.6	264.2	
June 2016	288,050,050	150.1	360.7	
July 2016	315,999,741	154.5	407.3	
August 2016	323,250,987	147.0	396.7	
September 2016	305,777,661	130.4	332.8	
October 2016	302,851,607	138.0	348.8	
November 2016	281,754,700	137.2	322.6	
December 2016	253,770,857	184.8	391.5	
January 2017	195,690,785	175.6	286.8	
February 2017	173,884,172	123.6	179.4	
March 2017	210,546,281	119.1	209.2	
April 2017	191,409,703	123.5	197.3	
TOTAL	3,129,230,274	TOTAL	3,697	

Notes: VOCs - volatile organic compounds

lbs - pounds

 $\mu g/L$ - micrograms per liter

Table 12 Second Quarter 2017 Vertical Gradient Calculations

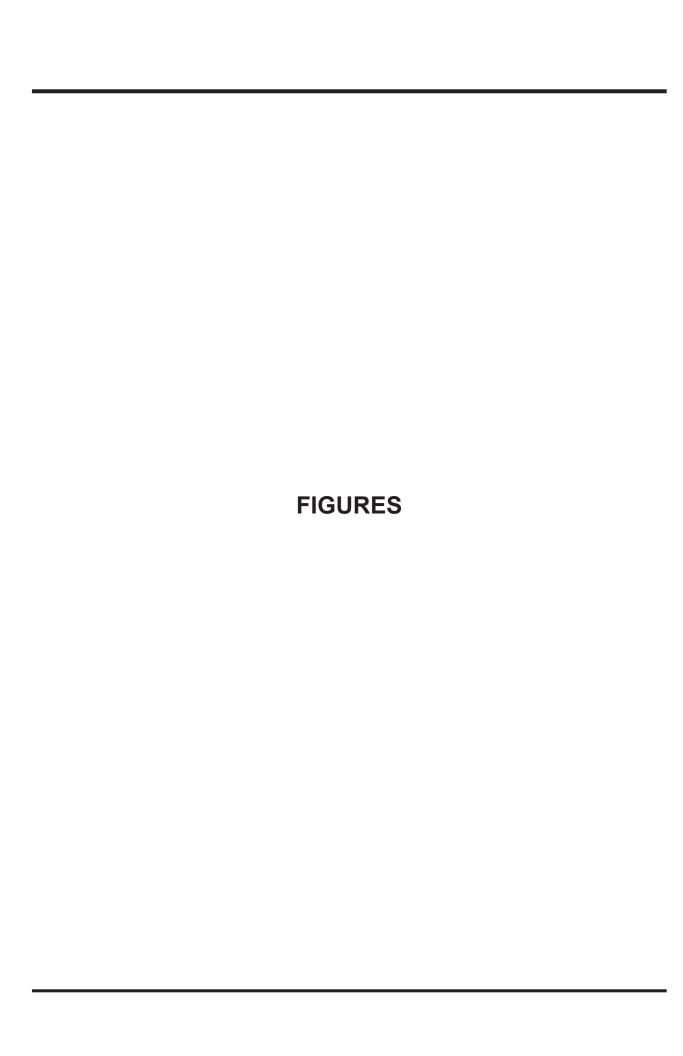
2017 Annual Groundwater Monitoring Report Lockheed Martin Corporation Burbank Operable Unit, Burbank, CA

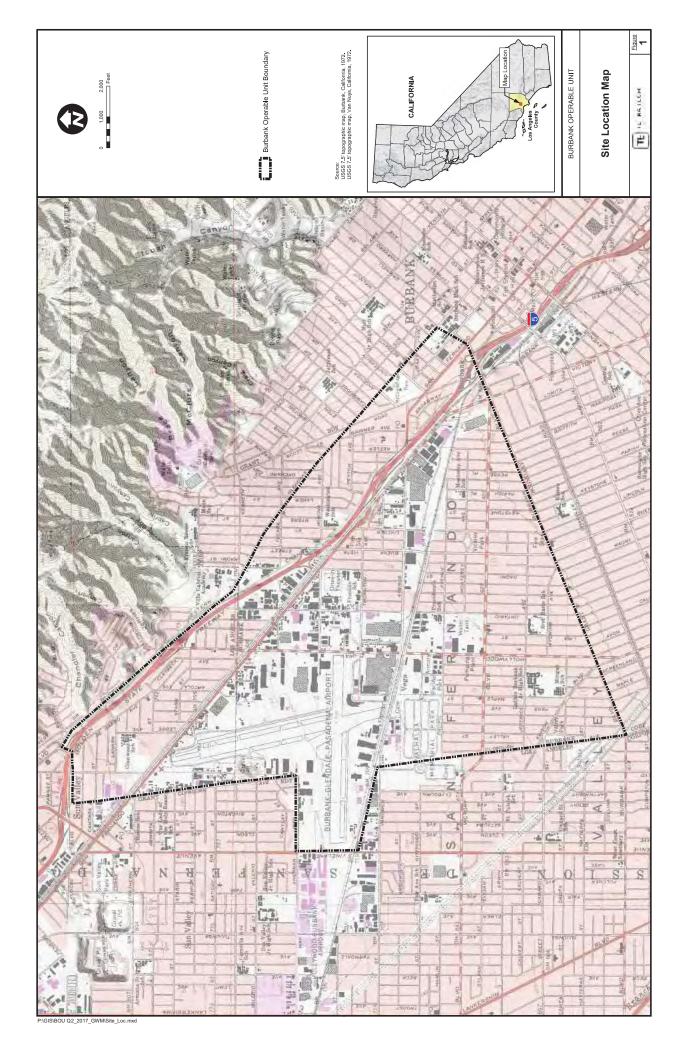
				D 4337.33		April 2017	
Well ID	HSU	Surface Elevation (feet MSL)	Top of Well Screen Elevation (feet MSL)	Bottom of Well Screen Elevation (feet MSL)	Groundwater Elevation (feet MSL)	Elevation of Screen Midpoint* (feet MSL)	Vertical Gradient
B-1-CW12	WT	609.85	489.85	439.85	155.58	297.72	-1.941
B-1-CW11	В	610.05	310.05	280.05	150.40	295.05	(up)
B-1-CW25	WT	636.54	486.54	446.54	185.95	316.24	-2.289
B-1-CW27	В	636.93	322.93	302.93	178.36	312.93	(up)
B-1-CW13	WT	651.49	501.49	441.49	200.05	320.77	-1.263
B-1-CW28	В	650.15	324.15	304.15	191.69	314.15	(up)
3850N	WT	658.07	493.07	443.07	203.31	323.19	-0.645
3850R	В	657.49	320.49	310.49	198.35	315.49	(up)
3861D	WT	617.88	487.88	437.88	164.20	301.04	1.245
3861F	В	617.46	314.46	294.46	159.94	304.46	(up)
3851M	WT	650.35	485.35	435.35	191.19	313.27	0.032
3851N	В	650.10	345.10	325.10	190.49	335.10	(up)
B-5-CW03	WT	697.26	486.26	466.26	228.35	347.31	-0.792
B-5-CW02	В	697.67	357.67	347.67	232.60	352.67	(up)
C-1-CW06	WT	720.91	488.91	468.91	Dry Well	NA	NA
C-1-CW05	В	720.87	344.87	334.87	251.71	339.87	
3852F	WT	607.65	482.65	432.65	148.03	290.34	-0.048
3852H	В	607.93	338.93	308.93	149.65	323.93	(down)
3852M	WT	593.45	385.45	365.45	136.91	375.45	0.014
3852N	В	593.47	310.47	290.47	137.94	300.47	(down)
3872Q	WT	575.25	482.25	442.25	120.81	281.53	0.417
3872S	В	574.95	299.95	279.95	117.30	289.95	(up)

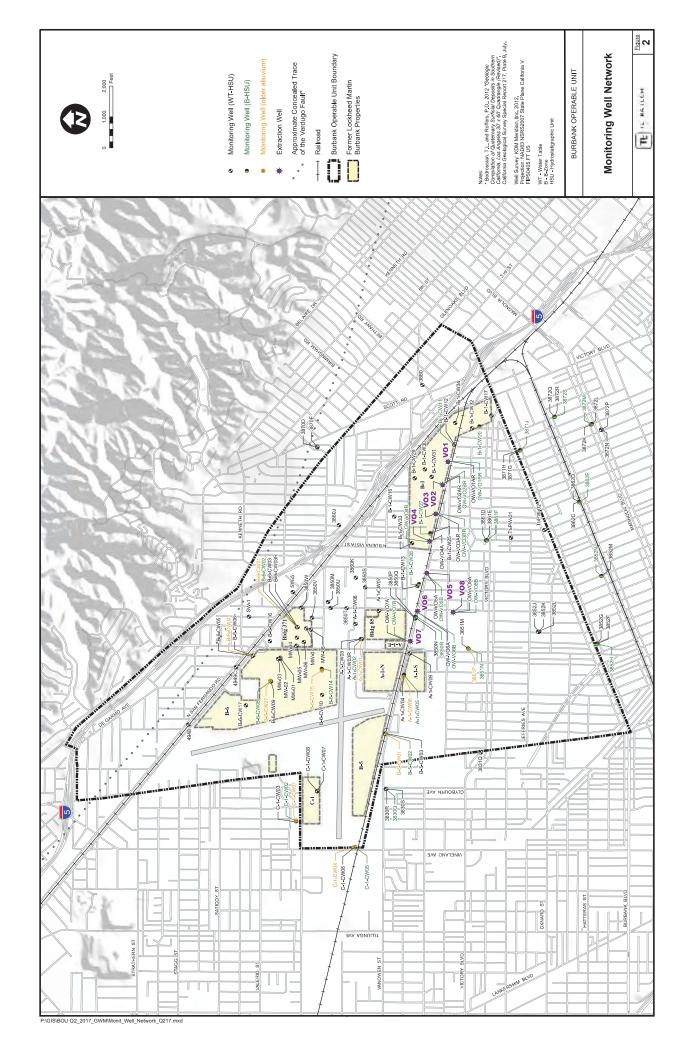
Notes:

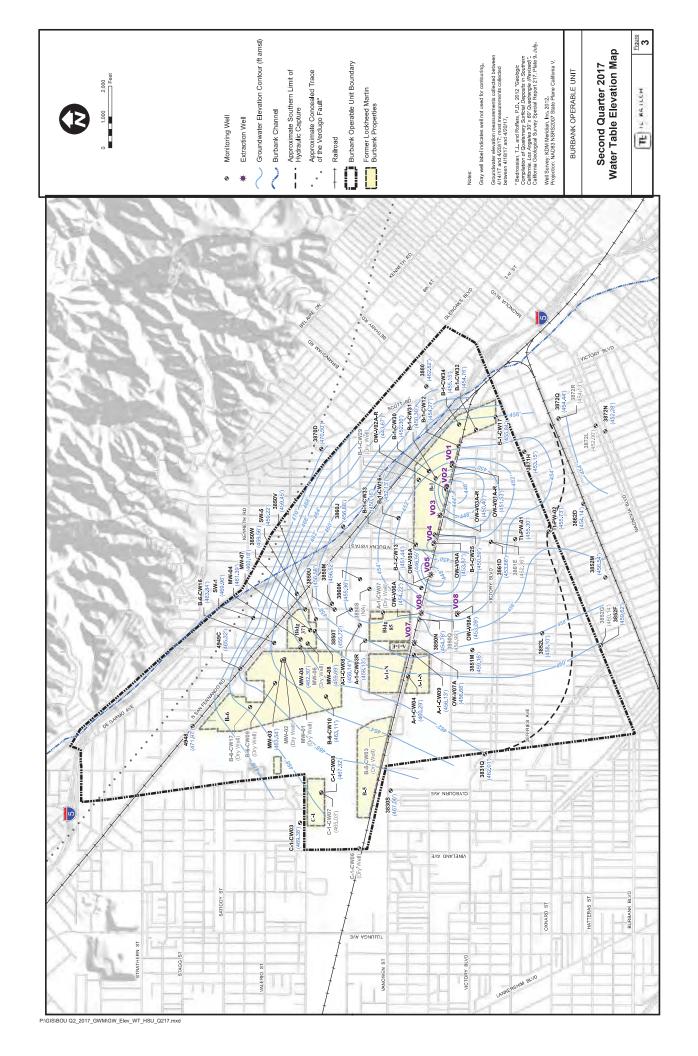
* = Mid water column used for WT HSU wells if the water level is below the top of the screen

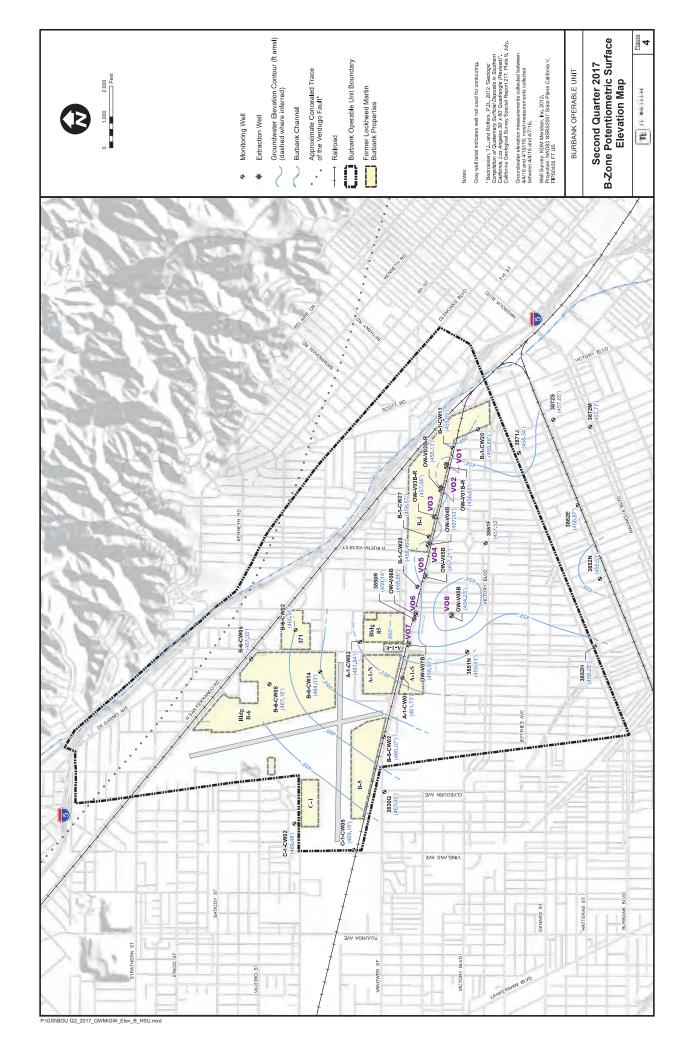
A = A-zone

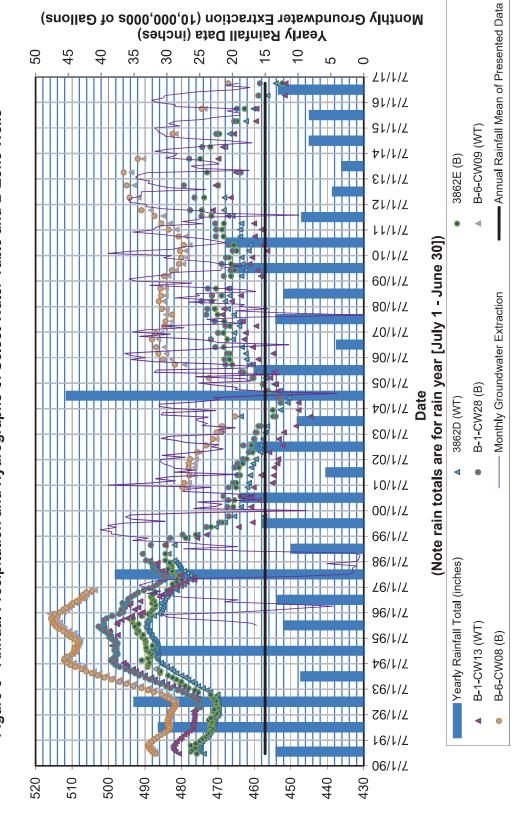
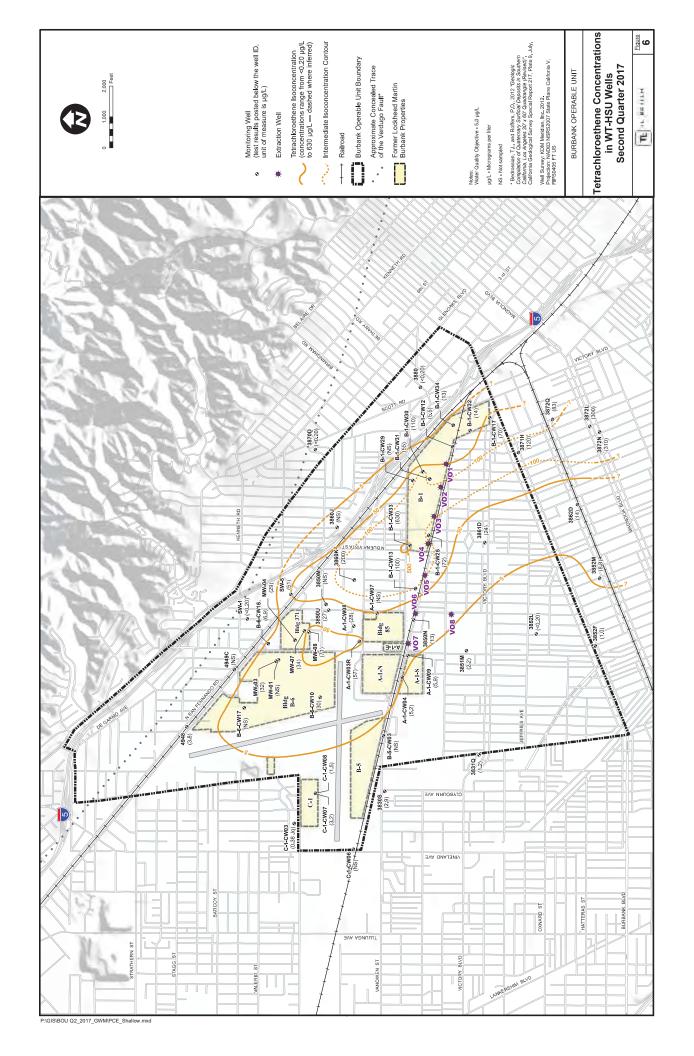
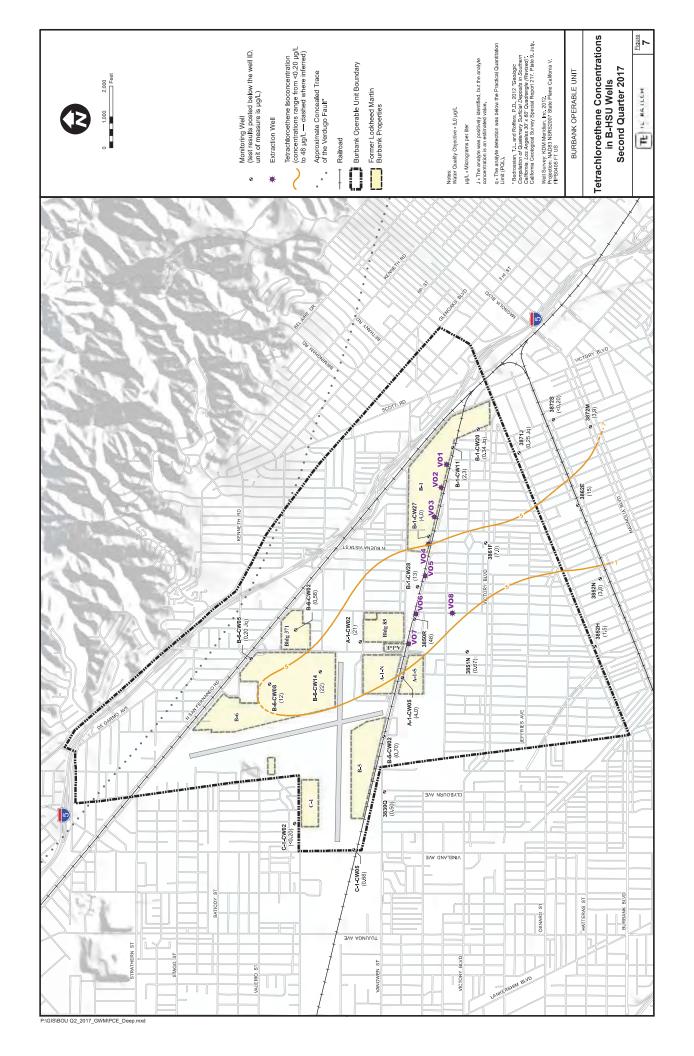
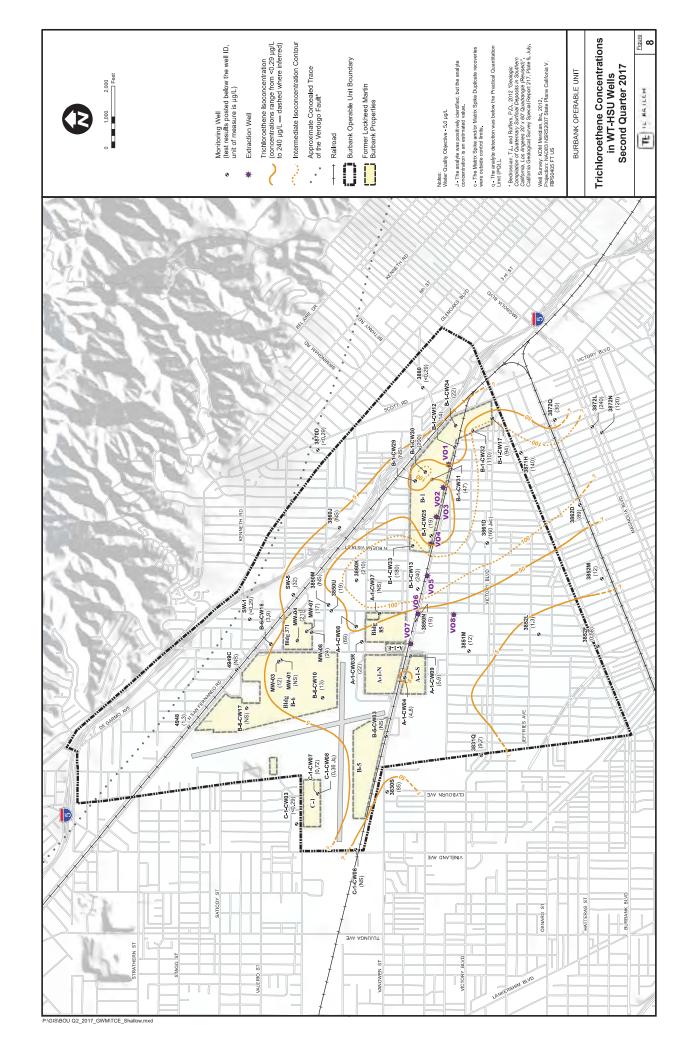
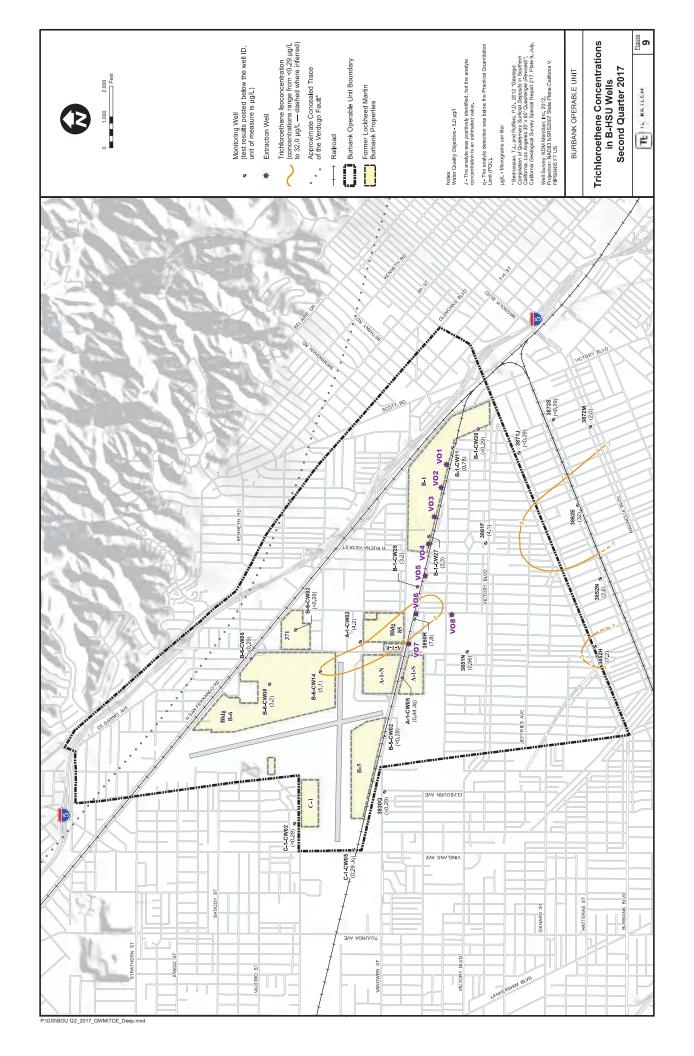

B = B-zone

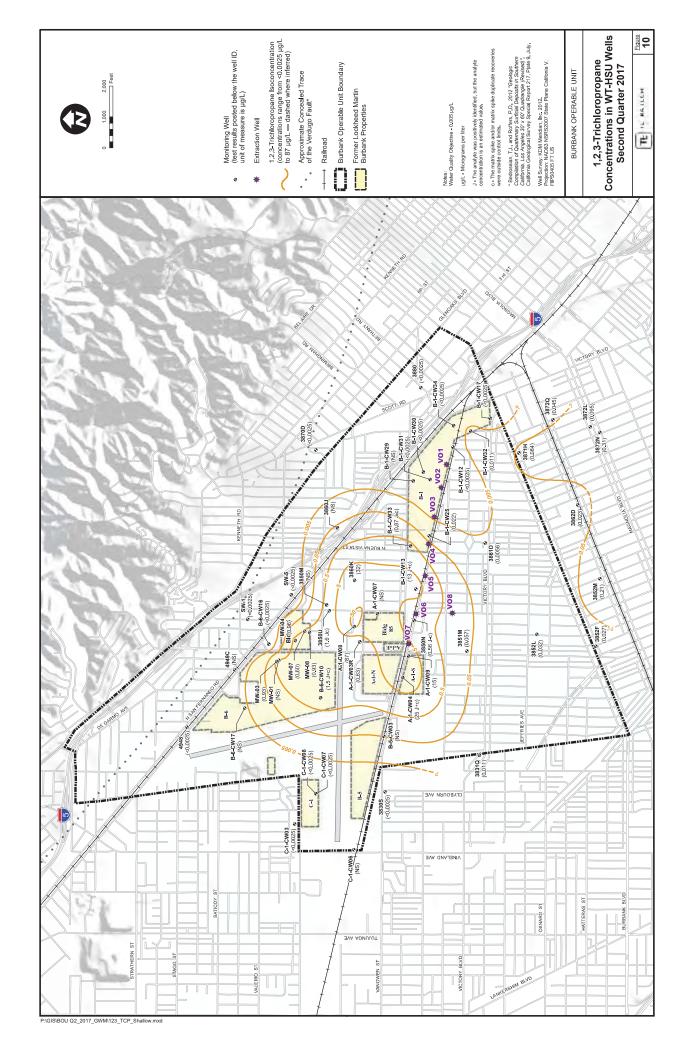

HSU = hydrostratigraphic unit

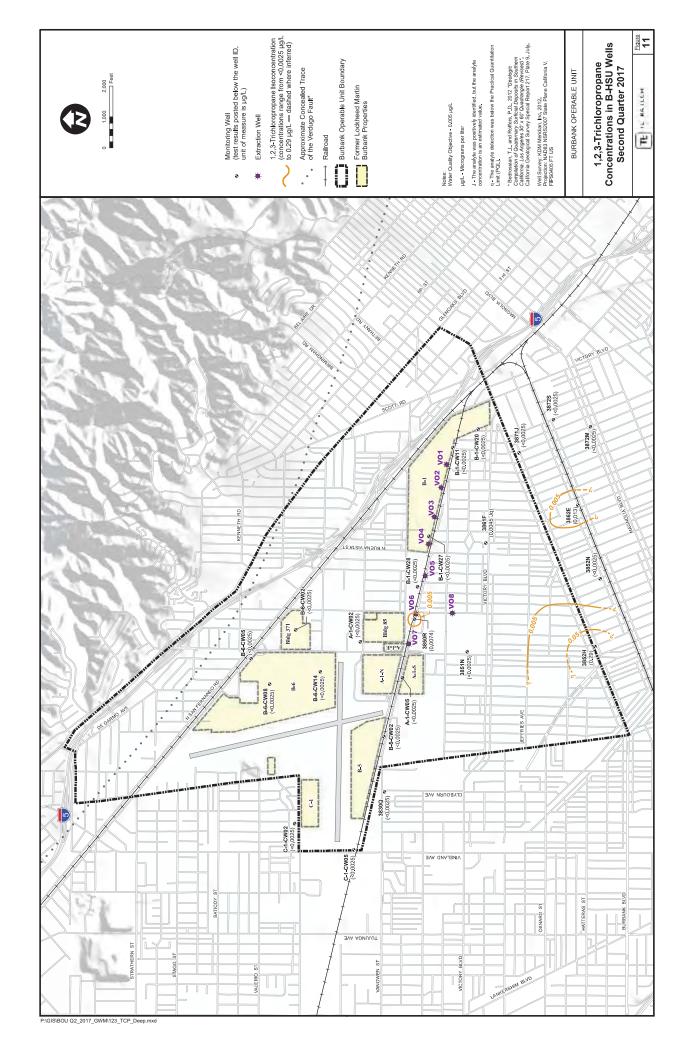

MSL = mean sea level

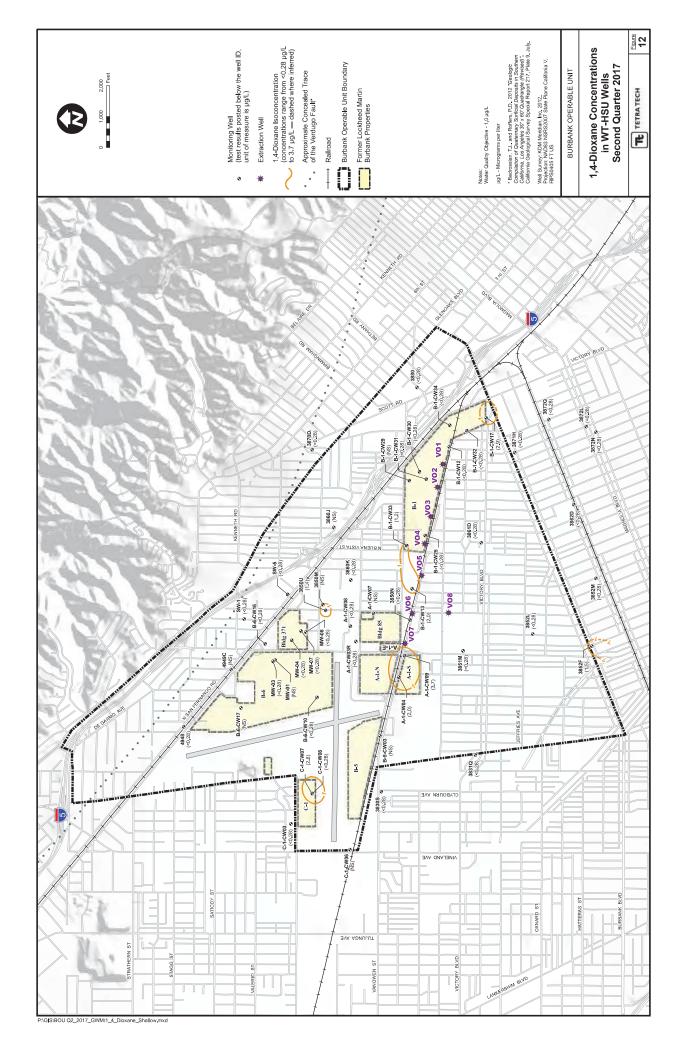

NA = not applicable

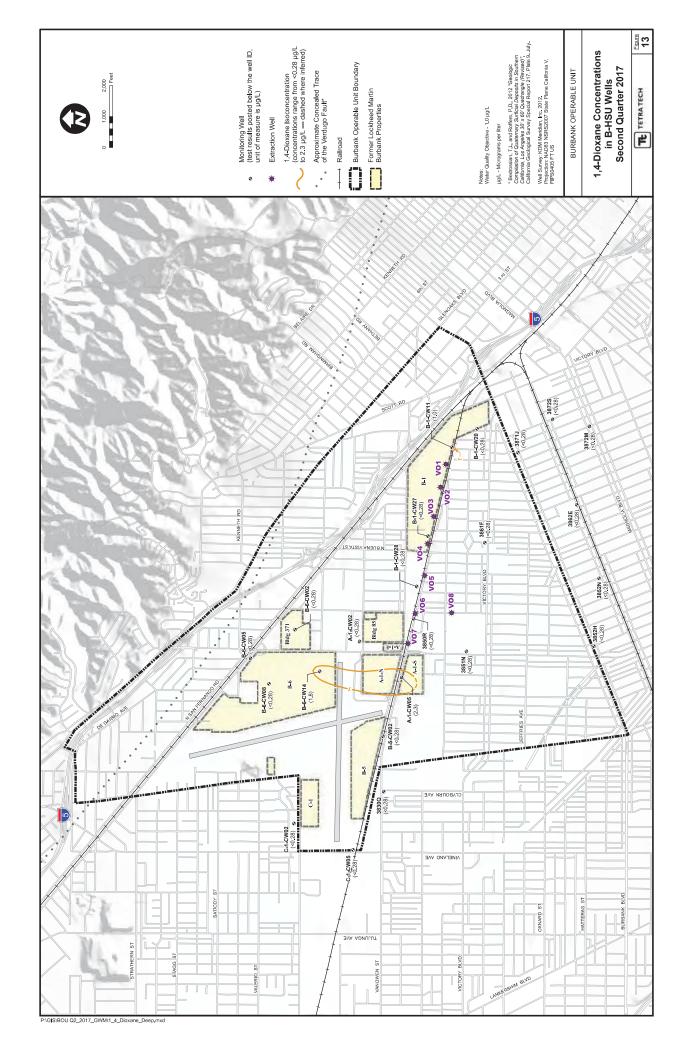

 $WT = water \ table$

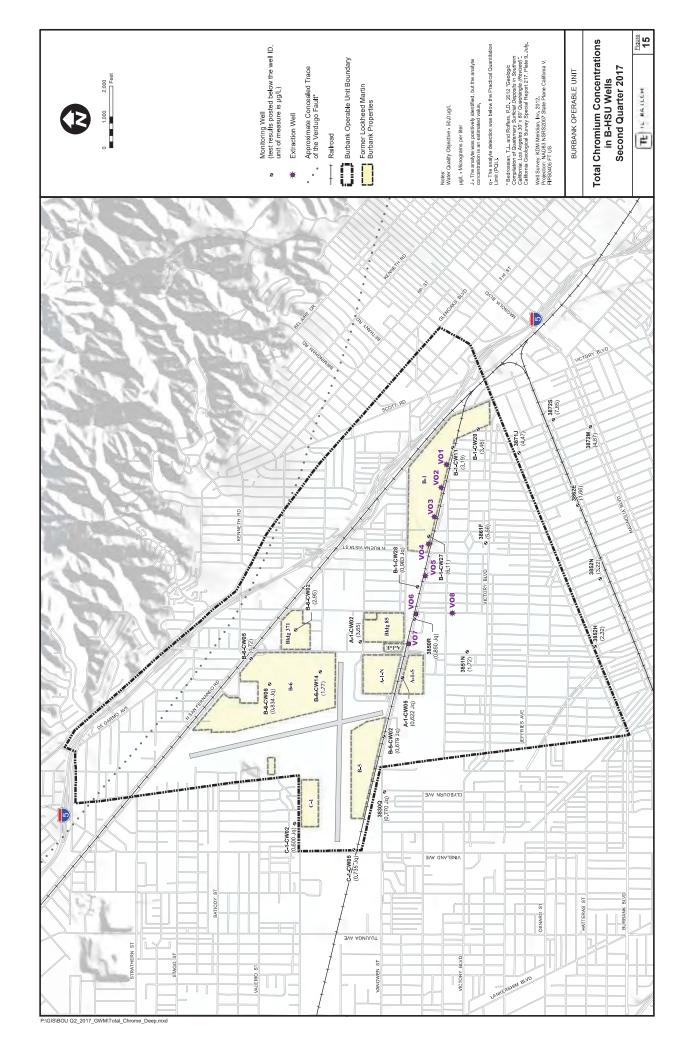

Figure 5 - Annual Precipitation and Hydrographs of Select Water Table and B-Zone Wells

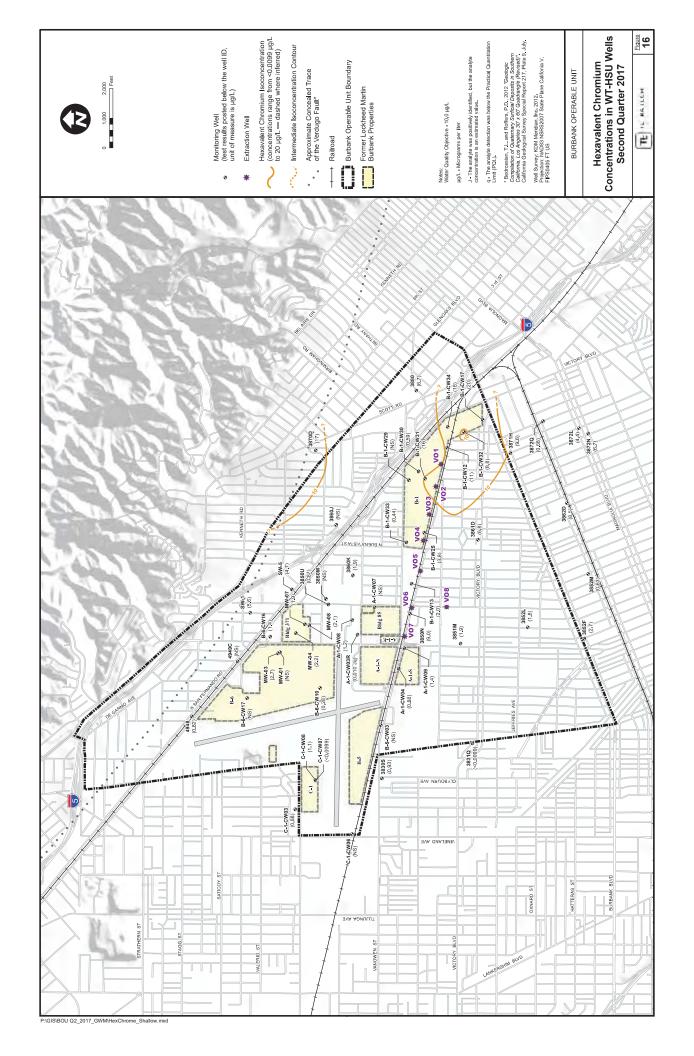


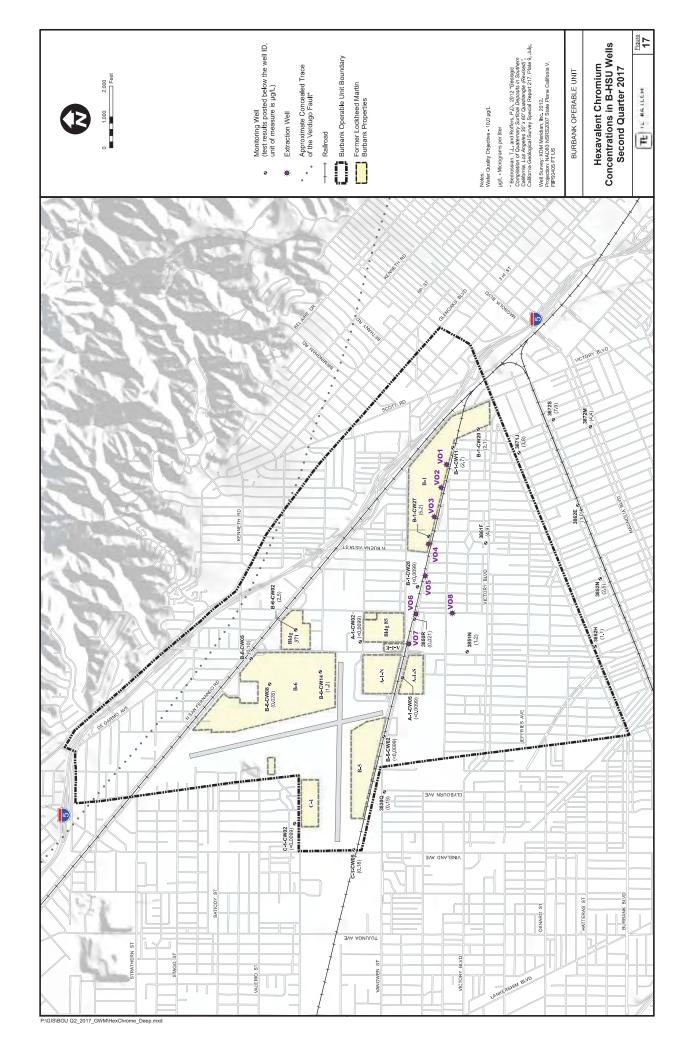


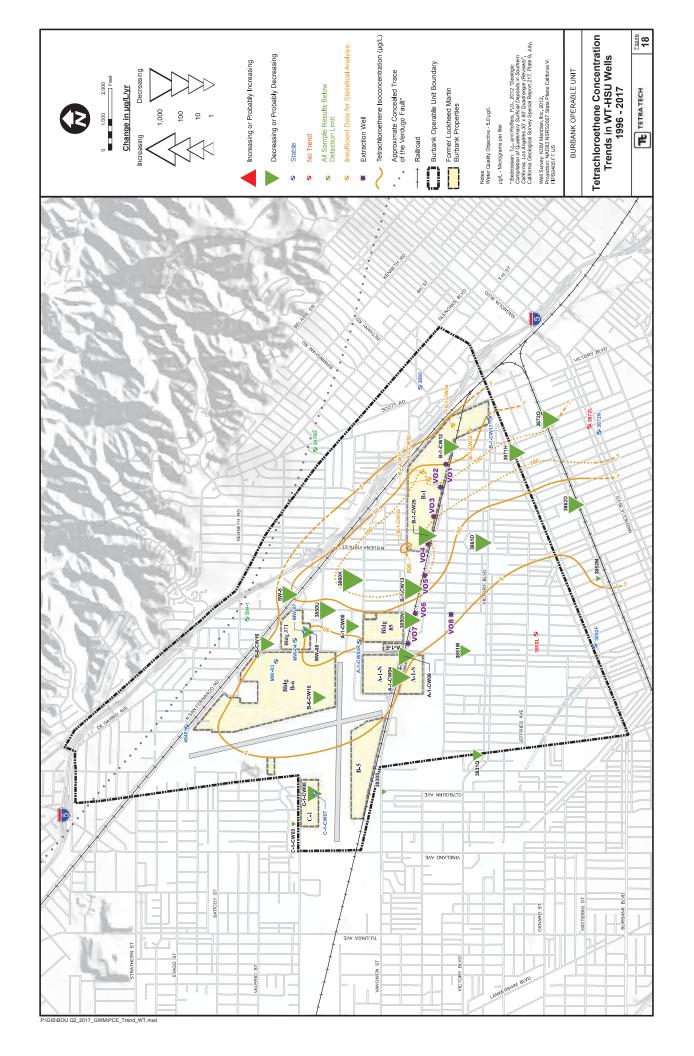


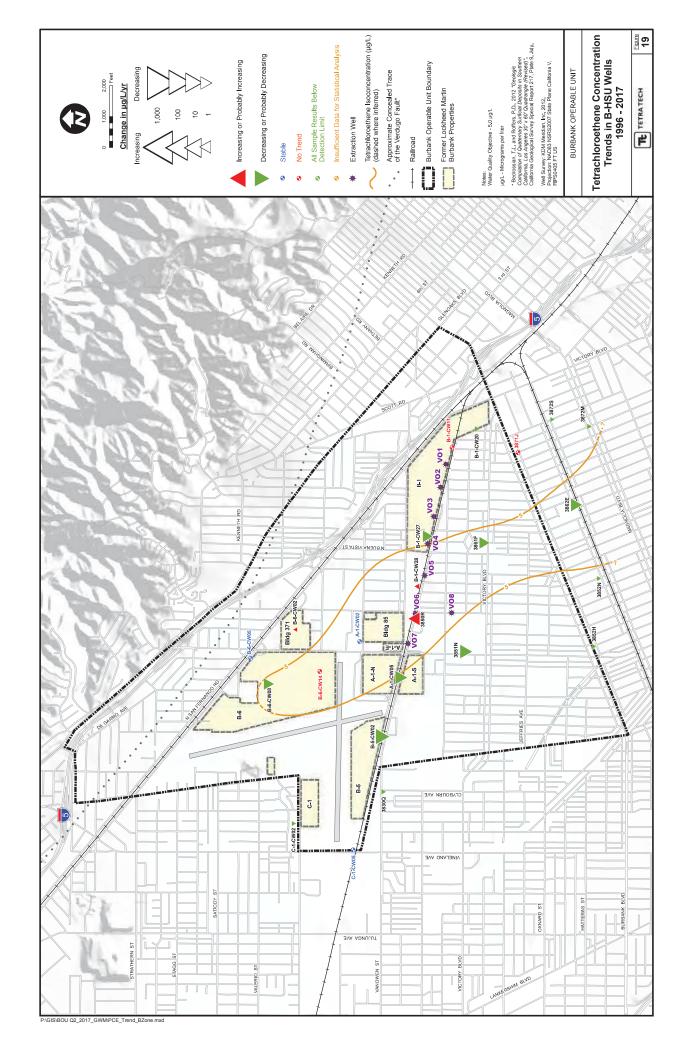


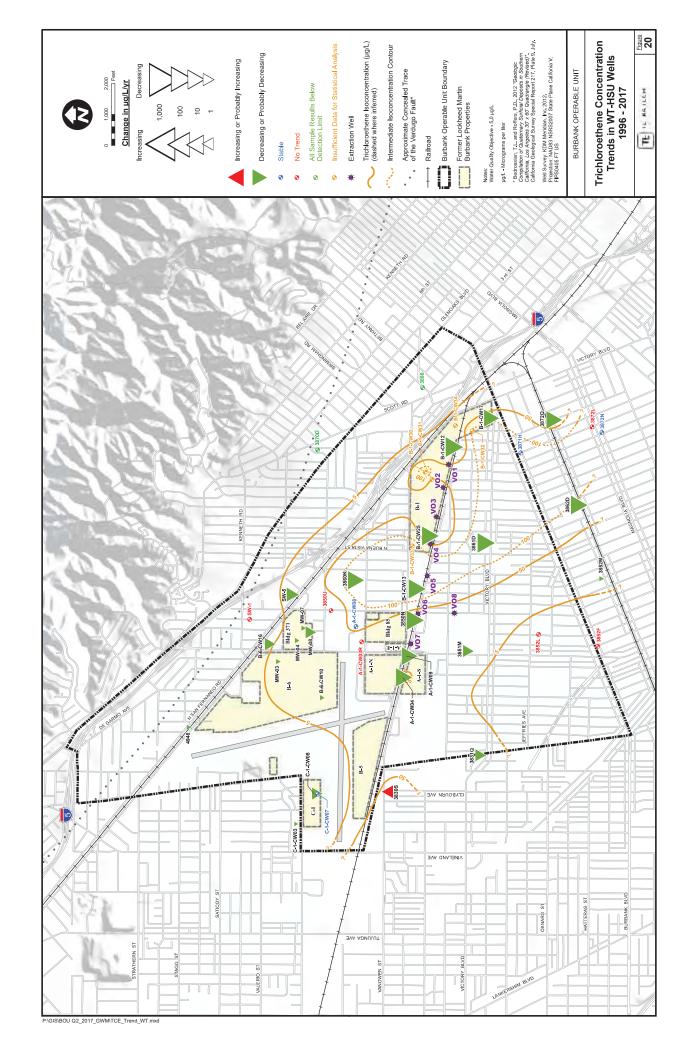


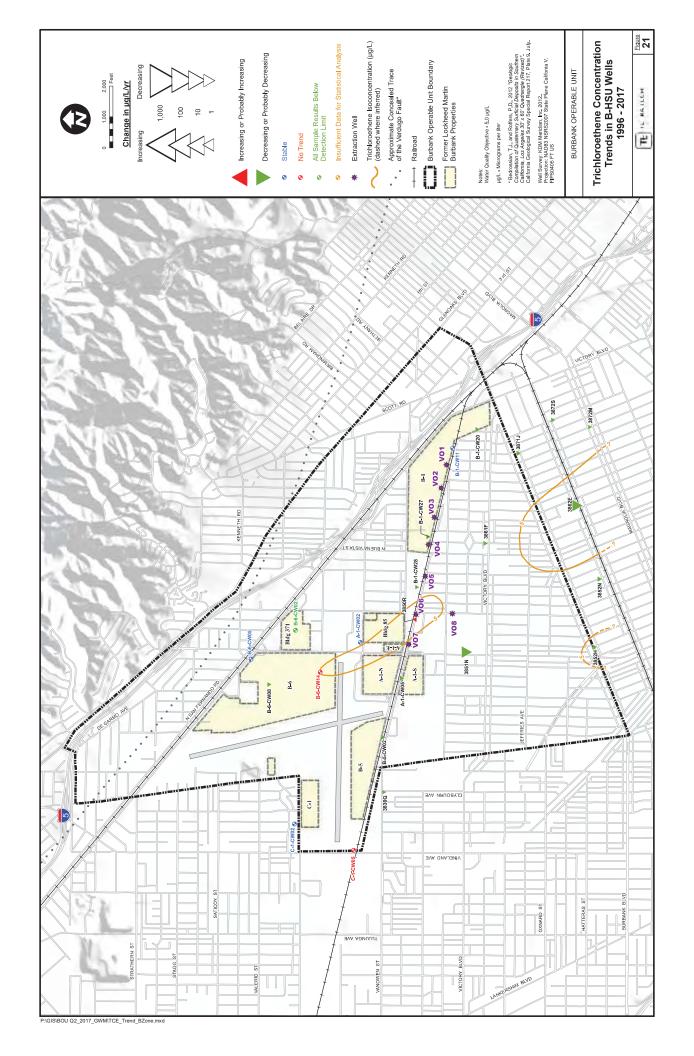


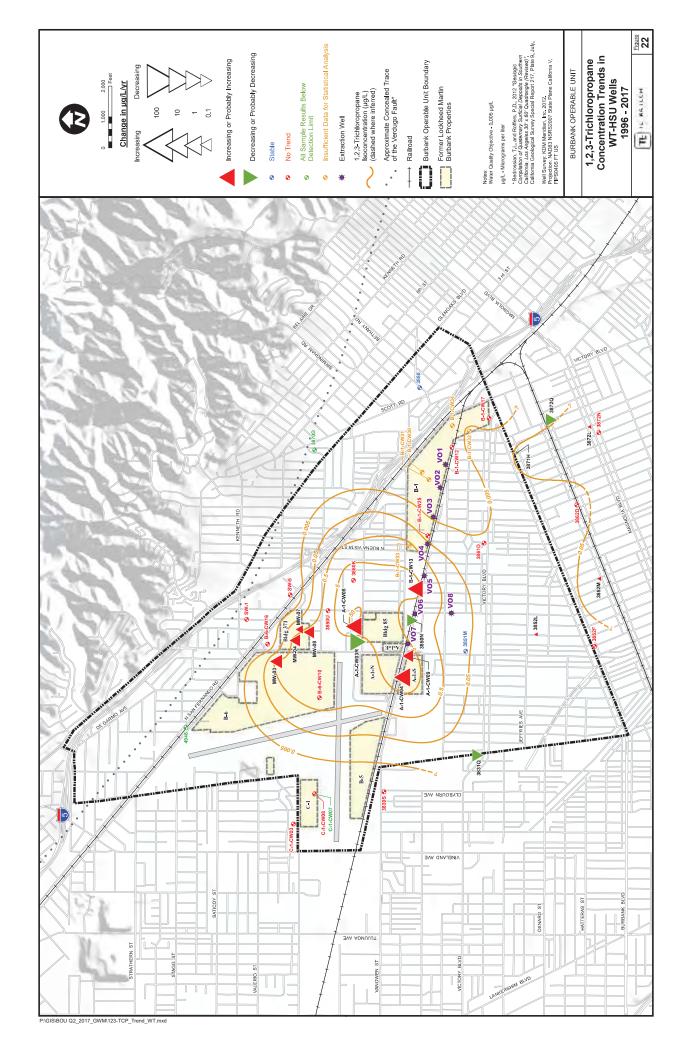


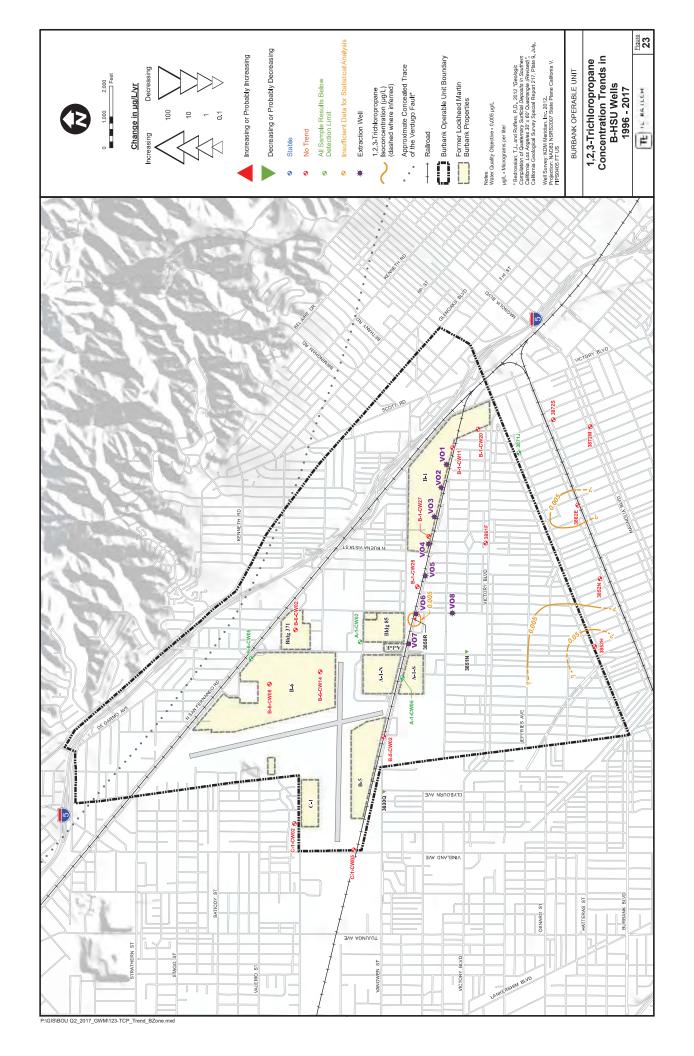


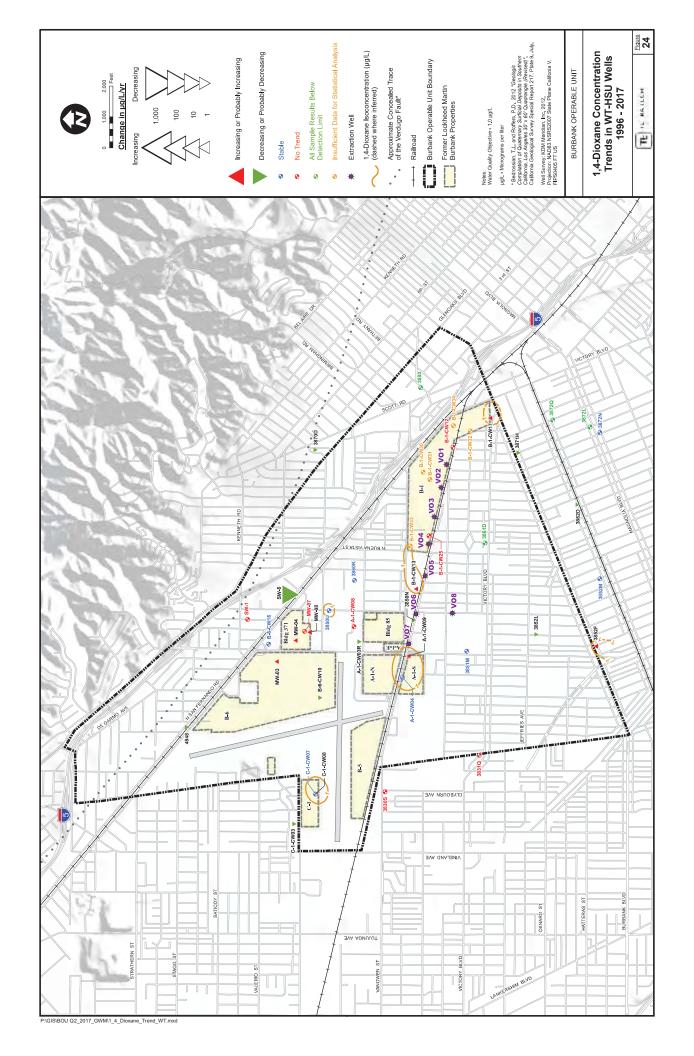


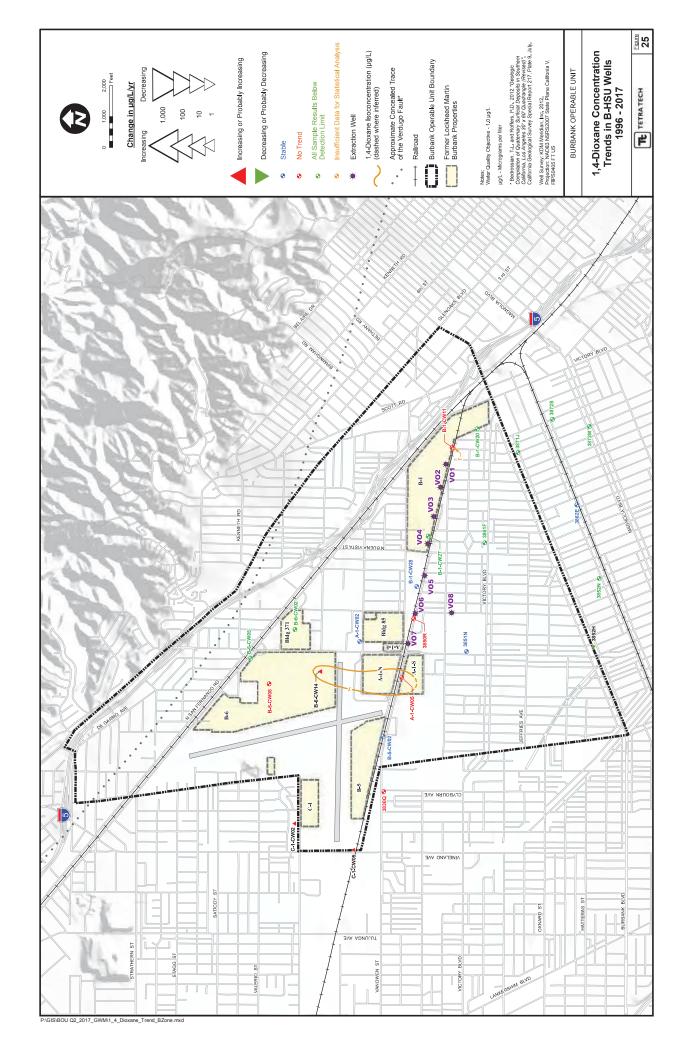


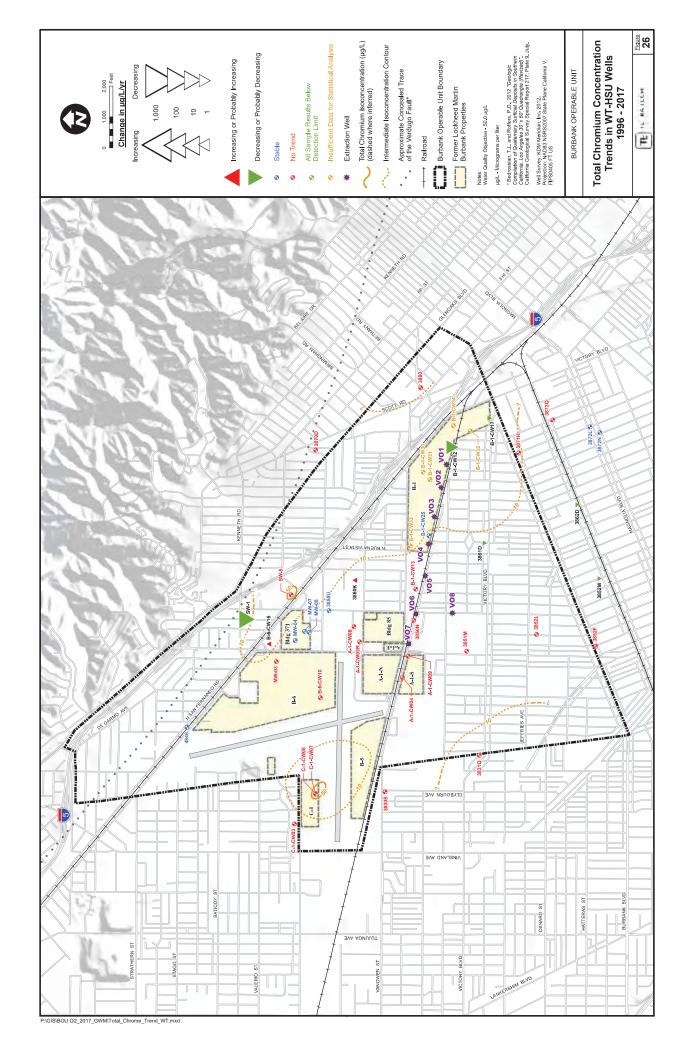


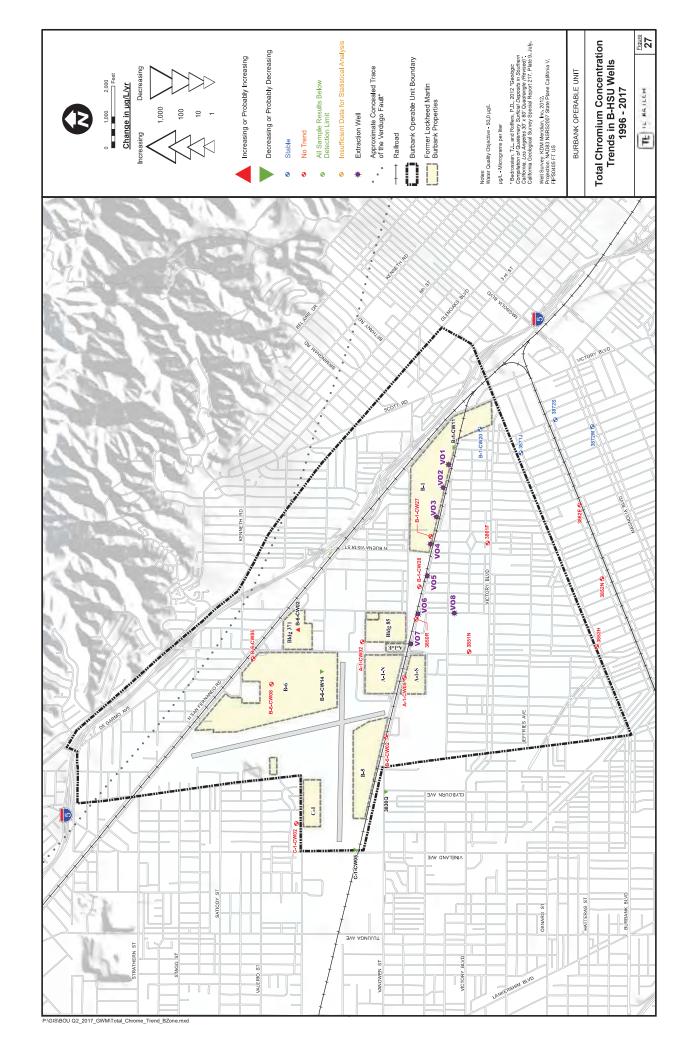


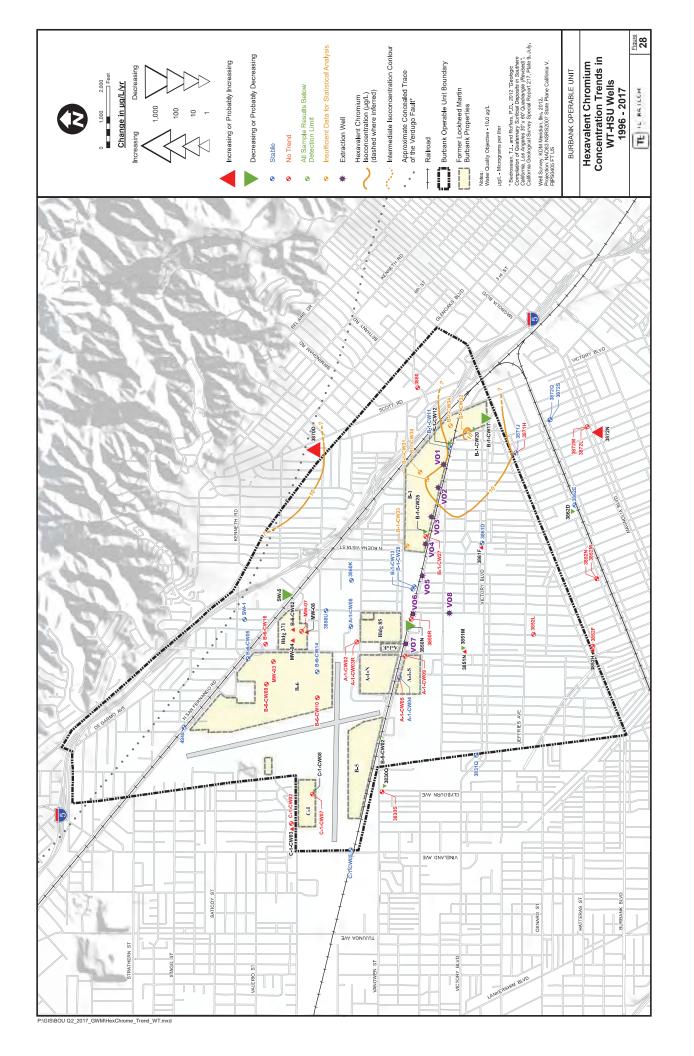


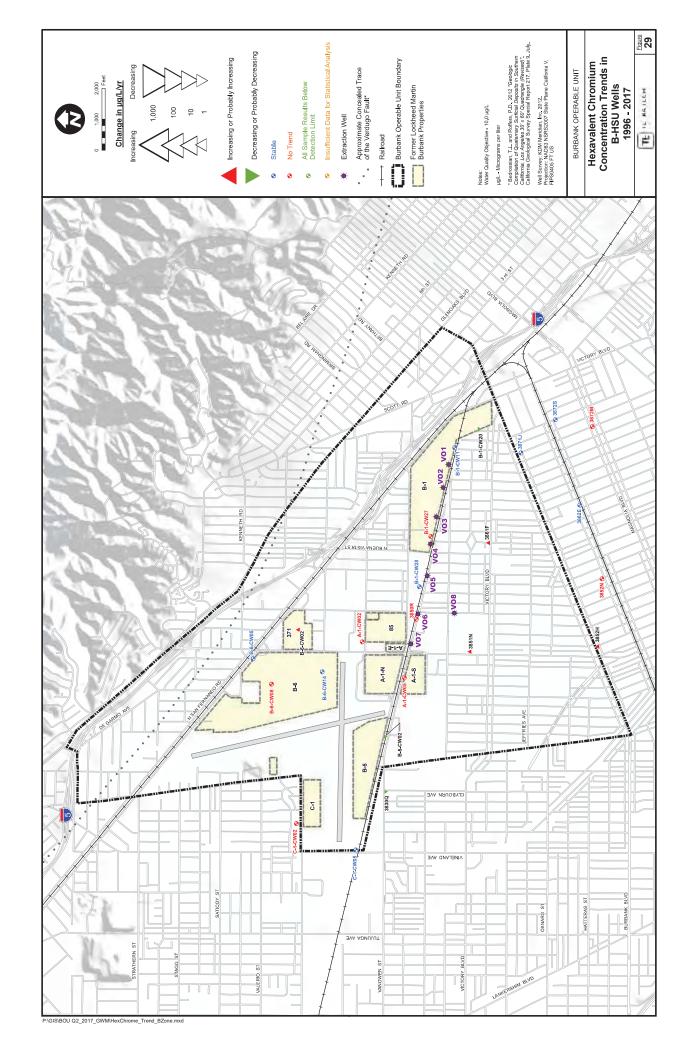


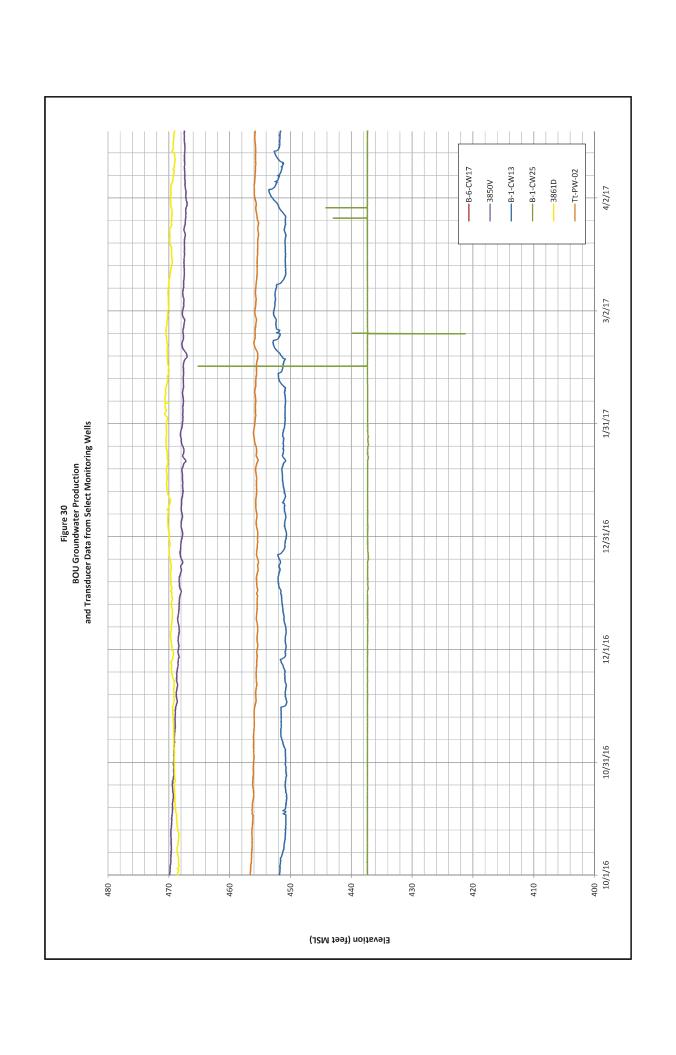


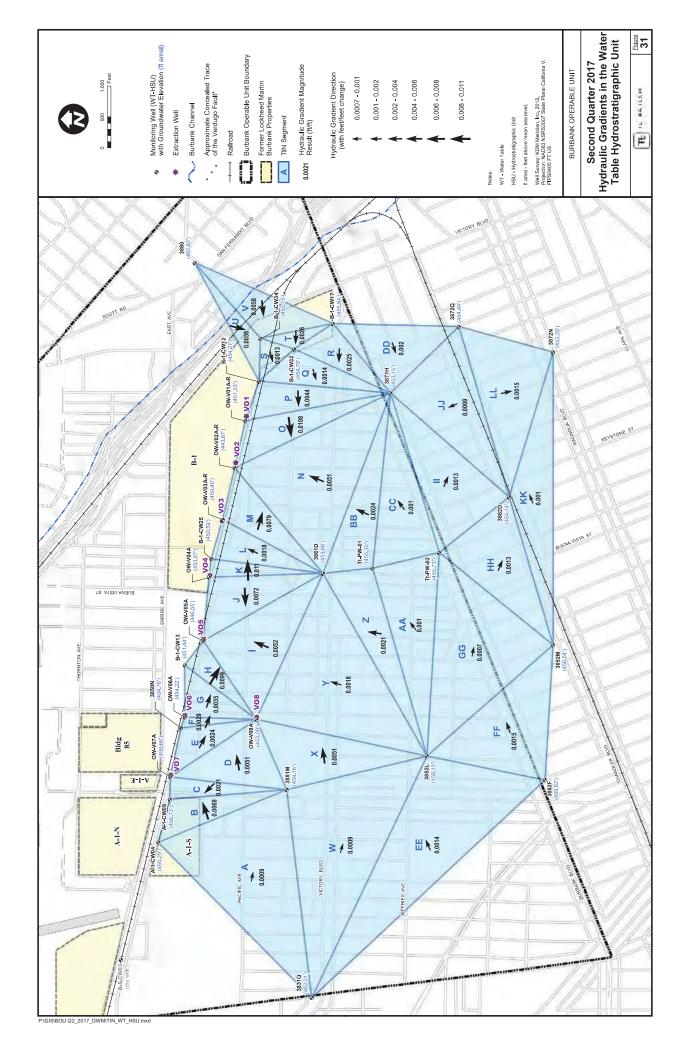


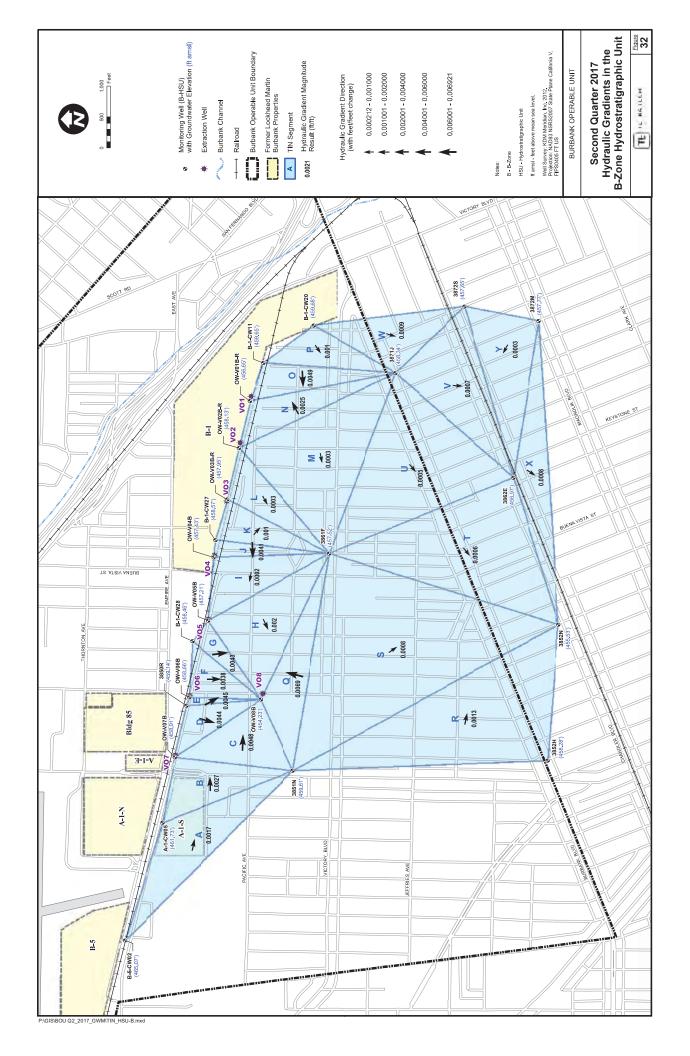


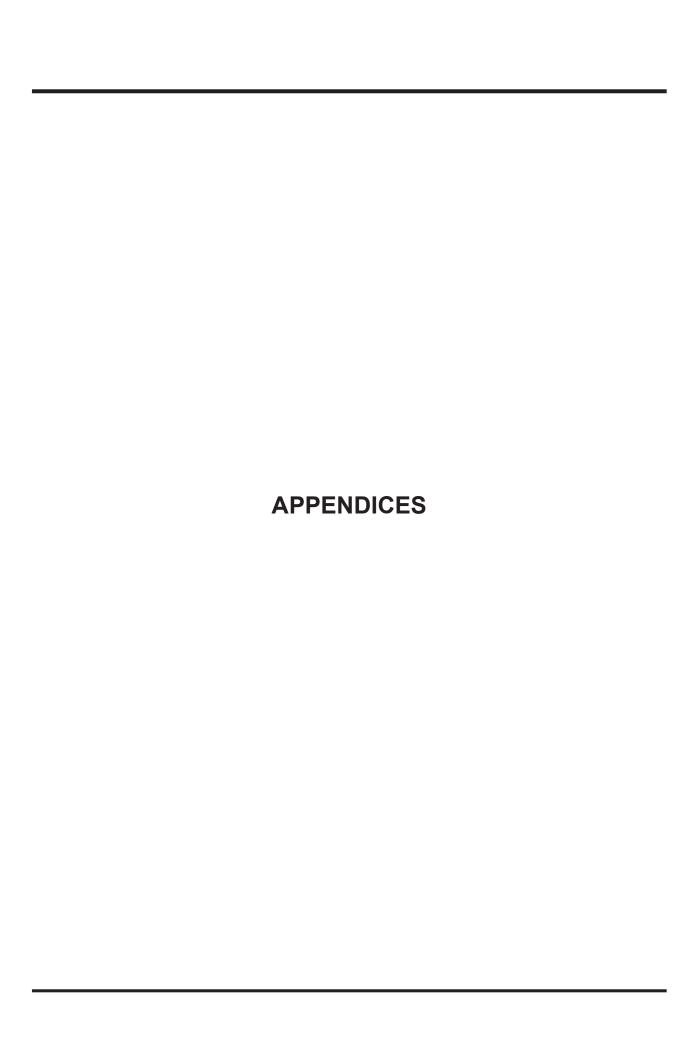












Appendix A Conceptual Site Model

Annual Groundwater Monitoring Report, Second Quarter 2017
Lockheed Martin Corporation
Burbank Operable Unit, Burbank, CA

Tetra Tech August 2017

APPENDIX A SITE BACKGROUND AND CONCEPTUAL SITE MODEL

This appendix summarizes the site background and conceptual site model (CSM) for the Burbank Operable Unit (BOU) based on the current and previous investigations. The discussion is divided into five main subsections: site background, physical setting, geology, hydrogeology, and groundwater quality.

1.1 SITE BACKGROUND

1.1.1 Site History

From the 1920s to the early 1990s, Lockheed Martin and several aircraft manufacturing/maintenance facilities operated within and around the vicinity of the Burbank Airport (currently the Bob Hope Airport). Lockheed Martin owned and operated a total of nine facilities within the current BOU area. The primary operations at the facilities included the manufacturing and assembly of aircraft and associated components. Other operations performed at the plants included research and development activities, and production of aviation devices. Supporting activities included manufacturing, machining, and assembling of various parts; parts cleaning and painting; and tooling and welding. Primary and support activities required the use and storage of fuel oils, gasoline, paints, primers, and chemicals. Types of oils used included hydraulic, cutting, and lubricating oils. Types of chemicals used included solvents, acids, caustics, and descalers.

Operations at the various plants were discontinued in the early 1990s, and structures associated with the facilities have been demolished. Most of the facilities have been redeveloped into commercial property.

1.1.2 Regulatory Framework

In 1980, the California Department of Health (DOH, currently called the California Department of Health Services (DHS)) requested that all major water providers sample and analyze groundwater

for contamination. Based on analyses of groundwater samples collected within the southeastern portion of the San Fernando Valley(SFV), trichloroethylene (TCE) and tetrachloroethylene (PCE) were detected consistently in a large number of production wells within the North Hollywood and Burbank area at concentrations greater than the maximum contaminant level (MCL) for drinking water. As a result, the United States Environmental Protection Agency (EPA) provided federal funding for the Los Angeles Department of Water and Power to conduct a two-year study to define the extent of contamination. The results of the study, published in 1983, revealed widespread VOC-contaminated groundwater in the SFV.

In 1986, North Hollywood and Burbank were added to the National Priorities List and designated as the North Hollywood and Burbank Operable Units (NHOU and BOU) of Area 1 of the SFV Superfund Site. In October 1988, a Feasibility Study was completed within the BOU.

In June of 1989, a Record of Decision (ROD) for an interim groundwater remedy at the BOU was signed. In March 1992, EPA entered into a Consent Decree (CD) with Lockheed Martin, the City of Burbank, and Weber Aircraft, Inc. Two Explanation of Significant Differences (ESDs) were also signed and incorporated to the 1989 ROD between 1990 and 1997. The CD, ROD, and ESDs stipulated that Lockheed Martin was to design and construct a 9,000-gallon per minute (gpm) groundwater extraction and treatment system that must meet MCLs and SALs, with the exception of nitrate. Furthermore, Lockheed Martin would operate the system for 2 years.

In June 1998, a second Consent Decree was entered. This provided for continued operations and maintenance of the BOU treatment system by the City of Burbank at 9,000 gpm. Funding was to be provided by a trust fund established and funded by parties to the CD.

Since 1996, the BOU treatment system has been fully operational, with downtime attributed to unexpected maintenance/design issues, new chemicals of concern (primarily 1,2,3-trichloropropane (1,2,3-TCP)), and well pump and controls problems. The concentration of PCE and TCE in groundwater effluent from the treatment system has been less than MCLs. Treated groundwater from the blendpoint, which is served to consumers, has met all DHS contaminant goals set forth in the operating permit, as well as the drinking water MCL cleanup goals.

1.1.3 Groundwater Monitoring Program

The groundwater-monitoring program (GMP) for the BOU is conducted in accordance an Operational Sampling Plan (OSP), which describes the objectives, schedule, rationale, analytical methods, and procedures for sampling the groundwater monitoring-well network. The OSP has evolved since its inception in 1997 with the *Draft Phase 2 OSP (HIS Geotrans, 1997)* to incorporate additional requests by the EPA and the California Regional Water Quality Control Board, Los Angeles Region (LARWQCB).

In April 2012, Lockheed Martin submitted the Revised Phase 2 OSP to the EPA that proposed modifications to the BOU GMP (Strategic Engineering & Science, 2012). The 2012 Revised OSP included a groundwater monitoring optimization plan that presented the rationale for selection of COCs for the BOU GMP and elimination of other analytes (e.g., semivolatile organic compounds, pesticides, polychlorinated biphenyls, and radionuclides). During a meeting between Lockheed Martin and the EPA on August 22, 2012, EPA requested implementation of a comprehensive sampling event in order to refine the OSP. A Comprehensive Sampling Event Work Plan was subsequently prepared and submitted to the EPA on February 11, 2013. In April 2013, the EPA approved the revised OSP and Comprehensive Sampling Event Work Plan.

In 2014, Lockheed Martin submitted another Revised OSP (Arcadis, 2014) to the EPA that proposed modifications to optimize the long-term GMP and implement a monitoring schedule that coincides with the EPA's revised Basinwide Groundwater Monitoring Program schedule: every second and fourth quarter for groundwater level monitoring and every second quarter for groundwater sampling for chemical analyses.

In 2017, Lockheed Martin submitted a Revised OSP Addendum (Tetra Tech, 2017) that referenced changes to the groundwater monitoring well network, and included procedures for sampling BOU wells using a low-flow sampling protocol and modifications to the Quality Assurance Project Plan reflecting the current BOU groundwater monitoring project team and data validation procedures.

1.2 PHYSICAL SETTING

The BOU is located in the southeastern portion of the San Fernando Valley (SFV) in the City of Burbank, California. The SFV is a 260-square-mile physiographic basin located in the Transverse Ranges province in southern California. The SFV is bounded to the south by the Santa Monica Mountains, to the west by the Simi Hills, to the north by the Santa Susana and San Gabriel Mountains, and to the east-northeast by the Verdugo and San Gabriel Mountains.

1.3 GEOLOGY

Geologic units underlying the SFV generally consist of the following (from oldest to youngest):

- Mesozoic and older plutonic and metamorphic rocks (crystalline basement)
- Tertiary-age marine sandstone, mudstone, and shale (sedimentary bedrock)
- Unconsolidated Plio-Pleistocene marine and non-marine sediments
- Unconsolidated Quaternary alluvial deposits

The basement and bedrock units crop out in the surrounding hills and mountains that form the valley boundaries. The eastern margin of the valley is bounded by the plutonic and metamorphic rocks of the Verdugo Mountains. The northern margin of the valley is bounded by the sedimentary rocks of the Santa Susana Mountains and the plutonic and metamorphic rocks of the San Gabriel Mountains. The western edge of the valley is defined by the Simi Hills where sedimentary rock is exposed. The southern margin is defined by the Santa Monica Mountains where sedimentary and igneous rocks are exposed.

The Quaternary alluvium beneath the BOU consists of Holocene younger alluvium and Pleistocene older alluvium. The younger alluvium extends from the ground surface to a depth of up to 410 feet below ground surface (bgs). The older alluvium extends from the base of the younger alluvium to depths of up to 1,200 feet bgs or more. The contact between the younger and older alluvium has been reported to be marked by a distinct basal cobble layer (HSI Geotrans, 1997).

The younger alluvium consists of coarse-grained sand, gravel, and cobbles interbedded with finer-grained units of sand, silty sand, sandy silt, silt, and clay. Individual units within the younger alluvium vary in elevation and thickness; the contacts between the units have a northeast-trending

strike and dip towards the southeast. The lithology of the upper portion of the older alluvium varies from sand, gravel, and boulders in the northwestern portion of the BOU to interbedded silt and sand in the eastern and southern portions. The deeper portion of the older alluvium consists of silt and sand with interbedded gravel (HSI Geotrans, 1997.)

The northwest-trending Verdugo fault zone runs along the northeastern boundary of the BOU. The fault zone has been interpreted to be a low-permeability zone that can both impede and direct the flow of groundwater.

1.4 HYDROGEOLOGY

The BOU is located in the San Fernando Basin, which is characterized as water-bearing alluvium that overlies a non-water-bearing bedrock complex of older sedimentary rock formations and crystalline and metamorphic basement complex rock. Groundwater enters the basin by infiltration of surface-water runoff from the highlands, by deep penetration of rain on the valley floor, and by artificial means such as irrigation return or induced recharge. Outflow of groundwater from the basin is through groundwater extraction and a small amount of flow (surface and groundwater) through the Los Angeles Narrows, located southeast of the BOU. Groundwater in the vicinity of the BOU flows mainly through two sedimentary units: the Pleistocene older alluvium and the Holocene younger alluvium. The aquifer in the older alluvium has been observed to be locally semi-confined to confined by clay and silt units, whereas the aquifer in the younger alluvium is generally unconfined to semi-confined depending upon the location and thickness of the fine-grained units (HSI Geotrans, 1997).

The aquifer in the younger alluvium within the BOU has been divided into five hydrostratigraphic units (HSUs) based on electrical resistivity responses in geophysical logs (Hargis & Associates, 1991; Simon Hydro Search, 1993). The five HSUs of the younger alluvium are identified from upper to lower as A', X, A, Y, and B (HSI Geotrans, 1997). The A', A, and B HSUs are generally comprised of coarser-grained material (coarse-grained sand, gravel, and cobbles). The X and Y HSUs separate the three HSUs listed above (A', A, B), and consist of relatively finer-grained material (sand, silty sand, and silt). Based on the stratigraphic position of the units and the groundwater gradient, the A' HSU, the X HSU, or the A HSU may locally represent water table

conditions depending on geographic location within the project area, and are collectively referred to as water table (WT) HSUs.

The five HSUs of the younger alluvium are encountered throughout much of the southeastern San Fernando Basin. During the 1991 installation of groundwater monitoring wells 3860J, 3870D, 3870E, and 3880 northeast of the BOU, however, boring data and geophysical logs confirmed the absence of the five HSUs and identified the presence of finer-grained silty sands and sandy silts (Hargis and Associates, 1991). Based on the data, a separate HSU with distinct lithology was identified as the K HSU (also considered a WT HSU).

1.5 GROUNDWATER QUALITY

Lockheed Martin has monitored groundwater quality at the BOU since 1986. Based on analysis of the historical data, the following analytes have been selected as primary chemicals of concern for the BOU site: tetrachloroethene (PCE), trichloroethene (TCE), 1,2,3-trichloropropane (1,2,3-TCP), 1,4-dioxane, total chromium, and hexavalent chromium (Tetra Tech, 2004). Overall, TCE and PCE concentrations in shallow groundwater have decreased since data was first collected in 1993. Additionally, analytical results from well clusters have shown that TCE and PCE concentrations in wells screened in the lower HSUs are generally one to two orders of magnitude less than in the WT wells (Earth Tech, 2000; Tetra Tech, 2011).

1.6 REFERENCES

- 1. Earth Tech, 2000. Analysis of Groundwater Level Changes at the Burbank Operable Unit Extraction and Treatment Facility, Lockheed Martin Corporation, Burbank, California.
- 2. Hargis & Associates, 1991. Installation of Groundwater Monitoring Wells Along Vanowen Street, Lockheed Engineering and Science Company, Burbank, California.
- 3. HSI Geotrans, 1997. Draft Phase 2 Operational Sampling Plan, Burbank Operable Unit, Burbank, California. July 11.
- 4. Simon Hydro Search. 1993. *Phase I Final Remedial Design Report, Burbank Operable Unit, Volumes V & VI prepared for LESAT*. September 30.
- 5. Tetra Tech, 2004. Draft Lockheed Martin Corporation Revised Phase 2 Operational Sampling Plan, Burbank Operable Unit, Burbank, California. February 3.
- 6. Tetra Tech, 2011. Semiannual Groundwater Monitoring Report, Third Quarter and Fourth Quarter 2011, Burbank Operable Unit, Burbank, California. March

Appendix B Field Data Sheets

Annual Groundwater Monitoring Report, Second Quarter 2017
Lockheed Martin Corporation
Burbank Operable Unit, Burbank, CA

Tetra Tech August 2017

	TETTA TICH	o ₽- ¶			GROU	NDWATE	ER MONI	GROUNDWATER MONITORING WELL	WELL			-	1
T	Tripane (top ministry	1 -			FIELD	DATAL	OG SHE	FIELD DATA LOG SHEET - SAMPLING	PLING				
DATE 04	17/10		SITENAM	SITE NAME /NUMBER	20 20			PURCHNG D	EVICE: DE	FURGING DEVICE: If Deviced Pump	Periodic Pump	ap Blacks Pump	Pump
PROGRAM WANT	NAME	よらりが			8			SAMPLING DEVICE: Of Puzzha Ponzo	DEVICE: (B)	Turkha Penge	Disposable Baltar	lbr 0 Cober	
OMITTORD	و ا	IFICATION	36300					OVA. PID	4 QIA	OVA: PID PID is Cacing (april)	(Indiabal)	(or bearer)	
MARKELE	COL1-N-208801-N-1703	1702		DUPLICATELD	/ e			IN BREATHING ZONE (1994)	DAG ZONE (p	1	(inthin)	(valed to)	
FATIC WA	STATIC WATER LEVEL (R Mac.)	J37.00		WELLDS	WELL DEPTH (A bac)	351.5	Q.	FDAL PUMP DSPTH (0 bed	P DSPTH (0)	110	In		
ATER CO	TO GEL MAN MAN DE LA SANTER CONTRACTOR DE LA CONTRACTOR D	33.5		CASING/TUBE DIAM	WETER (WW)	200		SAMPLER'S SICHATUR	SIGNATUR	ar	\		
FELL PUN	WELL PUMP VOLUME (V) (galfod)	-	R	*	3 v (gas limit)			WELL SAMPLE TIME	PLE TIME	(ସିର୍ଦ୍ଧ	DUPLICATE SAMPLE TIME	LMPLE TIME	1
Time.	Achivity	Water	Pump	Teap	SC.	揻	Tarbidity	Distohed	ORP	Calor	Volume	WellParmp	Plow Rade
		Laval	Depth					Oxygen			Parged	Volemen	
		(R btest)	(ft bloc)	Ç	(meZ/cm)		(ULLN)	(mb/l)	(=)	(3	(Empripal)	Maria	en (despue
C# 20	St. 12 0 mg 135130		2,44.0						120				04
7 10	? .	1 - 10	-	LS-CA	Solot.O	7.47	440	040	18,4	dankss	14760	101	~
1317		337.cl		1600	240 G	7.47	8.01	0.39	2. H	-	5.80	1.10	_
000		341.0		39.43	0.bbs	1147	5.33	0.38	14.5	_	E&00	-	
1933		257.05		33.65	2007. C	7,47	4.36	0.35	18:3		Ocor)	80:	
1336	3	A37.03	-	M	D. 10602	7,47	3.03	0.31	17.2	1,	0440	1.36	
1329	The off	H37.03	18		0,44.3	7. 460	3.06	0.98	17.3	>	(MRPC)	145	-
	-			No. of the	_								>
								6					
								6					
										N.			1
Coloninetr	Colorimetric test (takes pater to sampling)	r to sempling		Seelinds (mg/L.)	1	Fe'1 (mg/L);	1	Dro. (ppm): O.34	な.0	FARAMETER	PARAMETERS FOR WATER QUALITY STABILIZATION	עדננואטס	BLIZATION
Water love]	Water lovel at time of seasofine (it bowl): 157	(A bose):	137 0		7	Turbidity at time of Surpa	of Sathapling:	30	•	Comparagna e	Temperature collect resultings	Conducth	Conductivity ± 3 %
Perso Settlem		CPM	C	32	T. 16.	Parkers AU	20	Discharge (U)	2	, Hg	pH ±0.1	DO 4-0.3 mg/L	3 mg/L
Compression	Comments X LTO Market Market Me Victor	Alex on	MAN AG	Local		,				Turbld	(29 0) ±40TM (If > 10 NJU5± 10 %)	T > 10 NTUE	(% O)
	The same	0	- naron	100						W.D.± (WL ± 0.1 fbox	# DIO	OftP± 16 mV

If valetiles are detected in the besuting asset during the initial servening, the breaking zone will be periodically mentioned during purging not complete, activities. All water levels and pump deprits one measured from the reference polat (notch) in the top of the well ensing.

If no reference paint is observed than the cesting high point should be neveled and recussmenters should be realisated from this point. Gray advants should be made to faint water level derividuals to have been then 0.5 Limbs.

Page / ref

	_
-	-
-	
_	_
-	
-	-
·	•
- 10	•
- 5	_
- 2	٠.
pi	ø
- 10	4
105	7
-	
	-
- 30	в
	*
- 76	=
- "	-
	204
- 74	ď
- 12	г.
- 84	2
-	
-	w
- 6	×
- 92	
- 1	-
- /4	-
- 74	
- 2	_
- 12	
- 100	
-	
- 6-	_
-	-
- 6	_
	e,
- 48	т.
- 67	_
- 4	
	7
- 3-	ud
- 62	-
- 100	
- 19	
-	ж.
- 100	i i
-	-
- 40	-
- 12	30
- 94	=
- 5	
- 10	•
- 10-	e i
- 5	
- 6	
- 95	-
- 5	0.0
- 16	иΓ
- "	4
	7
-	٠.
440	ø
- 60	Di.
- 10	•
-	5.
- 4	-
- 6	-3
- 100	
- 10	_
- 27	100
- 44	•
- 100	
II-	_
-	-
-	_
- 100	-
- 1	Ē,
- P	-
- 6-	
-	-
-	ш
-	٠,
- 10-	mi.
-	-

Set Security Of Land Co. Set Bernarden, CA. (2003) Telephone (2003) 111-1674

TERRATEOR

FIELD DATA LOG SHEET - SAMPLING

O Modeley Furns	D Colher	(verned to)	(verified to)			N N	p Flow Bate	tipat/mg)	GE)	_				_	>				PARAMETERS FOR WATER QUALITY STABILIZATION	Conductivity = 3 %	DO ≠ 0.3 mg/l.	3± 10 %)	ORF = 10 mV
			EX.		\	SAMMET	Well/Fump	Parge		11.00	1.16	1.33	1.48	79) 1	03'				QUALITY	Cond	00	(if > 10 NTUs ± 10 %)	ð
Perkiolie Pumo	Disposable Regier	(initial)	Chicial	J.O.		DUPLICATE SAMPLE TIME	Volume	(gals/mf)		Case Tase	3300	1,150	Harro	7650	S(CD)				S POR WATER	Temperature collect readings	1.0:	Turbidity < 10 NITUs	WL±0.1 Evon
PURGING DEVICE: J Desirated Plans	Purging Plants	Caulng (ppm)	/	27	4.74	433	Color			(hrites	-		_		>				PARAMETER	Tenperature	μH ± 0.1	Turbid	WLat
DEVICE 30	SAMPLING DEVICE: Y Purging Pump	OVA: END PM Is Cauling (ppm)	IN BREATHENG ZONE (npm)	IP DEPTH	SAMPLER'S SIGNATURE	WELL SAMPLETIME 4413	4110	S,		137.3	135.5	132.2	119.3	1) (g · [s	114.8				6H7	-	NO.		
PUNGING	SAMPLING	OVA: E FIL	NBKEAT	FINALYC	SAMPLER	WELL SAX	Dissolved Oxygen	(mpt)		3,(3	5:10	5.34	5 21	5.30	245				0.0. (ppm): 6. h	اح و	Discharge: O		
			7	Q	الما		Torbidley	(UTTA)	A STATE OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS	(4.85	ጋጣ .୮	8.33	18.3	4.43					l	Turbidity at time of sampling	g		
				Naa S	3/8	1	Hg.		7	1.28	7.38	7.98	7.28	7.35	1.28				Fe*2 (mg/L.):	bidly at this	Rechange		9
Por	}		LD,	WELL, DEPTH (A bloc)	ANG TEX (IN	3 v (gal/ml)	73	(mS/cm)		0.914	6.913	€.	0.909	0909	0809				Į	- 20	8	Pant.	-
SITE NAME / WIMBER		0	DUPLICATE LD.	WELL, DE	CASING/TUBE DIAMETER (INIC)	1,	Temp	G.		33.86	\$5.55°	28.52	33.3	99.40	Ja.4]	,			Sulfide (org/L):	~	Z	Control	
SITENAM		3530		5	CASD	839	Promp	(O bine)	850.5	_				_=	>				!	351.13	78	PERME	
-	UO!	PICATION	170 a	M. J. Com	ž.	S. Conven	Water	(II bloc)	457.13	537.12	87.18	331.12	क्या ।	331. IA	A37.12				to sampling		S.	MANA	2
DAMES OF 101 JOHN	PROGRAM NAME LING JOD	MONITORING WELL IDENTIFICATION 3530 S	SAMPLE 12 38203-N-1762	STATIC WATER LEVEL (II boo) 237.	WATER COLUNCY (Sed) 25 - 3%	WELL PUSAP VOLUME (Y) (BUMD) 0559	Artivity		Start Black of 57.12, 1850.5	2		QI.			Stan Int 9	-	10		ColorImetric test (takes prior to sampling)	Water lavel at time of sampling (R bloc):		COMMENS - 150 G Mich political Control book	
DA FEE	PROGRAM	MONITORIN	SAMPLELL	STATIC WA	WATER COI	WELL PUSS	Takae		1838	358	HDI	1404	Hot	1410	HIG				ColorImetric	Water lavel at	Pump Senings:	Comments	

Note:

If videolites are detected in the healthing 2000 decling the Initial Screening, the becalibee 2000 vill be periodically monitored during pugging and sampling activities. All water lovels and pump depths are measured from the informer point (notch) in the top of the well easing.

If as reference point is adoptived then the casing high point about be matched and roustmenesses should be collected from this point.

Every attempt alward be made to limit water looks chrowitown to less than 0.33 det and purgs rate to hau than 0.5 Chris.

Page 15

GROUNDWATER MONITORING WELL

TETRA TETRA TOTAL CANADANA SALAN Sen brandlan, CA 92-88 Tricken (RM) 181-2674

FIELD DATA LOG SHEET - SAMPLING

Sor:

If votables are detected in the breaking accordantly the initial screening, the breatting zone will be periodically menitored during purpling and sampling astivistor. All water lovels and purity deputs are measured from the reference point (notch) in the top of the well cathig

If no reference poins is observed then the cooking high point stronk by notched and meanmannis should be explicited from this point.

Every attempt should be made to Jimit water lovel denorgous to lass then 0.33 flest and parge title to less than 0.5 Litalia.

WELL	
NITORING	
WATER M	
GROUND	

Part of O		☐ Bladder Puenp		2			1	/	Flow Rate		(gativerin mkmin)	011			7							ABILIZATION	Conductivity = 3 %	DO # 0,3 mg/L	10 %)	OKP ± 10 mV
Page			Der Dolher	(vented to)	(vented to)			AMPLE TIME	Wellfump	Volumes	Purped	23	2,34	2.45	256							VACITYET	Conductly	DO # 0	* «UTV 0! «	#₩
		🛮 Peripolaio Pump	Disposable Baller	(switch	Chilitats			DUPLICATE SAMPLE TIME	Volume	Parity	(myrphyml)	OH.	0,50%	7370	7700	- - 					/	PARAMETERS FOR WATER QUALITY-LIABILIZATION	lext readings	1.0	Tabbilly < 10 NTUs (if > 10 NTUs ± 10 %)	foot
		discussed Pump	(1	233		4014	Color			/Jai 1836			/R							PARAMETERS	Temperature collect readings	pK ± 0.1	Tabidli	WL# 0.1 foot
WELL	PLING /	PURGING DEVICE: LE Dydrewd Pump	SAMPLING DEVICE: (2) Purging Fump	OVALE PID PID In Carles (ppm)	IN BREATHING ZONE (MET)	FINAL PUMP DEPTH (Ribbo)	SAMPLER'S SIGNATURE	PLE TIME	ORP		(A (B)	-243	-2(r) D	-35.9	% SE-							1/41	` '	Ś		1
GROUNDWATER MONIFORING WELL	FIELD DATA LOG SHEET - SAMPLING	PURGING	SAMPLING	OVALE PIC	IN DREATH	FINAL PUN	SAMPLER	WELL SANPLE TIME	Disselved	Oxygen	(mg/L)	1.5	1.47	1.47	1.46	٨						D.O. (ppm):	12.0	Discharge: /		
R MONT	OG SHEI					R			Turbédity		(NTU)	13.9	13.3	1) TE	13.3)	of sempling:	20		
NDWAT	DATAL				1	35%	n 2021		湿			7.28	7.26	7, 28 E	7.27		0	t	9			Fa " (mg/L);	Tarbidity at time of sampling	Rotherpe 20		The second secon
GROU	FIELD	200		0.00	O.	WELL DEPTH (A Mod)	METER (D/m)	iv(galled)	22		(mS/em)		1,130	1, 13,1	1, 13[7	1			ě		Ţ	27		
		SITE NAME / NUMBER		_	DUPLICATE LD	WELL DE	CASDIGITUBE DIAM	3 v	Temp		ad.97	(AND MILE)	30.00	20.70	2074							Sulfide (mg/L)±		PSC		
		SITE NAME		3834		15	CASDA	2005	Parmp	Dapth	(it bine)	25.50					T							8		
017 M		4	125	FICATION	<u> </u>	oc) 198,	55.96	m	Water	Lavel	(ft bros)	286	1485	198.61	198.5]					!		Bulduurs of	A block	S. C.		
JESTA TECH SOI E Vendelichtery Stendio	Designation Co. 92-50 Thinks (939) 112-1674 Thinks (1975) 112-1674	1 1 10 00	COGRAMMAINE LATC	ONITORING WELL IDENTIFICATION 3634	MARLE 10.3531 6-N-1709	ATIC WATER LEVEL (R boc)	ATER COLUMN (Red)	STLL POWOP VOLLEME (V) (gul/ml)	Activity				1	47	Samole	-						olorimetric tax (taken prior to sempling)	nter lovel of time of sampling (R blos):	=		
F	5	ATE CA	COGRAMA	ONITORIN	WILE LD.	ATTC WA	ATER COL	BELL PRIME	Time			205	90d	101]	014							olorimetric	tater land at	umy Sustingu:	mments	

If volatibes are detected in the breathing zone during the leafilal somening, the breathing zone will be periodically mentioned during paging and sampling activities.

If the reference point is observed than the custag high point should be nationed and manuscreams should be collected from this point. All water lovels and pump depute are measured from the reference point (south) is the sop of the well exting.

Every otkrapt should be made to lizalt water faval drawdown to less than 0.33 fixet and purgs rate to less than 0.3 Litalin.

Paya of

GROUNDWATER MONITORING WELL

ACL Variable Way Schools Southern CA 1246 Triples (199) 151-1674

THE PARTY

FIELD DATA LOG SHEET - SAMPLING

r Pump	9	A A A	9	でとな	1	1	Flare Rate	(methods)											/	The statement	WILL AND LION	Canductivity ± 3 %	DO 4 D.3 mg/L	10 %)	lomv	
mp Bladder Pump	iler - Onler	(venice to)	(womed to)	Chief Total	7	MONT TIME	Well/Pang Volpmes	Furged	ñ						r iu i			7		100	מפרון מול	Canductiv	DO 4 D	1 > 10 NTCs ± 10 %)	ORF = 10 mV	
Peristakle Pump	Disposable Baller	Chhial	(juilling)	でして	107	DUPLICATE SAMME TIME	Valoric Perged	(gala/mi)									<i>†</i>			- Non word	PARAMETERS FOR WATER QUALITY STABILLY TION	oldect rendings	: a,í	The chilly < 10 NTUs (If). I Groot	
PERGING DEVICE: Shipdicated Pump	chung Buigun,	On 4 (2)OVA: [] FID D PID In Casing (popo)	tenless .	The County	-		Calor								/					Party and Charles	FAMADRETER	Temperature collect readings	nH = 0.1	Turbid	WL * 0.1 God	
WCE 30	SEVICE: D	al dia	NG ZONE (P	DEPTH (R.	SIGNATUR	LE TIME	OIL	(my)						1								Ī		1 /6	aport	
PERGING DE	SAMPLING DEVICE: OFunging Pump	DYA: O FID	IN BREATER	PINAL PUMP DEPTH (R bus)	SAMPLER'S SIGNATURE	WELL SAMPLE TIME	Dhyslynd	(mg/L)				n	1				i			-	P.O. Chimix		Discharge:	- mue	Hay	
			35.60 Pr. IN BREATHING 20NE (spen) 331.	Ŋ Z			Turbdilly	(ULLA)		(, ,	7	Z							,		of ascapling:		W. Com. D. IV	while	
		Regul	- 235.	The second	3/8		Hd					1				1					He (mg/L):	Turbidity of the of excepting:	Recharge	3 9 01	udsky was	
Am)			D D	WELL, DEPTH (R bise)	CASING/TUBE DIAMETER (Nºn)	3 v (galvel)	RC	(mSkm)														Turk		1	2	
/ NUMBER		_	DIPLICATE UR.	WELL, DET	S/TUBE DIA	A E	Temp	t°O								7					Suittoe (mg/1.)		25	the Samo	Volum	
SITE NAME/ NUMBER		2850 M	0		CASIN	رد	Pump Depth	(ft hine)															7	JA MI	Jel Sur	
	100	*		A38.3	7	allon) of	Water Level	(It bloe)													to sampling	'il bloc):	CPM	182	dub d	
566	E LAC	WELL IDENTI	ーとしている	TEVEL IN the	ON (Fest)	DILLIME (V) (g	Activity														A (Talceo privar	o of sampting (Ł	MSOUTE	Slack	Cherry Co.
DATE OF THE PARTY	PROGRAM NAME LAIC-BUD	MONTORING WELL IDENTIFICATION	SAMPLE ID SUS ON-N-1763	STATIC WATER LEVILLIN WER BO	WATER COLUM	WELL /PUMP VOLUME (V) (gallon) 25 3	Tient														Colorinstirie test (taken prior to sampling)	Water level at time of sampfing (it blow):	Purap Settings:	Comments: PINS Office Ex. Lin	Burnet Stacker Hubby	Nata A

If volation are detected in the breathing zone during the initial screening, the breathing zone will be periodically experience during purging and sampling activities. All water lavaband pump depths are areasured from the reference point (reach) to the lop of the well casing.

If you reference point is observed then the essing high point should be satched and measurements abould be collected from this point.

Every offensys should be made to lizelt water level drawdown to less than 0.33 feet and purge rate to less than 0.5 Lizarin.

GROUNDWATER MONITORING WELL

SELECTION OF STREET the Bostschap, Co. Nick Capter 1777, 311-1674 TO COM (SAN) MAN THE

PAIR TATH

4-13-2017

DATE

PROCEAMINAME

SEELD DATA LOG SUKET - SAMPLING

C. Bladskr Pump L' Ciha Perjateite Purep SARPLING DEVICE: E Purpley Jump 1. Dispressible Steller (Initial) PURCENG DRVICE: Continued Pump OVA: TITO TAND IN Casing (spot) IN BREATHING ZONE (ppm) STIENAME NUMBER ACTION .. BUPLKATE:D.

(vented tu) (o) Bosson DUPLICATE SAMPLE TIME FINAL PUMP INPTIT (P. New) SAMPLER'S STONATURE WELL SAMPLE TIME CASING/TURE DIAMETER (RVIN) STATIC WATER LAWIL (n 500) Z & Y. (66 ... WELL DIPTI (n box) JY (ABINE) MONITORING WILL IDENTIFICATION 38504 SAMPLE LD. 3850N-N-1762 WELL PECMP VOLUME (V) Galicil) WAYTOR COLUMN (fee)

ŀ		Д.		1									
Punch Temp Depth	Punch Temp Depth			23		H.	Turbidity	Oxygen	200	Color	Purged	Volumes Purgod	Flow Rate (nal/min
(fi blac) (fi bluc) (PC) (mSlem)	(A blue) (PC)	CO	711	(mSi/cm)	_		(NTI)	(mb/L')	(Aur)		(halohel)	and the	ml/min)
4447 PWat Toll 60 -	1					1							160
12.24 0. 400	- 22.74 O.	O,	O,	20,000	hai	6.36 143	Ã	5.7%	84.7	かるつ	2400	1.02	
200-92222 - 12502 - 1	- 2225b.	- 22.25 D. 902	72.25 B. 902	208.	导	34.9	1.80	295	70,0	dow	2830	(.23	11 11 11
1 - 7046" - 2276 6400	- 22.76			20,00	0	19.0)	181	57.5	22.0	clans	2360	1,019	
12.22 - 49'402	12.22	_	_	0.8	19	3 849 6.67	1,96	45.54	2	cleus	CM65	1.63	
1211 Cu - 22.09 6	22.09	2	2	6.89	ESC	21.9	261	155	8.99	des	228h	1.85	_
	0,22 -	$\tilde{}$	$\tilde{}$	084	N	6.80	1991	1.515	64.5	clear	2031	40.4	
Lorn	Lorn			0.84	1-	6.87	13	C.50	61.6	/say	5256	71.25	_
12.24	12.2v			98.a	2	0.896 6.44	1.89	hh 5	28.7	1 30 7	3945	24.5	
	- Q.15			1980	0	6.47	182	92 5,40	512	clear	01-29	2,66	_
yemes						Î		1				1	-12-
						10+		Ì	-				1
Colonimatric and (taken prior to sampling) Sulfide (mg/L):			will de (mg/L):	i		Fe ⁴² (2007):	11	D.O. (ppn/b	ĵ	FARANETER	S FOR WATER	PARAMETERS FOR WATER QUALITY STABILIZATION	BUZZATION
Water level at virus of sempling (3 those): 20% 66		20:1:02			2	Condeny at the of serialing	of stanging.	187		Temparature 1	Temperature tooless readings	Canductivity # 3 %	ity = 3 %
Party Satings CTM: 1 1981:	ı	1	181		1	Rucharge		- Discharge:	,	10 = Elq	.61	20 ± 0.3 mg2	3 mg."
	2					j				Turbüğ	ty < 10 N I Us	Turbothy < 10 N TUS (ff > 18 N TUS ± 10 %)	(% 01
										W. + 5.1 Bet	LI Bel	ORP 1 10 mV	10 mV

If valetiles are detected in the beathing zone during the initial secreting, the breaking some will be presidiedly maniposed during purging each secreting activities. All wider lends and purity depths not necessinal from the reference paint (noteb) in the top of the well quing

-

If an external contract is obtained then the confine high point dead is no colored and measurement should be collected from this point.

Every externit should be made to High velor laws, drawdown to less than 1,33 fan and purge rate to less than 0.5 17min.

MI L'Vantaballo, N. LAN Bulleran C. Car LEADANN POR SAI 1574

GROUNDWATER MONITORING WELL,

FIELD DATA LOG SHEET - SAMPLING

PARAMETRIES FOR WATER QUALITY STABILIZATION FEW. Ratio (Kulburta 3 Conductivity 1.3 % J Slodder Pump 130 ± 05 mg/L ORPA CBIAN urhid:y < 10 NTO (if > 10 NTUs = 10 %) (or bostone) T.Oher wester to) 3/6 DUPLICATE SAMPLE TIME Volemes Y'wirgod 8 7 PURGING DEVICE: [7 13/6gravd P.m.;] Pericultic Primp L'Dispusable Bailer 0 Temporature collect codings (636/m)) Furged 2500 (Ininist) 580 Dens S_{i} (initial) 38 765 VJ. - 0.1 fast LELE. SAMPLENG DEVICE Purpling Fump OVA: 2 NO UNITS IN Casing (IRPM) i 2000 FINAL PUMP DEPTH (P. BELL) IN DREATHUNG ZONE (apart) SAMPLER'S SIGNATURE 40.8 5 1600 WELL SAMPLE TIME (MA) ORP Dischage D.O. (pren): 300 Diccohesi Osygen (mpy) "unbidity at time of wantings; (NTO) Par (mg/la): 302 8651 1000 8 띹 WELL DEP. H(fiboo) 3 CASING/TUBE DIAMETER (PS) 1630 637 STENAMBINIMBER LAC 0.673 (明然四) RC 3 v (gel/m) DUTILCATE LD. Š 2300 23.73 Suifiele (mg/L): 3.01 Temp S 3850 R 108.73 (n. blac) 23.65 Oersth STATIC WATER LEVIN, (3) 1900) 1992, 76 WELL MUTAR VOLUME (Y) (LEVEL) 504K i MONTORING WRLD. IDENTIFICATION Colorine ric tegr (taken prior to sampling) 12.73 9873 45.74 (K. bloe) 43 % 48.73 Level Wuler Were land of Core of sampling (It stud): Stock Press artry Care 表 2 - 九 SAMPLE 1 3050P Activity SCAPO WATER COLUMN (feet) PROGRAM NAME Agnited Gent 300 300 1303 204 Comments; Time DATE

If valatiles are believed to the heathing suns during the icitial covering, the breathing cove will be periodically nunctional during purples and sampling activities. AE vestor levels and pump depths are seasoned from the reference point (exact) in the tap of the well exacted.

. ...

If no reference point is observed then the cusing high point should be notched and neuroments should be collected from this point.

fixery attempt should be made to firmt water loved drawdown to less from 1,55 fers and purge rate to less three 0.5 1,4min.

TO IS Y makens Way Sues 600
Sue Describes, CA 9.28.9
Tologisme (1989) Sit 197-4
Tologisme (1989) Sit 197-4

GROUNDWATER MONITORING WELL

FIELD DATA LOG SHEET - SAMPLING

										-						-							_	
Bladder Pump	Ŀ		-		(l	Flow Rate	(graf/spin	11.1	-				-						BUCATION	Conductivity = 3 %	3 mg/L	(% 0)	10 mV
		~	(venical to)			DUPLICATE SAMPLE TIME	WellPump	Paryed		1.05	1.34	1.43	101	1.7	861					QUALITYSTA	Conductive	DO # 0.3 mg/L	if > 10 NTUs *	ORP±10 mV
Perimatric Pump	Disposable Bailer	Clntrian	(h) this	111	0	DUMICATE	Volema	(Bulgalanii)		2730	3900	3,480	4160	0,00%	5130					PARAMETERS FOR WATER QUALITY STABILIZATION	ollert readings	1701	G* 01 = UTV 01 < 16 VUTV < 10 990	WL± 0.1 foot
PURGING DEVICE: A godicated Pump	Pargas Pump	OVA: TID TO In Cooking (ppm)	(max	been R3		Lall	Coley			(Mar lass		_		17	A					PARAMETER	Temperature collect readings	がまひ.	Turbil	WC≠0
DEVICE: 🐔 g	SAMPLING DEVICE: V Parging Pump	I CTA C	IN BREATHING ZONE (nom)	PINAL PUMP DEPTH (R boc)	SAMPLER'S SIGNATURE	IPLE TIME	ORP	(MonV)		296	36.6	38,5	38,1	28.4	38.3			I		3.46	(,		
PURGING	SAMPLING	DYA: TH	NBREAT	PINAL PUR	SAMPLER	WELL SAMPLE TIME	Dissaved	(mg/L)		3.47	3.45	3.47	3.45	3.0)	3.46	4	1			D.O. (ppm):	9.0 0	Discharge		
				S	(2)		Termidity	(LEC		3,46	9.19	29.6	3.0	5,13	9.60	(***	1		1	Turbidity at time of sampling	7		
			[d58.	n E		P.			133	17.33	7.23	7.37	7.39	7.38		-			-Fa ** (mg/L);	rbidity at time	Rocherge: CL		
			. "TI	EPTH (R bloc)	AMETER (IV	3 v (gul/ml)	22	(mS/em)		0.988	0.985	0.985	68 60	0.189	0.988	1					F	5	of box	
SIŢB NAMB/ NUMBER 🔼		>	DUPLICATE LD.	WELL DEPTH	CASINO/TUBE DIAMETER (IVIN)		Temp	£		D3.31	13.37	33.53	23.42	23.69	1374					Solfide (mg/L):		2	1 control	
SITE NAN	Š	MSO \	,	00)		0538	Pemp	(in base)	133					-	>						33 1.18	6	Justen	_
	11C 120	THEATHON	J-17 ወ ጋ	book 3	11.39	.	Value	(M broe)	31.3	227.18	23.T.19	33.118	DA7.19	ירגם.	431. 16					or to samplin	g(fibine);	CPM	Megh	0
1 92	4	MONITORING WELL IDENTIFICATION	SAMPLE 1028501-N-17QB	STATIC WATER LEVEL (R BOOGNA)	WATER COLUMN (Ren)	WELL MUMP VOLUME (V) (gald)	Acilvhy	9	1 1 Or . O.	1.0				7	Dimeli	-				Colorimetric uss (taken prior to sumpling)	Water level of time of sampling (A blos);	20.	Comments: (US)	-
DATE ON SO	PROGRAM NAME	MONTTORIN	SAMPLELL	STATIC WA	WATER CO	WELL MUN	Thos		(035	1053	11455	1053	101	100	lioi					Colorimetri	Water level a	Presp Sectings	Comments	

None

If volatiles are detected in the betathing stoce desing the lastial seconding, the breathing zone will be pariedically monitored during purging and sampling activities. All water levels and pures depities are mempered from the reference point (dotsh) in the top of the wall emilag.

If no reference point is observed than the waring sight point should be notched and measurements should be collected them this paint.

Every suscept about to matter to limit water level drawdown to brusthan 6.33 feet and purgo rate to less thus 0.5 Litain.

Page of

- 70
-
1.3
-
5
-
75
\simeq
Z
\simeq
-
\mathbf{v}
1-
-
-
=
2
-3
×
60
-
5
4
5
-
-
V.
-
Ξ
0
N
period

Note: Ventrales Way Sale (33) See Bornelon, CA 12400 Triplese (209) 181-1874

TE JA TECH

FIELD DATA LOG SHEET - SAMPLING

Slecture Present		(veneto) 00	000		*	1	Flow Rate		(gaVrein miseria)	192						>					ABILIZATION	Conductivity + 3 %	$500 \pm 0.3 \text{mg/L}$	10 %)
					r.	AMPLE TIME	Well/Pump	Volumen	Purpod		503	1.33	153	177	21.0)	2.26					QUALITY ST.	Conducti	D ≠ QC	f > 10 NTUs
TReference Pump	C Disposable Dutter	(Laires) (J, U	Chaillets CO	-		DUPLICATE SAMPLE TIME	Volume	Parked	(guth/mt)		2535	3,420	3705	4290	4875	2460					FOR WATER	Usel readings	0.1	Turbidity < 10 NTUs (if > 10 NTUs ± 10 %)
dienay Demen				10%	1	39					Colaless	~			1,	>				\int	PARAMETERS FOR WATER QUALITY STABILIZATION	Temperature collect readings	pE(+ 0.1	Turbidi
PURGING DRVICE-	SAMPLING DEVICE-O Purging Fump	DVA: THID THID IN CANADA (ppm)	ON BREATHING ZONE (ARM)	FINAL PUMP DEPTHIR BUILD	SAMPLER'S SIGNATURE	WELL SAMPLE TIME, 15 39	OKP		(my)		1375	143.1	1411	1421	1404	147.7						. ,	63 (5	
PURCINCO	SAMPLING	DVA: BEI	ON BREATH	FINAL PUM	SAMPLER	WELL SAM	Désignation	Orygra	(mg/L)		5,63	5,50	5.55	5.53	247	5.416					D.O. (ppm.) 5.46	25.5	Recharge (C) at (3,5 Discharge: C) (5	
				76	~		TarbMthy	,	(NTA)	F	3.53	2.55	3.14	4.45	2.55	2.56				2	ţ	Turbidity of the pleaneding: 4.5%	8 to 13.5	
				WELL DEPTH (II No.) 2 2 ()) 3	CASINGTURE DIAMETER (MIN) 3/8 11	1	加				14.7	7.39	046	17.40	740	0/-1			4		Pe" (mpl.)	rhidity of from	Recharge	
ANU			Ğ.	SPTH (ft Mod)	AMETER (9/	ī v (gal/ml)	Z.C		(mag(cm)		0.70	0.757	1210	0.754	0.751	0,749					\		3	
B/NUMBER	BED LAC HOU	5	OUPLICATE LD.	WELL DI	AGATURE DE	- E	Temp		(CC)		20.08	19.93	19.87	19.79	19.76	14:11					Sulfide (org/L):		PS	
SITENAN	. 60V	385 N			1	3401	Post	228	(It blac)	207. A					_	>		, ay	V.		,	162.38	۳٦	I
	いてい	FICATION	-1793	(Ca)	مال-17م	- 11	Water	2	(III bloc)	19336	192%	193.38	192.31	193.37	193.37	192.59					c to sampling	(R htoe):	CFX	
ATE 04/ 03 / 2017	TAME UNK	CONTURING WELL IDENTIFICATION	WPLEID 38514-N-1793	TATIC WATER LEVEL (A bloc) 192.30	ATER COLUMN (See) A7-7(a	ELL PUMP YOUUME (V) (palm)	Artivelty			Shitawa	0 -			/	>	Steen of c	-/		.63	-01	 alarinetric test (taken prior to sampling)	Jules level at time of sampling (It htoe):	Lie Lie	=1.5
ATE OUT	KOGRAM NAME	NAIOTIKO	WPLEID	TATIC WA	ATER COL	ELL PUM	Time			501	415	6.1	530	833	524	589					ularinetric	Juley level at	ump Settings.	COMPONS:

2

15 voletiles are directed in the bornhing some during the Initial sweening, the breathing some will be periodically menitored during purging and campling astivities. All water levels and purey depths are measured from the reference point (nowh) in the top of the well coming.

OR" = HmV

WL ± 0.1 feet

If no reference point is observed then the easing high point should be not that and measurements should be collected from this point.

Every ortenses about he made to limit water level drawdown to best than 0.33 feet and purpernate to less than 0.5 L/min.

-	ב
	H
de	
0	d
3	c
7	۶
_	
C	2
9	,
6	
-	3
	h
-	3
Z	
E	
Б	7
d	Ę
0	7
-	-
-	Е
	7
0	ď
B	ð
E	3
4	t
25	ř
-	þ
- 20	3
E	5
6	
	э
7	Ē,
	d
0	d
F	Ħ
	ø

SAME VARIABLE WAY SAME AND Sar Barmadon, CA. 13408 Felgians (989) 381-1674

THIRATION

FIELD DATA LOG SHEET - SAMPLING

DATE 6	DATE 0 4/104/17		STENAM	STIENAME/NUMBER	BU	7		MURGING D	EVICE: DA	PURGING DEVICE: Despend Pump	Peristable Pump	rap Blacker Pump	T Pump
PROGRAM	PROGRAM NAME LHC-BOU				٠			SAMPLING	SAMPLING DEVICE: Trugge Pump	waging Pump	Disposable Railor		•
MONITORD	HOMITORING WELL IDENTIFICATION		3851	2				OVA: CFID		C PTD In Cashig (Days)	(faciliar)	٠	
SAMPLE LD	SAMPLE 1.D. 385 1 1 - 1700	001/-		DUPLICATE LD.	9	١		OV BREATH	OV BREATHUNG ZONE (npm)) Com	(fultion)	(Newbod to)	
STATIC WA	TER LEVEL (R.b.	161	20	WELL DEPTH	PTH (A Bloc)	339.5	20	FINAL PUM	FINAL PUMP DEPTH (C)	13/4	, N	İ	
WATER CO	WATER COLLIMN (feet) 137	vo	- 1	CASING/TUBE DIAMETER (I/II)	WETER (IM	3/8	The state of the s	SAMPLER'S SIGNATUR	SIGNATOR		1		
VELL ALIM	WELL /PUMP VOLUME (V) (gal/ml)		4513	34	3 v (galfan)			WELL SAMPLE TIME	PLIS TIME	1637	DUPLICATE SAMPLE TIME	AMPLE TIME	1
Thme	Activity	Water	į	Temp	23	12	Terliddity	Disselved	ago	Coler	Volume	Wellframp	Plare' Rate
		Lend	Depth					Окущев			Parget	Volumers	
	8	(Other)	(% bbac)	ĝ	(mS/cm)		(UTA)	(mg/L)	(wiv)		(Balakal)	Parities	(pal/hede
1583	Shot Duck	191.10	34.5										00
1623	つ -	19,7	_	11,10	0.614	98%	7.30	3.76	8.16.1	Colores	(J#)+	141	-
Sea		191.72		A. H	0,613	1),882	6.30	3.10	153.5	_	5130	1.13	
17,28	_	141.72		31.00	11 0,0	7.46	6.83	3.67	S. 587		5600	133	
16.81		191.10		21.00	0.40	07.7	5,17	3.75	121.1		0800	1.38	
N. 34	\ \ \	191.13	_	21.01	0.609	7.46	6.44	3.73	8.64	_	950	1.43	_
1631	Samole	19172	>	34.00	0.4007	1.46	~	3,69	0.641		01.04	1.54	>
	-			il									•
							110						
7								1					
ėņ.													
												/	
Colorinativ	Colorimetric test (taken prior to sampling)	r to sampling		Sulfack (mg/L);		-Fa * (mg/L):	(D.O. (sport):	3,6	PARAMETER	PARAMETERS FOR WATER QUALITY STABILIZMINN	WALITY STA	STEPHEN
Water level is	Water level as these of mampling (A bise);		0			Torbidity at time of sampling:	of sampling:	1.97	,	Temperature	Temperature collect resilings	Conductivity ± 3 %	y ± 3 %
Pump Seeings		CPM	P	PSI:	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Rechange	7	Discharge	3-	pH = 0.1	1.0.1	DO a 0.3 mg/L	i eng/L

If volutions are detected in the breating zons during the Initial servening, the breating zons will be periodically accelered during purging and compling activities. All water levels and permy depties are measured from the reference point (notab) in the top of the well casing.

comments & Use a large a pressional contract load

Turbidity < 10 NTUs (# > 10 NTUs > 16 %)

ORP# 10 mV

WL + B.I Foot

If no reference point is observed them the coming bigs point about be neached and recommendated should be collaboral from this point.

Every attempt who not be made to thank water level desertables to has thus 0.33 fleet and purgs rate to best than 0.5 L/min.

\sim
r.h
=
×
2
E
Z
F
-
兴
•
3
2
-
Ħ
Z
<u>a</u>
_

	TETANTETH SOIE VIEWER WAY BASE OF	10 5			GROU	NDWATE	R MONT	GROUNDWATER MONITORING WELL	WELL			- 10 - 3244	4
ני	Triples (SR) 181-1674				FIELD	DATAL	og shee	FIELD DATA LOG SHEET - SAMPLING	FLING /				
11 四年	LIJE	1	SITENAME	SITE NAME/NUMBER	2			PURCING DI	evice: Ya	PURCING DEVICE: Systimizations	- Perisakis Pump		न रिपनक
DORAM NAM	DORAM NAME LHC-BOD	-800		4				SAMPLING DRVICE: N'Purging Pump	DEVICE: 3	Tunging Pump	 Disposable Buller 	dler □0ther	
MUDRING	CONTORING WELL IDENTIFICATION 2050 F - 15 W	FICATION	SSA F-4	3				OVA. FID	PI CII	PID In Curing (ppm)	(initial)	(ot bowers)	
MPLEID	MPLEID AKSAF-N-1703	P.T.		DUPLICATE LD.	0	,]		IN BREATHING ZONE (ppm)	NG ZONE (p		(telleta)	(or potress)	
ATIC WATE	CATIC WATER LEVEL (R. binz.) 147 518	E) 147.5	39	WELL DEP	WELL DEPTH (R back)	THE PLANT	18.15	SPINAL PUMP DEPTH (II) PRES)	P DEPTH (II)	Z	010.10		
VIER COLUN	(T)	6.53		CASING/TUBE DIAMETER (Nin)	METER (Nir	1 7 1	_	SAMPLER'S SIGNATURE	SIGNATUR	1000		١	
T.L. PUMP V	ELL /PUMP VOLUME (V) (gal/mi)	CO (leating	IdO	3 4 (9	(gal/ml)	(WELL SAMPLE TIME.		1339	DUPLICATES	DUPLICATE SAMPLE TONE	
'Osne	Aethyly		Pump	Toenth	EC	Hd.	Turbidity	Dissolved	ORP	Color	4majo/	Well/Fump	Flow Hate
		Level	Depth					Oxygue			Parged	Volumes	
		(P btec)	(ft bloc)	(J _C)	(msVrm)		(cmc)	(mg/L)	(MI)		(jasjejus)	pattin.	(getrone)
73	Sharks Same	147,9X	16116			I							061
	-	147.95	-	21.03	0.732	(S-3)	2.08	16.71	159.3	(alasted	2090	107	
7.7		86.64		30.95	177.0	09:49	1800	79.2	(26.)	-	20191	1.30	
520		47.99		20.90	0.770	П	0.110	12.0)	1539	_	21.20	250	
503	_	14 71 99		J. 89 1	0.770	17. 34	2.10	(0.0)	147.4		38,00	7.85	-
500		147.9g		38.00	A.710	10.88	212	(0)	5.3		4370	0,/3	_
	Showing I	147.98	7	JO-36	2110		20.08	85.7	192.60	>	4940	140	>
\Box	. ,									1			
	Ī					-	(
-						T				ic.			
						7)						
olonimetric to	olorimetric test (taken prior to sampling)	to sampling		Solide (mg/L):	1	Fc** (mg/L):	1	D.O. (ppm):	6.58	PARAMETER	PARAMETERS FOR WATER (BJALITY STABILIZATHE)	QUALITY ST	THE LEVEL THE
inter level at tin	date level at time of sampling (f) bloc):	(ft bloc): 14	47.98	5		Turbidity of these of exampling: 4.08	of sampling:	0.00	7	Temperature	Temperature collect readings	Cunducti	Canductivity ± 3 %
urad Sorthos:	•	CPR	7	PSI	ξ°	Recharge: 22	ما	Discharge:	>	E.	pli≖0.1	D+0 <i< td=""><td>DO ± 0.3 mg/L</td></i<>	DO ± 0.3 mg/L
Commercial:			5							Turbin	Turbidity < 10 NTUs ((% 0) = SDLV 0) < 10	(%,0)
										*TM	WL ± 0.1 foot	- 0%B	ውጪቱ 10 mV

if volviles are tenested in the breutding zone during the initial screening, the breathing zone will be periodically countinged desiring and sampling activities. All water tevels and pump depths are measured from the reference point (notch) is the top of the well craing.

if so reference point in charved then the enting high point should be autohed and measurements should be reflected from this point.

Every attempt should be made to limit water lovel drawdown to loss than 0.33 fees and purge new to loss than 0.3 Lómica.

The Car

GROUNDWATER MONITORING WELL

FIELD DATA LOG SHELT - SAMPLING

MIE Vandeleit Wig Sum ihr San Banardan, Ca. 93 mil Telephone (1979) MI 148 H

THE THOU

(1 Bhekker Pamo	<u> </u>	. 3			}	(Flew Rate	a farifier a	210	-				=	N.						BELEVION	Conductivity # 3 %	DO ± 0,3 mg/L	
		_	(veniced in)		١	DUPLICATE SAMPLE TIME	WedPang Votenza	Parie		1.03	977	1.38	1.44	851	1,70						QUALITYST	Conducti	000	
. Periodic Puno	C Discosoble Balber	(Injelia)	Childah	W. W.	2/10	DUPLICATES	Valence	(Bestyring)		OB office	5350	6830	0150	Duid	07.17						S FOR WATER	Alers readings	0.1	
Second Press		_		JOH 11		35	Coler			(diplens					À				7		PARAMETERS FOR WATER QUALITY STABENEMHON	Temperature collect readings	pis = 0.1	
PURGING DEVICE: O Designed Pres	SAMPLING DEVICE OF BROOM PARP	OVA: PIO PID In Casing (1991)	IN BREATHING ZONB (next)	FEAT PUMP DEPTH ON Bree 297	SAMPLER'S SIGNATURE	WELL SAMPLETDAR A	ORP	(mm)		123,5	133.6	141.5	(30 Y	118.5	117.9								9	
PURGING D	SAMPLING	OVA: PIO	IN BREATH	FINAL PUM	SAMPLERY	WELL SAM	Disselved	(mg/L)		3.37	2.14	3.07	4.96	497	292						D.O. (ppm):		Discharge	- CONTROL CONTROL -
				S			Tarbidky	(ULLI)		40%	4.2)	4.00	369	4.16	3,85						(of sempling:	d.	-
				303,5	13/4"		PH	İ		64.7	17.5	7.52	7.54	1.54	7.55	_	1	9			Fe 2 (mg/L);	Turbidity at time of secupting	Raching St. O.	
980			(D.	PTI (B Moe)	UMETER OF	3 v (gml/ml)	38	(ms/km)		asas	0050	0.499	6497	6,497	0140					,	,	7	8	
SITE NAME / NUMBER 801)		29	DUPLICATE ID.	WELL DEPTH	CASINGATURE DIAMETER (IV)	3	Tonh	(C)		80,39	20,39		30.38	20.39	ON 39			,			Splitte (mpt.)		ä	
SITENAM		SSOH-		0		700	Pump Dopts	(f) bene)	31.00-	1					A							149.64	6	
	STU	PICATION	128	1941	10	JA (bushe)	Water	(ft litter)	149.99	19.05	149.64	F1.5	1444	49.64	Mance						eo salataling	In bloop	8	
a Marie	MODILAM NAME LATE BUT	MANUFORMIC WELL IDENTIFICATION 26/50 Hade	MANPLE CD. 2558 N-N-1703	STATIC WATER LEVIEL OF bood	WATER COLLINGS (Red (1)	WELL MUMP VOLUME (Y) (galing).	Aedivity		Stat Alex		_	_		No.	John	_					olocimente sen (taken prior to sampling	Water level at time of sampling (B blook	Ľ	
)ATE	MODERAN	MONITORIN	AMPLECO.	TATIC WA	WATER COL	VELLAPUM	Time		555		16,33	1626	المقراا	434	1435						Colorimente	Valor level #	Person Servings:	

Moder

If volatibes are detected in the broathing store during the initial severaling, the breathing sone will be periodically mentioned during purging and sampling estivities. All water levels and pump depths are memorated from the reference point (notels) in the top of the well exists.

If no reference point is observed then the coping high point should be notched and measurements should be collected from this print.

Every attempt should be made to finally water forms drawdown to less than 0.33 followed perge rate to than 0.5 Limin.

l'age of

GROUNDWATER MONITORING WELL

NOTE Vandersk vog Neis och Smithmaster, CA 19408 Nåsylma 1994 MI-1674

HERE THE

FIELD DATA LOG SHEET - SAMPLING

e Pump							Flow Rata	(petitah mitala)	170	3					>					BILIZATION	Conductivity ± 3%	DC ± 0.3 mg/L	10 %	ORP ± 10 mV
mp O Sludder Pump	Ikr Octor	(vranked to)	(Mentalia)			AMPLE TIME	Well/Fump	Purged		(0)	1.24	410	807	1.61	0,13				7	QUALITY STA	Conductiv	DC±0	(if > Id NTUs ± 10 %)	ORP
D Peristakle Pemp	☐ Disposable Bulker	(Initial)	(hilbi)			DUPLICATE SAMPLE TIME	Volume Purged	(galv/mt)		0	344D	Jand	3390	284D	4290	,		7		POR WATER	tion readings	0.1	Turbidly < 10 KTUs (. I foot
	3		- T	15		(9)3	Color		·	1. m 1.55			_	_	→					PARAMETERS FOR WATER QUALITY STABILIZATION	Temperatura collect readings	pH = 0.1	Turbid	WL ± 0.1 foot
PURGING DEVICE: A Guide and Plens	SAMPLING DEVICE: J Purging Pump	OVA: C. FID PID In Casings (spens)	IN BREATHING ZONE (ppm	FINAL PUMP DEPTH OF WASH	SAMPLER'S SIGNATURE	PLE TIME	ORP	(Am)		833	16.91	78.4	16.0	14.1	7.85					Q. 3		bro -		
PURGING	SAMPLING	OVA: C. FID	IN BREATH	FINAL PUM	SAMPLER	WELL SAMPLE TIME	Dissalvad	(mp/L)		7.167	7 43	7.17	86.0)	080	010					D.O. (syan): 6,70	2.2	Discharge		
							Turbidity	(JTK)		3.65	2.5%	J. C	2.02	3.4	0.37			1		1	Tarbidky at time of sompling:	40	1	
				183 S	3/8/		픱			ી.4વ	7.43	7.43	7.42	14.6	7.41_					Fe" (eng/L)	bidky at time	Rechange	l	
San				TH (R bose)	METER (MA	3 v (grai/mil)	Ji	(mS/cm)		0 991	8860	785-0	6936	0.987	0.985)	P.T.	in X		
SITE NAME / NUMBER BILL U			DUPLICATE ID.	WELL DEPT	CASDICATURE DIAMETER (Ma)	3 v	Temp	ā		013			60.16	70.89	30.84					Sulfide (mg/L):	_	ë		
SITE NAME		7638	Ĩ	J	CASDA	3	Pamp	(fit hise)	175.1					_							4	7	5	
	J-800	PICATION 2	60	S. Hoff 8	18/43	alval) do	Water	() Mart)	184.47	S-14	15.7	[[-4.0]	19,491	10,401	16.4.90					to sampling	(L book):	Š		
ATE DE LOST CHILL	IAME L'HC	ONTORING WELL IDENTIFICATION 2002	いるような	CATIC WATER LEVEL (I) Blog)	ATER COLUMN (fox) 15	PELL PLEAS VOLUME (V) (galval)	Activity		Start and	0 -			-	>	75.50	0				Colorimente not (union prim to sempling	National least three of named less (it book):	14		
ATE DA	ROGRAMNAME	CHITOREN	AMPLE I.D.	TATICWA	ATERCOL	BLL AUM	Times		436	Sha	45)	150	וליאח	500	503					Johnstmerk	Vater fevel at	Thomas Settiones	omments:	

If volations are desented in the becausing some during the holded somewhite, the beautising zone will be periodically monitored during people,good sompling netholdes

All water levels and pastry depths are accessed from the reference point (notch) in the top of the well spiring. If no reference point is observed then the casing high point should be notched and measurements should be collected from this point.

Svery strengt stouble to made to limit woter level drawtown to loss than 1.33 fast and purgo rute to less than 0.5 L/min.

GROUNDWATER MONITORING WELL

天では 金の様を引くては

STATISTICS IN CA 1945A PARTITION OF THE PARTIT

FIELD DATA LOG SHEET - SAMPLING

Flow Rate (ust/mis orketh) I. Bauller Pump (verkel to) (verniste to) Lohr UNITIOATE SAMPLE TIME WellFump Volumes Purged 0.0 P. R.C.D.W. DEVICE: * Predicated Primp | Periodakis Primp | Nimorable Hailer Pured gals'm? Volume 4725 4.750 (initial) 330 SAMPLING DEVICE: I Persing Puris OVALLIPLY THERE IN CONTINUED A LUM Color MARKET STATE STATE (PRINT) PRIAT, PUMP DEITTE ARTHER SAMPLEA'S SIGNAT.IR WELL SAMPLE TIME (mm) ORP Demilyed (OURAL) Oxygen 3.38 Turbainy (がたし) 30.00 COPILCANE IN 38 BIT. FO- 1702 ज 🍪 E CASINGY LIFE DIAMETER (Svin) WELL DEPTH (A base) CESO 0.535 (mb/em) 3.534 0.550 LAC- ON STENANTINEER BOU 3973 H 5857.W S v Callent 1 Jenap 5 1:5 5 (R 510c) (Rbtar) 31ab MONITORING WELL IDENTIFICATION 3.o.K 78.84 35.83 136.33 Cevel 9 134.8 RELLATION VOLUME (1) (policie) SAMPLE IN MENON-TICE STATE WATER LEVEL (A boot) DATE DE 123 [7 WATTER COLLEGN (flac) She & pust San Di PROCEASE NAME 356 33.3 Tome 32

If volutions are circulate in the breathing zone thring the initial mercening, the breathing which we periodically mentioned disting paraling and sampling activities. All water for its not pump diggle are nessured from the reference point (natio) in the top of the well easing.

Come on Manch

S.O. (1777) . O. (1/2) PARAMETERS FOR WATER QUALITY STABILIZATION

Temperature author residings

の様でMenioric

5.50

urbidity in time at sampling.

Fe" (mg/L):

Stallide (cog/L):

Columnetric rest (taken prior to sampling)

:

Water lavel of fanc of recapiling (5 bloc):

l'ump Schings:

Comments

Recisore: 1

00

E

Conductivity 175

AM C: T INC

W.L = 0.1 forst

Turbidity < 10 NTUs (IT > 10 NTUS ± 10 95)

If no reference point is absented that the casting high point should be naticised and measurements should be extinued from this paint.

Every offeren should be made to line? water lavel drawdown to less than 0.33 feet and a regulation loss than 0.5 Edmin

Phys. Or _

WELL	
ITORING	
R MON	
DWATE	
GROUP	

TESTA TEST

	Pump					l	١	Plow Rule		(gal/min mittelle)	195						_	_	21					TERMINA	y±3%	eng/L.	(% 0	O mV	
	🗓 Blaeden Pump	- Colber	(or betrury)	(vonecd to)			PLE TOME	TVeNT weep	Volumes	Pirryal	Ī			Ġ	77	1.29	173	1.54	1.67				1	ALITY STA	Combattely by ±3%	DO ± B.3 mg/L	10 NTUBE 1	OKP # 10 mV	
	🛭 Peristolie Pump	Disposable Baller	7	9			DUPLICATE SAMPLE TIME	Valuate TV	V Seption V	(garleting)	+			=	1 60	1 5400	_	7 5182	\exists		_		1	PARAMETERS FOR WATER QUALITY STABILIZATION	sadings		Turbidity < 10 NTUs (6" > 10 NTUs ± 10 %)	_	
					310.5		TOG	-	_	9.	+		-		5460	00	66	25	22		-	-		GETTERS FOR	Temperature collect soudings	pH+0.1	Turbidity < 1	WL ± 0.1 fbol	
,	Dadlesind	Pargles P	In Casing (-	. N		75.K		8	_				Coloriess	_		_	-	P	1		1		PARA	Temps				
PLING	SEVICE: 10	DEVICE	O'-	IDIG 20NE	FINAL PUMP DEPTH (FINAL)	SSIGNATION	WELL SAMPLE TIME	QRP		<u>\$</u>				7.3% -	132-4	149.7	127.60	1130.4	138.4					45		5			
T-SAM	MURGING DEVICE: (4 Dudlested Pump	SAMPLING DEVICE Parging Pump	OVA: FID PD In Cashg (gpm)	IN BREATHING ZONE (spec)	FINAL PUD	SAMPLER'S SIGNATURE	WELL SAM	Dispatent	ONTHE	(mg/L)				4,78	4.37	4.43	17/14	4.46	(34		<i>A</i>	ו ב		D.O. (ppvtb):	50, CAT	Diardenge			
C SHE					200	2 1		Territofolity		(UTTV)	I			S.63	3.08	2.54	3.3)	1.9.1	3,53		1	J		1	(Compling:	二 思			
PIELD DATA LOG SHEET - SAMPLING					30%,0%	20 20 20		ž						3.15	ו אר ינ	1.72	7.73	1.78	7.73					Te " (mg/L)	Torbidity at time pi tour	Rochange			
FIRCD	028			ď	TH (A blac)	AET CR. (BAD)		ΣG		(mg/cm)				27/10	0.470	0.473	2476	047(8	17L-0					1	100				
	NUMBER		_	DUPLICATE ID	WELL DEPTH (A bac)	CASDAC/TUBE DIAM	اً أ	Testo		Ç				7500	^		46.40		303		,			Sulfido (mg/L.):		C. S.			
	SITE NAME / NUMBER		2858 N				01-10	diam.	Sept.	(Or bloc)	345				7				7					PIS.	36.89	"			
	L	- 12D	ľΊ	193	136.89	19	FELL AVIANT VOLUME (Y) (5) (1) 4 (681-10)	Water	Ewel Ewel	(A bead	Ct Is to fill		į	135.8E	136.83	13.89	36,88	136.99	136.59					(Sampfing)	l bloc):	S S	•	,)
Tologram (very 331-1654	100	7	DANTORDAG WELL INGNITIFICATION	WITH DESCRIPTION OF 1700	ATIC WATER LEVEL (It bos)	ATER COLUMN (New 171, 179	UME CYLE	Activity	•		America		Į.	•				2	Samoli	-				elonimetric test (taken prior te sampling	ater level at time of sampling (fi bloc):				
	18	SOCIEMM NAME	RDNG WE	10360	WATERL	COLUMBY	UMP VOU	Ž		ļ	4		t in				_				_			etric test (ed at time o	Udage			
	国	COORA	DINITO	SATE.	TATIC	ATER	ELL.A	ļ			085	100	4	113	1	140	153	15.5	1158					Marie	/act fr	ump Sottings	denominated:		

If volation are detected in the breathing zone during the Inhibit secretary, the beautifug zone will be periodically mentioped during purging and sampling autivities. All water levels and pump depains on decreased from the reference point (society) in the top of the well casing.

If no reference point is observed than the excitagingly point should be noticed and mountained should be collected from this point

Every attential attented by marks to limit water level dissiredown to less than 0,33 feet and purge rate to less than 0,5 Limits.

TECHNISON

See President Way Sure of the Company of

GROUNDWATER MONITORING WELL

The Table

FIELD DATA LOG SHEET - SAMPLING

			_	_	_					 	 		 								
np 🗆 Bladder Pamp	ist Dollar	_	(vented to)		 	WPLE TIME	WellTump Now Rate	Parged (gal/min								*	PARAMETERS FOR WATER QUALITY STABILIZATION	Conductivity + 3%	20 ± 8.3 mg/L	Technic < 10 NTUs (If > 10 NTUs ± 10 %)	ORP & 10 mV
C Peristallis Pump	C Dignosable Ballor	(tolston)	Circlibah	22		DUPLICATE SAMPLE TIME	200	(myyan)					/	1			FOR WATER Q	llest readings	0.1	y < 10 NTUs (If	100
PURGING DEVICE: Designed Press	SAMPLING DEVICE: Purging Ponty	_		05:418	~//		20 PE										PARAMETERS	Temperature collect wadings	1.0 ± Hq	Thefeidi	WL & O. I foot
EVICE: Do	DEVICE:	PID	NG 20NE	DEPTHO	SIGNATUR	LE TIME	OR	(va)													
PURGING DI	SAMPLING	OVA: FID	IN BREATHING ZONE/COME	FINAL PUMP DEPTINGUES	SAMPLER'S SIGNATURE	WELL SAMPLE TIME	Dissalved	(mg/L)									D.O. (ppm):		Dischage		
							Turbiday	(UTV)										A sampling		1	
				(1) bear of the	3/4"		76				d)					Fe ⁴⁴ (mg/L);	Turbidity at time of sampling:	Rocharge	re traction-	
			D.	PTH (A bloc)	METER (AM	3 v (galfm!)	23	(mSVcm)		1.	3							Tur		かんない	
SITENAME/NUMBER			DUPLICATE I.D.	WRILL DEPTH	CASING/TUBE DIAMETER (firm)	3 0	Temp	S				7			8		Selfido (mg/L):		딿	MLDIP Glow	-
SITENAMI	, .	38605						(A bear)												4	-
!	- 60	FICATION	TO)	og 205.	9	(Junga)	Water	(R btoe)									So stanbling	(A blow):	CPM	Bruss 1	
04 6717	ROORAM NAME A BY I - KOL	OMTORING WELL IDENTIFICATION 38605	MAPLE 10, 786.05 - N-1787	R LEVEL (8 h	ATER COLUMN (Iees) 0.00	TELL /PUMP VOLUME (V) (palled),	Azdvity										ofortneede est (aken prior to sampling)	stor lovel at thee of sampling (A bloo):		Comments: [1/19/6/1 47]	
ATTE OF	ROORAMINA	ONITORING	WPLE LD.	TATIC WATE	ATER COLU	TELL PUMP	Tittre		1								oloristectic s	later lovel at th	ump Settings,	Omments:	

If we tables are detected in the breathing appro during the initial extending, the breathing came will be previdently monitored thring purging and sampling activities. All vator levels and pump depails are measured from the reference point (autah) in the top of the well coning.

Uno reference point is observed then the cacing high point shoeld be nowhed and experements should be collected from this point.

Every absorpt abound be made to limit make level drawdown to loss than 0.33 fout and purgo rute to less than 0.5 Litalia.

Page / Def

-
-
_
7
>
Par-
3
=
-
-
~
7
-
5-4
Feet
7
0
100
4
-
-21
-
1
Ŧ
_
\simeq
-22

Markette (A. 1889) Tolore (M. 1889)

TETTA TEE'

FIELD DATA LOG SHEET - SAMPLING

MIRCATION 38(003 N-1768 DU (About 305.78 8 72 CASING N (SELINE) 23.8 3	CATEID							Name of the State	_	
TER LEVEL (A base) 205.75 WE JANN (feet) 8.76 CASINGTON P VOLUME (V) (spalme) 23.83	CATEID			Ĭ	OVA: C FID	100	OVA: CRD P.D. In Caping (ppm)	(initial)	(ventral to)	
2 K. K.			7		NEKEATIO	NU ZONE ((mijel)	(verted to)	
233	WELL DEPTH (ft 600	O PO U	2 10	0 309	ALL FEBRE	DEPTH(R.	309-96 CONTRACTOR OF THE CONTRACTOR OF STORY	1		
3333	BP. DIAME	TER (Dist)	3/8 1	,	SAMPLER'S SIGNATURE	SIGNATUR		(
1 4 1 1 1 1	3 v (gal)	(bud)	١		WILL SAMPLE TIME	LE TIME		DUPLICATES	TUPLICATE SAMPLE TIME)
	Tosup	 	1	Terbidiky	Dissource	ORP	age O	Volume	Welliman	Flow Rate
Chairth				į	Cayer	:			Parred	(ralimia
₽.	<u>5</u>	(mrZ/cm)		(ULLN)	(mb/L)	(A)		(pakka)		(almite)
1000		-								
		-								
	_	_								
	1		1	/						
	-	/	3							
				7						
	_ 	_	1		7					
		-			_	7				
		-								
plenimetric less (taken prize to sumpling) Sulfide (seg/L):	ang/L):	Fe	Fe ⁷² (mg/L);	-	D.D. (ppm):		PARAMETER	PARAMETERS FOR WATER QUALITY STABILIZATION	QUALITY STA	BILIZATION
inter bered at time of sampling (R btoc).		THE	Turkelly of time of marking	(manying)			Tengerature collect madings	Most nadings	Conductivity ± 3 %	%E∓A
map Sections CPAC	PSE	Ī	Recharge		Discione		pH ± 0.1	.0.1	DO ± 0,3 mg/l.	J = 10.
Tetand well, The	08 90	3	June	Carrie	contain is suit	und,	Turbid	Turbiday < 10 NTUs (If > 10 NTUs ± 10 %)	If > 10 NTUb=	10 K)
CALL LEST TO A TO	CHURIT	Pd . see	- Time	SARS	nd St du	A6	Wi. ± B, I foot	ul foot	ORF ± 19 mV	Vm €I

If we lattless are demonst in the translaing acres during the initial serventing, the breatting sense will be periodically absoluted during purpling and campling activities. All water breds and pump depths are measured from the reference point (noteh) in the top of the well casing.

If no reference polar is observed than the easing high polar should be contract and measurements should be collected from this polar.

Every attempt atomic be made to front water fovel drowdown to less than 0.33 feet and purge rate to less than 0.5 Lifting.

. Bleddir Pump

PURGING DEVICE: Diograms Pure F. Persultia Pump

GROUNDWATER MONITORING WELL

201 E. Vanderski Wer Same 453 See Bernsteine, OA 2042a Telephone (ACQ) 2011 - 844

TETA TECH

FIKLD DATA LOG SHEET - SAMPLING

STENAMED STANDER LANG 3 CA

š

DATE

PROGRAM NAME	PROGRAM NAME MONITORING WELL LISENTFICATION	PICATION	38606	*				SAMPLING DI		SAMPLING DEVICE: Effurning Pump OVA: J FID F (10 Je Cadne (2001)	Chebien (C)	Roller '1Other	LS
SANPLEL	2017 NO 50 K-N 1/07	7071N-	3	DUPLICATELL	in.			N. BREATH		(200	17		
STATIC WA	STATIC WATER TRYBUG BOX 117.35	217. (12		WIG. DEPTH	-	CR. William 234.50	2	SUNE PEND DEPTH (II) SAG	I IXATOR		224.50		
WATERCO	WATER COLUMN (Re)	1	CASH	NG/ICBE DE	CASING/TUBE DIAMETER (Min)	3/8		SAMPLER'S	SAMPLER'S STONATURE	10.0	1	İ	
WESTERN	WEST PRUNE VOICHT (Y) (galms)		025	3 (3 v (gal/ml)	1.		WREEL SAMPLE TOME	PI.E TIME	13/2	DUMICATE	DUMICATESAMMETIME	,
Dime	Activity	Water	Pump	Temp	22)IId	Turbidity	Disabred	-tio	Culor.	Volume Purged	WellPernit	Flor Rate
		(if btoe)	(ff broe)	(40)	(mS/(cm)		(vru)	(mg//)	(ww)		(pulsion)	Purged	(gallonin)
850	Stert Page	10.155 76.11 1	0722										02)
120	١		١	.3.870.	0.971	123	12.2	20.9	-196	Cleer	2640	1.63	
1123	1	58.212	1	23.78	27.9.0	7.15	691	40.9	- 16-68	close	2000	1.17	
1176	ı	217.35	ì	23.780	2250	527	$A^{*} = A$	2000	7.0	cles	0362	12.1	
117.9	1	7/2.35	ı,	27.75	1100	42%	412	5.97	3.6-	clear	3776	35%	
1132)	58:212	1	23.76	6.92	7.23	1.92	485	2.9-	CEE	1060	2	
1135	ENPUSE	212.35	ķ	23.65	0.477	7.22	18	53.5	122	Clear	45/45	1.73	
13%	Somete	1		7								[B
1													
		į				01	9						
					1	- Carrie							
1			į		9								
Colorinetri	Colorinetrie test (taken prior to sampling)	To sanialing)		Sakido (angl.)	(1.c.1 (mg/L)	1	0,0. (ppm):		PARAMETER	PARAMETERS FOR WATER QUALITY STABILIZATION	C QUALITY SE	NOUVELIER
Water forth	Widor forth at tima of sampling (It bloc):	(t: bloc):	212.3	۱.۵	Tur	icity at time	Turbicity at time of norping:	(78		Temperature (Temperature called madings	Cooper	Conductivity 1.3 %
Fump Serings:	ï.	CPM	1	281:	28f.	- Recharge:	I :	Digasargo:	1	1	pit ± 0.1	00÷0	NO + 0.5 mg/l.
Comments										Turbit	Turkite'ry < 10 N I Us (if > 10 N I Us = 10 %)	(E > 103/TUS=	10%)
									-	W.	W.C. = 0.1 feat	CRET	CRP + 10 mV

Note

If weather are detected in the invations came during the initial acreasing, the breaching cons will be prevedienly manitored thating purging and sargulay activities.

If no reference point is observed than the assing high point should be untaked and reassness about the untaked from this paint. All water levels and parmy deputs are conserved from the coference point (news) in the tap of the well excine.

Usary effective should be made to limit water level drawdown to less firm 0.33 feet and purge rate to less than 0.5 Julinia.

201 E Teacherd Wity Sint US Sa. Jerandas, CA. Vasta Triginas (S81) 361-4674 Martin (Mar) market TETRATECH

GROUNDWATER MONITORING WELL

Page 4 of

FIELD DATA LOG SHEET - SAMPLING

			_						410-									.,						
C Blodder France		. :				1	Pluw Rafe	minute()	SI WAY	1		-	_	_			 				CHALZATION	Conductivity ± 3 %	DQ = 0.3 mg/L	10 %)
		_	(ample to		1	DUPLICATE SAMPLE TIME	Well/Pump	Purpel		1,03	1	7.25	.37	-48 -48	1.54				,	1	QUALTTY ST	Conductiv	DO # D	IT > 10 KTUSA
C Peristable Jumo	O Discosoble Bailer	Childas	Cinifeh	74.5		DUPLICATE	Volume	(gadahal)		2750	COCT	4630	Sec	3400	2550						PARAMETERS FOR WATER QUALITY STATIMIZATION	elect reddings	0.1	Turbidity < 10 N7Us (81 > 10 N7Us at 10 %)
Aicated Fumo	uraina Pura	Caind (Plea)	Noon Noon	7	6	1350	Color			Chlostant)					PARAMETER	Temperature solvet restings	pi = 0.1	Turbidi
PURGING DEVICE: Posticinal Fuma	SAMPLING DEVICE: L'Eumine Puron	OVA: FID PO In Caring (Blos)	IN BREATHING ZONE (noc.)	PINAL PUMP DEPTI (CE by	SAMPLER'S SIGNATURE	PLETIME	ORP	(MW)		41.4	35 Q	133.0	8.9	11.7	11:33			I			راري) الم		\ \	
PURGING	SAMPI, INC	OVA. F	IN BREAT	PINAL PUS	SAMPLER	WELL SAMPLETIME	Discolved	(mg/L)		05.50	£.5	10, 17	0.10	4.07	6.13		_	6			(mgg) (O)	S.	Discharge	
				Q			Turbidity	(MTII)		12.0	4, 34	9.33	5.5	8.37	8,15	(D		_		1	of sampling:	de	
				[8 ⁸ ·S	3/8	1	PIL			ካ. ካ	7.43	7.43	543	7.43	7.43						Fc*2 (Hg/L);	Turbidity of time of sampling:	Renhmpe:	
BOU) A	PTH (At Mac.)	AMETER (IV	3 र (ह्यां/मा)	RC	(mol/cm)		C. 2777	0.877	8.8.0	0.878	178.0	81.8-0						\		13. O	
SITE NAME / PUDABER BOL		0	DUPLICATE LE	WELL DEPTH	CASINGTURE DIAMETER (Min)	3	Temp	8		2192	12.00	18.18	131.T	21.74	21.70						Stalfide (cag/L):		25	
SITE NAW		3866		-		\sim	Pemp	(ft bloc)	174.5						>							45.36	9	
	- BOU	MPICATION	1182	100kg	20.39	(gal/mi) 2(Water	(fit brune)	1 [170]	11, 43	145.27	115.20	16535	1 les: 24	16536						r to sampling	(If bloc):	CAR	
Taken (May barra)	PROGRAMMANT LMC- BUT	MONITORING WELL IDENTIFICATION 38 (4)	SAMPLE 1.1. 3544 0-N-17 82	STATIC WATER LEVEL (II Moc) (Co 4)	UMON (Sees.)	WELL PUMP YOLUME (Y) (salma) 2/69/	Arbvity	1	Jay-Caral	0	_			-	100						ColorInstric test (taken prior to sampling)	Water level of time of sampling (ft bloc):	101	USH CH
1/10/10arva	PROGRAMS	MONITORIN	SAMPLE LD.	STATIC WAI	WATER COLUMN (Sex)	WELL PUN	Ттис		1308	Ι	1338	134	1344	134.1	B						Colorhostric	Water level of	Permit Senings 101	Comments

If volatiles are detected in the breathing zone during the hollin) screening, the breathing zame will be periodically restricted during purpling and sampling activities. All water levels and pump depths are measured from the reference point (notch) to the top of the well casing.

CARP + 10 mV

W.L. & D.1 foot

If no notterance point is observed then the easing high point should be matched and assessments whould be collected from take point.

Every attempt about he casts to limit water level drivebown to less that 9.33 fiels and purgs rate to less than 19,317min.

	7
GROUNDWATER MONITORING WELL	FIELD DATA LOG SHEET - SAMPLING

F	TESTA TESTS 2015. Verbesbel 1919. Sa'24-de Saylamerika, CA 1928 Tolymerika, CA 1928				GROU	GROUNDWATER MONITORING WELL FIELD DATA LOG SHEET - SAMPLING	ER MONI	TORING ST - SAM	WELL			Paga/	, po _
DATE	0.1/20 10		SITENAM	SITE NAME / NUMBER	R	2		PURGDIGE	EVICE T	PURGING DEVICE: J Decisioned Party	Teristalija Pump	D Bludder Poorp	Possip
PROGRAM NAME	- 1	HGBON						SAMPLING	DEVICE- 2	SAMPLING DEVICE & Purging Pump	☐ Disposable Baller		
MONITORIN	MONTORING WELL IDENTIFICATION	MOLTATION	2601					OVA. TIPE	A CITO	OVAL FID TID INCLINE (Appl)	Gultian	(venied to)	
SAMPLE I.D.	SAMPLE ID. THE IT-N-1700	で 1007 1-10 100 100 100 100 100 100 10		DUPLICATE LD	4	,		IN BREATH	IN BREATHING ZONE (Apm)	1	(legiles)	(stantalta)	
STATIC WA	STATIC WATER LEVEL (8 blog) 10	1000 (mm)	S.	WELL DE	WELL DEPTH (R Stoot)	326	4	PONAL PUM	POYAL PUMP DEPTH (A 1964)	1	13.0		
WATER COL	WATER COLUMN (MK)	4 50 0	k	CASING/TUBE DIAMSTER (IMI)	LANSTER (IM	m 3/8		SAMPLER	SAMPLER'S SIGNATURE	18	1		Ĉ.
WELL AND	WELL MUNE VOLUME (V) (MASH) 50 0	(malfmi)	9		Jv (gulfml)	1		WELL SAMPLETIME	_	217	DUPLICATE SAMPLE TIME	PLE TIME)
Tithe	AREWEY	Water	l'emp	Тепр	F.C	Έ.	Turlidate	Divolhed	ORP	Colair	Volume V	WellPump	Flow Rate
		Loyel	Hench					Ovygon			Parged	Values	
		(di broc)	(Solf of)	(°C)	(1118/6111)		(MIC)	(mg(L)	(الاسا)		(Entology)	Para.	La Protina
1140	Stud our	16.894	313.0									(À	000 000
[304]	0 , (11,0,08		രുഡി	11217	7.69	(C)	13. S.	843	Colors of the second	<u> </u>		
1267		160.CR		191.16	(0.1635)	7.40	293	2,15	713	. [4300	(.17	
ାରା ଓ		8,09		39.03	16. L 3 io	7.56	୍ପର ଓ	300			18o0	34 L	
1213		1603	٠,	33 03	0.644	7,33	10.0 1	4.73	127		5400 (199	
ોગ્રાહિ	· /	100.05		50.03	0-৮েচস	753	8.13	મ.વહ	[sij.35		(O(D)	85)	-/74-
1310	Manight	14 B.C.	7	\$3-1-60	1,55.0	12/01	29.6	<u>100</u>	8 07	>	-	200	Ą
						(•	5				
**						Q							
					İ								:
						1				1		P	
									/		_	1	
Colorimente	Colorimente test (taken prior to Jumpiln)	r to aumpling)	23	Sedfide (mg/l,);	1	Re" (mg/L);	ţ	D.O. (ppm):	5.00	PARAMETER	PARAMETERS FOR WATER QUALITY SPARILITATION	AUTH STAI	MUTATION
Water level at	Water level at time of sampling (ft bloo):	(B blod):	6000			Torhidity at time of samplings		2.95		Temperature a	Temperature author readings	Conductions = 3%	5=1%
Pump Sculugs	24	CPM: A	7	Page 5	<u>س</u>	Recharge		Discharge.	9	pH = 0.1	ن.۱	DO 05 mg/L	mg/f.
Community										ביואק	G**01 ± 81JTR (17 > 19 BTUs ± 10 *0	19 MTUS	00

If velicities are detected in the breathing zone-during the infilled rescenting, the breathing zone will be periodically measured during purply, and sompling melivities. All woder levels and pump depter me memorared from the reference point (notels) in the top of the well exting.

CAUP = 10 acV

 $|W| \leq 0.1 \, \mathrm{Sad}$

If no reference poles is observed then the casing high point should be notabed and measurements abound its collected from this point.

Georg and complete the made to Until water level deswitchen to less than 0.33 flex and purgo rate to less than 0.5 Units.

-
Description of the last of the
-
10000
-
-
-
1000
-
all line
-
-
1000
-
100
-
PERSONAL PROPERTY.
-
-
1000
1000
-
-
24000
-
PERSONAL PROPERTY.
F-
T
- 400
900
- 10-
100
-
-0.00
-
1000
_
THE REAL PROPERTY.
-
-
- 100
-
THE OWNER OF THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER,
Diam'r.
-
THE REAL PROPERTY.
-
- miles
_
9
-
- Proper
Budden!
-
ter Da

NO. S. North Add Willy State 624

DOMATIECE

FIELD DATA LOG SHEET - SAMPLING

NAME LACC	2 8	SITENAME	SITE NAME (NUMBER BOD)	Ban	DATAL	FIELD DATA LOG SHEET - SAMPLING SAM	T. SAMPLING FURGING DEVICE: El Exchance Pum SAMPLING DEVICE: El Forging Pres OVA: FID PID DE Cushus (pres)	EWIZE IL DENICE	T. SAMPLING FURGING DEVICE: El Exchance Pump SAMPLING DEVICE: El Furging Filmp OVA: FID PID Decishy (ppm)	Perioaltic Fump Disposable Builder (finition)		The second second
8	8	5	WELL DEPT	WELL DEPTH (R book)	150	(7.8.5°	IN BREATHING ZONE (ppm) 8.50-TINAL PURIT DEPTH (R ppg	NG ZONE (P	185.3 185.3	(delice)	(vented to)	
750	CASINGT	5	JUNE DIA	CASINGTUBE DIAMETER (6/m)	173		SAMPLER'S STENATURE (C.C.)	SICHAMBINE NETHER	SES.	DUPLICATE	DUPLICATE SAMPLE TIME	
for Passo not Depth	_	Ľ	Temp	22	ā	Terribidity	Discolated	ORP	Cultor	Volume Purged	WellPamp Volume	Flave Rofe
_	(it bow)		ē	(maS/cos)		(נודוא)	(mg/L)	(my)		(grafofted)	Parged	(god/min mol/min)
- 8.3% 06.861	185.3	1										081
	H	3	l _l.	2180	1.39	2.55	10.3	146.7	Colorless	Oxford.	1.03	
155.5	70 70		00 00	9 %	2,2,2	S.O.	6.3%	149.03 140.03	+	3308	1.00	+
	C	ก	5	6.819	7.37	36	05.9	1808	_	08E%	1. toto	
=	11 31	-		0.826	7.43	2.00	6.49	129.1		4820	1.87	-
7	e A	ã	K	0.836	4.93	21.34	んが	€ 281.	A	0965	20.08	-
			Ì									
		\prod	7									
)						
								1				
Colorineario ses (taken prior to sampling) Sulfide (mg/L)k	_	uffide (No.	1	Fe** (sugili):	(0.0. (ppm):	Sh.4	PARAMETER	PARAMETERS FOR WATER QUALITY STABUEATION	QUALITY ST	NALIZATION
Water level at time of sampling (A bloc): (33 33	(33 J.)				Terbidity at the of supplie	of supplied	12/1	1	Temperature	Temperature collect nautings	Conduction	Conductivity ± 3 %
놢	r	,	ë	4	Rec'inge:	5	Discharge	'n	- Had	FH ± 0.1	0 + OO	DO ± 0.3 = 5¶.
									Turbi	Turbidity < 10 NTUs	(E > 10 NTUBE 10%)	10%)
									W.+	WL ± 0.1 foot	ORP	ORP ± 10 mV

If velocities are described in the breathing zone during the initial someting, the breathing zone will be periodically monitored during purging and sampling nethyldes. All water breefs and pump depths are measured from the reference point (neach) in the top of the well cashig.

If no reference point is abserved then the essing high point should be noticed and measurements should be collected from this paint.

Every attempt should be made to fimil water 1910) degradown to text than 0.33 feet and purge rate to late thin 0.5 Limbs.

GROUNDWATER MONITORING WELL

MILE Vinalends My-Sain CO Ser hamanies, CA 1944 Saintern, 2005 Mile 453

TOTAL PAGE

FIELD DATA LOC SHEET - SAMPLING

PARAMETERS FOR WATER QUALITY STABILIZATION Plery Rate (dala) (gal/laria Conductivity ± 3 % B Bledder Presp DO ± 0.3 mg/L Turbidly < 19 NTUs (if > 10 NTUs > 10%) ORP ± 10 mV (varied to) (or believe) DUPLICATE SAMPLE TIME West and No. Peristative Pump C Dispossible Bellor Temperature collect seatifugs Volume Pire (Johnson) (1085 820CS 00% 700 (PERS) (initial) WL ± 0.1 fool 10千世 PURGING DEVICE: N Deficated Pure OVA: DIED DMD in Couring (spon) SAMPLING DRVICE: Pruging Persp Warlett 593 30 FINAL PUMP DIPTH (R box) OF IN BREATHING ZONE (ppm) SAMPLER'S SIGNATURE WELL SAMPLE TIME D.O. (symt of 22) i 118.C Distance Dissolved Payer 1 J. J. Š 0.33 9.01 Territabley at time of manufillage E 3.69 3 不行 Ratery 30 WELL DEPTH (3 box) 280,50 Fe⁴⁴ (mgf.f -05 20 붎 CASRNOTURE DIAMETER (Ma) 0.559 0.55% 254 (ms/cm) 35.0 3 v (gal/mi) DUPLICATE LD. Sulfide (mg/L); Ē SITE NAME / NUMBER 1 80.5% g <u>고</u> () 91,0 30.1 Je . 35600 E 270-5 (it beac) Depth Same? WATER COLUMN ((ma) 149.43 CA) 3 Q STATIC WATER LEVEL (R bee.) (30.5) Colorinotate test (taken prior to samplings) MONITORING WELL IDENTIFICATION 30.40 30.00 12557 30.61 KKK (Taboba) 50,49 3.5 AW . Water level at time of sompting (it trioc): SAMPLE DE SEGGE-N-1703 DATE 44 (10/17 Activity PROCERAM NAME Peno Sectings: Crambodis 9 O

If we had as a detected to the forestilling cope during the initial screening, the breathing sees will be periodically mentioned during purging and sampling activities.

If he reference pates to observed them the craing high prime should be mothed and one storements should be collected from this paint. All mater levels and pump depths are messured form the reference point (noteh) in the top of the well cathgo

Every otherspi should be made to Haid water forcel departows to less than 0,33 feet and purgerate to less than 0.5 Lifthia.

GROUNDWATER MONITORING WELL

TO K Markelle Way Science In Bostoniko, UA 447a Dischary (CO) 281-767

TATES OF CH

FIRED DATA LOG SHEET - SAMPLING

DATE 4-5-2017 SITE NAME/NUMBER 1/ PAC TSOLO PROCERAM NAME MONTORING WELL, IDENTIFICATION 38 7010	38700	38700	RANCHARRA LA PAC	7 W V		\$\frac{\delta}{2}		SAMPLING OVA: JPID	DIVICE: PA	FURGING DEVICE: 15 Dedicabet Punip SAMPLING DEVICE: 17 Punging Pung OVA: 1 PID EVIE & Champ (700)	F. Purimatkie Pump Li Dispessible Daties (mittal)	'ump ' J Blodder Puzza Jatie: "J Orber (verzeitte)	or Puerp
SAMPLE ID. SSTOO-N-176.Z DUPLICATELID.	DU 2139/	DU 87	MELICATEUR.	D.	1 9	195		IN BREATHING ZONE (DRIE)	NG ZONE (Man) C	Contract C	(veniled (n)	
0022 (p	O\$2 (c	CASTAGATUBE DIAMISTER (STATE DIAMETER (m/state) v (gat/m.)	Martin (galim)		3/4	N.	SAMPLIR'S SIGNATURE WELL SAMPLE TIME	SIGNATUR PLE TIME	0	WELKATE	XJPLICATE SAMPLE TIME	1
Activity Water Pump Temp 8	Pump Ten Depth	Ten	Temp		25	IId	Terbidity	Dissolved Occupen	ORP	<u> </u>	Valume Purped	Volument Volumen	Flow Rafe
(M blac) (ff blac) ("C) (a	(in bine) (PC)	(2)		5	(வலோ)	1	(UTV)	(rudbur)	(ww)		(gula/mi)	Purged	(gal/min)
Gran Pure (CE.18 130 +	8730)	130											180
169.78 - 25.77 1.23	22:52 - 82:691	-	-		25	25.7	422	5.3	42.	Clear	0342	201	
Y =	1257	YH.	YH.	'	6427	25%	3, 27	25.5	13.0	cheer	2360	1.25	
5 - 25.301	5 - 25.301	Res	Res	-	Sh2	64.5	4.12	5.60	22	1600	21.70	1,519	1
1 - 164.34 - 25.74 624	- 25.79 4	27 6252 -	22 77 472	77	4	7.47	60%	29:3	11.8	chee	2960	11.	
169,35	169,35	7 25.77 1.	25.77 1.	-2	3	442	3.61		83	class	4500	16.1	_
75.63	16935 - 25.63	700	700	3	(3	24.2	3,20	165	8.8	C/09/	Char	2.19	-
New Page											ļ	· [i	A
					,					1	1		
					-22	1							
					-								
Colorinetric test (taken prior to sampling) Sulfide (ngf.)	İ	Sulfide (ng/L)	ulSde (nugC.)		1	3012 (crest.):	1	D.O. (ppm):	١	FARANGTO	S FOR WATER	FARANGTERS FOR WATER QUALITY STABLIZATION	BI IZATIO
Wave level at the of sumpling (it boos): [64,35]	66.35	66.35			F	bidity at line	Terbidity at line of successing:	3,90		Тепреткия	Comperments collect coadings	Canductř	Canductivity 1.3%
Parap Saltings: CPM: PSfc	W.	- N	38		1	Recharge	1		1	Elq.	pl1 · 0.1	n∓QC	30 ± U5 mg/L
							3			nerbě	10 × 10 × 1118	Perbiolity < 10 NUTUS (15 > CONTES A 10%)	(96.01
										WL	WL = 0.1 feet	ORP	ORP + 10 mV

If valuities are detected in the headings are during the initial screening, the breathing was will be perfoliosity monkoned during purging and schooling activities. All water levels and plimp depicts are measured from the reference point (noted) in the top of the well easing.

If no reference paint is observed then the cusing tigh point about he nambed and measurements should be collected them tills point

Svery attempt should be made to limit water load drawdown to lose than 3.55 that and purgs rate to lose than 0.5 Limits.

Page

- 2
3
143
page 1
=
the
12
-
4
-
140
0
100
0
蟃
BC.
for the
304
į
400
-
200
0
晕
_
J
A
×
岡
7

HITTO FEATH

Processing Name Color Co	DATE OF	165-	15	SITENA	SITE NAME / NUMBER		DATAL	PIELD DATA LOG SHEET - SAMPLING	ET - SAM	PLING BEVICE B	TT - SAMPLING PURCING DEVICE: El Dydelines Perso	- Paristellic Pump		Blackier Perry
33.71 H-N-1702 DUMERTELD. FINAL PUNP DEPTH (in two) 245.50 FINAL PUNP DEPTH (in two) 245.50 FINAL PUNP DEPTH (in two) 245.50 FINAL PUNP DEPTH (in two) 245.50 FINAL PUNP DEPTH (in two) 245.50 FINAL PUNP DEPTH (in two) 245.50 FINAL PUNP DEPTH (in two) 245.50 FINAL PUNP DEPTH (in two) 245.50 FINAL PUNP DEPTH (in two) 245.50 FINAL PUNP DEPTH (in two) 245.50 FINAL PUNP DEPTH (in two) 245.50 FINAL PUNP DEPTH (in two) 245.50 FINAL PUNP DEPTH (in two) 245.50 FINAL PUNP DEPTH (in two) 245.50 FINAL PUNP DEPTH (in two) 245.50 FINAL PUNP DEPTH (in two) 245.50 FINAL PUNP DEPTH (in two) 245.50 FINAL PUNP DEPTH (in two) 255.50 FINAL	BOCRAM NA	WELL IDEN	HECATION	38711	7				SAMPLING OVA: FIL	DEVICE I	Purgling Pomp	C Disposable I		b 3
### LEVEL (6 bloc) 356.06 Well Depth (1) Well Depth	AMPLE I.D.		ニーマー出	100	DUPLICAT	EID.			IN BREATH	DAG ZONE	1	(Febbal)	Commence	2 3
Company Color Co	STATIC WATE	SR LEVEL (R.	(35) (36)	0	WELLD	EPTH (A No	945.	05	FINAL PUM	P DEPTH IN	10			
NOLLOWS (*) (paires) Solida (1) 1 * (paires) NOLLOWS (*) (paires) Solida (1) Solida	WATER COLL	MIN (Ross) 13	21.44	CAS	PROTUBED	IAMETER (I	3/8		SAMPLER!	SHOWATTER	U		1	
1 1 1 1 1 1 1 1 1 1	WELL PUBER	WOLUMB (9)	(mylled)	190		· v (gol/ted)	1		WELLSAM	PLB TIME	Stall	DUPLICATE	SAMPLETIMI	l.
196 200	Lisme	Acaloky	Week	Personal Depths	Leap	38	T.	Teresidativ	Deschool	cato Cato	Collec	Volume	Wedness	Plary Rate
Start June 198,019 200.0 20.73 0.803 1.90 48.06 199.0 138,01 20.73 0.813 7.42 3.16 4.99 180.3 138,01 20.79 0.816 7.49 1.07 5.13 175.0 Souther prior to sampling) Southe (wall: Prior of sampling in tour.) 20.70 0.815 7.44 2.79 5.10 178.3 and (altern prior to sampling) Southe (wall: Prior of sampling in tour.) 20.70 0.815 7.44 2.79 5.12 and (altern prior to sampling) Southe (wall: Prior of sampling in tour.) 20.70 0.70 1.74.3	П		(R Mess)	(fi blac)	(2)	(mg/pm)		OCTUD	(mggL)	(Am)		(gradistoni)	Perpet	(gallbode col/min)
138.07 30.67 0.803 1.49 1.80 4/66 199.63 138.07 40.74 0.813 7.42 3.16 7.99 1/62 180.2 138.07 40.74 0.813 7.42 3.16 7.99 1/62 180.2 1		Han Lives	200	2000										160
138.07		0	26.0		Jo.67	503.0	642	08.7	1866	138.6	(Jales	33.0	1.0%	-
138,07	983		13801		Ja.73	0.811	1.42	3.16	4.99	(803)		3840	611	
Sample (35.07) 20.79 0.816 7.44 (16.7 S. 13 179.0 Sample (1.23 S.20 178.3 Sample (1.23 S.20 178.3 Sample (1.23 S.20 178.3 Sampling) Solitate (1.20 178.3 Sampling) Solitate (1.20 178.3 Sampling) Salitate (1.20 178.3 Sampling) Salitate (1.20 178.3 Sampling) Salitate (1.20 178.3 Salit	136	4	138.67		40 74	5.813	7.43	3.29	5,11	2781		4330	1.34	
Sample (138,07) 40.70 (0.016 344 (-23 520 1729) Sample (138,07) 40.815 7.44 2.79 5.0 173.3 and (taken prior to sampling) Sulfide (mpLi): PSP 20 173.3 since of tamping (it bace): (28.07) CPM: 2 PSP 20 173.9	7939	-	158.07	ř	20.79	0.816	7.47	1:03	8.13	178.0		7800	64.1	
Chample 13f C7 V Ch. 18/5 7.44 2.79 5.20 174.3	2943	>	(3xm)	-	07.00	0.00	744	1.23	003	1729	/	¢3%0	1.00	-
and (calcon prior to sampling) Solfido (way),: Fe ⁻² (ngal.); D.O. (sprn); S.//2 Tothidis, at time of sampling: 3.79 CPM: 2. PSR: 20 Rectuspe: 20.79 Discringe: 10		Sample	138.07	>	43.00	0.872	1.44	3.79	2.2	174.3		5710	1.79	A
and (calcon prior to sampling) Solfido (mg/L): Techidiles at time of sampling: 3, 12 CPM: 2 PSE: 20 Rectiange: 3, 79 CPM: 2 PSE: 20 Rectiange: 10									-					
and (calcon prior to sampling) Sulfide (marks): Fether (marks): D.O. (spens): S. 12 Total disp or time of sampling: 9.79 CPM: 2. PSR: 20 Rectuarps: 20.79 Disconarge: 10								77						
and (taken prior to sampling) Solfide (mg/L): Re** (mg/L): Re** (mg/L): D.O. (npm): S.J./A inne of sampling (it late): 38.07 CP-M; 2 PSI: 20 Recitator: 20 Discharge: 10								7	7					
and (taken prior to sampling) Solfido (mg/L): Fe'' (mg/L): D.O. (ngm): S.J./A. inter of sampling (it late): 28.07 Transition at time of sampling: 9.79 CP-M: 2.07 PSE: 20. Rectiongs: 20. Disconarge: 1.0										10			/	
inne of sampling (it bloc): (28.07) Terhidity at time of sampling: (20.07) Terhidity at time of sampling: (20.07) PSE: (20	Colorimetric	ost (taken prio	e to sampling	3	offide (mg/L.):)	Fer (ngal.);	1	D.O. (npm);	5.12	PARAMETERS	HOR WATER	QUALITY STA	BILIZACION
CPM: C. PSE XO Recharge: 20 Discharge: 10 pM ± 0.1 Turbidity < 10 NTUs (6' > 10	Hatter level 34 to	me of sampling		5	_ 1	Cas A Tank	Maley at Plane	of secupling:	5		Temperature so	Meet neadings	Conductiv	ly±3.56
	Pump Settings:		CPA	b	PSE	S	Recharge:	8	Discharge	2	* 12	0.1	DC ± 0.	3 ragal.
	Comments										Turkidi	y < 10 NTUs 11	f > 10 NTU6 ±	(%) 01
										TY.	WLAU	I fool	ORP±	Van 61

Note

If volutions are detected in the broading some during the builtal scanning, the broading some will be projected as monitored during purpley and sampling activities. All water levels and pump depths are measured from the reference point (noteb) in the tap of the wall easing.

If no reference point is observed than the casing high point should be reached and measurements should be collected from this point.

Every strenge should be make to limit water level drawdown to less than 0.33 fear and purge rate to less than 0.5 L/min.

GROUNDWATER MONITORING WELL

With Vendado Why Sees vin the Metaden, Ch. 424m La Capture of service 141, 1874

INTRA TECH

FIELD DATA LOG SHEET - SAMPLING

5					SAMPLING DEVICE PRESIDE PLENT	Discountly Ralle	Bullion Other	
			OVA: TED	PID I	OVA: TID PID In Coster (nors)	dalitals		
DUPLICATELD	1		ON BREATHING ZONE Annua	NO ZONE	C	Chicials	Si Primon	
WELL DEPTH (A boc) 255	3	S	FIRAL PUNP DEPTH (Person)	P DEPTH (0.)	27%	- C	2
CASSING/TUBE DIAMETOR (TUIN).	TAM 3/8		SAMPLER'S SICHATURE	SICHATION	9)	
3 v (gol/ml)			WELL SAMPLE TIME	LE TIME	1100	DUPLICATE	DUPLICATE SAMPLE TIME	(
Teamp Err	Ŧ	Yarbash	Destribut	ORP	Color	Values	WellPamp	Piory Balls
(R bloc) (°C) (ntS/cm)		מתנת	(mg/L)	(Am)		(fisham)	Paraged	(gal/orko
2785						100		
21-21 B745	2.70	4.87	248	105.60	A COLOR	(42)	101	3
1212 10747	2.70	3,45	3.4	95.60		2040	1,12	-
d1.20 0 748	17.70	ナルカト	2.43	78.2		28	36	_
31. DOC. 148	212	3.06	3.4K	8(1.8		(0130)	1.38	-
PH 0 76/10	2.70	28.83	3.5/	88.60		1/10/00	\.S.\	_ "
20 02 16	2.69	12.77	3.60	81.3	7	(455)	1. (03	-
	V	0						
		1	1	101				7
Sulfide (mpl.):	Fe ⁵³ (mg/L):	þ	D.D. (mpm):	00)	PARAMETER	POR WATER	ATR YTILLAUD.	NOLLEZATION
	bidily at time	17.77	277		Temporature ec	Doct resultage	Conductivi	Y=3%
4				•				Date:
St.	V	1 V	Terbility at time of sampling:	Terbidity at time of sampling:	Terbidity at time of sampling: 377	Terbidity at time of sampling: 377	Terbidity at time of sampling: 377	Terbidity at time of sampling: 277

If volation are detected in the breathing zone during the initial screening, the breathing zone will be periodically manitored during purging and sampling activities. All water levels and pump depths are measured from the reference point (acteh) in the top of the well ensing.

Purty Solidags Comptests

Turbidly < 10 NTUs (If > 10 NTUs ± 10 %)

CRP # 10 mV

WL ±0.1 faut

If no reference point is observed that the casing high point should be neathful that focus ments should be collected from this point.

Every anomate abound he made to timit water level drawdown to fear than 0.3% feet and purge run to lean than 0.5 Limin.

GROUNDWAITER MONTTORING WELL

39. E. W. SEN THIN SER-193 Red Browning CA 93401 (elgibon (938) to e1624 Tehris (MES) MRA-179

西門を四

FIELD DATA LOG SHEET - SAMPLING

Well, Plant All Standard Cone (pre) (miss) Cone	PROGRAM MONITORU	PROGRAM NAVEL TO THE THE MANIET STEENAME! MONITORING WELL IDENTIFICATION 3877.	TECATION	3877.	SCHENAMIC/NUMBER 1507	2			DATESAS OVALILADO	Service of American	PURGENG DEVICE: Producted Fump SANSTING DRVICE: Proging Pump OVAL I FID. FLYO & Court (see)	Portugation Promp Disposable Bailer (initial)	Yang Jisedda Pung Jailes Johan V temedak	ra Fump
CASINGATURE DIAMETRI (Mr.) 3/6 SAMPLER'S STONATURE Brimp FC pH Turbidity Diamhed ORP Oxygen (R bioc) (CT) (mg/l.) (my/l.) TATIC WA	. 3872L	10-10				7	4	HI BREATH	ANG ZONE (port)	F. Salisa	(venitod %		
	WATER CO	LUMN (Rest)	j		COTTOBEDU	LMETTER (NA	100		SAMPLER'S	SCHATUR	1		i	
	WELPUS	SP YOLL ME (V) (25 Cm/kg	Obs	m	(Baryur)	1.1		WELL SAM) รหาบ สาม	3000	DOPLICATE	SAMPLE TIME	į
Charper 1 10,17 1745 5.50 0.695 6.47 10 01 4.16 35.3 10,17 71.78 0.646 6.94 10.04 14.2 10,17 71.35 0.657 6.49 4.24 14.7 10,17 71.35 0.657 7.09 8.72 4.72 14.7 5. P. P. P. P. P. P. P. P. P. P. P. P. P.	Time	i Activity	Water Level (ft blot)	Pump thenth (ft broc)	Tengs (CC)	FAC (mS/cm)	Нц	Turbidily	Dianived Oxygen (mg/l.)	OXP (mV)	Cetor	Valums Purged (pals/m)	Well/Perap Volence Purped	Flow Rate (galvala
10.12	120			-										165
10.12	722			2001		599.0	6.47	20.01	0.16	35.3	cless	27.72	101	-
10.12	279	1	10.77	k	21.44		6.71	213	4.02	1-22	(lose	31.38	1.7	
10.12 - 21.78 0651 6.88 922 4.72 11.9	732	1	10.72	١	21.38			10.09	404	(4.3	Ches	05%	9,7 '	
	1335	1	10.12		27.78	1590		432	4.12	11.4	class	4175	. 7.3	
[10.72 - 71.35 0.653 7.10 18.42 0.05 - 2.1 6 6.653 7.09 8.76 4.02 0.2.1 6 6.653 7.09 8.76 4.09 - 2.1 6 6.43 p.c.y. [10.12 - 71.36 0.654 7.13 8.04 4.09 - 9.9 6.44 p.c.y. [10.12 - 71.36 0.654 7.13 8.04 4.09 - 9.9 6.44 p.c.y. [10.12 - 71.36 0.654]]; [10.12 - 71.36 0.654 0.09]; [10.12 - 71.36 0.654]]]; [10.12 - 71.36 0.654]]]; [10.12 - 71.36 0.654]]]; [10.12 - 71.36 0.654]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]	1338	1	10.11	1	_	2500	6.64	9.27	4.15	6.0	clear	0,000	1.79	
End Deept. 10.17	1741	ĺ	10.17	1.	_	0.653	01.7	20.8	4.0%	0.0	clos	5/15	1.67	
5. pb. 0.12 - 1.136 0.674 7.13 8.04 4.74 -9.4 5. pb.	34	1	210	Ņ	2136		7.00	8.76	603	1.2-	1000	CHO	2.57	
S. p.V. Institute prior to sampling) Suifide (ag.L.) Turbuéty at time of surpling: 8.99 CPM: PSI. Cairway.	1347	Cal Proge		1	21.36	654	7,13	8.00	14.14	66-	0.00	905	7.56	
lest (taken prior to sampling) Suilde (cag.L.): ————————————————————————————————————	349	Sarak	ļ		1									*
inclusive prior to sampling) Suitible (org.L.) The tiday at time of surpring: $\frac{1000}{200}$ (plum): $\frac{1000}{200}$ (CPM: $\frac{1000}{200}$ (CPM: DES). The tiday at time of surpring: $\frac{1000}{200}$ (CPM: DES).		T 07-8, 7.2					4							0 = -
insuffactor prior to sampling) Selfide (org.L.);						1	1	-					12	
imantifacting (Chine): (Co. C. Turbushy at time of surpring: 8.99 Tramporation colline) medings PSI. Turbushy at time of surpring: 8.99 PH + 0.1 Turbushy < 10 NTUE (1 > 1) WALLO 1 feet	Colorinetri	c lest (taken prior	to sampling		cifide (crg/L)	j	Fu" (n:199.);	1	1) Q (plui);	ţ	PARAMETER	IS I'DR WATER	COUALITY ST	31 ZATION
CPAN: ————————————————————————————————————	Water levis	Unicomes Sacural V	(f. bloc):	101	2	T'A	bucking at time		20.00		Temperature o	called readings	Conduction	*S+3%
Turbidity < 10 NTUs (if > 10)	Pump Seding	H	CPM	1	25	1	-Kainage	1	Dieducau)!	¥	+0.1	D:02	3 ngyl.
W1.1 0.1 Jean	Ceminents										inni.	E.y < 10 N.TUS	* KILKOI ~ JE	(%) (0)
											W.I.	O. J Jean	ORP	Amb:

Trainfies are detected in the treating, now during the initial accoming, the breathing some will be personable maniford during purging and sumpling activities.

tion the serie became made use upon

All water knock and provide the measured from the reference point (minds) in the top of the west pasing.

If so reference point is also ver then the cusing high point about he ameled and removements should be aptended from this point.

Every attempt should be made to limit water level throughout to less than 0.23 beet and purge rate to less than 0.5 Limits.

GROUNDWATER MONITORING WELL.

なる 金田丁二日 THE CHANGE CA ALLO Contract front and the

DATE LINE

FIELD DATA LOG SHEET - SAMPLING

C1 05-8-4 ある こうこうかん あんだい

SATE	TINE 4-7017		SITE NAM	SITE NAME/ NUMBER	LMC Ben	35		PURGINGIN	PURGING DRIVICE: & palested Perso Di Perisació Pump El Blodder Plane	ded Perso	Therisatio Pun	np E Blodd	or P'scrip
PRINTEAM NAME	LNAME		-					SAMPLENG	SAMPLING DEVIGE: Pruging Pump Toisposside Bailer Tother	M Purnje	Cosposable Bat	er Jose	
MONITOR	MONITORING WELL DENTIFICATION 5872 M	CATION	2/05	W				OVA: LYVO	OVA: 1910 1977 In Casing (npm) (tailed) (vented to)	IR (ripm)	に記し	(vented to	
SAMPLE	SAMPLE LO. 9872 M. N. (702 DITPLICATE D.	4-173	7	DITH ICATE:) -	1	ķ	INBREATIN	IN BREATHING ZONE (ppm)		(initial) C (variety in)	(Varados)	13
STATIC W	STATIC WATER LEVEL (it bood). (05.84 WELL DRIPTH (it bood) 308.50	30/	48	WELLDR	THE (A bacc)	308	- 1	FINAL PUR	Darrie (C hee)	206	ō		
WATTR	WATTR COLUMN (lad)	ì	CASE	ACCTUBE DIA	CASINGTUBE DIAMETER (MIN)	78	1	SAMPLER'S	SAMPLER'S STONATURE, PEDEN CAL	Febru	Ch		
WELLIFU	WELL PRUMP VOLUME (Y) (golfrii) 5066	Um) 50	09		(Jeddag)			WELL SAME	WELL SAMES TIME (72	-	DUPLICATESAMPLE TIME	MPLE TIME	Vi.
Thre	T'ue Arlivity	Water	Water Pump	Low.	RC	pEf	Turbidity	Mercalved	a EC pff Turbidity Discolved Offe Color Vulums Well/Pump Flow Rate	Color	Vulums	Wellimm	Flow Rate

-		-											
Thre	Aslivity	Water Level	Pump Depth	dwaJ.	23	Hq	Turbidity	Ulevalvod Oxygen	ано	Color	Vulums Parged	Well/Fump	Flow Rate
I		(fit hises)	(fi htoc)	(2,2)	(யநி6ம)	7	(FTR)	(mg///)	(my)		(gatuma)	Pargeil	(nalfinia mifinia)
H78	Start Proc 105.89	68.90	296.0					1					110
1516	1	(05.89		21.03	555.0	7.17	3.64	3.2	80.8	cles,	15060	00')	
615		105.89		20.83 0	1.55	C.90 214	11/2		523	(A)3	0365	1.67	
1522	1	105.25	1	20.72	10.72 C.CS	200	2.73		072	1000	5/10	1.12	
100	1	105.84	١	70.650	6	6.93	1.99		21.5	Cles	0-509	000	
823	1	40534	1	70.52	24.	2.00	250	3.96	2.75	clar	2859	136	
1831	Endinge 10589	10501	1	4-	755.0	6.90	2.99	4.00	615	otes	5710	1.37	/
1532	100	1										i	*
			7	7									
		y		700	111								
	-	1	-		14	1							
						K							
Colorinerri	Colorimetrio test (taken prior to sampling)	c to sampling		Suittde (mp/L.):	1	Para (mg) &		3.0. (spen)	ĺ	PANAMETER	S FOR WATER	PARAMETERS FOR WATER QUALTY STABBLIZATION	BELEATION
Warer love, a	Worst love, at time of sampling (f. bloe)	(f. bloe):	(35.2		IA.	bid:y of itmo	Turbiday of time of sampling:	3,44		Tombers	Tomperature collect readings	Conductivity + 1 %	10+13%
Pump Sections:	K	CPM	I	Ë	1	Sections	}	Discharge	1	Hd	pH+C.	1 LYD=03 = 1	ी क्वा
Commerks						ì				idm;	lay < 3 NTCs	Turbiday < 13 KTCs (GC > 10 NTE)s 16 %)	16 %)
										T'1/A	W1, L 0.1 face	CARP - 10 mV	Vm O

.

If which are detected in the preselving zone during the Inflid percenting, the bearining was will be providedly ancelling preading and sampling activities. All water levels and prop depths are measured from the reference point (notes) in the top of the well easing.

If no reference point is absence then the easing high poles stockly be entired and measurements should be calleded from this point.

Every attempt should be made to form when the all developed to loss than 0.33 feet and purge rate to less Cam 0.5 Limin.

GROUNDWATER MONITORING WELL

ことのできる かんしょう SABOLL CARLE Agone postate total Ti-the (500) and 113

THE PARTY

PIKLD DATA LAKI SHRET - SAMPLING

702-8-4 SING	3.201		SITENAM	SITE NAME / NUMBER	Bos			PURGING	SEVICE: LY	PURCEING DEVICE: L'Applicated Promp	L. Percisalise Parap	In 3 Bledder Pump	Punt
PROSEAM NAME	NAME							SAMPLING	DEVICE	SAMPLING DEVICE Purging Peng	J Visposalde Bailes		Ę
MONITOR	MONITORING WELL IDENTIFICATION 3877.A	FICATION	3977	N				מאר: באעם	I GIAN .	OVA: TEID FAID IN CHANG (DEM)	Chitita O	٠	
SAMPLEL	SAMPLEID. 38774-1747	1-1-1-V		DUPLICATEL	LD.			INBREATI	IN BREATHING ZONE (ppm)	(cdd	(failed.)	(sented to)	
STATIC W.	STATIC WATER LEVEL (fi Boot)	111	10801	WELL DE	WENL DEPTH (5 book)	1985	L	PINAL PUM	PINAL PUMP DEPTH (A base)	Date; 133.			
WATER CO	WATER COLCAN (Res) 4246.	2.46	CASE	CASPAUTUBE DIAMETER (1154.)	AMETER (115)	3/8	~	SAMPLIR	SAMPLIRES SIGNATURE	-	apr. Cash		
WILL PIN	WHILE PRIME VOLLMEN (Y) (HAVIN)		240	34(((ध्याराम)	1		WELL SAR	WELL SAMPLE TIME !	V	DUPLICATE SAMPLE TIME	MINT DIME	ļ
(Pane	Activity	Water	Parte	Twap)A	Ha	Torbidity	Dissolved	ОХР	Color	Valume	Wellberg	Flow Rate
		(ft bloc)	(R 140c)	(PC)	(ms/sem)		(עריא)	(mg/L)	(Am)		(gate/m)	Parged	(galforin
11.25	13x4 P. * 10202 133.	10202	133.5									1	193
135]	10805	١	27.04	1.728	724	07.9	441	44.3	Clere	1950	1.69	-
11-36	1	108.06	١	27.00	1221	32.6	3.14	4.37	72h	Chies	25.35	75	
141	}	108.06	1	27.00	1.238	725	336	4.60	276	Class	31.70	1361	ļ
144	l	10801	*	11.22	1.241	12.54	3.54	75%	345	clear	3705	707	-
197	1	10801	١	21.15	Sh2'!	7.79	22.7	2.60	38.6	יונמי	106717	1 111)	_
1150	Entre	1080	ı	22.22	1.247	7.25	1	4.60	366	clear	1 3/2	17.	
1511	Same	1										1	1>
					1	Ü		-2.00		1	1		
				1.0	1								
												Ī	
1	-					K		******		K			
Celorime'r.	Celorimetric test (taken prior to sampling)	e to sampling	F	Sulfado (sng/l.):	1	Fe ((((())	1	D.O. (mpm):	1	PARAMETER	PARAMETERS FOR WAITER GJALITY STAIN: ZVATION	DALITY STA	NUTALL
		1	2	0.0				2 600		Thumanan	Street something	- Construction	1000

Unwindles are detected in the brastling zone during the textual extension, the brastling zone will be periodically monitored turing purging and sempling activities

-

Canductivity # 3 % 30±35 mp.

Temperature collect wastings

250 Discharge:

Turbicity at time of sampling:

Water level of time of pampling (6 bits):

Pump Selvings: COCCUMENTS

Prochange.

-01 IC

Tubidiye to NTUS (if > to NTUS - 10 %)

ORP # 16 mV

W. 4.9.1 Force

All mater levels and purite daylors are measured from the reference paint (noteh) in the top of the well easing.

If an enforcement is observed then the cache high point should be resched and measurements thought to collected them this point.

fivery strengt should be made to limit water level denydown to best from 0.55 feet and purge rate to less than 0.5 Lentin.

Page 1 of

GROUNDWATER MONITORING WELL

TERM THE

	JOSE Vandeniis Why Solis 459	Ma + 50			CEC	GROUNDWAIER MONITORING WELL	KMCN		WELL				
Ų	Statements, Dr. 9343 Telejamentosystmatology				FIELD	FIELD DATA LOG SHEET - SAMPLING	OG SHEE	T-SAM	PLING				
DATE OF	25 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		SITE NAME	SITE NAME / NUMBER	BUD	3		PURGING D	PURGING DEVICE: M Optioned Pa	display Person	Perfectible Pass	ang Shador hasp	P Pulsage
PROCRAM NAME		AC-BW						SAMPLING	SAMPLING DEVICE: IS Pursing Prop	94	☐ Déspossible Belles	eles Collect	
MONITORON	MONTTORING WELL INDVITCATION	FICATION	38130	G				DVA: FID	OVAL THE THE INCOME	Carp (page)	(Millian)	(NESEED IN)	
SAMPLEID	SAMPLE LD 38720-N-170	2-1702A		DUPLICATE LD.	1			IN BREATH	IN BREATHING ZONE (pres)	Table 1 1 - 1-1-1		(an purpose)	
STATIC WAT	STATIC WATER LEVEL (R broe)		170	WELL, DEPTH	PTH (R Mos.)	137.50		FINAL FUM	HINAL FUMP DEPTH (TOBO)	うない			
WATER COLUMN (Red	UMN (feed) L	پر	CASTN	CASTNO/TUBB DIAMETER (IV-)	METTER (IVA	3/8/	8	SAMPLER'S SIGNATUR	SIGNATUR	100			
WELL FURN	WELL PURM VOLUME (Y) (palant)		44	3.0	3 v (gal/ml)	1	A	WELL SAMPLE TIME	PLE TIME	1500	DUPLICATES	DUPLICATE SAMPLE TIME.	V
Jan.	Aedivity	Water	Puorp	Temp	300	Ť.	Tarbidity	Disselved	ORP	Caler	Volume	Wellfrup	Flave Barke
		Level	Depth		;			Oxygen	į		Parket .	Partie	Contracts
		(R betor)	(% Płoc)	Ş	(mS%m)		(MIC)	(100)	(AR)		(berred)		Trustes)
135	を記せる	(30)M	137.5										770
1208		(a).(a)	_	10.34	169D	7.33	8.63	1.20	8(13	Colosioss	1.70%	017	
1.5.1		E9):081		14.16	11690	7.33	J. 20	1.09	14 · 8		allo	1.43	
13/4		130.63		3), 44	1,694	7.83	1 (j. g	5O.	~0.3		3730	1,76	
1317		12463		J.S.	115091	7.8%	3,19	0 -	56.5		3430	27.02	
12.20		130 tB		81.13	11. t.92	H. 36	81 18	4.30	50.9		3740	9.79	
1333	0	120,03	-	21.64	11.1893	7.34	A-12	2.2	49.0	1,	0564	3.13	
1326	Dreme a	12063	>	J).(64)	1641	7.34	2.10	3.04	46.0	Þ	C0124	208	
	_				**	(,				
				6									
							7				I		
Colorimetric	Colorimetric test (taken prior to sampling)	r to sampling		Salfite (mg/L.):)	Fa** (mg/L.):	l	D.O. (ppm):	30%	PARAMETER	S FOR WATER	PARAMETERS FOR WATER QUALITY STABILIZARON	BILL ZYMBON
Water tovel at	Water tovel at time of pampling (filbtoc):	(d bloc):	120,43		/ Ta	Terbidity at time of partipling:	of senithing:	0.16	م	Тепрезавае сойеса геобица	ollect readings	Conductivity ± 3 %	Ny ± 3 %
Femal Sottlege	L	E	ด	Ë	હ	Recharge:	ار ا	Discharge	~	Ŧ.	pH & 0.1	DO # 0.3 mg/L	3 mg/L
Comments										Turbit	Turblitty < 10 NTUs (R	R > 10 NTUs ± 10 %	10.20
										W.*I	WL * D. I foot	ORP ± 10 mV	10 mV

Evoluties are detected in the becalding same during the initial sorecoling, the breatings zone will be periodically snowhered during purpling and rempling activities. All vater lovels and party daptits are measured from the reference point (notels) in the top of the well coving.

King reference point is absorved then the cesting high point should be unlathed and measurements should be collected from this point.

Every stienty; should be make to limit which tevel drawdown to less than 0.33 feat and purporate to less than 0.5 Units.

To Sale

吊	RECEATEDS THE E VINNESSE WAY SELECTED THE CONTRACT OF THE PROPERTY OF THE PR	Dir.			GROU	GROUNDWATER MONITORING WELL FIELD DATA LOG SHEET - SAMPLING	ER MONI'	TORING T-SAM	WELL PLING,				
1	7,5-11		STENAME	SITE NAME / PAIMBER	Bul			PURCING D	PURGING DEVICE: D'Indicated Para	adional Perp	- Peristaltic Pump	m Bledder Pump	de de la composition della composition della com
KIGRAM NAME	-	Mc-80						SAMPLING	SAMPLING DRVICE: U Puging Pa	Putging Flags	🗆 Disposable Baller		
MITORIN	CANTURING WELL IDENTIFICATION 2	FICATION	58723 S					OVA: FID	OVA: THE PED INChAN		(eigini)	(vested to)	
MILEID	MARKELL 38738-N-1702	-1702		DUPLICATE LD	9	1		IN BREATH	IN BREATHING ZONE (ppm)	1	(beited) —	(vended to)	
THE WA	ATIC WATER LEVEL (A bloc)	æ. ∏?.C	و	WELL DE	WELL DEPTH (R 1604) 2399	399.5	R	FINAL PUM	FINAL PUMP DEPTH (#5	S.			
TER COL	WATER COLUMN (Dec) 18	183.44	5	CASING/TUBE DIAMETER (RIS)	METER (AS	3/63		SAMPLER	SAMPLER'S SIGNATUR	で で		/	
LATIN	ELL /FUMF VOLUME (V) (palled)	Malian) A	0,00	3.0	3 v (gal/ml)			WELL SAMPLE TIME	PLETDAR	1310	DUPLICATE SAMPLE TIME	WPLETIME.	}
Those	Activity	Water	Parage	Temp	23	12	Turbelley	Dissolved	ORC	Color	Volume	WellPort	Plant Rate
		Levol	Depth					Oxygen			Parged	Valences	;
		(R bloc)	(ft blood)	ē	(auSion)		(UTIV)	(m/L)	(may)		(paleint)	Purpol	(palenta)
3,5	Cart and	30, 51	かまた										00)
l	0	17.78		J. lod	066	155	3.30	5.00	162.5	(No tak	0084	1.02	-
25		17-08		20.53	0.659	7.S.	3.95	5.05	6.00	, ,	1,08,62	1.12	
100		17.0%		500.4P	0,60	1.53	C4)1	505	1554		09154	1,2)	_
200		%0.T.I		PE-08	0.458	34.6	ትኩነሮ	21.5	1584	- 2	0500	1.32	
307		11.68	//	26 -33	0.658	7.50	0.53	5.19	1498	(Z	0229	1.43	-
Ole	Tom	17.08		34.3	O.Lesy		2-48	H .S	149.1	>	1,000	1,53	7
	-										24.0		
						2							
									- /				
	4.1								[
Acetonetri	obstancinic sest (taken prior to sumpling)	Magdons of .		Sudfide (ough.):	1	Fe ²² (mgrh.):	1	D.O. (ppm) 5, 14	ন্ত	PARAMETER	PARAMETERS FOR WATCH QUALITY STABILIZAZION	UALITY STA	PHLIZAZION
ates level a	ates level at time of sampling (it bloe):	(A bloc):	17.00			Turbidity at time of sumpling, 2, 4,8	of sempling:	248		Temperature c	Tengendure collect readings	Conductivity ± 3 %	19±3%
an Settines		SWE D	ሰ	25	Ş	Rechange:	7	Discharges	a	#Hrd	pH ± 0.1	DO ± 0.3 mg/L	I may I
comments	i									Turbid	$\Gamma_{arbidBy} < 10$ NITUs (if > 10 NTUs \pm 30 %)	f > 10 NTUs ±	90 %)
	0.00									WL.	WL ± D.1 feet	ORP ± 10 mV	Vin 61
				STREET, STREET	Name and Address of the Owner, where								

If valuities are obserted in the to white gape during the initial formation, the breathing zone will be preinfered manifored during purping and sampling activities. All nates levels and pump depths are measured from the reference point (match) is the top of the well excise.

(I'go reference point in observed then the easing high point should be maidzed and mensurements should be collected from this point.

Every steering should be made to brail water level derevdown to less than 0.13 feet and purge tale to less than 0.5 Limin.

TETRATECH THE WASHINGTON NO. 10. TO SECURE THE PARTY OF T

Troops Will ESS-119

GROUNDWATER MONTFORING WELL

TIELD DATA LOG SHEET - SAMPLING

PARAMETERS FOR WATER QUALITY STABILIZATION (getVenion Flow Rake mUmdn Conductivity + 1 % . I Blodder Puring IXO # 0.5 mg/L ORP J JOINT Turkicity < 10 NTUS (IC > 10 NTUS = 10 %) (vented (c) (varied lu) LOther DUPLICATE SAMPLE TIME WelliPecop Purged Volume 7 7:12 50 C. Peristaltia Pump Disposeb'e Baller Temperature culted readings 21.60 2520 Volume (galt/mi) 3760 2040 3440 Purget 4000 (Inchia) (Initial) 力 WL=0.1 Bel pi: 1 0.1 164.5 PURGING DEVICE: A Dedicated Purp SAMPLING DRVICE: VPurping Purp OVA: . I PITI I LA:U II. Cusing Count Ocean C Sec. Š 793 3 300 -115 8 WAR WRILL SAMPLE TIME 30 50 FINAL FUMP DEPTH (# Mas) CHARLATHING ZONE (pper) SAMPLIR'S STONA TURE -21.0 -1097 (Man) ORP / no (fem): 00 Discharge Disabeel (mg/L) 0.43 OSYECT 0.50 0.40 0.56 Turksofty at time of eart, ling: 194 ----5 1.921 123 2.03 (NTC) -- Se (mg/L); 174.5 8 --- Reelizepe 80.00 8.10 20.00 10 m STENAME/NUMBER LMC BOLD 핕 CASNOTJBE DIAMETER (ME) WELL DIST'TI (C.Iniu) つらりつ 0.637 0.0% 0.037 0.6% (maggem) 2683 K 3 v (eaz/m.) DUPLICATE LD. 28.12 Sulfice (mpl.) 20.12 21.80 -TSE 1454 253 Temp 5 157.49 (R bise) MONTORING WHILE IDENTIFICATION 3850 Pump Depth CHA. STATIK: WATER LIVIII. (2) 2000) 157.16 Colonierationes (taken prior to tarapiera) 37.78 157,40 57.44 EN 125 (17.49 157.43 157,16 57.46 (fr bioc) Valer Level Water level to these of sescriting (if bloc): SAMPLE 11. 3980-WA 707 WELL PUMP YOUNG (V) (PUMP) Stat Par Activity WATER COLUMN (See) 4-5-1017 PROCEAN NAME Pump Settings OGME CANE O BUSS 00037 UA:E 0540 CHATCHE Dark 0450 1160

1

If voluilles are interested in the hearthing suns during the institut screening, the breaking some will be periodically menhaned during perging and sampling audividual

All water levels and primp depicts are treasured from the reference prim (noted) in the top of the well cooking

If no reference point is observed then the exclusiving point elected be notebed and measurements should be collected from this point.

Byony attempt should be made to final; water level characters to less than 0.35 fear and purper rate to less than 0.5 1 Arria.

Page of !

	- 3	
- 1	and it	
- 3	_	
- 1	па	
_	MIN.	
- 2		
- 6	_	
- 4		
1.3	-	
- 1	-	
	5 /	
-4		
1.7	-	
	_	
	~	
	-	
	_	
- 1		
	_	
	mo	
- 1	and the	
- 1	-	
-0	-	
- 1	- 9	
-4	-	
0.3	-	
- 1		
-1	read.	
- 1	_	
- 1		
-4		
- 1		
	-	
- 4		
- 4	-	
- 3		
. 1	-	
٠.	_	
12	42	
2	\mathbf{z}	
Ĝ	Σ	
å	Σ	
á	MONITORING WELL	
G U	Σ	
4	Z	
1	Z	
1	S. S.	
1	ERE	
1	ERE	
-	ER E	
-	TER E	
-	TERM	
-	TERE	
-	TER M	
-	ATER M	
	ATERM	
	ATERM	
-	VATER M	
	WATERM	
	WATERM	
	WATERM	
	WATER M	
	DWATER M	
	DWATER M	
	DWATERM	
	IDWATER M	
	NDWATER M	
	NDWATER M	
	INDWATER M	
	UNDWATER M	
	UNDWATER M	
	UNDWATER M	
	DUNDWATER M	
	DUNDWATER M	
	OUNDWATER M	
	COUNDWATER M	
	ROUNDWATER M	
	ROUNDWATER M	
	ROUNDWATERM	
	SROUNDWATER M	
The second second second second	GROUNDWATER M	
The same of the same of the same of	GROUNDWATER M	
The same of the same of the same of	GROUNDWATER M	

THE P. DATE LOCKETT CANDETW

- -	Bladder Pomp	2	Q	ŝ			E	Flew Rode	(gal/asia	145		-			7	B						LABILIZATION	Conductivity at 2 %	DO # 0.3 mg/L	₹10 %)	ORP # 10 mV	
og de		Ta Other	(visited to)	(vicinisal to)			WIPLE TIM	Wellemp	Purpa		00%	(,)3	1.24	0.3%	.837	00) 1	8					MALINS	Compac	PO#	(If > 10 NTUS ± 10 %)	OKP	
	Paristaltic Pamp	Disposith Balls	(faithal)	(leskio)		47	DUPLICATE SAMPLE TIME	Volume	(funfaturit)		3275	3780	41.85	065%	1695	2400						PARAMETERS FOR WATER QUALITY STABRIZATION	ollect readings	kD.1	Turbidity < 19 NTUs (if	J. lost	711/11
	PURGING DEVICE: Dedicated Pump	Perging Pomp	OVA: THIS THIS IN Cashing (ppm)	(up)	1000 19 J.C		013	Co.		SCHe. brs						A						PAKAMETER	Temporature collect road	pht = D.1	Turbid	WL # 0.1 fool	Gedden
WELL PLING	EVICE: 17	DEVICE: [1]	I ON I	ING ZONE (P DEPTH (A	SIGNATUR	PLETTIME (ORP	(400)		1650	158.6	10/2	5.841	M3.9	604						349	-	9	52	m	Const
GROUNDWATER MONITORING WELL FIELD DATA LOG SHEET - SAMPLING	PURGING D	SAMPLING DEVICE: (C) Purging Pump	ONA! IND	IN BREATHING ZONE (MIN)	FINAL PUMP DEPTH (II blood)	SAMPLER'S SIGNATURE	WELL SAMPLETTIME.	Disselved	(mg/L)		4.28	3,89	3.60/	2,63	3.5%	64.6						D.O. (spen):		Diacharge: (D	DENTAL.	G Band	hino!
ER MONI								Turbidly	(OTTO)		4.60	3.80	2.71	3.54	J.K9	21.85		1	1	1		1	Of sampling	3	"to seconds	minht.	Mehry
DATA L				1	303	3/8/2	١	Epil.			10.83	1,084	200	18.85	18.00	181						Re" (mg/L)	Torbidity at time of same	Recharge 30	14	2	Sto in
GROUP	3			(D)	WELL DEPTH (A block)	CASING/TUBE DIAMETER (MM)	3 v (gal/fal)	23	(susNew)		10960	0 966	0.967	0.968	80160	363						1	Tork	145	11367	1 9116	hood a
	SITE NAME/NUMBER			DUPLICATELD	BOTIAM -	O/TUBE DA	3.0	Temp	(C)	224	21.43	3047	2054	20.56	30. lo3	30.49			1			Suffedt (mg/L): -		ž	1/2 min	370 m	1
	SITE NAME		22	-1	381.14		370	Paray Depth	(R bitse)	03941.0	_		_			7		I					%i.∱	CPM: Maunch	90 m	. David S	Just 2
6		Cana	*		454	10.SG	col	Vater	(fi blac)		力力16	41.44	ज्या, पर्य	मा.मग	7416	44,196					î	to senspling		5	Asset	J. 00.	Ceanard
TETRA TECK SEL E VINCANIE VIN Same 130 Sen Bermann, CA. 93 and TANGARAN (1973) 1924 1673		3	MONTTORING WILL IDENTERCATION	SAMPLEID "FILE" N-1798	STATIC WATER LEVIL (A 1604) 12		WELL PRIME VOLUME (V) (galfml)	Acdvidy		Sarkarak	0 .					Sand!	-					Colorimetria test (taken prior to sampling)	Water level at time of sampling (it bine):	u	Comments in Hamile 1 Aspel	A house	4
4	PATE CIAL	PROGRAM NAME	MONITORIDA	SAMPLE I.D.	STATIC WAI	WATER COLUMN (New)	WELL ANDMI	Tione		OS 33	2380	1000	(POP)	10 CO (20)	840P8	EJ 64 60	I					Colorimetria	Water lovel at	Perrep Settings	Comments	135. m	Ph panal

over decree pinging and samping extinities.

If votables are described in the breathing zone during the tritial serventing, der breathing zone will be pointifically anadored during printer levels and gamp depths are measured from the reference point in the top of the well casing.

If no reference point is observed then the cashigh point should be southed and measurements should be collected from this point.

Every skiempt should be made to limit water level drawniawan to less than 0.33 fort and prege rate to less than 0.5 L/min.

/ in Jades

☐ Bladdle Yorap

PUXGING DEVICE: JUSTISTED Pump | L'PUZIBIBLE PLEM

910	4
4	1
7	3
14	ч
-	۰
100	
10	b
	7
INT	•
- 5	=
6	7
	4
T	•
7	1
	-
- E	=
7	2
70	₹
0	2
-5	2
	-
-	ø
-	4
L.	ч
	ä
- 6	4
-	τ,
2	-
- 12	-
1	•
	2
12	5
3	9
C	2
	,
-	곂
- 0	2

At Evertaves 1, 248
In Born of Comments
To the 1,000 miles
A 125 1017

THERE INCH

FIELD DATA LOG SHEET - SAMPLING

STEENAME / NUMBER

DATE

(a)	10.5	Flow Rate (sxl/min	17.5	00	001	cl.	30	1300		,	- 1		PARAYSTERS FOR WATIR QUALITY STABILIZATION	Condustivity=3%	1X) ⊥ G3 mg/.	(%0:+	ORF = 10 mV
(vrated to) (vested to)	CALCATE SAMPLE THE	WelliPersp Volumes Purged	(.,	1				QUALITY ST	Condust	TOU.	H > JONNTES	DIO
(mitez)	Cod	Volume Purged (gale/ml)											S FOR WA'THE	Ches readings	1.0	Turbidity < 10 N. Hs. (if > 10 N.T.Cs + 1.0%)	fbet
(E) (P)		Calar		Brawn	3000K	(Mach)	Anie 18	1.com					PARANUTER	Temperature collect seadings	10 = HC	Turbid	WL. 4.2.! fact
OVALE DESCRIPTIONS AND INCOME. THE STATE OF	SAMPLER'S SIGNATURE WELL SAMPLE TIME	ORP (exV)		413	1,115	39.5	30.5	14									بۇ
OVA: C. PET.	SAMPLER'S SIGNATI	Disanked Oxygen (mg/L)		3.40	2 69		3.34	3.40					D.O. (ppm):		Discharge	CARE	10 My Loude & 120+ My Lough
		Turbidity (NTU)		(61.3)	166.1	7. I	505	527		0				of successing:		water flow late	4 170
	3/6	E.		7.4	7.40	7,14	7.34	7.36		1000	5		Se" (1201.):	Turbodily at time of sumpling	Rocharge	water.	-loude
LD.	CASINGTUBE DIAMETER (IMI).	(mS/sm)		P.Q.M	0.314	0,6%	0.017	11810		S	3			Te		ing Kingst	i
CUPICATE LD	1 22	Temp (°C.)	}	121,54	1/1/1	21.37	149	15'12			2		Sulfidu (mpf.):		PSC		nonylaned Es
194	CASIN 7 4 60	Pump Depth (ft blue))													hue to	NO. NE
PICATION 16.	Carlo	Weter Level (if bine)	7427		2507	4.75%	2663	2.36.30					geiligenes of	(il broc):	CPMC	A Dev	200
MONITORING WELL IDENTIFICATION 9 SAMPLETO, 8/0 SQMP 20-	WATER COLLON (Rec)	Activity	Specie Person			P5-14							Colerimetrie test (taken prior to sampling)	Water Jord at these of succepting (it beac):	(*	Parso Las Ace due.	could but
AMENINE D.	WATER COLUMN (Red) WELL, FUMP YOLLDAS	Tune	CTO!	5000	1048	150	150	1057	1100				Oberimetrie	Water level at	Pump Settings	(Annual):	9

If volatiles are detected in the limitabling zone during the initial remarking, the becoding see will be positionly mentioned during parging and servicing activities. All water levels and purity depths are measured from the verbrance point (nevel) in the tup of the verble costing.

If no soldconce paint is observed than the cascag high point should be corohed and mussurements should be collected from this point.

Every alternyt should be made to flint; water lawel drawdown to less than 0.55 that and purps rate to less then 0.5 Livelin.

	*
님	Ğ
WEL	AMPLING
	Ę
ž	3
冥	CO.
MONITORING	b
Ž	HEE
ğ	55
g	DQ
E	- 1
N.A	TAI
E	DA
É	9
2	H
3	E

-	MIR Vendent With Bute 450	Mr 450			GROU	NDWATE	SR MONT	GROUNDWATER MONITORING WELL	WELL			•	J
F	Stationary Charles				FIELD	DATAL	FIELD DATA LOG SHEET - SAMPLING	T-SAM	PLING /				
WIEGH	Taken (pen) Librity		SITENAM	SITE NAME / NUMBER	1800			PURCING D	EVICE: (2)	PURCING DEVICE: (2) gédicated Pump	Teristolike Pump	mp D. Bludder Pump	Pump
ROGRAM	ROGRAM KAME LING-BU	-						SAMPLING	DEVICE: IL	SAMPLING DEVICE: I Purging Premp	Disposable Buller		
DACTION	MONTIORING WELL IDENTIFICATION	IFICATION	A-1-6	1-(m)03				OVA: O PID		PID In Cusing (ppm)	(Inisini)	~	
AMPLE 1.	AMPLE DE POLICION DE NO	ノースと	76	DUPLICATE I.C	Δ.	1		IN BREATH	IN BREATHTNO ZONE (ppe)		(Initial)	(vented to)	
TATIC W/	TATIC WATER LEVEL (II book) 2021	1600 P	6	_ WELL DE	WELL DEPTH (ft bloc)	359.50		FINAL PUSA	FINAL PUMP DEPTH (R blos)	blow 357.32		1	
VATER CO	VATER COLUMN (font) 104.	See See See	1,5	CASINGTUBE DIAMETER (IVIn)	DIAMETER (f/) 3 v (gal/ml)			SAMPLER'S SIGNATU WELL SAMPLE TIME		1021	DUPLICATE SAMPLE TIME	AMPLETIME	
Tiose	Activity	Water	Lonin	Tenip	EC	lid	Terbidity	Disselved	OIR!	Calor	Yelume	WelkPamp 1	Flow Rate
		Level	(kepth					Oxygen			Furged	Volumes	
		(R broch	(fe banc)	(5,)	(mS/cm)		(MTD)	tap/th	(M M)		(pals/mt)	l'ergett	(Carried
प्रेथिव	this me!	-	37.50	1									-900
SON		-	4.7	Calac	D. 183	1.8%	1) OC	3.00	L*9-	(Parlacture)	59.00	1,63	
least		M STE		JA:10	482.9	7,34	[- -: -:	2.99	10-	-22	5000	1,15.	
7,13		0.83.15	-		184	1.37	20.3	36	4.2		(14 OC	1.47	
さら	2	943.15		141.EB	237.0	7.33	55.5	50E	-3.9		J. 0.70 L	138	
1517	()	333.15	_		0.7%	1.36	19,3	204	-J.		7600	1,500	
000	100 mm	33.15	7	83.78	C.783	7.76	19.00	3,04	-3.7	7	2000	(((((((((((((((((((
1	-	2							. !		•		
					1						74		
						Y.							
					1	1)				ļ			
										/	/		
Colorinetz	Colodinetric test (taken prior to sampling)	or to sampling		Suifika (mp/L):	1	Fe ⁴² (mg/L);)	D.O. (ppm):	3.04	PARAMETES	PARAMETERS FOR WATTER-CUXLITY STABILIZATION	QUACITY STAF	HEATON
Water level:	Water level at time of sumpling (it bost):		333, 15		T	Turbidity at time of sampling:	of sampling:	19.0	,	Temperature	Peoperature solled readings	C_1 And C_2 (i.e., C_3) C_4	v = 3 % c
Portor Settings	2000年	-	a	82	1410	Recharge	or	Olsehange	0	ं वि⊂िह	- è	1900年11 <u>3</u> 加度上	ing L
Comments	KIN O	MICHA	CANONE AS	NO ON	100 len)				Lurlo	(2014 ± 2011) WELLS (11 × 10.54 Days)	1 ≛ 2U1U5 & 1	, (%)
		2								18)	(V) = 0.1 foot	Van di = Mio	沙色
-													

Note:

If voluties are detected in the breaking, asses during the initial servening, the ferentiating some will be parkeditedly menitored during purging and sampling activities

An water tevels and purap depths one measurest from the reference point (north) is the top of the well casing. If no missions point is observed that the traing high point should be notched and measurements should be collected from this point. Every succept should be made to light water level drawdown to less than 0.33 feet and purge rose to kee than 0.5 Linds.

. 7
-
5.5
浑
200
3
-
PIL
'
739"
Sec.
-
2
-
1
Person
F
Ph.
~
100
201
-
945
PAGE 1
•
-
-
er.
-
-
No.
2
=
66.0
lufet.
r ba

FIELD DATA LOG SHEET - SAMPLING

B-		ĵ.				1	1	Thy Rate	1	Talka (n)	000					[]	≥					MOLLYVIEW	Confectivity ± 3 %	DO * D3 mg/L	6% 01	O&P + 10 mV
200				(vented to)	i	(MOPLE TIME	Well/Parop	Volument	raille.	:	1,00	1.25	643	1.002	181	8,00					UALITYSEA	Conforth	DO # D	TATENOI <	DRP+
		C) Perfessible Postsp	Disposable Bailor		19	10	DUPLICATE SAMPLE TIME	Volume	Pargod	(impeladai)		2400	4000	1000	5200	5000	7 (70)					PARAMETERS FOR WATER QUALITY STARBLIZATION	offect readings	:0.1	Turbidity < 10 NTUs (if > 10 NTUs ± 10 %)	t) fami
		PURGING DEVICE: D'palkased han	dema Sanda		PINAL PUMP DEPTH (RIME) 26459	7	07.19	Cabe				(datus							51			PARAMETER	Temperature collect resolutes	pH ± 0.1	Turbid	WL & O.1 feet
WELL	PLING /	HEVICE: D	SAMPLING DEVICE: El Perging Pump	IN BREATHING ZONE (900)	P DEFTH(R)	SAMPLER'S SIGNATURE	PLE TIME (OR O		(w)		3.8	-3.3	13.0	- 12.A	- îl î	1-7:4							9	,	
GROUNDWATER MONITORING WELL	FIELD DATA LOG SHEET - SAMPLING	PURGING D	SAMPLING OVA. SEP	IN BREATH	FINAL PUM	SAMPLERY	WELL SAMPLISTIME	Disselved	Oxyge	(mb/L)		3.0%	3.0 -	9-05 P	a.%	2.80	3.8					P.O. (ppm):		Discharge:		
R MONI	OG SHE				ng r	~	h B	Turbidity		(NTU)		5.0	15, [10.3%	7.19	9.48			1	5	r	of sampling:	8		
MDWATE	DATAL		10 JEAR		37.3	3/8	1	袓				કુમ.ળ	85)' 9	10.79	6.84	6.87	(p. 57			1	_	Fe ^{*L} (mg/L):	Terbidity at dans of sourplings	Noother gar	- 60	
GROU	MELD	3	A-LCo	1	WELL DEPTH (A bac)	METER (M)	3 v (gallind)	BCC		(mcNom)		ୃକ୍ଷର	0.83tc	0.834	0.830	0.838	868.0					1	F	K	hat land	}
		SITE NAME / NUMBER	1	DUMICATELD	MELL DE	CASTANTATUBE DIAMETER (MIL)	٦	Tens		S.		33.56	93.94	06. EC	a 3.9th	24.93	62.95			4		Sulfide (mg/L);		Ë	Marine Contr	
		SITE NAME		COL				Pump	Depth	(A labae)	34.3		_			-	Þ							4	TO BOLL	
40.		(All	1000	38-N-	-36G	20.0	36 (waves	Water	Para	(fit bine)	1	38.35	305. AL	328.36	Jexeb	328.26	438.26					to sampling	(A banc):	CAM		
55	Telegram (904) MD-1874	13/2017	RUGRAM NAME LMC- 500	AMPLETO. A-1-(4) 038- N-1	TATIC WATER LEVEL (# boc) 235.3	ATTER COLUMN GOOD STO. OF	TELL TRUMP VOLUME (Y) (SANS) 3308	Artfritz			Stave transic	9 1					Breede	-				Columnstric test (tolices prince to sarepling)	Water level at time of sampling (R base);	ui	Also a Bush	0307
F	ב	ATE OU	RUGRAM	AMPLEED	TATIC WA	ATTER COL	FELL APUNA	Tune			CERT	POH	Rol	FILO	1913	J. 16	6160	1				Soluminachi	Vertex fewel at	ump Sorting	Spinospile.	K MS

If robables are detected in the bombing zone dering the initial servening, the breaking zone will be praintically consistent during purging and sampling activities.

If no reference point is observed then the casing high point should be natched and overgundaries plough be collected from this paint. All water levels and pump depths are nonstand from the reference paint (notch) in the top of the well excises.

Every strengs should be made to light water level drawshown to less show 0.33 (but and purge rase to less show 0.5 L/min.

This has racting the page of the formation of the formati

GROUNDWATER MONITORING WELL

FIELD DATA LOG SHEET - SAMPLING

Moder

If volations are deterved in the breathing zone during the initial screening, the breathing zone will be periodically meniumed thring prapting and sampling soll vities. All water lovels and pump deptils are measured from the reference point (noteb) in the top of the well desing.

If no reference point is observed then the easing high print about the matched and measurements should be collected from this point.

Encry askempt should be made to limit water level drowslown to less than 9.33 feet and pergetate to less dann 0.51.2min.

. г
8
→
жi.
분

. 7
7
a
5
-
U
7
Z
8
E
H
100
8
Σ
cd
函
H
<
Z
ğ
4
O

CATO CONTROL C	33524	169	Opposition of the contract of
0.79 - 46.3 (4010x 0.77 - 70.4 0.76 - 73.0 0.16 - 75.3 0.75 - 75.3	7.45 4.45 4.45 4.45 4.54 4.54 4.54 4.54	25	25.50 25.50
0.79 - 46.3 (datax 0.77 - 70.4 0.76 - 73.0 0.76 - 75.0 0.75 - 75.3	클 콩 글 같 · · · · · · · · · · · · · · · · · ·		45.50 63.50 63.50 63.50
0.77 - 77.0 0.70 - 73.0 0.70 - 75.0 0.75 - 75.3	7 46 7.45 7.45	اÓا،	And make
94 0.76 -	7-46		200
10 0 Te -	34.5	5	000
30 0.75 03 0.76	245	0.7	CO
92.0 57.		ö	į
	0.715 7.45 3	1	33 451 11.
	1		
1		-1	
	-		
1	Fe*3 (mg/L):	3	Salfale (my/L);
ni sampling 3.62	Turbidity of time of sampling		
30 Distance / 0 PH = B.1	O Rectarge 20	2	rs: 15
Tortidity < 10 NTCs (II			
WL±0.1 fani			

Kote:

If valuities are detected in the breathing zone during the initial sorceating, the invasions anne will be periodically monitored during junging and sampling activities.

All water levels and pump depicts are measured from the reference point (motch) in the top of the well casing,

If no reference point is returned then the cusing high point should be nowhelf and memorements should be collected from this point.

Every attempt about he made to time water level drawfown to less than 0.35 feet and purperate to less than 0.5 L/min.

Page 4 of

GROUNDWATER MONITORING WELL

The Residence of the State of T

THE PARTY OF

MELD DATA LOC SHEET - SAMPLING

BATE OF DU	DATE OF DOLL 1		SITENAL	SITE NAMB! NUMBER				PUBLING D	EVICE IN	PURCING DEVICE IN DESCRIPTION PLANTS	Periodiffic Pump		District Pump
MONITORII	MONITORING WILL IDENTIFICATION A-	HPICATION	1	-Cu28				OVAL FID	OND I	PID In Craing (pare)	(mittel)	~~	90
SAMPLEIL	SAMPLETO A-CLUGE N-1703	100 E	4	DUPLICATE LD.	arb.	300	5	IN BREATH	ING ZONE (IN BREATHING ZONE (ppm) (1) S. C. P.	(initial)	(wested in)	9
WATER CO	WATER COLUMN (feet (2, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,	200	1	CASTONICATIONE DA	WELL DISTRA (A DIR.) CO	3/5	2	HAAL PUM	SAMM-TR'S SHOWTH READS	1	1		
WELL A-UM	WELFUMP WILLIAM (VIEWA) 2585	Confins)	585		v (golvini)		1	WELL SAMPLE TIME.	A.E. TIME		DUPLICATE	DUPLICATE SAMPLE TIME	1
Three	Activity	Water Level	Pount Repub	Temp) FC	苍	Turbelly	Dissolved Oregical	ORP.	Coller	Yediant Turkee	Well/Pump Volumes Purged	Mow Hate
र स	Sprit ing	36.5	7.7.7		The same			(adjoin			Wales and a		Profession Age 1460
FAST I		33.5		3). (6	0.856	7.33	3,19	4,43	194.4	1/1/1/28	26100	40%	-
क्रिम		331,57	i i	33.93	0.883	7.23	13.6	4.10	(11.3		3140	1.34	4
1455		35900		335C	0.352	2.33	3.3	3.87	1611.		36.30	1,43	
1435		336.55		3389	1880	1.33	2.33	3.8	101.8		0015	163	
1441	7	237.55		33.5%	0.820	1.34	2.34	371	19.79		0836	181	
17/11/	Januar.	J. 186. 35	7	43.93	0.848	733	156	3.69	93.7	3	SOW	2,00)	W
	-											1, 1, 1, 1, 1, 1, 1	,
9.		1				1			4				
	J					かり						1.5	
)							
	200							3			İ		
Coloniment	Colonimetric test (Listea prior la samplible)	or to samption		Sulfate (mg/L,):		Pe" (mg/l.):	1	13, (19mm) 3,571	357	PARAMEIER	PARAMETERS FOR WATER QUALITY STAPPERATION	QUALITY ST	MERCATION
Water level i	Water level at time of sampling (i) bine):	g th buck	55	10	Tur	Turkidity at time of sampling	of sampilling.	SS		Temperature o	Perpending collect madings	Combiction ±33	0,133
Pump Serion	1	CPACE	6	150	1/1	Recharge	30	Discharge	10	pH ₃	hH ± 15,1	CO 4.113 mg/L	3 mg/L
Commercials:										Turled	furbedity < 10 NTCs (if > 10 MTGs ≈ 10 %)	l > 10 M Ms	(1) %3
										WL=I	WL=0.1 cm	CKP±10.uV	Vicini

Note

if votables are detected in the broatiles zone during the milial ecrement, the broathing zone will be periodically medioned during purging and sampling activities. All water kinch and pump depits are measured from the reference point (neach) in the top of the well eming.

If no reformes polar is observed then the casing high polar should be neithed and areasanness should be collocial from this point.

Swery altertips should be made to firms water lovel drawdown to loss than 0.33 fest and purgarete to less than 0.5 Umin.

TO'R TUCKY (No See 50

TEMPER TE

FIELD DATA LOG SHEET - SAMPLING MANAGEMENT OF A SAFE Schirter (NOT) 18-1874 ち 日本の大学

SYMPLE 13. A-1-C-109; V-1727 STATIC WATER ENTERN (to boe) 215.50 WATER COTEN (feet) WELL, PUMP VOLUME (V) (patini) 2475 The Antiony Water (filling) (1 15.50 15.50 16.03 16.00	. 128 2 3 11	OUPLICATE LD. WELL DEPTH (# 500) CASINCATURE DEARETHR (05m) 3 x (galfel) mp Temp EC	רפי					日間ではついていている			
STATIC WATER LAVID, (at bose) 2/2 WATER COLLINE (v) (patini) 2 WELL, PRUMP VOLUME (v) (patini) 2 The Articity Water The Articity Water [SSZ 5424 Pac 215 [SSO 2603 265 [GOO 2600 26	. 22 2 3 1	WELL DE NOTIVIDE DE S.S.				NBBEATH	IN BREATHING YOME (DOES)	Choo	College	(ochical to)	
WATTER CONTANY (Sect) WELL, PRUMP VOLUME (Y) (palmi) 2 WELL, PRUMP VOLUME (Y) (palmi) 2 WELL, PRUMP VOLUME (Y) (palmi) 2 WELL, PRUMP VOLUME (No. 1) 2 WELL, PRUMP VOLUME (Y) (palmi) 2 WELL, PRUMP VOLUME (No. 1) 2 WELL, PRUMP VOLUME (NO. 1) 2 W	1 2 5 2	ACATURE DA	WELL DEPTH (A Soc)	231.50		FIKAL FUM	HKA!. FUMP DEFTH (Check)	\$122 Car	6		
1536 State Rus 245.5 1606		Jen p	SMETTER (ON	1 3/2		SAMPLER'S	SAMPLER'S SIGNATURE	1	Case	i	ļ
Stat Pase 2		Temp	(galle:1)	ţ		WILL SAMPLE TIME	7.7	16/2	DUMICATE	DUPLICATE SAMPLE TIME.	ţ
5461 Pus C	N		21	17d	Turbidity	Disselved Oxygea	DHO	Color	Valume	Volumes	Flow Radu
5461 Pho		(30)	(யஜிய)		CATES	(mt/L)	(m)	V	(gals/ml)	Purped	alankag)
End Rus	2				1	i				11111	175
5 1 1 1 2 2 mg	15	73,64	0.483	6.96	7.29	3005	3000	clos	2530	201	
End Porce		13.61		1.0	210	56.4	roc	Clabel	2580	91	-
End Porce			0	700	2.19	507	1992	ches	27.40	1.31	
End Penge	- 15			7.07	2.34	61.97	197	Closer	3500	57.	-
End Pomp	1 1	23.40	2800		2.04	50.5	28.3	dear	2960	04).1	-
	- 14	23.38	3850	7.10	1.97	16.15	280	cles.	17.20	31.	-
(673 Sanoie				1						1	-4
					1						1
				10							
				1	-1						
					1						h
Colorimotic test (taken prior to sampling)		Sulide (mg/L):	ŧ	FG** (1019/L.);	ì	D.O. (mpm):	V	PARAMETER	S FOR WATER	PARAMETERS FOR WATER QUALITY STABILIZATION	DILIZATIO
Water lovel at time of sampling (ft idne):	15:312		E	Outlidity or time of sampling!	Sampling:	1.47		Temperature	Temperature callect medings	Conductivity 1.3 %	19 1 3 %
Purm Satings Cit	T Set	8	Į	Recompar	j	Capplege	,	pitte	pit = 0.1	1XX + 0.5 mg/L	. more
Comments: Lawer Paper Spelay, Oal	Spc/49. 1	on pre	3274 gr		Personed	78.79		Didni.	Sy < If NTTA (Turbidity < 10 NTTA (if > 10 NTUs = 10 %)	(% 0)
to Receive	•							11.14	W. t 0.1 icat	OKP. : 3mV	3mV

If vobilies are detected in the breathing zone during the initial seconding, the breathing zone will be periadically needland during purpling and sampling activities. AL water lovels and primp depths are pressured from the reference paint (noteh) in the tap of the verification

The eference point is observed than the easing high point throth to notable see measurements should be collected from the print.

Every missing security to Limit with the Line from South to loss than 0.30 feet and purporate to loss than 0.5 Limit.

78 Oct

WELL	PLING
ORING	P-SAM
TINOM	SHEE
GROUNDWATER MONITORING WELL	PIELD DATA LOC SHEET - SAMPLING
DUNDA	J.D. DA
GR	1

Mark Combride May Sain 410 San Samestes, CA 19445 Schauses (101) 34 4504

□ Bladder Pump (vinotad to) DUPLICATE SAMPLE TIME C. Perisablic Pump O Disposable Beller (Partie) PURGING DEVICE: D'Optioned Person SAMPLING DEVICE: El Purphe houp OVA- | PID | PID In Cashy ((ppg)) WELL SAMPLE TIME OF 25 SAMPLER'S SIGNATURE TA IN BREATHING ZONE (ppm) FINAL FUMP DEPTH (1) CAN WELL DEPTH (A book) 334,550 CASING/TUBE DIAMETER (IMB) 3/8 STEHAME/NUMBER BOU 3 v (gadhmi) DUPLICATE 1D. MONITORING WELL EDENTIFICATION 13-1-(U.) WELL AVINE VOLUMB(V) (galled) 5190 SAMPLE TO 19-1-CUSII-N-1708 STATIC WATER LEVEL (A MOS) 151.05 WATER COLUMN (BOIL \$ 3.45 Color of the Party DATE O'LIDS PROGRAM NAME

Tille N	Activity	Water		Temp	3	¥	Turbidity	Digueltrad	ORP	Š.	Volens Puyted	WellTung	Flow Bote
		(28 bitset)	(fit films)	8	(mS/cm)		(NTTU)	(mg/L)	(ww)		(psychied)	Paripal	(gelfrein) mKenin)
553,0	Shat Rene	Slac	322.0							0			(5.0)
0110	0	S.Ole	-	40.7 Y	1914	7,100	9.58	0.83	181.8	cholossy	525	1.02	-
0975		151.07		120.77	216.0	097	37.18	0.84	1725		5700	(1.1)	_
SI PO		151.03	_	190,97	0.930	7.100		520	8701	_	6,150	06.1	
5160	-	(51.07		30 98	0	7.60	2.39	0.77	159.6	_	(etoDO	1.39	
(933	7	151-07		C18 650	0.93	46.61 On.5	46.6	0.77	157.4		7050	1.37	
2690	change !	50.05	>	1097	0.937	7.60	840 CET	673	15.3	A	75.00	1.410	7
	\vdash					_	/						
						1							
				,						/			
Colorinsete	Colorinseate test (taken prior to sampling)	ar to sampling		Selfida (mg/L):	١	Fa " (mg/L):	1	D.O. (ppm); Q. 73	0.73	PARAMETER	S FOR WATER	PARAMETERS FOR WATER QUALITY STABILIZATION	MOLIZATION
Water Lavel	Water lavel at bless of secretibing (if bitse):	(At blue):	151.04		T	Turbeiffey at time of campillage 2. 2.2	of sampling:	233		Тетропетию с	Temporaturo collact readings	Couchacth	Conductivity ± 3 %
Purop Schings	*		3	É		Recharge: 01.0	0.10	Discharge	0.5	pH & 0.1	1.0.1	DOWD	DO a D.3 mg/L
Courseson	Consiste MS MS D	0								Turbld	ity < 10 NTUs	Turbidity < 10 NTUs (if > 10 NTUs ± 10 %)	10 %)
										WL±	WL ± 0,1 (box	ORP	ORP± 10 mV

Notice

If we takes are detected in the becausing zone during the initial screening, the breathing zone will be paradically monitored thefag proximg and sampling activities. All waser beeds and parmy departs one racessared from the reference poles (nouts) in the cop of the extil exting

If to reference point is observed than the casing high point should be notehed and measurements should be solked as from this point.

Every adverge, gleaned to exacts to limit vester level drameters to from them 0.30 feet and pumperate to less than 0.5 Union

JOI & VERSTAND, R. P. S. S. S. St. Barneron, CA 1924 THE REAL PROPERTY. BEI GOT SEN THE

PART INCH

FIELD DATA LOG SHEET - SAMPLING

DATE 4-4616	1-4-16		SITT! NAM	SITH NAKE/NUMBER CAL BOL	CAL	BOW		PURGING D	EVICE: 135	PURGINO DEVICE: EScalusado Penço	I. Peristaltic Fump	mer il Bladder Paren	Party
PROCEAM NAME	NAMIT.	1: 1:	0.00	1		I		SAMPLING OMA TEGS	DENICE E	SAMPLING DEVICES Educing Party	cble		
NOMING W	MONIGORING WILL HOUSELING ALLON	ILLA LON	2 (2 (,				מארואה	L'ERES D	CANCEL STATE TO COMMING (MAIN)	((6:38)	Contract to	
STATIC W	STATE WATER LEVEL (1720) 156.06	-170-15c		MELICATECD.	PLICATECD.	174.5		IN BREATLING ZONE (655) FINAL PUMP DRPTH (6 bigs)	NG ZONE (IN BREATHING ZONE (GEO) FINAL PUMP DEPTH (Fiber) (6 4/3)	Cining	(vrauto) [1]	
WATERCK	WATER COLUMN (fec)		CASH	CASSINGATURE DIAMETER (RS)	MITTER (64)	200	3	SAMP LR'S SIGNA TOUS	SICKATER		ston Cent		
WELLIPCA	WELL PICKIP VOLUME (Y) (FILM) (450	(Baltin) (FE	30	34	3 v (galle:1).)		WELL SAMPLE TIME 1500	TETIME !	200	DUFLICATE	DUFLICATE SAXPLE TIME	1
Time	Activity	Water Level (ft bloc)	Pump Depth (A HIRE)	Temp (CO	EC. (mS/cm)	H	Turbidity (NTRL)	Dissolved Oxygen (mg/L.)	ORD (mv)	Color	Values Purged (gats/m))	Well/Pump t Volumes Purged	Plan Rate (gulfmin
ICh!	Str. Pary 156.06	156.06	(64.3							1			26
hhhi	ι	156.06		22.88	1.73	25.2	28.2	12E	16.4	Clear	1950	1,0,1	
1447	Ţ	186.00	١	27.64	1.170	3.5%	1.08	344	11.6	clear	35.52	15.5	
63h1	į	60.00	1	2712	82/1	15%	7.14	356	(1.3	clon	3120	191	
1453	3	156.00	ľ	24.12	1.78	258	1.78	3.54	14.0	clear	-50%	1.4.	
June	1	156.06	١	5h.12	178	181	1.37	2.49	11.8	CKAS	0,111	1.17	
1459	459 End Pay	156.06	1	27.34	92 :	7.58	(,13	3.33	136	cheal	148%	1.53) j
(500	3									!!!			*
i	-			1				1					1
												42.00	
						1							
i								1					
Colorinute	Cobrinuttie tust (taken prior to sempling)	r to sampling		Suifie (mg/L):	7	Fo ¹³ (mp. 2.);		DO (mm):		PARAMITTE	RS FOIL WA! EI	PARAMETERS FOR WALEL QUALITY STABILIZATEDY	BILEZATEON
Water lavel	Water level of lime of sampling (It black	Cit Starty			T.	bidity of time	Turbidity of time of sampling:		C	Temperature	Temperature collust readings	Conductivity + 3 %	34 + 1%

If veletics are detected in the breathing zone during the failed seneming. He breathing cane will be policided by contioned during people and sampling activities All water levels rad pump depite no messured floor, the inference poter (noteb) to the top of the well reduite NO.

10 = 03 cm2.1.

MIT + R.S.

Discharge:

Renksage:

Ľ

Chang Settings: Comments: URD . TRO

W. # 8.1 Sac.

(96 DI THE LIN DI < 310 BELLIN DI > 30 MILIN DI > 30 MILIN DI NO.

The reference point is observed than the maint high paint should be notabled and measurements should be collected. From the point

Uway estempt should be unable to little valor hand drawslown to has than 0.33 floot and purge rate to has than 0.5 Urahin.

	CONTAINED TO See 470	M-44			GROU	GROUNDWAITER MONITORING WELL	R MONT	TORING	WELL			+	Ļ
נו	Ter- (800) MI-1674	1775			PIELD	PIELD DATA LOG SHEET - SAMPLING	OG SHEF	T-SAM	PLING				
MTE (M	CHEINS CA		SITE NAME	SITE NAME / NUMBER	200			PURCONG D	EVICE PO	PURCONG DEVICE: Pl Dydoned Pump	🗌 Periesaltic Pas	mp Bladder Promp	: Promp
ROGRAM WAME LACE BEY	- THC	6 EV						SAMPLING	SAMPLING DEVICE OPPORTED POMP	Togethe Person	Disposable Bailer	ile Other	
CONTICKENG WELL IDENTIFICATION	ELL IDENTA	PICATION	B-1-6033	5				OVA: [] FID	I CHO I	PID Is Cashig (ppm)	(minu)	(or baltony)	
AMPLE TO POPE CAN 13- N-1763	-CM13-	N-176		DOPLICATE LD.	J			IN BREATH	IN BREATHING ZONE (ppm)		(initial)	(vented to)	
TATIC WATER LEVEL (R binc)	LEVEL (R be	199	(8)	WELL DE	WELL DEPTH (R bose)	_		FINALPUM	FINAL PUMP DEPTH (A MES)	COM	S		
WATER COLUMN (feet)		5		CASINGITUBE DIAMETER (MI)	WETER (M)	3981		SAMPLER'S	SAMPLER'S SIGNATURE	000			
CICED (INVINE VOLUME (Y) (MINI) DECID	LUME (Y) (milani Or	20	1,	3 v (ggl/ps))			WELL SAMPLE TIME	PLE TIME	819	DEPLICATE SAMPLE TIME	AMPLE TIME	١
There /	Aerdodo	Waler	Paren	Tom	23	=	Tarbidity	Dissolved	ORP	Cador	Vederate	Wedfron	Flore Hote
-	7	Level	Death			•	ıs:	Oxymen			Parget	Volumes	1
		(feltroc)	(R btac)	(S)	(meS/cm)		(UTV)	(mg/m)	(m)		(السائطوي	Parpet	ra (take)
Antico Anti	Shirt Mach	(४)	- 506									Ī	A01)
		(% b)	_	31.41	0.98	7.al	2.32	Y.34	(S)	ysgajaj	00%	1.13	
000		199,9		27	619.0	424	0,49	5.24	ga 7		3400)	1.36	
80		8 80		11.39	0.917	(19th	19,05	5.95	4.18		2007.	160	
0.19	_	19.1.8	_	21.37	419-0	٦, d3	2.37	5, 19	1421 T		(1/10)	1.82	4
510		18.5	_=	01.35	0.911	1.33	3,0v.	013	84.085	9	Saou	3.03	
Û	Samoli	(8.6)	7	21. 39	0,909	7.33	2.01	5,14	85,00	>	2082	8.33	>
	-			5				-4	-				
-													
				,					3			/	
												7	
100			L			L							1
Colorimetric test (taken prior to sampling)	(takes prim	r to sampling		Swiffede (mgg/L.):	1	Fe & (mg/L)	1	D.O. (m=± 5,) \	5,14	PARAMETER	PARAMETERS FOR WATER QUALITY STABILIZATION	QUALITY STA	HILT.A.TION
Water level at time of sampling (A total):	of samplag.	(A Max):	184.5J		F	rhadity at limbo	of Manphing:	23.3)	,	Темрегатие (Temperatus collect readings	Combactivity ± 3 %	N+3%
Puma Sotimers.		CPR	1	- TSA	Ñ	Rectuege (X) Disula	ठ	Disdange	2	PH	pH±D.1	00+03 mg/L	ியஜிட
Constitution				1	1					Turbi	Turbidity < 18 NTUs (kf	IT > 10 NTUs# 10 %)	(9%-0)
										歌	97L ± 0.1 Som	OKE ± 16 mV	it mV

If voluties are detected in the breuding some during the initial screening, the forcetting zone will be providedly measured during purging and sampling activities.

All water heads and pump depriss are measured from the reference point (motel) in the top of the well exting.

If no reference paint is abserved then the caring high point should be notched and measurements abould be collected from this paint.

Every extensit should be made to limit water level drawdown to less don 0.33 fest and purperule to less than 0.3 Limba.

MINISTRACT. PINE. N. CH. 日から さい 年 3日 上の日本の Market (SN) III. 1674 THE PROPERTY OF THE PARTY.

TENATESIS

PIELD DATA LOG SHEET - SAMPLING

PROGRAM NAME	KAME							SAMPLEYC	DEVICE: (4)	SAMPLOYO DEVICE: of Turping Fump	Disparate Bailer		Llosier.
MONTON	MONTORING WELL IDENTIFICATION	PICATION	41-14	A1-5417	2			OVA: E FD	Offin is	OVA: E F.D OAD In Casing (ppm.)	Co (licinic)	20	
SAMPLE LE	SAMPLE D. 3-(-CM-7-1/-7-6-7)	2-96-4		CUPLICATE 1.D.	, A) (mar)		IN BREATHING ZONN (µm)	NG ZONS (thun)	Gredian O	(versed 16)	1
WATER CO	WATER COLUMN (New) 1911	677		CASING-CRE DIAMEN	AMETER (SAM)	1 3/2		SAMPLEA'S SIGNATURE	STGNATICE	Safe.	Cate		
WIEL, MUN	WHEEL, MITTHE VOLUMES (V) (BAINIT).	Chip) (dirtio	100	١	5 v (galval)	.\.		WELL SAMPLE TIME	THE	150	DUPLICATE BANKLE TIME	WELS TIME	t
Тъпе	Artivity	Watter Level	Pump Depth	awa).	Da .	Πď	Torbidity	Dayen	ano	Color	Valous	Welfifump	Flow Kato
		(ft bloc)	(ft 140c)	(°C)	[mayem]		(אנגי)	(a)/jia)	(my)		(gullaiml)	Parged	(gallenia mutmia)
0758	Sent Pouge	S2-01	1573									1	150
2180	1	140.73	1	272	1.140	7.69	917	378	3.201	class	2012	30	
25.80	(146.73	1	71.30	1.140	7.64	121	60%	1:251	class	2552	2	
20.00	,	P40.77	1	35.15	1/11	7.62	1.40	3.92	10:516	che	OCIX	1.53	
11.90	1	140,73	I	12.30	2011	27.62	51.2	3.5.6	75.5	درسور	3450	86.1	
1080	1	14073	ŧ	282	8414	7.62	14.2	3.95	292	clear	3460	0.7	
7120	13	140,73	ţ	7436	tils	7.62	1.60	2.6.€	45.9	clar	-	2,31	1
0830	End Phone	140.73	t	2137	L. Pert	17.2	211	3.79	593	Close	d aco	んじつ	1
1880	Sample		Ì									i	*
		1	3	J									
						*	XI		1				
1									5		•••		9
Colorimetri	Colorimetric test (taken prior to sampling)	guildenes et :	1	Scalinds (rappl.):		Pa" (mg");	1	D.D. (ppm):	1	PARAMMETIR	PARAMETERS FOR WALER QUALITY STABILIZATION	ATT STA	BLEZATION
Word love, a	Worst love, of time of sampling (f. blac):	(f. blac):	140.0	^	,ª.	Techinist at time of campling.	जीव्याचित्र का	5		Cerponium o	Composition exiliar, reading	Confluctivity + 3 %	N+3%
Fump Satings:	ñ.	CPMS	1	8	ļ	Rechnige	l t	Discharge:	1	plf : 3.	3.0	DO ≠ 0.3 10p/L	T/Bai
Comments		1	İ	*					V	Turbiel	Publidity < 10 NTCs (st > 16 NTCs 1 : 3%)	> 1GNTCS1	19%0
										4 (33)	- P. P. C.	W. 61 . Car.	WN

If which is no depend in the breaking one define the helial sepanting, the boatsing cans will be periodically reservated during postuling and sampling postuling. All water leavise study pures deputs are measured from the reference polati (noted) in the tap of the wall easing.

** ** **

If no reference point is observed than the easing high paint should be setched and measurements should be collected from this paint.

Every strongs should be made to limit water level drawdows to less than 0.33 Eart and purps rate to less than 0.5 Uraha.

JAILE, Vanderfüll Way State 856 Selferments, CA 47845. Tolydon POSPNI-1574

HINE ALEK

FIELD DATA LOG SHEET - SAMPLING

Phong					4		Flaw Rate	(contrasta	(26)	-					>						SILEZATION	6+3%	mg/L	0.80)	Vm 0
mp E Bladder Puem	100	(vanhed to)	(vested to)		(AMPLE TOWE	WellPump	Parmed	1	1.02	411	1.26	1.58	(51)	11603					,	GEALLITY STA	Conductivity 4 3 %	DO ± 0.3 mg/L	f > 10 NTUs ± 10 %)	ORP 10 mV
Perionitic Pump	Disposable Buller	(bilda)	Cinylial)	2		DUPLICATE SAMPLE TIME	Volume	[fm/shett)		473	S330	5830	6400	1030	7000						PARAMETERS FOR WATER OSALITY STABILIZATION	lies rentings	0.1	Turbidly < 18 NTUs (if	. I foot
PURGONG DEVICE: N Dydsound Pump		OVA: THE PRE IN CASING (ppm)	(1)	FINAL PLIMP DEPTH (R bloc) 24-	GA	1905	Coler		1	(slee lab)	-				Ŋ	à					PARAMETER	Temperature collect restings	pH ± 0.1	Turbid	WL & 0.1 foot
EVICE: NO	DEVICE: 62	PITT IN	EN BREATHONG ZONE (mm)	P DEPTH (A)	SAMPLER'S SIGNATURE	PLE TIME	OKP	(m/V)		38.0	38.6	40.)	39.4	39,1'	25.9	•					Silvi		0/		
PURGING D	SAMPLING	OVA: THD	CN BXEATH	FINAL PUM	SAMPLER'S	WELL SAMPLE TIME	Dinsolved	(mg/L)		Sign	5,48	5,43	5.35	5,46	5,64						D.O. (spen): S. (pd.)	4.77	Discharge		
	5		89	0.	2		Tarbidity	(NTI)		3.x7	2.87	4.17	2.70	2.63	2.77							of sampling:	g		
				309.5	3 3/8	1	Hd			11.6	30,0%	7-05	7064	7.04	2,05	, (10	T	1		Fe ⁴² (mg/L): -	Turbidity at time of sampling:	Recharge		
1200			, d	WELL DEPTH (A blox)	CASING/TUBE DIAMETER (BAD)	3 v (gal/tal)	BC	(mS/km)		0.8°4	0.865	0.86S	578.0	3,865	0.806						1	20	3		
SITE NAME / NUMBER 1972)		000	DUPLICATE LD.	WELL DE	GATUBE DAY	γE	Temp	6	ŀ	33.37	34.29	33,15	73.14	19.	Ja.20						Sulfide (mg/L):		PSE		
SITENANE	,	8-1-60000		4.7	CASIN	1/67	Pamp	(IR bitor.)	394.5D					_	\wedge							14.95	9	8	
	CHC-BOD		トに名	m) [4].	53.00		Water	(fi bloc)	65 lh!	41.99	141 95	141.95	85 W	141.95	14.95						to sampling	'in blue);	CPIK		
	1	ONITORING WELL IDENTIFICATION	WHELP & TOUGHT PLINE	TATIC WATTER LEVEL (A bloc)	ATER COLUMN (Text)	Brig.	Activity		Shrut Buch	9		-		70	Show of	_		5			olorimetric test (taken prior to sampling	ingr level of three of sompling (it blue):	2		
ATE 64 13 17	OGRAM NAME	CHITOTING	MPLECD	ATIC WA	ATER COL	ELL/PUM	Tier		335		355	256	259	130a	1505						olorimetric	'acur lavel of	umy Sectings:	omments:	

If voloties see described in the breaking zone during the initial screening, the breathing zone will be periodically metahored during purging and sampling activities.

If an relation point is absenced than the casing high point about de exched and measurements should be collected from this point. All water tavals and pump deputes are measured from the reference point (spech) to the top of the well earling.

Every stiency: should be made to linest water level drawdown to kess than 0.33 foot and purpo rese to less than 0.5 Livesin.

CHA FECTI	C.Variable Way William	The Carlot	PART WHITE AND PARTY.	ALTA MILLER TO
TEN	# 5 M	Ass.	The state of the s	2117

HELD DATA LOG SHEET - SAMPLING

ATE CONTRACT.	8411		SITE NAME / NUMBER	45/NUMBE	1	1		PURGONG D	BVICE IN	PARCONG DEVICE: IN INSECTION PARTY	Periotolike Penser	ħ,	Ribothier Present
ROCERAM NAME	NAME							SAMPL DAG	NVICE	SAMPI DAG TAPABUTE Burning Pomer	Theres he Beller		
MINITORIE	CONTURING WELL EMPTHYCATION B-1-(LALS)	TIMCATION	8-1-aus	3				OWA: FID	L Old	OVAL FID PD In Costre (now)	(imitty)	-	3
AMPLEIT	AMPLEID OF CHASEN -1	N-1763		DUPLICATEID	EID.		1	IN HREATH	N HREATHING ZONE (man)	, immi	(Print)		1
TATIC WA	TATIC WATER LEVEL (figher)	E	060	WELL	WELL DEPTH (IN the boy)	198.5	2	FINAL PUM	FINAL PUMP DEPTH 30 Jac		184.50	(Mar 2014)	Los
ATER CO	ATER COLUMN (feet)	1.000	CASI	NOTHIBED	CASING/TRIBE DIAMETER (Fulls)	3/80		SAMPLER'S SIGNATURE -	SICHAL		1		
EL PUN	HELL IP LIMP YOLLIMB (V) (pallmi)	(palfml)			V (god/ed)			WELL SAMPLE TIME	PLE TUME		DUPLICATE	DUPLICATE SAMPLE TIME	
Tiene	Astivity	Water	Property of	Total	3	1-	Tentility	Terbiffly Disserted Outgett	- CORTS	Offer	Volume	Welking.	Flow Rate
		(m latera)	(fit bloc)	ē	(mS/cm)	/	(UTIVO)	(Mg/L)	(Ami)		(grahaten)	Perged	(golfanin
					/	1	1						
						1	7						
						H	V						
							1						
								/					
									/				
									7				
												H	
akorlimetrik	ekorhoetric test (taken prior to sampling)	N to sampling		Salfide (mg/L):		Fe" (mg/L);		D.D. (ypm):		PARAMETERS	PARAMETERS FOR WATERCOLALITY STABILIZATION	CUAL TY ST	MULZATION
oks kred a	over lovel as time of compiling (A blue):	t (At blue):			Tab	Terbidity as time of sampling:	Sujetnes jo			Temperature cellent reselber	displacements	Charlesterity ± 3 %	新女士(A)
Solings:		C		Ë		Rocharge		Discharge		pH ± 0.1	0.1	DO = 0.3 mg/l.	3mg/l.
aments:	FINENCE @ (BAMA) SEMANIE WORLD LECAUNE PLEND L'E about 1 water	Brand	S (Wel	1	ALL F	J.m.	doci	CAN ON CO	tra_	Turkidi	Turbidity < 18 NTUs (if > 10 NTUs ± 10 %)	I > 10 MTUs x	10 %)
2,20		٠	İ			0		1	•	WL±01fan	I fami	U8P = 10 mV	10 mV

If volvibles are detected in the breathing some during the fallow screening, the breathing some will be periodically consistend during purging and sampling activities. All water levels and pump simples are amounted from the reference point (totals) in the top of the well cosing,

If no reference polist is absenced then the casing high point should be nearled and measurements should be collected from this point.

Every attempt should be made to timit water level drawstown to less than 0.33 feet and proge cale to feet than 0.5 Limin.

Poge ____di___

GROUNDWATER MONTFORING WELL

FIELD DATA LOG SEEET - SAMPLING

And E. Vambelde Way Mann 470. Em Directory, CA. 92495. T. Angelene (1994). M. J. Ob. F. Angelson, St. J. Ob.

THENTECH

178 CE	ATE CE (34)		SITENAM	SITE NAME (NEUMBER SOL)	800			PURCING D	EVICE CO	PURCING DEVICE: O'Dedicated Page	D Periatelic Pumo		☐ Bledder Pone
ROGRAM NAME	VAME LAC.	Lhc-gru						SAMPLING	SAMPLING DEVICE & Purging Perp	urging Pemp	~		
ONITORN	ONITORING WELL IDENTIFICATION IS - LUNCAS	IFICATION !	3-1-(W)	50				OVA: DFD	OVA: CFD GPID In Cashig (1951)	Casing (rgsm)	(Intellat)	(or based to)	
AMPLE 1D	NAME OF THE SE IN-1700	N-1705		MINTICATE	DUMLICATE ID. B-1- (L.18) 5	19-FD-	-1703	IN BREATH	IN BREATHING ZONE (ppm)	1		(vented to)	
TATIC WA	TATIC WATER LEVEL (R MOC)	100 E	4	WELL DE	WELL DEPTH (\$ 844)		2	PINAL PUM	PINAL PUMP DEPTH (A boc)	(Some	1		:
ATER CO	ATER COLUMN (feet)	1.53	CASIN	NGTITUBE DAY	CASINGTUBB DIAMETER (RVin)	1,3/6 (SAMPLERS	SAMPLER'S SIGNATURE		Kar		
ELL FUM	ELL PUMP VOLUME (V) (pales)	Canton) C.	0.5	3 4 ((papped)			WELL SAM	WELL SAMPLE TIME 11 20	130	DUPLICATE SAMPLE TIME	AMPLE TIME	130
Tage.	Activity	Water Level	Power	Temp	jį.	76	Parbidity	Dissolved	ORL	Caler	Volume Purged	Well/Pump Aelume	Flore Parts
		(fit laloc)	(fit bree)	(J ₀)	(mayen)	-51	10.101	trop(L)	(A#)		(ga[c/m])	Furged	(gal/min
103	Start ober	(8753)	189.00										06/
14	7			43,17	1640	17-1-1 12-1-1 12-1-1	165	11.7	50.7	C. 400	0380	200	
117		K7.55		33,13	0.633	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.63	4.71	46 8		2850	1.25	
130		49.55		33.43	0.034	7.40	5.06	12.7	1.54		2130	1.43	
(Q3	_	187,55		33.59	C. 432	7,45	4.78	4.67	1.44.60		3990	1.90	
N 2- Pg	1/6	083.80		J3.10	6.43	7, 7	334	7.0	-44.)		4560	9,17	
113.9	Ruple	187.50	- -	83,1)	10,4631	7.49	3.85	19.7%	43.9		5/30	2,44	
							(-	
						1							
				,)					1	
	!												
						,			-				
elocimetr i	solocimetric test (taken prior to sampling)	r to seropiing		Suffice (ng/L;)		Land Control	e i	DO. (ppm) '4-16 "	7	PARAMETE	PARAMETERS FOR WAITIN QUALITY STABILIZACION	QUALITY ST	ABILIZAÇION
fator level a	After level at time of sampling (8 base):	(B bace):	2			tiddity or time	Tartidity or time of sampling.	200		Temperature	Temperature collect peatings	Combine	Continuision of Sign
army Sections	ii.	rg Ë	ررو	S. S.	S	Recharge	ā	Discharge	0	FI	pH=01	[H·+]	[ել±0,2 ացվ,
bearing is:									-	Lurk	Forbiday < 10 ET Us (af > 10 NTES ± 10%).	d > Longe	t U.€.;
										T '3/K	WELL OF REAL	ORP.	ORP - 30 mV

Medica

Executios are decored in the broating zone during the initial screening, the breating have will be potentically mentioned during purging and sampling serivides.

If no reference pulse is also exwell then the casing high poles should be mothed and measurements should be collected from this poles. All water levels and pump depicts are measured from the reference polici (cotols) in the top of the well casing.

Every severage strengt do mank to limit wroter level drawdown to less than 0.33 first and purge mix to less than 0.5 Limits.

TITTE IT

5	Riedder Pung		(0))	Flew Rain		101	-				/						NONZATION	· · · · · · · · · · · · · · · · · · ·	3 mg/L	10%)	Vertel
A.		(wested to)	(of palean)	DUPLICATE SAMPLE TEME	Well-may	Penyed		109	1.73	1.45	1.36	83-1	100				/	מטאברדי אדי	Conductivity ± 3 %	DO ± R3 mg/L	f > IO NTUS±	ORP = 10 mV
	C Periodolic Promp	mikel)	公認い	DUPLICATE	Verbus P.	(palkina)		Oltor	SSID	08(79)	G0057	Page.	060			1		FOR WATER	Nect remaining	0.1	Trabbilly < 10 NTUs (if > 10 NTUs ± 10 %)) foot
	CT - SAMPLING PURCING DEVICE To perfected Pump	PID 1+ Cacing (spm)	THE PERSON NAMED IN		Sept.			10/1/186				-1	A				1	PARAMETERS FOR WATER QUALITY KTÄBHAZATION	Temporatory cellect resump	pH±0.1	Turbéra	W. ± 0.1 fors
WELL	CT - SAMPLING PURCING DEVICE To bedraid Pun	OMD 1	IN HREATTING ZONE (1998) PHAL FUND DEPTI (10 MA)	SAMPLER'S SICNATINE WELL SAMPLE TIME	ORE	(ver)		141.3	33.5	131.3	111.4	lorg	5:601		1			3.8		0		
TORING	ET - SAM	OVA: FID	HINAL FUN	WELL SAM	Described Oxygen	(Table)		3,85	8.75	3.70	2.73	4.50	18.6					D.O. (ppm):	2.53	Discharge		
GROUNDWATER MONITORING WELL	FIRED DATA LOG STEET - SAMPLING PORTING DEVICE 1 PORTING DEVICE 1		0		Tertificary	(NEED)		3,19	03:00	3.58	d+.40	9.90	1.8.1		1		100	l	of sacroling.	္ရ		
NDWAT	DATA	1	338	May 2(2)	ī			40.5	7.64	1.63	7,64	7.464	17 A	A.				Fe st (regis.);	Turbiday at hear of samples.	Recharge		
CROC	TANK TO THE TANK T	1	DEPTH (A Noc)	MANUELER (Risa)	39	(mSMcm)		0.650	CS CS CS CS CS CS CS CS CS CS CS CS CS C	0,047	51000	Octo 5	0 (68)					1	ET.	105		
	STE NAME / NUMBE	U		CASING/TUBE D	Temp	Ĝ		0.13	30 26	24.0	GE 51	- 1	71.66				Ĭ	Suillide (mgd.):		2		
		gryy-g		481a		(Till Most)	335			1	-	7	>					6. 02		<u>ا</u> ا		
	CHC-BW	PICATION.	19.17		Water	(It bloc)	129,57	CR.52	1.25	19:87	15.85	18.01	179.87			100		1	Ξ.	ĕ		ļ
NI B. Machadows Sale (Sa		MONITORING WELL IDENTIFICATION DELLAND	STATIC WATER LEVEL IR boot	WATER COLUMN (feet) TO OUT OF	Activity	\neg	NATURE OF THE PARTY OF THE PART	3				3	Don't L				Ni P	Colorimetric test (taken prior to sampling	Witter have at time of sampling (A bloc):			
F	DATE CH IN	SAMP FIR	STATIC WA	WATER CO.	Į		08.30	01%	08.5K	COS	MOS	2010						Colorimetric	Water level at	Perry Scallage.	Continuenta:	

If whiches are detected to the breathing zone during the inhial screening, the breathing zone will be peakedlessly zone-inside during perging and sampling activities. All water kneets and pump departs the measured from the reference point (noteb) in the top of the well casing.

If no reference point is chost and then the casing high print should be notched and measurement should be collected from this point.

Every edicingst should be made to limit water level drawbown to less than 0.33 feet and progestate to beas from 0.5 L/min.

Page 1 of

GROUNDWATER MONITORING WELL

JOHE VANAMONIA SAMPLES CONTRACTOR

TOTAL VIEW

FIELD DATA LOG SHEET - SAMPLING

Bladder Pump					\	000	Plow Rate	darke)	S. LIDERS	067	-					€				NOLLZATION	Consultyly ± 3 %	DO±03 mg/L	10 %)	ORP ± 10 mV
10.07	II Clother	(mested to)	(vepwed 10)	ĺ		WILE TIME	WeDTump	Pargod	Ì		,03	(13)	1.43	1,33	1.44	1,54				UALITY ST	Compact	DO# 0	> 10 NTDs	ORP.
7 Perfestable Pamp	Disposable Dailar	(indian)	Gulitan	105	Ode	DUPLICATE SAMPLE TIME	Volume	(ratebal)			S510 16.	(ORO#)	1000	Н	9	1 (10%)		_		PARAMETERS FOR WASHE QUALITY STABILIZATION	Heet readings	6.1	Tertricity < 10 MTUS (If > 10 NTUS ± 10 %)	Al Sopt
MURGING DEVICE: B Dydenial Perp	SAMPLING DRVICE: Wruging Pump	PID In Casing (ppm)		33	백	Stan	Color	•			"dalus		_		_					PARAMETER	Temperature collect readings	pH±6.1	Tortycki	WL 4 0,1 Epot
BVICE: BE	DEVICE: D		IN BREATHING ZONE (MAN)	P DEPTH (R	SAMPLER'S SKONATURE	WELL SAMPLE TONE OTOP	-280	S. E.			-135	8-91-	1-19.1	1303	1-39.1	510.0				2/1/2		6		
MURGING D	SAMPLING	OVA: PID	IN BREATH	FINAL PUM	SAMPLER	WELLSAM	Dissolved	(merit.)			2,39	he's	7.30	3:18	2.16	215				D.C. (some)	0470	Discharok		
			163	0	×	L I	Tarkidity	(NCI)			(c. 32)	6.3	542	(9.29	5,54	470				ļ	of committee:	21	i	
			8-1-62-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	150 ST	318		Ή				7,47	7.47	7.47	2.47	7.48	7.47		10		Fe ⁺² (modf.):	Technicity at time of semoline:	Rochame		
(ug	=		13-1-200	WELL DEPTH (A broc) 70	CASDICATURE DIAMETER (DA)	3 v (gal/hol)	BC	(mSylcan)			0.775	52.4.0	2:12-0	O'LL'O	5220	511]		ğ	1	
SITE NAME / NUMBER		De	DUPLICATE LD	WELL DE	CATUBE DIA	3.	Teamp	Ş		Ţ	4.67	9.99	do or	H.05	10.00	L				Staffide (moff.):		Ŕ	į	-
SITENAME		B-Kw38			CASD	28	Party	Deposit		12550	L				_	>			6		FRA		8	
	Am)	FICATION	7/2	148	30.00	M	Water	(fr later)	,	18.34	H3.32	18.3	48,31	NS 30	FO. 22	18.33				to committee	fi Store):	0		
DATE OF IST	PRODUKNAME (M.C. PAI)	MONITORING WELL IDENTIFICATION	SAMMEIN R-1-0058-1-1703	TER LEVEL OR bu	SOS SOS SOS SOS SOS SOS SOS SOS SOS SOS	WELL APONE VOLUME (V) (palm)	Activity		Q!	Sant Page	9	_			_	Sparole				Coloniscostrio test festes rejue to caracting	Water book of time of compline (6 tack)			
DATE OF	PRODRIVE	MONITORS	SAMMEIN	STATIC WA	WATERCOL	WELL ACM	1000			08160	気が	Shar	0%50	SACE	C.85.7	900				Colonisoustria	With India	Paren Sothlan	Consocrite:	

Make

If voluties an element in the bounding some during the tokind someoning, the breathing some will be periodically monitored during penging and suppling settivities.

If no reference point is observed than the casing high point should be notched in a management should be collected from this point. All water heads and pump depths are measured from the reference point (neath) in the top of the well casing,

Eway strangs should be neede to limit wester level desertown to has dran 0.33 feet and purperate to has than 0.5 Lifeth.

Prope 1 of

L B'adder Pump

J. Peristable Ferry C. Dispassible Beller

PURCING DRVICE: V. Decision Pring SAMPLING DEVICE: V. Virging Fump

STENAKE/NUMBER LACTOR

L'Osha

GROUNDWATER MONITORING WELL

ライン·三・京大学中央下A、121日に

Sufference CA 124

おしないのできる

20.10

MATE

REDCRAM NAME

FIELD DATA 1/OG SHEET - SAMPLING

PARAMETERS FOR WATER QUALITY STABILIZATION Flore Rate terlifmin. (wenter to) (versed to) METILICATE SAMPLE TIME WellPump Valumes Perros 02.1 Chelled C (Lilia) Estam!) 2800 Volume Parred 09/2 350 222 2002 OVA: L' PID IF IN CHIEF (FRINE) Color C. 101.5 ٧ Car. FINAL PUXP DEPTH (6 bloc) 333 IN BREATHING ZONE (ppm) SAMPLER'S SIGNATURE WELL SAMPLE TIME (MIN) 072 292 Ċ - 30.0x=1 Dissolvai (mig/L) Osygen 20% 20 Turbidky 3.88 4.81 497 3.97 3.97 STE グニン 228 Pat (mpf.): 13 1.05 1 20.1 12 Έ CASING/TUBE DIAMET'ER (RAIN) WELL DIPTER (fi bure) 050 50001 700 (mSvem) 1046 쏲 3 r Calibali DUMICATE: D. 23.82 Suilide (mg/L): 75.80 24.03 Temp 6 MONITORING WELL IDENTIFICATION B-1-6420 (R blue) Pump Dopth ١ SAME JELL B-1-Carporal Min 2310 STATIC WATER LEVIA, (B zns.) 169,80 Colorimetric test (faken prior to sampling) 64.25 168.65 48.85 2.00 (K blac) 169.85 Water Level WILLIAM VOLUME (V) CALLINE WATER COLUMN (Red) Stert Par Aethrity Semole Time 434 1443 47.6 3

Note:

(Protection are denoted in the breathing zone during the faith's seconding, the breathing came will be positively modified during proging and something societies. All water (evels and pure) deschang massing from the reference port; (notely) in the top of the wall galing.

Conductivity # 3 %

Targeture collect reschips

TO+Ha

7,87

Tubidity at time of sampling:

Recharges

3

.

Worr level at time of sampling (it bloc):

Pump Satings Comments

THE NAME OF TAXABLE PARTY AND

DO : 63 mgl.

Tablidge : 3 NTTR GI > 10 NTA + 10 86

ORP = 10 SNV

W., I 8.1 Snot

If no reference point is disserved then the ensing high point should be notebod and intersecutarities about 5 to Collected Been this point.

Every actorage stocked to leads to least overor level dravedows, so less than 0.32 foot and purpo rate to less down 3.5 Chalin.

Prec d'

GROUNDWATER MONITORING WELL

THE NAME AND POST OFFICE AND No Bearing, Co. HUN 元年一天 年代 のような

WORLD THE

FIELD DATA LOG SHEET - SAMPLING

L Bindder Domp	. 6				Hon Rate	(gel/win	130							- 7,		1		ABILIZATION	Conductivity 1.3%	DO + 0.3 mg/L	1980	V=01 - 130
	Rick Library		i II	DUPLICATE SAMPLE IDAG	Well/Pump Vubrmes	Paresd		1.0	3/1	(2)	1.72	1.60	1.86	1			A-1	COALITY ST	Conducti	DO + C	T > If NICE	ORU
T Periodacie Pump	Composition (1)			DUPLICATE	Volume	(pala/ml)		Opte	27%	270	3880	34.00	0,2,11					PARAMETERS FOR WATER QUALITY STABILIZATION	alke: rendings	3.1	TESHIN < 10 NICE (If > 10 NIUS I 19 %)	W. + J. for
وكا ليومية	urging Pamp Casine (tem)	(mo	FINAL PUMP DEPTI (It bany ~ [9 0	11305	Color			elen	clow	clow	وروما	cler	chen					PARAMETER	Temperature collect realitys	I C T II C	Traid	WLAU
PURGINO DEVICE: Mindennal Purp	SAMPLING DRVICE ("Purping Pamp OVAL 1502 MAPID In Castra (com)	IN BREATHING ZONE (spm)	ENAL PUMP DEPTICE MANY	PLR TIME	DRD	(MIV)		35.0	30.1	474	457	47.4	484					1				
PURGINO	SAMPLING OVALUE	IN BREATE	FNAL PUB SAMPLER	WELL SAMPLE TIME	Dissolved	(mB/C)		625	5:71	100	20.9	6,10	6.00					-D.O. (ppm):	7.7	Discharge		
		:			Turbidity	(NTC)		450	200	8.29	6.22	7.3	3.26)	Tability at time of samplings	J		
Bon		١	3/8		IId		1	7.32	732	732	7.33	7.34	7.34			1		Fe ¹² (mg/L):	adily critical	Recharge		
SCIENAME/ NUMBER, [AC 304		'a:	WELL DEPTH (N. Maxs) CASTRICTURE DIAMAGETER (12/15)	3 v (galler!)	EK.	(wagsem)	-	3830	0.987	0.94	50000	9650	0.997		,	100		Ì	T.	1		
E/ NUMBER	127	DUPLICATE	MET DIS	å.	Temp	5		1.3	777	24.73	15'62	A	24.63					Sulfide (mg/L):	2	PSI	3	
SCTENAM	37-1-8			910	Pump Depth	(m btoc)	(30)	1	1	j	-	1	1					,	8000			
1.	NONLY	1707	60 100	Sura 2	Water Level	(th broe)	169.35	0039	169.80	CE'89)	169.50	08:63	(61,80.					te sampling	(it most:	CIPAC		
DATE U-G-Z-D17	PROCEAM NAME MONITORING WIEL IDENTIFICATION B-1-C.C.3/	SAMES IN RA- (CO. 24 - M. 176-7	STATIC WATER LEVIL (2 1504) 69,73	WELL PLANT VOLUME (Y) (SPINIS) 2310	Activity		Gat Pune	1	Ţ	ļ	1	1	Series Paras	Sanok				Colorimetria test (taken prior to sampling)	Water hand of tiem of sacraping (it bross):	2		
DATE CH	PROCIAAM NAMIS MONITORING WIEL	SAMEBLD	STATIC WAY	WELL /PUSK	Time		1231	1244	1252	1265	350	1021	1000	1505			1	Colorinutria	Wete boul of	Paray Seltings	Comments:	

If witciles are detected in the terrathing zone diving the initial acreeping, the breathing zone will be purefically mentioned during parging and ampling achievation

If an restrance point is asserved than the cusing high print when'ld be northed and invasor expants should so collected item this paint. All water levels and pump degine are measured from the reference paint (noteb) to the top of the well easing.

formy straight bloods be mide to limit water bee, drawdown to has than 0.33 for, and purgo rate to best ban 0.3 Mater.

Sage of

GROUNDWATER MONITORING WELL

No. E. Workship I Mag Name 100 Springers of the Cold

THE SECTION

TANK TO SELECT

TOWN THE STATE OF THE STATE OF

FIELD DATA LOG SHEET - SAMPLING

PARAMETHRS FOR WATER QUALITY STABILLATION (gallmin Flow Rafe g Children Puny (of bolinay) (water to) 퍼(C. | IX TYLICATE SAMPLE TIME Wedthump Valueses Purgad 10 3 Ü 72 L' Phiblathic Pura C Dispusable Baile (m/dreg) Volume Porged 2600 6160 (milia) (letter) PURGING DRIVICE: L'Agitated Pump DVA: [HIS JATO IN CHOING (SEE) SAMPLING DRVICE Proging Purch FINAL PUMP DEPTH (2 000) IN HRRATHING ZONE (ppm) WELL SAMPLE TIME (16 SAMPLER'S SKINATURE 230 5801 1090 (Mm) D.O. Crpm): Usunired (mgal) Oxygen 6.07 12.5 17.5 Curbidity. 2.40 (CLLX) Pe" (mg/L): 20 CASINGALBE DIAMETER (WAS \$100. Z SITE NAME INTENDED LAC BOOM 7.07 agos WELL DEPTH (filtran) 0.84 208.0 0.0 0.807 (ms/sm) 3 v Calimit DUST-CATE 1 D. 23,800 Sulfide (mgl.) 24.65 13.1 140 26.2 E MONITORING WELL EMPRINECATION G-1-6-3 (ft bux) ì Depth STAIK: WATER CEVEL (R bigs) 148-45 Colorinatric test (taken prior to sampling) SAMPLE 10. 3-1. CA-32-1-1707 57.85 148:15 198.15 145.15 ft. bloe! 21.84 Lunel • 148 MALL MUMP VOLUME (V) (BEAM) Sheet Rock 11-5-1017 End Prais WATER COLLMN (fort) Sayple PROGRAM NAME 242 A39 250 345 55 DATE

if volaties are detected in the breateng sone during the intitul senerating the breathing zone will be purishfielly manifested during purging and sumpling uzivitien All water levels and purity depths are measured from the selectnes point (noteh) in the sup of the well easing

Conductivity 1.3 %

Temperature collect condings

P(L 0.1

Distante:

- Ancharas

SI.

Water level at time of sampling (It bloc):

Pump Serings

Comments

Turbicity at time of sampling: 694

Jan 60 - 00

Turbidity < 10 NTUs (if > 10 NTUs ± 10 %)

ORP ± . J mV

VO. 1 0.1 fem

If no cofficence point is abserved than the useing legit point about he matural and mass moments should be softened from this paint.

Every attempt should be made to limit water level theoretism to less from 0.33 few and purge rate to less than 0.3 1 fmills

Jie) Mans

I Bladder Fun'p

MARCING DEVICE: A Designed Nump | Personlice Fump

GROUNDWATER MONITORING WELL

31. E W-1-19 (Pag 19-41) Ers Bernardma, C.A. 92450

TENENTED!

HOLDER (SEN) JAN 1871 SEN

The "to (1963) 624-179

4-6-24?

DATE

FIMI.D DATA LOG SHEET - SAMPLING

WIENAME/NUMBER

PARAMETERS FOR WATER QUALITY STABILIZATION (Enthmin Flow Rate ris Fmin Conductivity ± 3 % 202 DO = 93 mg/L Turbiday < : 3 NTG & (3 > 10 NTG) 16 % (un popular) (vented %) JUNE. CUPLICATE SAMPLE TIXE WellPomp Purped Volumes ò 7 1) Neposable Boller Toursemure collect reachings (initial) Volume 02 52 Purped (pals/onl) 320 2550 3460 360 022 (finitial) HHE! FINAL PUMP DEPTH (* 3404) -- 710 - JABAN SANSTUNG DEVICE: XProging Pump OVA: I FID (FIN IE CASING (Spen) Cale 3 3 Son 8 30 WELL SAMPLE TIME 0004 IN BREATHING ZONE (ppe) SAMPLER'S STONATURE 46,8 285 Discharge. (m) 564 7/5 OH O 19.00 M D.O. (2022): Dissolved Osveen (mb/r) 7.47 7.30 363 Tubility at time of sompling. 3.94 3.85 3 NIC 93 2.70 Recharge 272 Par (mg2.) Į. 7.10 7.32 핕 17: CASTAGATUBE DIAMETER (PEL) WELL DEFTH (f. blee) 0 984 29.9.0 0.486 0.00 3660 (mS/km) D.G 74 3 v (Eusim.) DAPPLICATE LD. Sulfielo (mg/1.): 1.63 8 21.77 41.89 21.64 22.7 21.60 Temp. 9 MONITORING WILL EDINTHICATION BILLING 188.6 (Al btac) Depth Lumi, 2500 3 STATIC WATER LIVIL (1 book) 198 76 Colorianeric test (taken prior to sampling) 200 18874 と、地 185.70 SAMPLE 13. 8-1- CLUSS-L-1782 188.70 (ff. binc) 189.70 Level Water Water lavel at time of sampling (it blue): WELL FLEX YOLKSMIT (Y) (BANKE) CHENT PARK END PINE Sangles WATER COLUMN (Red) Activity PROCRAM NAME "unn Satings: 1530 50,00 1500 1280 09 00 3486 3 Time 280

Camments

(Evolution are descend in its incontaing cone during the initial seconing, the interfaing many in the periodically modified during and sampling antivitive ۱۸ معلق تحمل من من الفرادية (معلقة) بالأمادية وموافقة المعالمة ومن المعالمة ومناجها والمعالمة المعالمة الأمادية

ORT + 10 mV

W. L S. 1 Sec.

....

..

If no reference point is abserved than the useing high point should be noticed and intercements about he collected from this point.

Pavery attempt should be made to think water level drawdown to less than 0.83 feet and parge rate to less than 9.5 Lifetin.

l'nas ol'

... Buckler P.com

Technic Pump C Disposable Barler

M. RGING DRVICH: \$40 patented Pump SAMPLING DRVICE (Proping Pump

- John

GROUNDWATER MONITORING WELL

Die der bet and bet a see state S. Mirandon, CA 52/25 The second property in the 1-5-20x-

HOME AND

SCAL PROPERTY.

PRINCEAMINANE

DATE

FIELD DATA LOG SHEET - SAMPLING

STRINAMEN NIMBRE LANG BOY

PAZAMOTTIRS FOR WATER QUALITY STABILIZATION (galfrela milmin 25 (at benney) (vening to) **SUPLICATE SAMPLE TIME** Welkhump Volumes Tarifed . Carre O 986 Volume **Varged** (fm/sing) のかび 3.960 7,500 (initial) 2160 521 UVA: JFIU CHID INCUING (ppm) 20 Culor chee Ì FINAL PURP DRPTH (P. INC.) DUPLICATETA BY-0434-FO-172.2 IN BREATHING ZONE (Spm) SAMPLER'S STONATURE 1548 0211 WELL SAMPLE TIME (A.E.) ORP D.O. (spen): 487 Dissolved Oxygen (c)(a)(c) 6.09 887 Turbidity (MIC) 197 Fc'3 (mp'L): 7.38 WELL DIPPLE (A bloc) -1 55 CASING/TUBE INAMETER (this) (msg/cm) ŧ 3 v (galvan) 1281 85.52 Selfide (Eg/L): Temp 7.5 1/4 5 MONITORNG WELL LIBERTHICKTION BEI-CL-34 (if broc) Pump Depth 2/60 STATIC WATER LEVIE, (n 2003) 154.46 Cularimetric test (taken prior to sampling) 54.0 24.60 663) 030 22.50 (R blac) SAMPLICE B-1-634-1-1782 200 Dutan 154.60 Level WELL, PUMP VOLUME (Y) Golon! さない Authory WATER COLLEGE (Bac) 1448 434 42.4 1475 1437 143/ 404

If velotibes are detected to the treatibing sone during the initial samewing, the breaking some well to perforicelly manitored during program ampling activities. All water levels and purity depths are reconnect from the reforence point (noteb) is the top of the well easing

Conductivity 4 5 %

Temperature collect readings

Jurhidesy of time of sumpling: 6.36 ...

Dieshugan

2

Water lays, of time of sumpling (P. blue):

Pump Satings Commants

(DT)

DO : 0.3 aug/L.

Lucidity < 16 NTUs (if > 10 NTUs ± 10 %)

ORL' + 13 mV

W. + 0.1 feat

If no cultarassa paint is ubserved then the dasing high point should be netebral and measurements should be solkered from this point.

Every attempt street of the made to finit varior loved districtions to loss than 0.33 feed and punge rate to loss from 0.5 Living.

FIELD DATA LOG SHEET - SAMPLING

MI E Verbeth Way Salvaki Sechnethy Ca Old Will-MITTER, which Treta 1935, 169-120 4-10-70T

SETTATION.

JANE .	UAYE . 4. 10-207		STENAN	SITE NAME / NUMBER		LAC BY	8	PURGING D	evice: 16	PURGING DEVICE: Modiated Jump	I. Peristolise Pump		I Bladder Pump
PROGRAMNAME	NAME				1			SAMPLING	DSVICE. T	SAMPLING DEVICE. Tologing Pamp	Disposable Boiler		
MOLITOR	MONITORING WELL LINENTIFICATION B-S-46007	TFICATION	8-5-	(work				CPA: L' NO	A Chill	OVA: F. M. S. Sefts In Caring (ppm)	(mila)	~	0
SAMPLE	SAMME LD. B-S-CLYST-/-17622	5 Miles	7.7	CLI ETANLING				IN BREATTENG ZONE (ppm)	ING ZOKE ((wide	(letter)	(vortiad to)	
STATIC W.	STATIC WATRRIEVED (RUME) 432.89	257. (an)	3	HUESIC TRIM	PT1 (21 3:00c)	(1) State) 346, SC	20	FINAL PEN	FINAL PUNE DEPTH (A bloc)	W	3945		
WATERCE	WATER COLUMN (Bet)		CAST	CASING/TUBE DIAMETER (Min)	MET'PR (SU	1 3/a	2	SAMPLER'S	SAMPLER'S SIGNATURE.	Ė	Party Cash	,	
WELLFU	OZOS (IMPACITICALINA INCIDENTA	Section) SC	270	پڌ	3 v (galfant)			WHILSAM	WHILESAMPHINE ITS	~ i	DCPLICATE	DUPLICATE SAMPLE TIME	
Time	Aufwiry	Water Level	Penip Depils	Temp	JJK.	114	Turkidity	Obsolved	ORU	Color	Volume	WellPump Volumes	How Rate
		(It biec)	(th blac)	(C)	(mS/cm)		(CNTC)	(mg/L)	(mv)		(puls/mil)	Puryed	(galvatia mPoča)
1525	18742 Jone 1245	18742	1									-	350
onsi	1	252.62	1	0722	240	307	3.74	080	5.45-	dear	0525	1,61	1
E45)	Ţ	2322	١.	14.37	50	6.93	421	1	-450	Cher	6300	1.21	
34311	ι	23217	·		200	296	N. 87	28%	573-	cea	7350	Sh'l	
67.51	l,	13282	,	1122	120	703	3.09	20	-56.1	clear	82.80	1.6	
1555	١	237.52		1)22	O.7M	2007	224	520	305	place	9.566	1.86	
1555	End Pro	237.82	ı	27 10	27.0	107	27.5	50.0	100,7	clear	10500	1.67	
1556	75.	1	1	-									•
							-						1
					1		Ī					1	
					1	1				 			
					1			1 1					
Coloring	Colonnetrie test (takes prior to sampling)	र ए डबल्यांग्रह		Sulfide (mg/L):	1	Fe . [ung/L].	1.	D.O. (ppm):	1	PARAMETER	PARAMETERS FOR WATER QUALITY STABLIZATION	COCACITY ST	NOLLYZITEN
Waterleve	Water level in time of sompling (P. Huck	(P. Muck	232.92	7	T.	bidey m time	Purbidity on time of pamping:	342) Comparative	Conperating collines madings	Conducti	Conductivity 1.3 %
Pump Sortlegs:	1980	CPM		ES.		Rockings.		Discharge;		184	ps 1 1 2 1	0=001	UO = 0.3 mg/L
Cemnismix										Surting.	(24 01 ± 6,070 01 < 30) 6,070 01 > 450 000.	* F(UK 81 < J)	16 %
										=Tw	WL = 0.1 feat	ORP	ORP 19mV

Twinties are detected in the benefiting nare during the initial screening, the healthing some will be periodically maniforms during partials and sampling activities.

All water levels and years depths are maneured from the refuserse point (nates) in the top of the well esting.

If so reference point is observed then the assing high point should be matched and mercuronants should be solitated from this point.

Every attempt, about 2 to made to finit word forwheren to less than 033 Best and purgo rate to less than 8.3 Unite.

•		
New States	Mary Co.	21.0
SME Vandachi Ivey	1	
F	ב]

FIELD DATA LOG SHEET - SAMPLING

				1	1		1	No.	-	_		-	-	-	7		,	-	_			_		_
Delegar Pune		. 18				S	Flore Rate	ejes Vasla		2				_						ABILIZATION	Atri£3%	DO±03 mg/L	10.74)	
		-				SAMPLE TIME	WellPump	Parity		1.01	7.12	72	1,366	34.	1					DOM! TIVE!	Constitution of 3	0∓00	f > 10 NTUb.	- 1100
C Peridable Pump	C Discosable Badler	(indept)		339.00		DUPLICATE SAMPLE TIME (Valuene	(gels/all)		05/17	C530	(m)42	C 300	(Jp8")	73%					FOR WATER	lest resultings	1.	Furbilly < 10 NTUs (if > 10 NTUs ± 10 %)	- 4
Alkated Pump				Δ.	7	L'al	100			1/2/15/80 11/20				=	>					PARAMETERS FOR WATER OPPLITY STABILIZATION	Temperature collect restings	pH+ 0.1	Turbidle	ON ABID
MURGING DEVICE: Dynalianad Pump	SAMPLING DEVICE: Paraba Pura	OVA; CFID OND In Contactorn)	IN BREATHING 2008 (month)	FINAL MIMP DEPTH (949)	SAMPLER'S SIGNATURE	IPLE TIME	ORP	(m)/		23.3	30.a	399	77.89	30.5	55.0					9.09	, ,	2		
PURGONO	SAMPLING	OVA: CFI	IN BREAT	FIVAL M.IA	SAMPLER	WELL SAMPLE TIME	Dissolved			3.30	2.67	093	3.16	2.12	309		9			D.O. (ppm):	6	Dircharges		
		Ç.	2021Y	8			Terledity	(pitty)		4.43	3.36	3.97	3.76	8e. P	2.19					Į	ofermplage	00	>	
			1-04-60117-64-FD-1	3%	2/3	ì	PEE		L	1.79	7.79	277	7.14	7.13	7.70					Fatt (merl):	Torbidity at time of earnpling:	Rochurgs:	BU.	
					CASTNOTURE DIAMETER (INI)	3 v (gal/aq)	DE EC	(mag/gam)	L	0.805	0.83	0.873	p.812	(1.8.0)	10.871)	P.	135	dest b	,
SITE NAME/ NUMBER EST		S	DUPLICATE LD.	WELLD	NOTUBE D		Temp	Ş		3378	23.48	3356	13.56	2356	1335710.					Salfide (mg/L):			Contrar	
- 1		200	ત	17	1	10310	4	(D like)	339.50			<u>_</u>		/	/11 5						255	ત્લ	68882	
	HELDY	TIPICATION	21-12	SE P COM	14 CC	L (Marken)	Water	(D bear)		32645	235.45	735 45	94:45	295.4S	235.45					or to samplia	Chibbook C	CPM	3	>
DATE OF LOW 11.	H SMA	MONITORING WELL IDENTIFICATION B-(4-(LLD)	SAMPLELD A-CO-CLUB-N-178 D	STATIC WATER LEVEL (R 1800) 3 35,444	WATER COLUMN (See) 104, DV	WELL MUMP VOLUME (Y) (MAN) # 1236	Acilvity		Caveture	-		- 53		2	S. K.	-				Colorimetric test (taken prior to sumpling)	Water level as time of numpting (20 though CA 55.7 S	TO COM	\ \ \ \ \ \ \	
DATE	PROGRAM NAME	MONITORIN	SAMPLEID.	STATIC WAT	WATERCOL	WELL PUMP	Тине		04.61	202	No.94	1613	1415	1618	184					ColorIntetric	Water form at (Prima Sattings	Community (.)	

If voluntees are detected in the treathing some during the initial servening, the beauting some will be perfectedly mentioned during proging and sampling articities. All water levels and pump depths are necessarial from the reference point (natch) in the top of the well enting.

ORF# 19 mV

WL + 0.1 Bot

If no relicence point is abserved then the meting high point should be notebed and mempressors should be collected from this point. Bidey alterapt should be made to limit writer level drawdown to hep than 0.33 fast and purporate to least the 0.5 Limits.

Poge of

GROUNDWATER MONITORING WELL

TETRA FEET IN THE STATE OF THE

FIELD DATA LOG SHEET - SAMPLING

										_															
				0		1	-	Pley Rafe	(galfonia a Bada)	(40)							1	`		(BILIZATION	Conductivity ± 3 %	00±03 mg/L	10 %)	OKP ± 10 mV
			(vandeal to)	(vented to)			DUPLICATE SAMPLE TIME	Velimony	A		101	1, 15	7.30	1.44	(,52)	1.73	1,88	2,00	2000		PARAMETERS FOR WATER QUALITY STABILIZATION	Candingly	0∓00	(if > 10 NTULe + 10 %)	∓4XO
0 0 0 0	C. Periodo Para Para Para Para Para Para Para Par	🗌 Döspusable Beller	(Triffied)	Celeb	10.0	202	DUPLICATES	Value	(meterni)		3990	15k0	5.30	0045	6270	0,840	74/0	79.80)			FOR WATER	llest satdings	0.1	Darbidly < 18 NTUs (.1 Soon
			PID In Chaining (ppm)		17.7		1520	Colec		$\ $	6/01/1945			_		1 6.2	_	7			PARAMETER	Temperature sollies condings	pH+0.1	Turbidle	WL ± 0.1 Soon
7	PURCLEYS DEVICE: TO LONGERED PURP			IN BREATHING ZONE (spee)	FINAL PUNCP DEPTH (R Mas)	SAMPLER'S SIGNATURE		THO	(vei		-164.6	155.7	1,40	-75.4	0.48	小伊斯坦	161.7	-58.5		-;	2 % &		9		
	LUKCING	SAMPLENG	OVA: LI FID	INBREATH	FINAL PUM	SAMPLERY	WELL SAMPLE TIME	Disselved	(mg/L)		RE!	1.69	3,10	255	2,63	4.74	3.85	12.53		_	D.O. (spres). 2 18		Discharge		
					5.0	71 JU		Tertifity	(UTM)		10.4	39a	P 369	2.50	3.418	3.0%	284	9.43	Ž		}	Turbidity at time of sampling:	S.		
					35	3/8	1	ā			047	7.37	7.36	7.33	7.33	7.33	7.33	7.32			Fe ^{**} (mgdL.)	risidity at fim	Rocharge: 30		
200	1			9	PTH (f) bloc)	AMETER (N	3 v (polém)	Dia Ric			0.837	(28.0	10 864	0.886	17.89)	6.893	0.875	28.0)	ě	PSt 150		
	SILE MAME / MUMBUX	į	S	DUPLICATE LD.	WELL DEPTH	CASTING/TUBE DIAMETER (IVIN)	9	Tough	ઈ		1330	13.24	23.35	7227	13.2	33.38	23.26	33.34			Solfids (mg/L):		PSC		
	MENUM		תט שו		3	CASIN	স	įį	(fit block)	26500	_				_	_	<u>-</u>	?				58.3	8		
	6	200	FICATION	N -170	as 251.30		BS (number	Water	(It hloc)	25920	35931	15-1-31	15. (3)	154.51	259.3	15:158	3.9.3	351.31			r to sampling	(fi bloc): a	CPM:		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 1	MOGRAM NAME LANCETOUR	CONTINUENCE WELL INSTITUTION OF US - ULDON	WAREID B-CE-CUST-N -1762	TATIC WATER LEVEL (R bloc)	VATER COLUMN (foat)	VELL /PUMP VOLUME (Y) (palmi)	Activity		10.10	-						0	and the	\		olorimetric test (taken prior to sampling)	Water borol at time of camping (A bice): 25 (-3	2		
	NATE UT	KOGRAMN	*ONUTIONED!	AMPLE I.D.	TATIC WAT	VATER COL	VELL /PUM	Time		782.17		KIND	13.05	1508	151	1514	1217	(52O	s		Colorimetric	Water bord at	Pamp Settings	Comments:	

į

If validities are absorbed to the breathing zone during the initial percenting, the breathing zone will be perceived measured during program and sampling activities. All water levels and passe depths are messaged from the reference point (noteb) in the top of the well excise.

If our reference point is observed than the casing high polar should be noushed and measurement should be collected from this point.

Every attempt whould be made to limit water level denotes we take 0.33 fact and purge relate less than 0.5 Limin.

Page / of

. 4
M
P
5
B-
F
z
E
20
=
u
_
=
5
-
0
\simeq
13
Part of
-
-2
5
-
7
E
Pag.
-
S
74
~

FIELD DATA LOG SHEET - SAMPLING

NI E Vendade Vay Semide Ser bereifen Cr. (000 Thistman (000) 101-1170

STATE THE CH

	Ì					1	Phere Rate	(gebinin	(11.)	_	_	_		-	>						BILIZATION	10±3%	3 mg/L	(%)	Ve o	
Bhatter Pure		(vested to)	(ot pages)			DUPLICATE SAMME TIME	Well/map	Purpod		1.03	1160	1128	141	1,53	1165					100	PARAMETERS FOR WATER COMMEY STABILIZATION	Conductivity ± 3 %	DO + 0.3 mg/L	$T_{\rm infisitly} < 10 \rm MTUs \ (if > 10 \rm MTUs \pm 10 \%)$	ORP & TO MV	
Peristoffic Page	Disposable Deller	(महाम)	種	9	7	DUPLICATE S	Volume	(palvini)	100	(1,5/2)	4760	22,95	2,5	(0.3F.D)	(n802)					/	S FOR WATER	Temperature collect readings	pli ± 0.1	Hy < 10 NTUs (WI, ± Q I foot	
PURCING DEVICE: [Wedgered Pump	SAMPLENC DEVICE: B Purply Pump	OVA: FID PID Is Casher (1998)	î	No. Odl		357	Calor		,	Charless		7						(A)	/	/	PARAMETER	Tengerature e	-Hq	Turbi	W,±(
EVICE (W	DEVICE: B		DAC SONE (FINAL PUMP DEPTH (& bac)	SAMPLER'S SIGNATURE	PLE TIME /	ORL	(Mm)		155.4	1.EM-	1.16-	0.00	-63.)	1:65						9.44		01	2		
MIRGING D	SAMPLING	OVA: FED	IN BREATHING ZONE (April)	FINAL PUM	SAMPLER'S	WELL SAMPLE TIME (3)	Disselved	(mg/L)		6.80	69.8	300	3.38	3,30	3.44						D.C. (spent) 2,44	15.0	Discharge.			
							TerfeloBly	(UTC)		9.63	19.4	_	12.23	19.96	18.6			-			l	of presping.	Q			
				371	376		Hq			7.3	7.35	7.33		2.30	7.30		A		7		Fat (Regul.)	Terbidity of time of persping.	Rockerge	175 of		
			ď	TH (ft bloc)	METER (IPIO	3 v (gaul/ml))]	(m3/cm)		0.879	266.0	0.455	3. Ye 2	0.963	0 263						ſ	4	2			
NEWBER		200	DUPLICATE LD.	WELL DEPT	CASING/TURE INAMETER (IPID)	3 V.	James James	Ş		133.tot		33.96	١.		24.02		7				Solfide (mg/L):		DEST.	•		
ATTENANT INSTANCE OF		3-10-00	•					7	3,00					/	A						8	1615	S			
	(n)	PICATION !	C0717	odco.c	00	P CIME	Water	() More)			alel. 15	2012	341.15	21.15	261.15						guildenez of	(9 blue):	CPM			
ATE ANGELLE	MOCHANINAME LACE - BUT.	ONITORING WELL IDENTIFICATION 5-10-CAU 08	WHILE INCHOLOGICAN TO TAKE	ATIC WATER LEVEL (R MOF) CALCO. C.	ATER COLUMN (Get) 110 .00	TELL PUMP VOLUME (V) (pulmi)	Activity		Try and Old. C.	0					See Cla	-					Colorimetric less (taken prior to sampling	Vater level of time of sampling (8 blue):				
THE PER	OCEAN N	ORTHORN	WITE ID	TATTC WAT	ATER COL	ELL PUM	Tiles		711	343	348	348	1881	1.56	353						ologimetric	Vater level on	ump Settings	handesile		

E'veisalies are descreted in the horadong some deriver the Initial severabing, the breathing zone will be periodically monitored during pumping and sampling petablish and described and described and sampling petablish.

If as reference point is observed then the casing high point should be toothed and measurements should be collected from this point. All vester levels and purity depring are measured from the informes point (arisch) in the top of the veril casing.

Every attents; should be made to limit water level drawdown to loss than 0.33 feet and purge rate to less than 0.5 Limin.

DATE VANCOUNTED STALLING number, CA 12443 MANAGEMENT - LINE

THE ATTECH

O.
→
3
₹.
\mathbf{z}
7
40
1
S.
I
77
72
•
Ο.
-
€.
₽.
₩.
3
_
-
9
-1
Contract of

☐ Bladder Pamp	(wanted to)	(vented to)			TIME	mp New Rate	-	-					PARAMETERS FOR WATER QUALITY STABILIZATION	Conductivity ± 3%	DO ± 0.3 mg/L	TU: # 10%)	ORP ± 10 mV
	- 1	2			SAMPLET	Welffering Welffering Welfering							COLALITY	Com	ă	(If > 10 NT)	L
Perfetelike Pump Discoverable Beilber	(Smithlat)	(lahtal)			DUPLICATE SAMPLE TIMÉ	Velence Furged	(Carama)						S FOR WATER	cellest readings	1.0.1	Turbidity < 10 NTUs (If > 10 NTUs ± 10 %)	WL ± 0.1 Sool
		(i)	366 000			Collect							PARAMETER	Temperaters sollest readings	pH±9.1	Natel	WL±ſ
WICE DO	a dro	NO ZONE (P	OEFTH (A)	SIGNATUR	LE TONTE	980	[max]										
FURGING DEVICE: Devices from SAMILING DEVICE: Device Property	OVA- [] FID [] PID Is Crosing (ppm)	IN BREATHING ZONE (ppm)	FINAL PUMP DEPTH (1) book)	SAMPLER'S SIGNATURE	WELL SAMPLE TOUR	Dissibre	(miles)						D.O. (ppm):		Discharges	Inter	
						94	forms							Turbidity at time of sampling:		(P) +	5
			350	3/8		II.							Fa (mgd.):	edity of time	Recharge	36	
200		ď	WELL DEFTH (It boo) 358	CASING/TUBE DIAMETER (Min)	3 v (gel/ml)	28	(moseus)	Ì					1	Torb		Comme De	,
NUMBER	۵	DUPLICATE LD.	WELL DEF	TUBE DIA	3 4		3	T		T		•	Sulfide (mg/L):		PSI	3	7
SITENAME	1-0-(W)		FL FL	CASING		Paray Depth	()II DODG	Ť		Ť	П				-	1 10	
Bu	PICATION F	20110	3 346 C		pul/mil)	Weller	(John III)		Ì	Ī			to sampling)	A block	W.D	10.4V.0	-
11/1/20	VELL DOWN	1-C00-1	LEVEL (A be	IN (Fort)	OLUME CO G	Agelity							it (takes prior) Supdans Jo o	6	MANNE	100 A
DATE 64 (01) SITENAME / MC - 1233	MONITORING WELL DENTIFICATION B-(0-C(LUIC)	AMPLE LD. B.	STATIC WATER LEVEL (Albac) DULE S	WATER COLLING (Fort)	WELL INTIMIT VOLUME (Y) (selfmi)	Titano							 Colorimearie sex (taken prior to sampling)	Water level at tires of sampling (if 6soc):	Pursu Settings	Composite	,,,,,

If voletiles are detected in the breaking zone during the initial seventing, the breaking zone will be periodically assessioned during purging and sampling autivities. All water tends and pump depths are assessed from the reference point (notch) in the top of the well cooking.

If no establish paint is observed then due cooling high poline should be nowlest and measurements should be collected from this point

Every attention should be made to final water level drowdown to less than 0.33 fest and purge note to less than 0.3 Little.

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATECH

TETATE

GROUNDWATER MONFFORING WELL

PIELD DATA LOG SHEET - SAMPLING

			a 16		1.0		52-10-1	A 02	w		12	_	_	-	_	_			_				
Disider Person		(61	1		1		Flow Rade	(galifacia militaria)										PARAMETERS FOR WATER QUALITY STABULZATION	Conductivity ± 3 %	DO ± 0.3 mg/L	4 10 %	DRP ± 18 mV	
		(Mapping to)	(Sphind In)			DUFLICATE SAMPLE TIME	Wellframp	Paryed										QUALITYST	Conduct	∓ 00	IT > NO NITURA IN %	ORP	
Pertuable Famo	☐ Disposable Dellar	(Sarrival)	(alian)	0.0		DUFLICATE	Verlance	(Jewystewil)										FOR WATER	Oest sembings	0.1	Turbidity < 10 NTUs (if >	LI faor	
effermed Purus	arging Pump	Caping (ppm)	IN BREATHDAG ZONE (span)	(and			Coler								/			PARAMETER	Temperature collect remaings	pF ± 0.1	Turbidi	WL ± (L.I fact	
PURGING DEVICE: Desirated Pump	SAMPLING DEVICE: Traging Punp	OVA: TITO TITO to Coping (ppm)	DAC ZONE (pa	तक्षान्यज्ञव ग	SAMPLER'S STONATURE	PLE TIME	9	(v=)							1					7)	~		
PUROTNG	SAMPLING	OVA:]FIC	NAREATH	FINAL PUM	SAMPLER	WELL SAMPLE TIME	Distributed	(LPgc)										D.O. (ppm):		Distange	out e	2	
			Č	25.2	18		Tarbidity	(UTFN)			_		4	1					of samplage		OND I	0 . 0	
	ŀ		Trail of	1	3		¥					٢/ .		A				Fe " (mg/L);	Terbidity at the of sampling:	Rechange	100	1,1	3
Ser.			.O.	WELL DEPTH (R box)	AMETER (BA	3 v (gol/ml)	3	(ms/ym)					4						£		3	with	
STENAME/NUMBER BUT		OICA	OCPLICATE I.D.	WELL DE	CASING/TUBE DIAMETER (8/%)	ŕ	Temp	٤								•		Stilliche (mg/l.):		P.S.	U.K.	2 book	
SITENAM		N/I	_	֚֚֚֚֚֚֚֚֚֚֚֚֓֞֝֝֟֝֟֝֟֟֝֟֝֟֟֝֟֝֟֟֝֟֟֝֟֝֟֝֟֝֟֝֟֝֟֓֟֝֟֟֓֓֟֟֓֟֓֟֟֟ ֓֓֓֓֓֓֓֓֞֓֓֓֞֓֓֓֞֞֓֓֓֓֞֓֓֓֓֞֓֓֓֓֓֓֓֓	CASIL		į	(At Sonc.)			\int										medi	(3)	
	イバーも引	TPICATION		2	3	(gan)tons)	Water	(Ot Intsec)			<i> </i>							r to sampling	(If bloc):	CLINE	7	Almy	-
NATE OF 113/17	AME LY	CONTORING WELL IDENTIFICATION B-(C-	WITE ID SP- LE CLOID-IL	TATIC WATER LEVEL (A boopH	WATTER COLUMN (N=1) [0.00]	PELL PUMP YOLUME (V) (pulmi)	Astirity		1.77			ver	7 1 4, 1			I 141	E-I	Colorlmetrie fast (takan prior to sampling)	(after level of time of pumpling (it bloc):	4	Imable + San	(GED	
NATE OF	ROGRAMINAME L	ADHITTORING	WILLID	TATIC WAT	VATTER COL	VELL PUMP	Three			1								Colorimetrie	Water Jewel of t	Comp Scalings.	Januarits:	Burn	1

Note:

If volatiles are detected in the brooking some during the initial seventing, the broating zone will be periodically mentioned that by purging and sampling activities.

If no reference point is observed then the casing high point should be notched and measurements should be extlested from this point. All water levels and pump depths are presented from the reference point (noteb) in the top of the well casing.

Every amongs about the made to limit votes level drawdown to less than 0.33 that and grays that to lest than 0.5 Limin.

PARE VARIABLE TO SAN COMPANIES OF TAXABLE CONTRACTOR SAN COMPANIES OF TAXABLE CONTRACTOR SAN COMPANIES OF TAXABLE CONTRACTOR SAN COMPANIES OF TAXABLE CONTRACTOR SAN COMPANIES OF TAXABLE CONTRACTOR SAN

HE TAN THE PA

FIELD DATA LOG SHEET - SAMPLING

Patro						1	Flew Rade	(gathaba	03/						>	>			1	BILIZATION	Nr+3%	l mg/l.	10 %)	Vm0	
mo Blarider Patro		-	(vented to)	ĺ		PUPLICATE SAMPLE TIME	Well-map	Pergel	1	190	. P	1.2.	9	507	- 18 - 18					QUALITY STA	Combactivity + 3 %	DO ± 0.3 mg/L	f > 10 NTUS±	ORP ± 10 mV	
Periodilitic Pones	Disposable Boiler	(inkia)	9			PUPLICATES	Values Paresa	(polyton)	3150	1300 E	3600	0.50	4500	1967)						PARAMETERS FOR WATER QUALITY STABILIZATION	lest readings	0.1	Tarbidity < 10 NTUs (if > 10 NTUs ± 19 %)	t) foot	
FURGING DEVICE: (N Dedicated Pump	harping Pleas	PID In Charles (rem)	(1)	253		12/(0	Color			Colmites				_		· A				PARAMETER	Temperature collect suadings	pEi ± 0.1	Terbidi	W7.4 0,1 fool	
SEVICE: NO	SAMPLING DEVICE: III Parglag Plump	PD P	IN BREATHUNG ZONE (2002)	FINAL PUMP DEPTH (B box) 253	SAMPLER'S SKRNATURE		ORP	(Am)		D. 43-	47.7	46.7	15.3	14-8-	₩3.9	13.A				0.0	JE;		el l		
FURGING	SAMPLING	OVA: OFID	IN BREATH	FINAL PUB	SAMPLER	WELL SAMPLE TIME	Démobres Oxymen			1.50	. R	1. B.9	1.00	1.00	B-0-0	9.94				D.O. (ppm): 0.94	5	Discharge			
							Tarbidity	(NTU)		28.5	Sa 3,	20.3	2000	45.7	34 . K	84.3	9			(of sompleage.	<u></u>			
				35%	13 E 14	1	ħ.			7.44	7.4C	7.45	145	144	7.43	2,40				Fe" (mg/L);	Turbidity at time of sampling.	Recharge			
CO C			i e	TTH (IN NOW) OF	AMETER (IN	3 v (gal/ml)	ä	(moyken)		0. 10D	00L.0	0350	0.101	0.703	D. Joa	0 To				1		QC #			
SITENAME/NUMBER		٥	DUPLICATE LD.	WELL DEPTH	CASING/TUBE DIAMETER (INF.) 3 8 P	اُ		9		A. 45	34.33	34.37	9. 2G	1 18	23.95	33.40				Soulide (mg/L.):		186			
SITENAM	•	g-6-00		立		3030	Camp Orbit	(ft Mess)	35.3							-					3	ଷ			
	MC-80)	MERCATION	N-1703	Social T.	10.80	_ II	Water	(ft bloc)	하세,15	PH7. 1(e	3~17.(나	247.15	B47.41	7,15	7.17	347,5				r to sampling		6	į		
ATE OF AUTIT	NAME COLO	ONTORING WELL IDENTIFICATION eta - $(\mathcal{L}_{a}\mathcal{L}_{a$	AND TO BE - (WILL-N-1) (03	TATIC WATER LEVEL (A bos 247; 14	ATER COLUMN (feet)	TELL /PUMP YOUTHER (Y) (galf=1)	Activity		Start and	2		-			- >	Stroll.	-	a.	T.,	lociments test (taken prior to sampling)	Sater level at time of sempling (it bloc):	£.			
ATE 64	ROOKAIK NAME	ONITORI	AMPIE LD	FATIC WA	ATER CO	THE WANT	Time		507	288	581	表出	537	540	543	244				olorimetri	Antar lovel a	Setting.			

Note

If velatibes are detected in the breathing some theing the initial severaling, the breathing some will be projectivally monitored during purples and tempting activities. All water levels and pump depairs are measured from the reference point (south) in the top of the well excise,

If no reference paint is almost red then the coming high point should be noteded and measurements should be collected from this point.

Every ottemps about the marks to limit water level drawdown to less than 0.33 first and parge rate to less than 8.5 Limbs.

Pupe & of

- 2
1
- 1
8+1
2-4
WE
-
-
7 h
-
Sec.
-
200
=
ORING
All I
E
-
~
R MONT
3
~
-
De l
E
- C
WAI
mic.
100
A
100
1
-
pen!
ARIL.
€.J
ž
12
P %

FIELD DATA LOG SHEET - SAMPLING

201E Vandado ir Way Bake 450 See Sementing, EA 73434 Teleforma (200) 311-3174

																			_
Bladder Pumto	·)	Plow Rate		(gal/min	02+		_			_				
		_	(vented to)			AMPLE TIME	Wellfump	Volumes	Purped		1.01		1.33	1.82	(33	1,53	Section 4 and 4 an		
O Perintaltic Perm	O Disposable Boiler	(Initial)	(latital)	S		DUPLICATE SAMPLE TIME	Volumbe	Parged	(Employed)		CE bir	SAN	5950	(3/3)	0770	08 H			
dictal Purso			7	7		THY	Calor				JOHO LESS	-				∌			
PURCING DEVICE: A Dedicated Purso	SAMPLING DEVICE: A Punging Pump	OVA: FED PED In Cusing (gpm)	(mgg) ENDE (gpm)	FINAL PUMP DEPTH (A BACK)	SAMPLER'S SIGNATURÉ	PLE TIME	ORP		(WB)		94.3	% %	13.4	10.669.2	54.3	5.4.3			
PUKGING	SAMPLING	OVA: - FE	IN BREATH	FINAL PUR	SAMPLER	WELL SAMPLE TIME	Dissalved	Oxy.Ken	(mth/L)		2 10	3.19	3.17	3,17	3,17	316	-		
				12	C)		Tembidity		(NTU)		2.47	2.74	4.30	5,10	233	\vdash	1		
			1	(1 Noc) 3/69.57	3/8	1	죕				7.34	13.34	7.34	1.34	7.35	9.35			
B. B.			l,a,	SPTTE (A bloc)	ANJETTER (NA	3 v (gal/rd)	IIC.		(mS/cm)		1.756	0.755	0.75-4	17.754	0.754	6.753			
SITE NAME / NUMBER		4/0	DUPLICATE L.D.	WELL DEPTH	CASINGTUBE DLAMETIR (NE	3	Temp		8		1250	33.64	2359	13,64	138.79	33.78			
SITE NAM		B-40-C		ري		688	Pomp	Depth	(ft. htms)	10 to	-					>		Ц	
	- Bou	DFICATION	A-rzag	NOCONO.	38.65	(garVrst) 2	Water	- Fwel	(U bree)	240.85		A40.84	34 A 86	OR-OHE	140-86	340.8C			
DATE OUT DE 17	PROGRAMME LACE BOU	MONITORING WRITE IDENTIFICATION B-10-CW P	SAMPLE ID BY-COIT 4-N-1703	STATIC WATER LEVEL (A boc) 240.85	WATER COLLINEN (Red) / JOB (45)	WELL / PUMP VOLUME (V) (galval)	Aethylity			Day-Green	0			_	7	Some	-		
DATE OF	PROGRAMI	MONTORD	SAMPLE 1D	STATIC WA	WATER COL	WELL / FUM	Time			£01	133	1135	11.38	1 뉴다	1144	EF.			
																	1		

Mote

If relettics are detected in the breathing zone during the initial screening, the breathing zone will be periodically mouthered during purging and sampling activities. All water levels and premy depute are recognized from the reference point (noteh) in the top of the wall exting.

PARAMETERS FOR WATER QUALITY STABILIZATION

D.O. (ppm):

Fe* (mg/L.):

Sulfide (mg/L)x

Colorimetric test (taken prior to sampling) Water Leval at time of sampling (ft btoc): Q H S S U

Parap Kettings: Comments:

Turbidly at the of sampling C. [/]

Conductivity ± 3 %.

Temperature collect modings

pf(±0.1

Discharge

Becharge:

Tarbidity < 10 NTUs (if > 10 NTUs ± 10 %)

ORP # 10 mV

WL & G.I fact

If No Misterice point is observed then the maing high point strauk! The motobod and mosescentants whould to collected from this point.

Every attempt about the made to limit water level drawdown to less than 0.33 feet and parge not to has than 0.5 L/rain.

	Peripadhic Fump Deadder Pump Dispessable Bullet Octoor	-	(vorsited to)		DUPLICATE SAMPLE TIME	-	(galgint) Furged (galgint)									PANAMETERS FOR WATER DIGITILY STABLIZATION	wings - Societally Ste	US±33 mg/L	NEU, G. 10 NTUL 1880	(19 Per 10) AV	
دء د	Dedicated Pump	-	An (Spins)	TURE (1	Caler		 				1				PASAMECERS FOR A	Tambération de la compa	100HC	Table of the country of	W(+ I.C Pr.	
ONITORING WELL	PURCING DEVICE: Develop Purp SAAPLING DEVICE OF Purples From	OVA: TFID TIED IN Costing (ppm)	IN BREATHING ZONE (spen)	SAMPLER'S SIGNATURE	WELL SAMPLE TOME	Turbility Desolved ORF	(VTU) (ng(l)) (mk)				-					3.0 (ppm)	1	Discharge:	CO DI BUMB	1 40	
GROUNDWATER MONITORING WELL FIELD DATA LOG SHEET - SAMPLING	Bud		2000	TITLE DIAMETER (Ma)	Yang.	390	N° (103,511)		(000))					Fo" (ma/L).	Turbidity at time of sampling	Recharge	Lester 600		
	STENAME HUMBER	ما لاسكــة	DUPLICATELD	Densy	DS Buckenting	C104] 1	(36)			100	-			maken!		Sulfide (mg/L):		1	ma tell 1 wolf.	01.4 1/2	3
GETTA TECH BIT E Vandante Way Stree 125 Ean Sanzadon, CA 1348 Statement 1000 Albert 20	The state of the s	MONITORING WELL IDENTIFICATION BY (Q - (LA) LD	0.000	STATIC WATER LEVEL, (RIMS) LINE (1)	196	-	-				die Court	1	miolid -	25000	5:157	Colories and faster prior to seconding)	Wasser found or time of committee (St. block.	COM	Inable to lo	imp with	
4	DATE OF 14	CONTORDA	SAMPLE I.D	TATIC WATE	VELL /PUMP	Tinte		1			-	1	Ī			Colorimente	Water Inches of p	Portro Sottland	Comments:	0 10	

[[volatibe as descret in the breathing some during the loidal senseming, the breathing zone will be periodically monitored during purples, and sampling netivides. All water knote and pump deptits are measured from the reference point (notch) in the top of the well casing.

If no relatence point is observed than the casing high point about it is motival and measurements about the collected from this point.

Every externey should be succe to their water level drawdown to but than 6.33 that and purpertuce to bas than 0.5 L/mio.

DELE VERSIONS WAY SURVING Ser Broadway CA 12:00 Telephone (1909) 311-1174

THEMA TECH

FIELD DATA LOG SHEET - SAMPLING

PARAMETERS FOR WATER CONCINCAMENTALIZATION (gral/bodin mUnital Flor Pate 000 Conductivity ± 3 % ☐ Bladder Pump vented to) (or bolice) DUPLICATE SAMPLE TIME Welfframp Volemen Parget 500 9,00 Ō L: Disposable Balker C Perishilitic Pump Temperature collect readings Volume Links gada/mil) 3030 3 XIO 4400 5739 (Falled) SOLO 2389 PURGING DEVICE: U Dydicated Pump SAMPLING DEVICE: (d' Purging Pump OVA: THO PID In Creing (ppm) HTKAL FUMP DIPTH (A MOC) _2000 ADDG S SAMPLER'S SIGNATURE IN PREATHING ZONS (ppm) WELL SAMPLE TIME 28.0 5 が Di Dissalved D.O. (ppm); OESTERN (mg/L) 6.49 Į, Tarbidity at time of sampling: Unbiding (PE 33.4 2,2 2 83 4 No. 2 (mg/L);) 100 6.44 6.44 WELL DRIVIN (R 100) ALCO 533 뒲 CASINGTUBE DIAMETER (MIR) 35 (mS/em) (010) 100 .01a /O. / 3 v (galfinit) S 2 9 -DUPLICATE LD. SITE NAME / NUMBER Sulfide (mg/L.): Ja. A3 3.8 21.95 21.73 22,14 8 93.3 wоитокича well dentification B-(a-(a)tWater kivel at the of sampling (It block 350.51) (ft bbsc) Depth Pump 200 STATIC WATER LEVEL (q box) $\overrightarrow{OSO} \overrightarrow{G}$ J. 192 Colorimetric test (taken prior to sampling) **3**50.93 SAMPLE LD B-C-CWIG-N- (700) AUSA 250.92 J50.17 250.97 509a (ft bitne) Waler Pier PROGRAMMANIE CHC - BAI WELL PICAM VOLUME (V) (BUILDING MAT MAN OF TATE 64/25/PG WATER COLUMN (See) うずそろ Activity त्त<u>्र</u> ¥35 W38 729 TAC. 77

If volatibes are detected to the abreating zone during the initial screening, the breating arms will be periodically monitoned during purging and compling patholism. All water levels and pump depths are necessared from the reference point (assets) in the top of the well easing.

DO+0.3 mg/l.

王 17

Dischange; /O

Rutharge: 20

May Bulkling Control took.

Pump Settings:

Turbidity < 10 NTUs (if > 10 NTUs at 10 %)

ORP ± 10 mV

WL = 0.1 foot

If an enformed point is observed then the caving high point should be notched and naconsequents should be collected from this point.

Every attempt shooted be made to limit woter fevel drawdown to loss than 0.33 feet and peags rate to loss than 0.5 L/min.

Po e

.ii

Page of

GROUNDWATER MONITORING WELL

DATE Verbrie Sec. AS Subtrate, C. XIV Telepore (50%) 186-- 674

DZI VELEN

FIELD DATA LOG SREET - SAMPLING

PARAMETERS FOR WATER QUALITY STABILIZATION Hour Kate (yakmin coll'neia) Conductivity = 3 % Calcider Purch 201 1.5 mg. (24 01 - 41174 (27 > 28 N.715 - 10 %) ORPA:0 mV (vented 10) Joiner. (wouled to) DUTTLEATE SAMPLE TIME Well/Pump Volumes Pergod 75 S 7 . Periestic Pump L Dispossible Bailer Temperature callect readings Pargara! Volume 2860 0 COND 0130 (freta) (Inkia.) W. + 0.1 feat D: = 0.1 HINAL PLIME DUPTH (R boo) 3 SC. S PURGENG DEVICE: Bodisand Purp OVA: [HD JAD in Casing (Fran) SAMPLING DEVICE ITTORES Pump 3 3 Coler 2 5 2.5 N SAGATHING ZONI (Ippm) SAMPLER'S SKRATTIRK 43.3 100 WELL SAMPLE TIME 947 [AUS 00 ORP 23 D.C. (ppm): Dierstorge: Dissolved 0.65 Oxvgen 540 3.79 (ndu) Turbudly at time of surpting: Turbidity (NIC) 70 4.45 4.3 29650 Fu 1 (mg/1); Rechurge 7.40 3 2 STIENAME/NUMBER 1 MC BOL 100 CASDICATES DIAMETER (9/in) WELL DEPTH (S MOC) 0.0 0.817 0.610 0.876 212 0 (mS/cm) 3 v (gol/rox) -1. (wot BULKATE 13. 27.70 Sulfide (mg/L): 27.42 7 220 120 200 Comp 2 (A bitac) Depth PURE 3865 1 STATIC WATER LIVE. (Flund) 7 70. MONTORNO WELL DENTIFICATION SAMPLE 13 6-1-6322-N-1762 Colorinstrie test (taken prior to sampling) 770.85 768 (If blac) 770.95 26.05 20.95 270.85 27.85 Levo Water love, at himp of sampling (A law): WELL, MYTHE VOLLDAGE (V) CRAPMI) LALL MAK CA Pa STATE WALLES DATE 4-11-1017 YOMBY Activity WATTER COLUMN (Feet) PROGRAM NAMO! Pump Serlings: SWIL 236 2 3 Conments Tour 200 (1.3

If volkilus on detacké in the breathing accedaing the initial seconding. So breathing some will be periodically most med during parging and sampling solivities. At white lives and pump depics are measured from the reference poles (noted) in the top of the well entire.

If no reference point is observed than the mains high point should be nowhed and messurements should be collected from this point.

Every attempt shared be made to limit water lovel drawdown to less than 0.35 for and purgotors to loss time 0.3 Limin

Puge / oir

GROUNDWATER MONITORING WELL.

No. 1. Vandelijk Wije, 20. ju 450 Par Bonnelau, CA 42400 Urighera (VI), 20. julija Pering (VI), 20. julija

DATE ATTEM

FIELD DATA LOG SHEET - SAMPLING

T S	DATE 4.75-1-1		S.TI. NAK	S/NUMBER	STITINAKS NUMBER CALL PAR	1000		PURGINGD	EVICE 4'D	PURGING DEVICE: 4 Dedicated Plimp	L. Peristallóc Parp		Bledder Fump
GRAM	PROGRAM WAME	TIPICATION.	7	712000				SAMPLING CPL.T.AVG	Device I	SAMPLING DEVICE: Therefore Punto OVA: ("HE) FED IN CHESC (HE)	Cuitie)	oiler L'Other (vestual ta)	
TELE :	SAMPLE D. C-1-COOS-0-702	1752	T.	GURLICATELLE SUPIL DEPT	PLICATELD,	1,		IN BRUGATH	IN BRIGATISMS ZONE (ppe.)	ppe)	O (Milliagy O	(ecupacy)	
TER CO	WATER COLLAN (6ea)	(marking)		CASING/TUBE DIAMETER (Min.)	DIAMETER (MA	3/8	: -	SAMPLER'S STONATU	SAMPLER'S STGNATURE	1	4 -	DUPLICATE SAMPLE TIXE	i
Time	Aething	Water Level (f) btue)	Pump Depris (fi bine)	Temp (C*)	ECC. (BatS/rem)	Н	Terbidity (NTU)	Dissolved Oxygon (mg/L)	Old (ww)	Cultor	Volume Furgad (galaimi)	Well/Pomp Volumes Purged	Now Rate (gal/min malfmin)
大	Start Page	771.07	2775			1			13 15 17				Up.
1001		100	,	11.24	0.777	7.73	2.43	4.34	4Ca	dear	250	l'ol	
1905		1271.07		2,30	5772	7.30	3.13	U, 30	45.4	CRW	340	1.12	
1408		1271.67	1	35,12	2110	17.7	2,44	1. 23	1.95	() es	3740	1.23	
1861		211.07	1	34. Lr	5.773	725	230) : ત	WI.A	646	1070	1,61;	
11:14		17167	1	121.67	P. C. O.	561	1.49	4,06	0 05	Cour	4900	50'1	
1417	to with	101/2	1	75/2	0.775	7.35	1.84	4.08	3,5	Wer.	0,65	1.56	-
9141	Samon	j	1			-							-
		1			Ų			-				THE O	/
					40	(1	1		
				!	1						1		
					2								
primetri	Colorimetric test (taken prior to sampling)	or to sampling		Salito (mg/.)	ĺ	Pe" (mp/L):		D.O. (ppm):	i	PARAMETE	PARAMETERS FOR WATER QUALITY STABLIZATION	QUALITY STA	NULTACE
Caro, to	Water Joyce at time of sampling (fi bloc):		70115		12	Terbiolity at times of some plings	of secuting.	1.8.1		Comparente :	Comparative collect :eadings	Conductivity=3%	Ny=3%
Pump Sections:	E.	7	1	Ř		Recharge	7	Distinguish	j.	flq	pl1 • 0.1	DO 63 mg/l.	3 mg/l.
Constraint										Turition	Turksiy < 10 NTUS (1? > 10 NTUS ± 10 %)	E > 10 NTCs#	(56.01
			1		40					WL	WL + 0.1 fber	VA2±10=V	10=V

If valuities are detected in the breathing man during the initial screening, the breathing wave will be periodically reforked during purpling and sampling cettivities. All water imple and pump dayles are measured from the reference paint (botch) in the top of the well easing.

If ne reference power is experted faces the costing high paint should be notabled and invasormments should be collected from this point

fivory attempt should be made to lived water loved drawdown to less than 0.33 feet and proge rate to less than 0.5 Libriu.

Page of

Est.	
200	
-	
-	
r In	
~	
170	
\supset	
-	
_	
>	
F	
GROUNDWATER MONITORING WELL	
-	
_	
26	
-3	
4	
5	
-	
-	
>	
Z	
-	
0	
25	
MI	
v	

FIELD DATA LOG SHEET - SAMPLING

- B		🗓 Bladder Presp	O Other	(vemos to)	(ot beauty)			IMI	up Flow Rate		mkining)	1300	-					>				4	PARAMETERS FOR WATER QUALITY STABILIZATION	Confinerity by 3 %	DO ± 0.3 mg/l.	> 10 XTTU3 ± 10 %)	ORP ± 10 mV
Maga				- 1	<u> </u>			RAMPLET	Well/Pomp	Volumb	Peries		1,00	1.14	1.00	1.36	8/1	65 7					RQUACITY	Com	5	GE > 10 ST	0
		🗌 Paristattic Pump	Disparable Bailer	(Terkiel)	(Infalal)	330.S	1	DUPLICATE SAMPLE TIME	Voleme	Plentical	(pakkal)		5/00	COD	6600	3300	7850	84/31)					S FUR WATE	ollers readings	:0.1	Turbidity < 10 NTUs	WL ≈ 0.1 fied
		gheated Pump	urging Pump	□ P.D. In Casing (span)	-	\mathcal{L}		10973	Caler								_	₹					PARAMETER	Temperature collect readings	pH = 0.1	Turbid	WL = (
WELL	PLING ,	PURCONG DEVICE Dodoesal Pump	SAMPLING DEVICE R Purging Pump		IN BREATHONG ZONE (spen)	FINAL PLIMP DEPTH (R blog)	SAMPLER'S SIGNATURE THE	PLE TIME	OKP		(my)		[634	148,0	181.9	104.7	(43.3	11814							2		
TORING	T-SAM	PURCONGE	SAMPLING	OVA: TID	IN BREAT	FINAL PLA	SAMPLER	WELL SAMPLE TIME	Descrived	Dayges	(mb/L)		7 8.0	787	08.0	0.79	82.0	0.78	12				D.O. (spen):		Discharge		
GROUNDWATER MONITORING WELL	FIELD DATA LOG SHEET - SAMPLING					0			Tarbidity		(NTU)		3.74	4.03	3.79	2.99	4.82	4.30		1)			of sampling:	90		
NDWATE	DATAL				1	384.9	. 3/C	(E.				7.53	7.53	750	7.5	7.53	7,53	6	7			Fc * (mg/L):	Turbidity of time of sampling:	Recharge:		
GROUI	FIELD	7 43			l e	Til (ft btoo)	METER (MI	3 v (gal/kal)	23		(mZ//cm)	7	6.105	0.10)	0.70A	C. 104	4010	70%		Ì				T.T.	20	200	-
		NUMBER		Som	DUPLICATE LD.	WELL DEPT	CASING/TUBE BIAMETER (Mis)	× E	Temp		(20)		21.2	21.90 I	11-64	d1.92	N 96	199 18					Sulfide (mg/L):		750	Saft Co	
		SITE NAME (NUMBER				닦		OPI	Porting	Depth	(tr Moc)	2005	-	_	_	-		>	1				- S	27.75	7	Mediano (
3			ACC-1507	ACATION (5-N-1782	050	a. 43		Water	P.	(R bloc)	-	859.53	-15a 49	353.50	35.4 B	Sa.50	8524F					to sampling)	(Ploc):	CPIAC	- 1	>
TRICKS TACH TRICK Vandadot Bay Sufe 150	Statistication CA 19401 Talgane (193),111-1674 Talance (193),111-1674		7	VELL IDENTO	P-R-Cust	HEVEL (A PA	TN. (Bate)	DLUME (Y) (g	Activity			Jan town	ว					Lymoly	-				t (taken prior) Supplies to a		150 0 Mach	
		ATTE OF ID	ROGRAM NAME	CONTIDERNO	AMPLETTS EN-CLUSS-N-1782	TATIC WATER LEVEL (II book) OSO 4	VATER COLUMN (But)	PELL PUMP YOLDME (Y) (galfml)	TIME	• •		A410 S	Н	040	A43 F	146	0949	OPS2 IS	t				Solovimetric test (taken prior to sampling)	Pater Javel at time of sampling (A bloc):	Temp Settings	Accountable of the last	ب

If soluties are detected in the breathing zone during the initial screening, the breathing zone will be paried large most during paging and sampling activities.

All when evels and promp deprils are incurred from the reference point (noith) in the top of the well coding. If no reference point is observed then the easing high point should be indexed and mentorements should be noticed from this point.

Every attents should be made to limit works lavel draw-loven to kee than 0.33 feet and progresses to kee than 0.5 Limits.

以下書の 本書 ないかん でん Nor Stematics CA PART Tolechen (989) 161 1644

SAN ACEL

FIELD DATA LOG SHEET - SAMPLING

DATE	W-11-1017	2	SLENAN	SLENAMITHUMBER LING BOOK	CANC	Back		MINGING 13	SVCE .	PURGING DRVICE: Modizmed Pump	L. Peristolide Premp		I Bladder Forep
PROURAM NAME	NAME			İ		İ		SAMPLING	DEVICE: 1	SAMPLING DEVICE Heaging Furns	C Disposable Links		
MONTOR	MONTORING WELL IDENTIFICATION	PICATION	i	C-1-chusy -				DVA: L. PID	15/5 10 11	OVA: L PID SPEID INCOMES (Opt.)	(initial)	~	(
SAXPLE).	SAXPLE 1.3. C-1-1,30,7-1-1/42	-14-1762		DUPLICATE LD	CD,			IN BREATHING ZONE (gant)	INO YOUE	(giste.)	(Judical)	(control to)	9
STATICW	STATIC WATER LINE OF DOOR 26 26 2	26.	293	- 1	WELL DATTH (K DATE) 324,50	3745	Q	MALPLAN	B) HTFBC T	0.515 (ood 6) HTF3C TACK JAKE	0		
WATERCO	WATER COLUMN (Feet)		CASE	Ç	VETER (Min		3/0	SAMPLER'S SIGNATURE	SCNA'IU	E beer	1	200	
WELL PUD	WELL PUNE VOLUME (V) (BAPPL)	10.0	38 05	3.4	(Imheg) v S			WELL SAMPLE TIXE	PLE TIME	1500		DUPLICATE SAMPLE TIME	t
Time	Activity	Wuter	Pomp Depth	Temp	26	ia.	Turbidity	Dhanlwed	HO	Color	Volume	Wellfump	Blury leafe
		(fit triber)	(ft bloc)	CCI	(m&(rm)		CARLO	(mg/L)	(vav)		(galarimi)	Pargrad Pargrad	(galimia ml/mja)
hih!	Chard-Dune 7.53,64 ; 3,2	75,62	3,2			120 2						·	30 B
Mh fil		263.62	Ţ	79.46 10	D. 749	51.9	80	76	28-	Clark	2000	201	1
1447	ı	26967	,	24.38	3410	12.2	7.81	101	68-	Closedy	0220	1,13	
ashi	3	167.62		24.14	5110	25.9	187	5	1.4.	Change	08317	1.13	_
140	1	269	1	18.66	341.0	6.98	16.4	577	-15,2	Clouds	5275	133	
% ≥	1	263.42	ı	22/6	15. Ter	6.63	7.2	(.43	12h-	Clescody	5,60	17.43	
MER	Endhuse	263.6		11.4.11	Shlip	6.67	1721	5.4.1	2.12-	Chan /y	25,20	1.5:1	
1560	Sample	1	1	1		İ							A .
		-						1	¥ 1				
						į				111111	1		1
						14-							
					9								
Colorinatio	Colonination tost (taken prior to sempling)	r to sempling	5	Stilfide (e.g/L):	ĺ	Fo ¹² (119,%):	t	3.0. (tpm):	1	PARAMETER	S FOR WATER	PARAMETERS FOR WATER QUALITY STABILIZATION	ART. PLATEON
Witter lava.	With live of this of sampling (C. blue):	(f. bluck	23,632	2	Ē	tidity of time	ार्ग्यम् या मिल वर्ष उपम्प्रोगहः	17.4		Tomperature	Tomperature collect restained	Conducth	Conductivity ± 3 %
Pump Sartings	:52	CPV	1	E	1	Realist Re	Ĭ	Discharge	•	PH4	pH+U.	0 + 00	00 ± 0.3 ⊏ _€ √1.
Comments										bical	IN STRUCTURE	CA III S CONTEX (IT > 10 MILES + 10 %)	111.50)
										W. I	W. 1 8.1 Sam	= PAC	ORF = 10 SV

(Craimiles are decended in the brambing year during the initial accounteg, the breathing cane will be periodically mentured during purpling and sampling activities.

If an exterement point is observed than the onsing high paint should be not that and measurements abused on collected from this point. All water levels and purity departs one measured from the reference point (100%) in the top of the well resing.

Brony schampt should be made to licuit water lives drawdown to less than 0.33 feet and properate to has than 0.5 Libriu.

KINATESI KINAMAN THAKALONIK Se Succession CA Media H31-11 (000) - 11075 BE-1-48 (484) M-1-4-4

GROUNDWATER MONITORING WELL

FIELD DATA LOG SLIEET - SAMPLING

MINGING DEVICE Medicand Jump Literistatic Pump C. Bladder Jump (walled to) (vented to) L'Oiher BOS DUPLICATE SAMPLE TIME SAMPLING DEVICE: 3 Purpley, Fump | C. Disposeble Bailer G. Constant (mirial) OVA: CITD Nem in Casing (april) HAVE PEAR DEPTH OF MOCH IN BREATHING ZONE (rpm) SAMPLER'S SIGNATURE WELL SAMPLE TIME. LMC BOU 292 CASING/CURE DIAMETER (9/m) 3/6 [00:0 IS] (11:23C 7.15% 3 v (galirani) INDIFFICATE LD. SIZENAMEZNUMBER MONTORING WELL IDENTIFICATION C-1-CL.S WELL FUMP YOLUNG (V) (galiml). 3500 SAMPLE ID CIT-CLUS MITCHE STATIC WATER LEVEL, (Rune) イランド WATER COLLEGE (Ged) PROGRAN NAME TIVE

Pamp Plow Rate men (gal/min m/onln)	257		7	1,4	12			5	*		PARAMITERS FOR WATER QUALITY STABILIZATION	Cenductivity 13%	DO + 0.3 mg/L	NIUS 10 %)
WelkFump Volumes Purged		1.04	1.27	2.		7.80	73	2.39	il.		ROTALI	u		8L < JB
Volume Parged (Halvan)		3500	0524	0000	2750	20,33	22.60	6000			S FOR WATE	Temperature collect readings	1.0 × Elc	TERMIN < 10 NOUS (IF > 18 NICE + 19 %)
Color		char	cloar	clan	clet	200	CEE	cles			PARAMITES	Temperature	FR.	Turbik
ORP (mV)		3.0	638	27.2	55.6 cle	53.4	0	534			1	Ī.	'	
Directord Oxygen (Light)		7.53	623	5.82	SH3	04.5	4.39	5.38			D.G. (pper):	307	Discharge	
Turkidhy (RTU)		4.71	62%	9,97	3,62	2.89	348	3.32			١	of sampling:	1	
He		6.08		6.36	6.30	543	727 500	87.9		1	Fe ⁴⁰ (mg/L.):	Curbidity at time of sampling:	Restrugas	
F.C (niSiem)		0.966	275.0	0.470	576. W	0.063	100			1	١	12	ι	
Temp		12,45	23.03	62.67	13.27	22,70	23.85	23.64			Su: Ndc (mg/L):		755	1
Pomp Ueprik (ft bese)	185	1	I	1	j	1	ł	1				762 M	1	J
Noter Level (it bioc)	26333	263.34	76734	18.34	えもつ	267.74	たんかっ	J. 3. 3.			to sampling	· · · · · · · · · · · · · · · · · · ·	CEX	
Astivity	Start Page (26333 185	ì	Y	ì	1	1	1	End Push	Swill	1	University (taken prior to sampling)	West level of firms of sampling (it show		× × ±
This	125	1546	(644	7591	\$65)	825	1661	1604	509)		Colorinetric	Witer level of	Pemp Sarings:	Сэппиона:

If volktiles are described to the breathing save during the Cation recoming, the breathing sone will be positionly monitored during purging and sampling activities. All water lone's and pump depths are measured from the reference paint (noted) in the top of the well paging.

If no reference point is observed that the cosing high point should be necessed and assessment's should be collected from this point.

fivery strempt should be made to limit water level drawdown to less than 0.33 feet and purperate to less than 0.51 Justin.

DIE Vorhabel Way 5 - a 400 San Person ru. Co. Wood 1451-19, 400) - min m.

HIRATAKIA.

TAKEN UNDER THE TAKEN

FIELD DATA LOG SHEET - SAMPLING

PARAMETERS FOR WATHR QUALITY STABLIZATION (galémán out/min) Conductivity = 3 % L' R'adder Tump 201 1.5 mg/L. (% 01 + \$11_N 01 < 31) WILLIO > A 10 500. OIRP + TH MV (c) palluos E Culta (willed to) DUPLICATE SAMPLE TIME WollPamp Furgad Volume કુ 3 Reristable Pump I. Dieposeble Ballar Tenystations asked modings 3 (yalving) Purkel 28 0095 6:0 3000 (inlital) 37.50 1,48 WL = 0.1 Feat PH-0.1 PURGING DEVICE: Apachemi Pann SAMPLING DEVICE: [Unapper, Pump COVA: C. HED : WPID in Casing (ppm) Tr. Colur ورود 3 Sec. 3 WELL SAMPLE TIME 1759 FINAL PLIMP DRPTH (n bloc) IN BABATERNO ZONTI (ppm) SAMPLER'S SICENATURE 37.0 0 530 (my) URP Uscarie Turbicity at tinue of surraling: 1,64 -4.0. (ppm); 5.83 Dissolved Oxygen (ml/L") 5.87 187V 5.62 とい **Turhidity** (NIV) 1 -79 6 283 Fe 2 (rag/L): Kreharr 714 폰 724 ACT DAY CHEMINA CAC BEA CASING/TUBE DIAMOTHR (Oliv) WELL DEPTH (I buce) 2956 (mS/cm) 2450 25.50 0.436 080 0485 3 v (gal/cel) CLETA: M. MOU からな Suffice (mg/L.): 23.46 22.13 13 wo 23,05 23.05 5 9 なるないでんって NW-O (ft bloc) וינותף Verth : 370 STATIC WATER LEVEL (8 Mort). 7257,06 Colorinatric test (taken prior to sangiling) MONTONING WELL LURNINGCATION 20.125 257.07 157.07 (fr Jeoc) 257.07 2012 Weler Level 1991 SAME SELD. MILL OF WITH Water investal time of sampling (A bloc): WELL, PUMT VOLUME (V) (palent) Start Page カートラ なるのか Activity WATER COLUMN (feet) MARK PROGRAM NAME Pump Serings Ý 748 Christia Time 25 INT

If relatives are decaded in the betathing zone chalog the initial sevening, the breathing some will be perfectivally monitored during maping anything and sampling activities. All weter levels and pures depths are measured from the reference point (nates) in the top of the well easing.

If so reference point to observed than the cusing high point when't he nondered and measurements should be collected from this point.

thery attempt should be made to limit water land drawdown to loss than 0.33 flot and pusp rate to loss than 3.5 Limin

Sant.

GROUNDWATER MONITORING WELL

KIND VALLE THE STREET Substitute CA Cont 大三十四 かんしまさい

STATE AND

Trans (936) 189-130

PIELD BATA LOG SHEET - SAMPLING

Parameters for water quality stabbles for Row Rate (galfmin m Vnulm Conductivity 4 3 % 1 : Phydder Pump 9 10 = 0.3 mg/L SKOT T FILLY OF Y TO WITH Y TO WE (vunited to) L'outer (vecilled to) DUTE TO THE SAMPLE TIME WellPump Volumes Perged 05 ě 26,1 4 Fi Peristablic Pump C. Dispussible Builer 価種の C (letital) Torporatue collect reschips 120 C 39 7 Parged (myqua) Solution of 11160 5500 2.100 2,64. WT, 4 0.1 Sunt effi C1 PINAL PUMP DEPTH (R boo), 1726. PURGING DEVICE: MEDICARE Pump OVA: F. JTD . HPTD In Casing (ppm) SAMPLING DEVICE Chapter Penp 3 Color 300 Cagar WELLSAMPLIFTIME OBS'S clear (lear) cleur IN BREATHING ZONE (ppm) SAMPLER'S SKINATURE (IN.) 31.2 203 200 44. 41.6 -D.D. (ppar): - Uschege: Dissolved Organie CHRIC. 7 25.50 "urbidity on time of sampling: 1.90 Turbidity (NIV.) 28 200 0 00 CASINCYTURE DIAMETER (IVIN) 79. 2895 Full (mg/L.): 0.948 7.22 Recentle: 2:20 7.70 됞 STENAMENTAMBER LAC BOLL 09457,23 WELL DEPTH (A bloc) 0.44 (mS/em) 0.6 Sv (galfall) CLATATION OF Sulfide (regit.): 2.50 2 11.34 7512 58 Temp (3) 08012 A.02 (f) bine) 350 Depth STATIC WATER LEVEL (RING) 2 10.80 Columetric test (taken prior to sampling) MUNICIPAL WELL IDENTIFICATION 250.00 28.007 20.007 2.080 140.86 SAMPLE I.D. MILL OU. N. 1702 (ft btsc) 2.0 E.C. 29.40 Level Vater Weter level at time of nompling (it bine). WELL PUMP VOLUXE (V) Galinit, THE PARK Cont Change WATER COLUMN (float) 7020-Sumpl Authrity 9 NOORAM NAME 17.74 Pump Sociens: OB ME SERVE 2000 Centilizable 0 65 500 08A - Y

Probables are deserted in the breatfiles some during the initial someoring, the hearthing some will be perforbedly menitored during purging and sumpling activities,

ORPASSIM

All water Secula and pump depths are measured from the refunersa point (mater) in the top of the well coning.

For efference point is absenced then the easing high pasts should be multiped and measurements should be exclused from this paint.

Sway officials decreate to limit water level drawdown to less than 0.00 feet and purge rate to less than 6.5 Janie.

Pays / of

GROUNDWATER MONITORING WELL

おする いかとなる 日本 日本 Surface (Prop. no. 10.2)

THE GOOD PROPERTY

FIELD DATA LOG SHEET - SAMPLING

PARAMETERS FOR WATER QUALTY STARRITAMON Flow Made (gullenin mVestn Conductivity ± 3 % J Blocker Pusp DO 1 0.3 Egil. PEDIDING TONTER OF > 18 NTC8 & 28 %) OKP = 10 esV 8 (world to) 1 College (weated to) COZE DUPLICATIONAPERITAME WellPump Volumes Pergod . Persetoltic Pump . | Disposable Baller (initial) Torroundum collect restings (incited) 500 Purged (Imharmi) Velumo 3600 4700 288 3400 W. 10. Go: When time pH& !!! 222 FUNGING DEVICE: 3 Dedicated Function SAMPLING DEVICE: L'Surging Pump OVA THOS TAKE IE CAMING (17879) 25 CEM Cakir class Cres 300 Sec FINAL PUMP DEPTH (# 500) IN BREATHING ZONE (ppm) SAMPLIN'S SIGNATURE WILL SAMPLE TIME 11:3 \$ 36 1201 (A01) 8.3 ORC 3.0. (ppm): 1.28 Dischage: Dissahred Organ (mg/L) 5 Ø 80 Turbidity of time of sampling: Turbidity 30 (niv) 14 35 200 Fo. 1 (mg/L): Mechanics 2813 7.18 7.20 4 2116 핕 ンメン CASTNEYTIBE DIAMETER (PA) WELL DIPTH (f. hoc) 0.430 0.427 0.432 0.634 0.434 (mS/cm) 0.93 K 3 v (gal/m:1) DUPLICATE ID. STIENARGE/NUMBER Selfide (rag/L.): S 20.72 20.72 20.02 120.7 0202 100 Ş 20.65 んなり 1: (fi binc) Depth Pump 232 W 3050 STATIC WATHELEVILL (B 2006), 757, 87 KON FORDAG WELL IDEN PRICATION Otlorimetrie test (taken prior to sampling) 737.87 737.87 28787 237.87 23787 732.87 237.87 (% benc) Water L'reel Weise level of time of sompling (f. bloc): WELL MUMP VOLUME (Y) (pairs) SAMPLE 1.D. AN-07-4-170 & Erd Punge Start Pane WATTER COLLIMON (feet) Activity 7 7017 SALOK PROCKAM NAME Pump Serieges 2000 Commercia 0922 6160 381 9/60 2913 MATE

Gvery addrespe about to reach to the level transfer we have been fact from the purgress to be seen to 15 Utahi.

If rotalizes are deseated in the breathing accordang the hithal secondag. Use breathing sume will be periodically executable purging med sampling activities All water track and young depths are meneural from the reference point (noted) in the top of the wall enting.

If so reference point is observed then the resing high point should be not that and measurements should be collected from this point.

T. Blackler Perpin

T Peritative Pump

PLIRONG DRWCK: LOS desired Paris

STITE NAMES NOWTHER

1-7-20C

DATE

GROUNDWATER MONITORING WELL

THE NAME OF STREET NA BARACAGOS, CA PLATS Manage 1455 Minds

TAILS SEEN

FIELD DATA LOG SHEET - SAMPLING

J Octor (ut balace) vented to DCPLICATE SAMPLE TIME TOISpounds Builter (initial) (Krital) UNATION CIND SINGS IN TANO SAMPLING ORVIGES KPURJUB Pump IN BREATHING ZONE (ppm) FINAL PUMP DEPTH (E blou) SAMPLER'S SIGNATURE WELL SAMPLE TIME CARINCATIBE DIAMETER (REA) % WILL DIFTE (A hoc.) 3 v (pulici) DUFLICATE I.D. MONTORNO WELL IDENTIFICATION ALL STATIC WATER LEVEL (# 1004) 7.43.32 SAMPLEID. _ LAUSOS // (TUT. WELL/FUXE VOLUME (V) (gol/co) WATER COLLINAN (Fee) PROGRAM MAME

The	Activity	Water Level	Pump Depth	Teary) (High)	Hq	Turbidity	Disselved Oxygen (mm)	ORP	Color	Volume Purged	Well/Femp Volumes Purged	How Rate (Rothmin
17.70	- Ty22	77577	255		(magazina)		fared	In Mary	7		imag)		15-75
250	1	27.333		23.62	N.50	7.10	720	197	J'Ah	Colley	3/50	1.22	,
850	1	2037	1	22.19	0	22.2	2.64		000	1.00 Vola	2000	1.18	
150)	١	12427	1	-	2500	7.23	502	6.03	583	Cast 11/2.	0305	6.33	
100		143.33	V		0430	7.27	88.	6.00	5.53	ついと		1.4%	
1057	2	2833	! 	. 53.3	0.934	722	1.47	5.74	60.00	clow	6,600	1.62	
1100	END Ruge 243.33	E & Sh2		23.03	0.932		1.72	5.82	200		3840	177	
10	Sample	1											4
		2			,								
					1								
	1		I.		1	1						1	
1			!				-						
Calorimetri	Colorimetric test (taken prior to sempling)	r to sempling)		Suifide (mg/L):		Train (night)		- D.C. (pp.2):	-	PARAMETERS	FOR WATER	PARAMIETORS FOR WATER QUALITY STABILIZATION	VGILIZATION
Water level o	Water level at tiese of stempling (3) 570c):		2533		Ter	Tachiglay actions of sampling:	of sompling:	1/2	را	Tourperature collect reselves	וות: תבקבים	Conducti	Conductivity ± 3 %
Party Solither	X.	CTM:	1	135	1	Redage		-Discharge	١	DH + N	3.1	DOTO	DO 1 03 c4/L
Comments:										Fichidal	S'STITE NO S	Tabidity < 10 NTUs (# > 10 NTUs 10 36)	10 36)
										W. J. L. Sac.	Snot	I DRF 25	DRF as 10 mV

If volvilles are detected in the breathing zone during the Critical percenting, the including same will be precised and adding pluging and sampling salvidies All ween locals and pump deplas are measured from the reference point (novel) in the top of the well easing.

If no softeness point is observed that the asking high point should be cooked and invasurements should be collected from this point.

Sivery attempt should be made to final water level drawdown to less than 0.33 feet and purps rate to be also 0.3 Lifetim.

THE PROPERTY OF CAME Statement of A 104m 25 spile 4 (833) 332 1834

STATE FOR THE IN

GROUNDWATER MONITORING WELL

FULLD DATA LOG SHEET - SAMPLING

NONLYORING WELL BYN-THOLATION	TORING WELL INDING					j		SAMPLING	Device []	SAMPLING DEVICE Of Purple Fund	C Dispussible Roller		C. Other
CASING CAR DIZTH (1520)	Contraction of the Party	TIPICATION	35	/	5	1		OVA: E FED	True in	(Cestage (ppm)	(mittall) 0		
Activity Water Penness Sample Tenness Sample Tenness	WATER LEVEL (E.)	18 1/2 2 (OUT		ACTURE DIS	FIH (fi 520c)	1.34		METAL PROMI	E) HTWICH (B) RICHARDIN	Mac 260	[]	14	
Activity Water Penno Tento &C pH Turbidity Disastrum Organia Organ	PUMP VOLLMS (M)	32 (myral)		,1	(patront)		; 	WHIL SAM	PLE TIME	2280	100	SAMPLE TIME	1
5\foresting (1 those) \[\text{Vertical foresting (1 those)} \] \[\tex	e Activity	Water Level	Pento Depte	Temo	22	H	Turbidity	Dhankel Oxyron	ORP	Calor	Volumo Purged	Wellifamil Volumes Purged	How Rafe (golfinia
Standing Light 1960	. I		(un pane)		(meacin)		(Alte)	(militar)	fws.)		(married)		ml/wen)
- 244,81 - 70,70 0,40% 1,70 5,24 50.5 - 254,61 - 10,34 5,406 7,75 1,76 5,24 14.0 - 241,61 - 10,34 5,406 7,75 1,40 5,38 1,71 8 - 24,161 - 10,34 5,406 7,75 1,40 5,24 14.0 - 24,161 - 10,34 5,406 7,75 1,40 5,70 1,03 - 24,162 - 10,44 0,40 7,75 1,54 5,70 1,03 - 24,162 - 10,44 0,40 7,75 1,54 5,70 1,03 - 24,162 - 10,44 0,40 7,75 1,54 5,70 1,03 - 24,162 - 10,44 0,40 7,75 1,57 1,03 - 24,162 - 10,164 1,03 - 24,163 - 10,164 1,03 - 24,163 - 10,164 1,03 - 24,164 1,000; 24,167 1,03 - 24,164 1,000; 24,167 1,03 - 25,164 1,000; 24,167 1,000; 24,	1	_	Sec	11		1 1 1						,	160
223, \$7 1,76 5.2% 141,0 20,34 5,406 7.75 1,76 5.2% 141,0 20,37 0,405 7.75 1,87 5.3% 17.1 14.6 20,37 0,407 7.75 1,64 5.19 11,46 20,407 2,50 2,407 7.75 1,64 5.19 11,46 20,407 2,50 2,407 7.75 1,64 5.19 11,46 20,407 2,50 2,407 7.75 1,64 5.19 11,46 20,407 2,50 2,407 7.75 1,64 5.19 11,46 20,407 2,50 2,407 7.75 1,64 5.19 11,46 20,407 2,50 2,407 7.75 1,64 5.19 11,46 20,407 2,50 2,407 7.75 1,67 1,67 1,67 1,67 1,67 1,67 1,67 1,67	1	2.44.51	1	- 1	0.400	474	100	17.5	50.0	Ches	6,×4,0	2003	
2010 2010 2010 2010 2010 2010 2010 2010	٩	237.57	į.	5.1	1.907	7.75	1,76	42.5	0.11	ilas	35.50	6.39	
	7	14.11.18	H : 0	120.34	300		281	5.38	1.7.1	1212	4000	1.35	
2 C. 12 Pays 2 2 14 18 2 2 10 14 2 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 5	19006		75.02			1.48	12.7	119.6	Can	OShh	1.51	
Co.12 Page	8	1,44.87	-0	95.03	2990	2.15	1.64	10,18	11/1	:413	1960	39 :	
Sample (akan prior to sampling) Salfide (mpl.): — "a" (mpl		Lahri2	1		0.863	54.7	553	5.70	(10.3	1975	5440	(.84.)	
Sing Salide (mg.): 100. from the Turbidity at times of sempling: 1,5.7			1								!	Î	4
Salfide (mgL.): "ra" (ragl.): D.O. frank 24"4,8 7 Turbidity at times of sempling: 1,5 7 PMs 255: Recharge.				i									1
cheg) Sulfide (mpl.): 'ra'' (mpl.): D.O. frenk (** 244; \$ 7 Turkidity at time of sempling: 1,5 7				101									
Schieg Salfide (mgC.): " re" (regC.): D.O. frank " 24", \$ 7 Turbidity at time of sempling: 1,57 PMs 255: Recharge . Disciourge.			1	1				! :					
Classical Sulfide (mgC.): — 10° (mgC.): — D.O. frank —— 24°4,8 7 Turbidity at time of sumpling: 1,5°7 PM: Recharge . Discisarge.				Ĺ		7			ŀ				
244,87 Turkidity at time of smajling: 4.5.7 Turmparatus coloral and ings PMs PMs PMs PMs PMs PMs PMs PMs PMs PMs	notric test (taken priu	(Singhanes of a		alfide (mgC.):	,	" (F. D.L.):	L	D.O. Sprint	į	PARANETE?	S FOR WATE	COUNTRY STA	BLIZATION
CPMs 253: Racharge Distinge PH + 0.1 (1' > 10.1	מוונקסשב על משכקנוון		244.87		Tub	bidity at time	of sempling:	1,57		Temperature	Wka malings	Conduction	W.= 3%
	र्वाटिनुष्टः	CPME		SSE	1	Recharge		Distinge		Hd	- 0.1	00±0	5 mg/L
	150									Turbk	SUTK OI > OR	TS(1. > 10 N. 118 T	(95.01

If volatibes are detected in the treathing zone during the initial seconding, the baseling was will be providedly mentioned during pareing each sempling activities. North

[&]quot;The reference point is observed then the casing leigh point should be concluded and mossurements should be collected from this point. Alt water lovels and pump depiles are measured fount the reforeces point (cutch) in the top of the well excite.

Every attempt should be made to limes water level desvelows to less from 3.35 feet and purperate to less than 0.5 Union.

L' Bladder Pump

GROUNDWATER MONITORING WELL

MAN VANALANCE SALES Selloning CA RING September Park Mi-1674 BELLEVILLE FOR NEW YORK

DELLA TECH

FIELD DATA LOG SHEET - SAMPLING

STIENAME/NUMBER CATC (SO.

College College ventor to) verning (tv) DUPLICATE SANCE STATE MIRCHAGO DRVICH: Chymany Pamp | Peristria Purp C Disposobo Bailer GC (letici) (india) OVA: Upto 34th in Caling (ppm) SAMPLING DEVICE L'Purping Pump WELL SAMPLE TIME (77.0) FINAL PUXP (MPTR (0 Hux) IN BREATHING ZONE (ppm) SAMPLER'S STONATURE STATIC WATER LEVIEL (MENS) 235.34 WELL DIEPTI (R MON) = 2.49.5 ASTNOVILLER DIAMETER (RVII) Chening) VE DUPLICATE TO CALL MUNICIPAL VOLUME (V) GRANDIN ALTHOU MONTORNO WELL IDENTIFICATION SAMPLELLE SUNFAMPER WATTER COLUMN (feet) TATE, 4:10-7017 PROCRAMINAME

Time	Activity	Water Level	Pepth	Lamp.	538) jrd	Turbidity	1) Insofred Oxygen	ഷവ	Color	Volume	Welkframp	How Rate
		(A Mac)	(fi hine)	CC	(mS/em)		(NYCL)	(mb/c)	(M.M.)		(tank/ml)	Furgod	(gal/min onVnsie)
1421	Slat Rice	12 × 311	21140	İ					7			1	120
1304	1	2357	1	25.00	1.07	15%	16.31	4. Tu	531	1000	03/21	197	
1307	ţ	23639		21.45	1.071	264	280	4.67	183	das	3120	171.1	:
1310	١	1235.34)			733	525	11.5%	183	clos/	3440	1.27	
(3/3	V	18562	1	2352	1,064	326	H	45%	3.01	cley	7,840	37	
13.6		1235.34	,	05.42	1060	7.24	V	91:10	50	1/4m/	CS Ch	: ::	
A.C.	COUNTEND PLUS	45.25.24	\ \{\bar{\}}	5901 25m2	5901	7.31	27.8	4.45	1001	1405/	0927	1.67	
220	Share le		- 1						1				
- 3					1	3							
					1				7				
1												A	
Colorimenie	Colorimetric test (taken prior to sampling)	er to sampling)		Su. Fishe (mg/L.):	1	Fer (mg/L)c		-, n.a (pzm):	ŀ	PARAMITI	RS FOR WATER	MARAMITTERS FOR WATER QUALITY STABILIZATION	KOLEYZITISH
Weter lovel 2.	Water lovel at Eme of sampling (It bins):	T (A Stack	2434	7.	Tw	midity of 12me	Twindity or time of sampling 9,600	298		Temperature	Tomperature collect resultage	Conductiv	Confuctivity 1.3%
Party Stainger	(at	CFM;		ž	£	Restange:	1	Discharge	1	IT	711 to 3.	no=0	DO = 0.3 mg/L
Comments										CX.I	idity < 10 NTCs	12 Sept. 18 19 NOVICE (CF > 16 NOVICE 18 %)	18.83
										W. A	W. 4 9. 500:	- CARD	ORP - 10 mV

(Prefettles are detected in the breathing zone during the faithal secretion, the faculting zone will be prefetably monitored during purpling only sometimes. All water levels and pump depins are necessarial from the reference point (motals) in the top of the well earling.

If ne exference point is observed than the easing high point share, it has not the annual recent share, it is not the point.

Every attempt should be made to limit water lavel drawdown to beathou B.3.3 fast and purporent to loop from 0.5 Limin.

Inspection Conducted By:	1,1	COO				200	
As-built depth of well?		Meas	ured dept	of well?		Difference i	?
Condition of bottom of well?	Soft	tag?	Yes	No	Firm tag?	Yes	Ma
Maintenance Item:	Yes	No	Comme	nt:	_		
Well is visible and accessible?	V	No					
Surrounding area is free of vegetation, waste, and debris	V	Νe					
Well name is present and legible on exterior of well?	V	No					
Protective casing is not damaged or corroded?	V	No					
Guard posts (if present) are in good condition?	Yes	No					
Is the area round the well flooded?		1					
Surface pad exists and is not cracked or deteriorated?	12	31.	-			-	
Well vault (if present) is in good condition? (i.e., no standing water and bolts are tight)	138	1					
Does vault gasket need to be replaced?	V	N)-	Outside	diameter of v	mult gasket?		
Well tag is present within well monument and is legible? (well name/number, top-of-casing elevation (in mail, total as-built depth)	100	1					
Locks are present and in good condition (i.e., no rust)?	VPA.	112					
Well cap is present and is watertight?	753	The same			*		
Top-of-casing survey mark exists and is legible?	R	V					
Additional comments:	26	-					

As-built depth of well?		Mets	ured depti	of well?	ı l	Xifference?	
Condition of bottom of well?	Soft	tag?	Yes	Na	Firm tag?	Yes	Nc
Maintenance Item:	Yes	No	Comme	nt:			
Well is visible and accessible?	7	Hijer					
Surrounding area is free of vogosation, waste, and debris	Top	700					
Well name is present and legible must be introduced?	1	1.165					
Protective casing is not damaged or colonied?	V	3961					
Guard posts (if present) are in good condition?	8.7	10					
is the area round the well." Hooded?	Y7-4.	107				-	
Surface pad exists and is not cracked or deteriorated?	the /	40					
Well yoult (if present) is in good condition? (i.e., inversiming water and bolts are signal.	O. L.	(45)					
Does vault gasket need to be replaced?	1	130	Outside (liameter of s	vault gasket?		
Well rag is present within well monument and is legible? (well mane/number, top-of-tasing e-vasion (in msl) totals; built depth)	3m/	1		• 12			
Locks are present and mycket condition (i.e., no rost)?	1004	Va c					
Well cap is present and is water tight?	his	File					
Top-of casing survey mark exists and is legible?	16. K	147					
Additional comments: PEPUACE ACXO			-ST. T	AP BOX	THOUSE		

As-built depth of well?		Meas	ured depth o	of well?	7)ifference:	ļ
Condition of bottom of well?	Saft	tug?	Yes	No	Firm tag?	Yes	No
Maintenance Item:	Yes	No	Comment		-		
Well is visible and accessible?	V	t/m					
Surrounding area is free of vegetation, waste, and debris	1	f.br					
Well name is present and legible on exterior of well?	V	Hō.					
Protective casing is not camaged pricorroced?	5	No					
Guard posts (if present) are in good condition?		Pay					
is the area round the well. flooded?	- 6.	1.					
Surface pad exists and is not cracked or (leteriorated)	15 1	L)					
Well vault (if present) is in good condition? (i.e., no warding water and followers bent)		[3					
Does yau tigasket need to be replaced?	-		Cuttice dis	meter of a	vault gasket?		
Well tag is present within well monument and is legicle? (well hame/number, top-of-tasing efects on (in mil), total as-built depth)	× C*	15					
Locks are present and in good condition ," e , no sust)?	161	P.					
Well cap is present and is watertight?	-	.he					
Top-of-rasing survey mark exists and is legible?	6.5	12					
Additional comments:							

As built depth of well?		Mess	ured depti	of well?		Difference	?
Condition of bottom of weil?	Soft	tog?	Yes	No	Firm tag?	Yes	No
Maintenance Item:	Yes	No	Comme	nı:			
Wel. is vis.ble and accessible?	V	114					
Surrounding area is free of vegetation, waste, and debris	V	Mh					
Well name is present and egible on exterior of well?	V .	Slo					
Protective casing is not damaged or corroded?	V	Skor					
Guard posts (if present) are in good condition?	-	-10					
is the area round the well ('doded?	1 = -	1					
Surface pad exists and is not cracked or deteriorated?	25	27					
Well vault (if present) is in good condition? If will restanding water and outsiare signs)	100	1					
Joes vault gasket need to be replaced?	15	3.00	Outside o	hameter of	vault gasket?		
Well tag is present within well monument and is egible? (we bette, in then, top-obtasting elevation (in ms.), total as-built depth)	CV	1.0					
Locks are present and in good condition (i.e., no rust)?	11/8	100					
We'l tap is present and is watertign:?	121	3.7					
Top-of-casing survey mark exists and is legible?	183						
Additional comments:							

As-built depth of well?	Meas	vred depti	h of well?	D	ifference?
Condition of bottom of well?	Soft teg?	Yes	No	Firm tag?	Yes
Maintenance Item:	Yes No	Comme	nt:		
We'll is visible and accessible?	V Me				
Surrounding area is tree of vegetation, waste, and debris	YAN MAR				
We I name is present and legible on extendriof well!	1 30				
Protective casing is not camaged or corroded?	1 10				
Guard posts (if present) are in good (and) bon?	0				
is the area round the well flooded	a				
Surface pad exists and is not cracked or deteriorated?	YES MA				
Well vault (if present) is in good concition? (iii), its warding water and bolts are digit).	1115 10				
Dues vault gasket need to be replaced?	1000	Quiside o	diameter of	wult gasket?	
Well tag is present within well manument and is legible? (well rana/miniser, top-of-casing elevation in mell, total as abilit depth)	10: 7:2				
Locks are present and its good condition (fig., no rust)?					
Well cap is present and is waterhight?					
Taji-of casine survey mark exists and is legible-	1				
Additional comments:					

As-built depth of well?		Meas	ured depth	of well?		ifference?	
Condition of bottom of well?	Soft	tag?	Yes	Na	Firm tag?	Yes	No
Maintenance Item:	Yes	No	Camme	nt:			
Well is visible and accessible?	V	No					
Surrounding area is free of vegetation, waste, and debits	17	17.0					
Well name is present and legible on exterior of well?	14	lla					
Profective casing is not damaged or corroded?	1/	fåa.					
Guard posts (if present) are in good condition?	Yes v	<u>Ber</u>					
Is the area round the well. Horney?	104	la la					
Similare pad exists and is not cracked or deteriorated?	1-15	tác					
Well vault (if present) is in good condition? (i.e., researches, water and tells are tests)	Y = 0.	The same	_				
Noes varilt gasket need to be replaced?	125	10.	Outside	liameter of v	reuit Basket ^o		
Well tag is present within well monument and is legible? (w-il name/nordic), repetits asing -less har formal), unclass built depth)	7	No.					
Locks are present and in good condition (i.e., no rust)?	(-	(a)					
Well cap is present and is watertight?	10	Ph-					
Top-of-casing survey mark exists and is legible?	Yes	100					
Additional comments:	G/	KA	भ 🛧 1	TAG, T	STAFFED I	HOLECT	Ċ

As built depth of well?	Ī	Meas	ured de pti	n of well?		ifference:	
Condition of bottom of well?	Soft	tag?	Yes	No	Firm tag?	Yes	No
Maintenance Item:	Yes	No	Comme	nt:		1	
Well is visible and accessible?	V	11.1					
Surrounding area is free of vegetation, waste, and debris	Nyva	/10					
Well name is present and legible on exterior of well?	1	(6)			_		
Protective casing is not damaged or corroded?	7	Tio.					
Guard posts (if present) are in good condition?	1						
Is the area round the well flooded?		1					
Surface pad exists and is not cracked or deteriorated?	V	70			4.		
Well vault (if present) is in good condition? (i.e., no standing setur and bolts are right)	W	-					
Does vault gasket need to be replaced?	V	M	Outside	diameter of v	ault gasket?		
Well tag is present within well- monument and is legible? (well name/number, top-of-cating elevation (normal), total as built depth;					•		
Locks are present and in good condition (i.e., no rust)?	15%	100					
Well cap is present acd is waterlight?	-	1.53					
Top-of-casing survey mark exists and is legible?		-					
Additional comments:	346	,re	T, 20	快节町), 个人6台西	Þ	

As built depth of well?	1	Meas	ured dept	of well?		Difference	3
Condition of bottom of well?	Soft t	ag?	Yes	No	Firm teg?	Yes	No
Maintenance Item:	Yes	No	Comme	nt:			je.
Well is visible and accessible?		Ø1	* ***				
Surrounding area is free of vegetation, waste, and coor's	V	7		-		20	
Well name is present and legible on extending five IX	vi	3 (-	
Protective casing is not damaged propareded?	-	y -					57
Cuard posts (if present) are in good could (ign):	-	<u>.</u> -			<u> </u>		-
Is the area round the well flooded?		1			1 <u></u>		
Surface pad exists and is not cracked or determinated?	V						
Well vault (if present) is in guest condition? (i.e., se warding water and beltwirk highl)	~						
Does valuit gasket need to be replaced?	1,635		Outside a	diameter of	vanit gasket?		
Well cag is propert within well manument and is legit of (well name/bun ber, tup-of-tasing elevation (more), total as but ofental).	-	-					···
cocks are present and miggod condition (i.e., no rest)?		-					
Well cap is present and watertight?	James de	3					
Top-of-castrig survey mark exists and is legible."	-				-		

Well ID: 3850Q			ם	ate: 4	124/17		
Inspection Conducted By:	2. 0	-	TER				
As-built depth of well?		Meas	ured depth o	f well?		Cofference	>
Condition of bottom of well?	Soft	tag?	Yes	No	Firm tag?	Yes	110
Maintenance Item:	Yes	No	Comment				
Well is visible and accessible?	~	135	2		**		
Surrounding area is free of vegetation, waste, and debris	W	to			****		
Well name is present and legible on exterior of well?	19	1					
Protective casing is not damaged or corroded?	17	85					
Guard posts (if present) are in good condition?							
Is the area round the well flooded?		1					
Surface pad exists and is not cracked or deteriorated?	20	Ne					
Well vault (if present) is in good condition? Tile, no standing water and polis are tight)	~	()					
Does vault gasket need to be replaced?		I.	Outside dia	meter of v	ault gasket?		
Well tag is present within well monument and is legible? (well name/number, top-of-cosing elevation (in msl), total as built depth)	L.	54 10					
Locks are present and in good condition (i.e., no rust)?	-	5					
Well cap is present and is watertight?	4	tie					
Top-of-casing survey mark exists and is legible?	june.	10					
Additional comments:							

Well ID: 3850R			1	Date: 4	124/17		
Inchestion Conditional Day	. 5×	BAT	665		2-1 1"		
As-built depth of well?	I	Measi	ured depth o	f well?		ifference	
Condition of bottom of well?	Softt	ag?	Yes	Ng	Firm tag?	Yas	No
Maintenance Item:	Yes	No	Comment	:			
Well is visible and access ble?	2				-		
Sumponding area is free of Vegetation, waste, and debris		,			*	-	
Wolf name is present and egible on exterior of well?	200				·		
Protective casing our or damaged or corroded?	-	711		-ñ			
Guard posts (if present) are in good condition?							
t the may round the well flooded?		v."			-		
Surface pad exists and is not cracked or determinated.	-						
We I vault (if present) is it good condition? (i.e., to sanding water and balts are tother		v					
Ones you't gasket need to be replaced?	V.		Outside dia	meter of vi	सादि हेल्ड्रलस्		
Well tag is present within well monument and is legible? (well came/camber, tageof-casing elevater (mind), total as-built depth)		اً است					
Looks are present and in goon could tight (i.e., no rust)?		-					
Well cap is present and is watertight?	0						
Top-of-casing survey mark	-,						

ADDED GAGKET FTAG, HEW BOUTS

Well 10: 3850 S				Date: 4	1/24/10		
Inspection Conducted By:	C	ربين	الر				
Assault depth of we I?	Ţ	l _y leas	ured depth	of well?	C	ofference?	
Condition of bottom of well?	Sofi	rig?	Yes	No	Firm tag:	Yes	No
Maintenance Item:	Yes	No	Commen	ti			
Well is visible and accessible?	L	Time			-		
Surrouthing area is free of vegetation, waste, and debris	-	1	Ī				
Well name is present and legible on exterior of wel?	7						
Protective casing is not usingged or corroced?	1						
Guard posts (if precent) are in good condition?	-	4					
is the area round the well flooded?	-	-					
Surface pad exists and is not cracked or deteriorated?	-						
We'l vault (if present) is in good condition? (i.e., no standing water and bolls are light)	1						
Does vault gasket need to be replaced?		-	Outside d	iameter of v	auli gasket?		
Well tag is present within well monument and is legible? (well same/number, top-of-cosing alevation (in mil), total and office this							
Locks are present and in good condition (i.e., no rust)?	rel	_					
Well cap is present and is watertight?	سا						
Ton-of-casing survey mark exists and is legible?	1						
Additional comments							

As-built depth of well?		Meas	ured depth	of well?		Difference i	?
Condition of bottom of well?	Soft	tag?	Yes	No	Firm tag?	Yes	Mp
Maintenance Item:	Yes	No	Commer	nt:			
Well is visible and accessible?	Yes	Ve					
Surrounding area is free of vagetation, waste, and debris	V	Mr					
Well name is present and legible on exterior of well?	V	Ms					
Protective casing is not damaged or corroded?	100	No.					
Guard posts (if present) are in good condition?	Yes	<u> </u>					
Is the area round the well flooded?	Yes	No					
Surface ped exists and is not cracked or deteriorated?	Yes	fla					
Well vault (if present) is in good condition? (i.e., no standing water and bolts are tight)	Yes	Ne					
Does vault gasket need to be replaced?	105	No	Outside d	ismeter of	vault gasket?		
Well tag is present within well monument and is legible? (well mme/number, topo f-calling elevation (in md), total as-built depth)	Yes	No					
Locks are present and in good condition (i.e., no rust)?	Yes	No.					
Well cap is present and is watertight?	Yes	767					
Top-of-casing survey mark exists and is legible?	Yes	-					
Additional comments:							

Well ID: 385)U				Da	ite: 4.3	2C · 17				
Inspection Conducted By:	I	C,	de_							
As-built depth of well?		Mens	ured depti	of	well?		Di	ifference	7	\neg
Condition of bottom of well?	Soft	tag?	Yes		No	firm tag	?	Yes	No	
Maintenance Item:	Yes	No	Comme	nt:						
Well is visible and accessible?	Yes	Nt				_				
Surrounding area is free of vegetation, waste, and debris	Yes	No								
Well name is present and legible on exterior of well?	1	No								
Protective casing is not damaged or corroded?	V.	No								
Guard posts (if present) are in good condition?	Yer	<u>11.</u>								
is the area round the well flooded?	Ves				<u>, </u>					
Surface pad exists and is not cracked or deteriorated?	V	No	,							
Well vault (if present) is in good condition? (i.e., no standing water and boits are tight)	Yes	No								
Boes vault gasket need to be replaced?	Y25	An.	Outside (lan	neter of vaul	t gasket?				
Well tag is present within well monument and is legible? (well name/number, top-of-caping elevation (in mil), total to-built dipth)	Yes	\s'\								
Locks are present and in good condition (i.e., no rust)?	Yes	No								
Well cap is present and is watertight?	Yas	N								
Top-of-casing survey mark exists and is legible?	A52	No								
Additional comments:	هيا ۾	ll to	છ , [ૄ] ~	ا ح	t replac	e 100	He	÷	-	

As-built depth of well?		Meas	ared depth o	f well?		Différence à	
Condition of bottom of well?	Soft	tag?	Yes	No	firm tag?	Yes	No
Maintenance Item:	Yes	No	Comment	!		,	
Well is visible and accessible?	-	fysis				_	
Surrounding aces is free of vogotation, waste, and debris	-	t.c					
We'l name is present and legible on exterior of well?	>	tur					
Protective casing is not damaged or corroded?	1	for.			1.1		
Guard posts (if present) are in good condition?	-	D _C C					
Is the area round the well- Coaded?		1. II.					
Surface pad exists and is not cracked or deteriorated?		ī					
Well yoult (Epresent) is in good condition? (i.e., no seed on, water and belts are tight)	1	EAG					
Opes vault gooket need to be replaced?	You	السا	Outside dia	muler of v	au); gasket?		
We'll tag is present within we'll monument and is legible? (well rank/nor be, top-of-easing devotion times), total as built depth.		Tank.					
Locks are present and in good — Coulition (i.e., no rust)?							
Wild cup is present and is watertight?	-	1.00					
Top-of-casing purvey mark exists and is legible!		The state of					
Additional comments:							

As built depth of well?	Ī	Meas	ured depth	of well?	D	ifference?	
Condition of bottom of well?	Soft	tag?	Yes	No	Firm tag?	Yes	Nc
Maintenance (tem:	Yes	No	Comme	nt.	27		
Well is visible and accessible?	1				(1) <u>1</u>		
Surrounding area is tree of vegetation, waste, and debris	1	-1	19-5-6		•	-	
Well name is present and legible on exterior of well?	1	Y).		2			
Protective casing is run damaged or corroded?	2	99.		· -			
finand posts (if present) are in good (mulition)	-	1			*	_	
Is the area round the well floodec?		-			-	_	
Surface pail exists and is not cracked or detendance?					×-		
Well vault (if present) is in good condition? (i.e. abstanding water and bolts are tight)	~						
Does vault gasket need to be replaced?		-	Outside a	hameter of v	uult gasket?		
Well tag is present within well monument and is legitle? (well monach and extended, tup-of-tasing elevation (in mall, totales brittlephi).	Jan-						
Tooks are present and migood condition (i.e., no rost)?	-	-					
Well cup is present and is watertight?	-			-			
fop-of-cusing, survey mark exists and is legible?	7	سند			+71		•
Additional comments:		1					

As built depth of well?		Meas	wed depth o	f well?		Difference'	7
Condition of bottom of well?	Soft	tag?	Yes	No	Firm tag	? Yes	No
Maintenance Item:	Yes	No	Comment				
Well is visible and accessible?	V	Me					
Surrounding area is free of vegetation, waste, and debris	YU.	Νέ					
Well name is present and legible on exterior of well?	Yes	V					
Protective casing is not damaged or corroded?	V	NC				_	
Guard posts (If present) are in good condition?	-	-					
is the area round the well flooded?	Yes	J					
Surface pad exists and is not cracked or deceriorated?	Yº/	Plan					
Well vault (If present) is in good condition? (I.e., no standing water and bolk (fire tight)	V	rita;					
Does vault gasket need to be replaced?	V	1	Outside dia	meter of v	auk gosket?		
Well tag is present within well monument and is legible? [web rame/number, top-of-casing elevation (in ms 0, total as-built depth)	(8)	V					
Locks are present and in good condition (i.e., no rust)?	Text	Na.					
Well cap is present and is watertight?	Yea	J					
Top-of-casing survey mark exists and is legible?	Yaş	J					
Additional comments: Pelabel we							

As-built depth of well?		Meas	ured depti	of well?		Difference	7
Candition of bottom of well?	Soft	tag?	Yes	No	Firm tag	? Yes	Ng
Maintenance Item:	Yes	Mo	Comme	nt:			
Well is visible and accessible?	V	N:					
Surrounding area is free of vegetation, waste, and debris	YeV	Νr					
Well name is present and legible on exterior of well?	Yes	N					
Protective casing is not damaged or corroded?	VV	ive.					
Guard posts (If present) are in good condition?	Vitr	1:-					
is the area round the well flooded?	745	V					
Surface pad exists and Is not cracked or deteriorated?	1	744					
Well vault (if present) is in good condition? (i.e., no standing water and bolts are tight)	1	ita.					
Does vault gasket need to be replaced?	V	Nr.	Outside o	fiameter of v	rault gasket?		
Well tag is present within well monument and is legible? (well name/number, top-of-casing elevation (in msl), total as-built depth)	125	V					
Locks are present and in good condition (i.e., no rust)?	10%	450					
Well cap is present and is watertight?	Yen	1					
Top-of-casing survey mark exists and is legible?	Tell	1					

As-built depth of well?		Meas	ured depth of	well?	- 0	Afterence?	
Condition of bottom of well?	Soft	tag?	Yes	Ng	Firm tag?	Yes	No
Maintenance Item:	Yes	No	Comment:			-	
Well is visible and accessible?	1	135			*		
Surrounding area is free of vegetation, waste, and debris	1975	1350					
Well name is present and legible on exterior of well?	-	50					
Protective casing is not damaged or corroded?	7	23:					
Guard posts (if present) are in good condition?		fürr			_		
ls the area round the well flooded?		No.	2		-		
Surface pad exists and is not cracked or deteriorated?		in			·		
Well vault (if present) is in good condition? (i.e., no standing water and bolts are tight)	_	1					
Does vault gasket need to be replaced?	m	-	Quiside diar	neter of v	auit gasket?		
Well tag is present within well monument and is legible? (well came/number, top-of-casing elevation (in msl), total as built ilegth).	Ti-T	-					
Locks are present and in good condition (i.e., no rust)?	-	1					
Well cap is present and is waterlight?	-	ň(,					
Top-of-casing survey mark exists and is legible?		12					
Additional comments:			1				

As-built depth of well?		Meas	ired depth	of well?	Ī	Difference	i
Condition of bottom of well?	Soft	tag?	Yes	No	Firm tag?	Yes	No
Maintenance Item:	Yes	No	Commen	iti			
Well is visible and accessible?	0	1504					
Surrounding area is free of vegetation, waste, and debris	2	Pl/s					
Well name is present and legible on exterior of well?	Ť.	V					
Protective casing is not damaged or corroded?	0	Eq.					
Guard posts (if present) are in good condition?	(In)	1					
Is the area round the well flooded?	2	de					
Surface pad exists and is not cracked or deteniorated?	V	the !					
Well vault (if present) is in good condition? (i.e., no standing water and bolts are tight)	V	The					
Dues vault gasket need to be replaced?	1	TO	Outside d	ianteter of s	vault gasket?		
Well tag is present within well monument and is legible? (well none/number, tops://casing olevation (in ms)), total as-built depth	1)(=	Asted				
Locks are present and in good condition (i.e., no rust)?	E=0	V					
Well cap is present and is watertight?	7.01	110					
Top-of-casing survey mark exists and is legible?	131	V					
Additional comments:		1					

As-built depth of well?		Measi	ured depti	of well?		Difference	7
Condition of bottom of well?	Soft	tog?	Yes	No	Firm tag?	Yes	No
Maintenance Item:	Ve5	No	Comme	nt:			
Wet is visible and arrowshile?	-	1 12.0					-
Surrounding area is free of vegetation, waste, and debris	V	řα				1-	
Well name is present and regulation exterior of well?	14	Na.					
Protective casing is not damaged or corrodul?	1	UUI					
Guard posts (if present) are in good condition?	-						
ts the area round the well- flooded?		15					
Surface pad exists and is not cracked or deteriorated?	-						
Wef vault (it present) is in good conditional tree income in the conditional tree in the standing	-						
water and bold are light. Does vault gasket need to be replaced?		-	Outside :	diameter of v	ault gasket?		
Well tag is present within well mensurnent and is legible? (wan name/number, top of casing playation flowers), total as both depths		-					
Locks are present and in good condition (i.e., no rust)?	بنوا	_					
Well cap is present, and is watertight?	-	p' ()					
Top of-casing survey mark exists and is legible?	Yea	/					
Additional comments:							

As-built depth of well?		Meas	wred depth of	well?	[1	Difference?	
Condition of bottom of well?	Soft	teg?	Yes	No	Firm tag?	Yes	No
Maintenance Item:	Yes	No	Comment:				
Well is visible and accessible?	V	1>					
Surrounding area is free of vegetation, waste, and debris	8	hic					
Well name is present and legible on exterior of well?	Y;;;;	17					
Protective casing is not damaged or corroded?	5	Tax					
Guard posts (r* present) are in good condition?	(6/ 2	1					
Is the area round the well flooded?	V	7(6					
Surface paid exists and is not cracked or deteriorated?	1	71-					
Well vault (if present) is in good condition? (i.e., no standing water and bolts are tight)	1	0,					-
Does vault gasket need to be replaced?	1	-71	Outside dian	veter of	vault gasket?		
Well tag is present within well monument and is legible? (well name/iromber, lop-of-casing elevation (in ms)), total as-built dapth)	V	8	Alle				
Losks are present and in good condition (i.e., no rust)?		V					
Well cap is present and is watertight?		1					
Top-of-casing survey mark exists and is legible?		12					
Additional comments:	•					-	

Well 10: 3852.5		Date: 4/24/17	
Inspection Conducted By:	P. SHEATER		

As-built depth of well?		Meas	ured depti	of well?		Ofference?		
Condition of bettom of well?	Soft	tag?	Yes	No	Firm tagi	Yes	No	
Maintenance Item:	Yes	No	Comme	nt:				
Well is visible and accessible?	1	<i>H</i>)						
Surrounding area is free of vegetation, waste, and delivis	i	Tr-						
Well name is present and legible on exterior of well?	_	H.						
Protective casing is not damaged or counsely?		Ü						
Guard preds (if present) are in good condition?	100	8.P						
is the area round the well. Nooded?	Ħ	11						
Surface pad exists and is not uracked or deteriorated?	2					100		
Well withit (if present) is in good rand-tion? (i.e., no stand-tion? water with holds are 1900)	-	-(
Does vault gacket need to be replaced?		115	Outside (hameter of s	vaolt gasket?			
Well tag is present within well mountment and is legible? (well name/number, top-on-making depth).		şa i						
Locks are present and in good condition (i.e., ro-ract)?	10	-1						
Well cap is present and is waterlight?	3.0							
Top of casing survey mark exists and is logible?	-	17						
Additional comments:	1							

As-built depth of well?	N	lease	red depth		Difference	7	
Condition of bottom of well?	Soft to	g?	Yes	No	Firm tag?	Yes	No
Maintenance Item:	Yes f	VO.	Commen	t:			
Well is visible and accessible?	~	77					
Surrounding area is free of vegetation, waste, and debns	- The state of	· P					
Well name is present and legible on exterior of well?	1	18					
Protective casing is not, camaged or corroded?	~						
Guard posts (if present) are in good condition?		-2.7					
Is the area mund the well. flooded?	- 7	-					
Surface pad exists and is not cracked or deteriorated?	-						
Well vault (if present) is in good condition? (i.e., no stending water and believes tight:	-						
Does vault gasket need to be replaced?		-	Quiside di	emeter of:	vault gasket?		
Well tag is present within well cronument and is egible? (well name/oumber, top-of tasing elevation (in mol), total as built depth in		-					
Locks are present and in good condition (i.e., no rust)?	-						
Well cap is present and is waterlight?	-						
Top-of casing survey mark exists and is legible?	,						
Additional comments:							

Inspection Conducted By: p	50	1800	uaz.	Date: 4			
As-built depth of well?	T		areq qebti	h of well?		Difference	7
Condition of bottom of well?	Soft	tag?	Yes	No	Firm tag	3 Yes	No
Maintenance Item:	Yes	No	Comme	nt:			
Well is visible and accessible?	YES	41)					
Surrounding area is free of vegetation, waste, and debris	70	Ma.					
Well name is present and legible on exterior of well?	VER	Ma					
Protective casing is not damaged or corruded?	184	Pig					
Guard posts (if present) are in good condition?	YES	Na					
is the area round the well flooded?	1,61	Ne					
Surface pad exists and is not cracked or deteriorated?	12	740					
Well vault (if present) is in good (condition? (i.e., no standing water and bolts are tight)	TIPS	1 In	From	ed . Stimp	IHG WATER	- শ্বেশ শ্ব	. 201744 00
Does vault gasket need to be replaced?	1115	\$10.	Outside -		vault gasket?		
Well tag is present within well monument and is legible? (well came/number, top-of-cosing elevation) total as book depth?	YEN	tla	פעומאק	19			
Locks are present and in good condition (i.e., no rust)?	Yes	V	PASTV	D			
Well cap is present and is watertight?)'@=	740					
Top-of-casing survey mark exists and is legible?	10.5	No				-	
Additional comments:		1:					

Nell ID: 385214			E	Date: 4	24/17		
nspection Conducted By:	C. C	itteux					
As built death of well?		Mensi	ared depth o	of well?		Difference?	
Condition of bottom of WAII?	Soft	laga	Yes	No	Firm tage	Yes	i.e -
Maintenance Item:	Yes	No	Comment				
Wolf is visible and accessible?	i.	in C					
Surrounding area is free of vegetation, waster, and debris							
Well name is prosent and ogible on exterior of well?	~	ĵv.					
Profective casing is not transged or correded?	V						
Suard posts (if present) are in good concition?							
s the area round the well leaded/		1					
Surface paid exists and is not cracked on deteriolated?	~						
Well vault (if present) is in good concition? (i.e., in standing water and halfs are tight)	~	Î	GranLD	ide unter	d remove	ते. ह्वरम हर	P) 60
Dues yoult gasket need to be replaced?	~		Dutside dia	ometer of var	olt gasket?	_	
Well tag is present within well monument and is egible? (well as America, took feasing elevation) in milk total as built depth.	V	*,	MADO	D			
locks are present and in good condition (i.e., no rust)?	-	V					
Well cap is present and is watertight f		56					
Top-of casing survey mark exists and is levible?	1-3	V					

Well ID: 3852 H	Date: #/24/	י
Inspection Conducted By:	. CHOU	
As-built depth of well?	Measured depth of well?	Difference?

As-built depth of well?		Meas	ured depti	of well?		Difference	1
Condition of bottom of well?	Soft	teg?	Yes	No	Firm tag?	Yes	No
Maintenance Item:	Yes	Na	Comme	nt:			
Well is visible and acrestible?	V	11				-	
Surrounding area is free of vegetation, waste, and debris	12	501					
Well hance is present and legitic on exterior of well?	V	,					
Printed (We casing is not demaged or counciled?	V	*					
Guard posts (if present) are in good condition?		1					
Is the acea round the well Booked?		V					
Surface bad exists and is not unacked or deteriorated?	v						
Well you (()* present) is in good conditional (i.e., to sooney			ET an Ib	s 10 (1-		~ Demonstra	-
water and politic true free two available.			BINAL	AFIG HA	of the ct	D' Lan. Lin	LEW DEAD
Does you't gasket head to be repluced?	v			liameter of va	iult \$55-612		t
Well tag is present within well		1		1			
manument and is legible? (we) rume/number, top or tasing pleyabar (minsi), tala, padadi sacid)	V		ADDE	D			
Locks are present and in good condition (i.e., no rust)?	V	w					
Well cap is present and is watcat ght?							
Tap of casing survey mark exists and is legible?		1					
Additional comments:							

As-built depth of well?			ured depth	of well?	7	ofference	
Condition of bottom of well?	Soft	teg?	Yes	No	Firm tag?	Yes	No
Maintenance Item:	Yes	No	Commen	1:	192		
Well is visible and accessible?	V	Weigh			-		
Sun ouncing area is free of vegetation, waste, and debos	2	500					
Well name is present and agittle on exterior of well?	1	10					
Protective casing is not damaged no conjuded?	4	16.4					
Courd posts (if prosent) are in good condition:	1						
Is the area mund the well ficoded?		10					
Surface bad exists and is not cracked or deteriorated?	1						
Woll you calif present his in groom condition? (i.e., no standing water and do is are light)		1					
Does vauit gasket need to be replaced?	1	9 (The second second second	iameter of o	veult gaylet?	. , - 1	
Well tag is present within well monument and is legible? (we hame/hamber, too obcoming the beach) elevation (munit), to release and death).			MO) E D			
Locks are present and in good condition (i.e., no rost)?	-	اسلير	FEN	FA PM	271		
Well cap is present and is waterlight?	سبي.						- 1
Too-of-casing survey mark exists and is legicle?		-					
Additional comments							

As-built depth of well?		Meas	ured depth	[)ifference?		
Candition of bottom of well?	5oft	tag? Yes		No	Firm tag?	Yes	No
Maintenance Item:	Yes	No	Commer	nt:			-
Well to visible and accessible?	L	113					
Surrounding area is free of vegetation, waste, and debris	-	134	ly and the second				
Well name is present and legible on exterior of well?	1	Ŋ.					
Protective casing is not damaged or corroded?	~						
Guard posts (if present) are in good condition?	-	3					
is the area round the well flooded?		-					
Surface pad exists and is not cracked or deteriorated?	-	i v					
Well vault (if present) is in good condition? (i.e., no standing water and bolts are tight)		2.0					
Does vault gasker need to be replaced?	-	2		liameter of v	ault gasket?		
Well tag is present within well manument and is legible? (well rank/number, top-of-casing elevation (in msl), total co-built depth)	NA:	127	ASSI	5			
tocks are present and in good condition (i.e., no rust)?	-	1 (1),1	PEN	ta foot	2		
Well cap is present and is watertight?	1	Part					
Top-nl-casing survey mark exists and is legible?	ī	1					
Additional comments:							

As-built depth of well?	1	Meis	Measured depth of well? Difference?					
Condition of bottom of well?	Soft	tag?	Yes	No	Firm tag?	Yes	No	
Maintenance Item:	Yes	No	Comment:					
Well is visible and accessible?	10	16,0						
Surrounding area is free of vegetation, waste, and debris	V	No						
Well name is present and legible on exterior of well?	7	ĦS						
Protective casing is not damaged or corroded?	133.	TVO.						
Guard posts (if present) are in good condition?	1574	N.						
Is the area round the well flooded?	938	N						
Surface pad exists and is not cracked or deteriorated?	195	t):						
Well vault (if present) is in good condition? [i.e., no standing water and bolts are tight.]	Van	t/s	PEWPS	1085)				
Does vault gasket need to be replaced?	VEC.	T(G	Outside dia	meter of v	auft gasket?			
Well tag is present within well monument and is legible? (well name/number, top-of-casing elevation (in msl), total as-built depth)	V 25 8	V.	^০৮ ক	>				
Locks are present and in good condition (i.e., no rust)?	J.//8	19						
Well cap is present and is watertight?	134	N						
Top-of-casing survey mark exists and is legible?	195	TIC.						
Additional comments:								

Soft Yes	tag?	Yes	No	Firm tag?	Yes	No			
Yes	Bl-		Yes No Firm tag			? Yes No			
	No	Comment:							
Yes	34C								
Yes	No								
405	No								
10	No								
Yes	V								
Yes	No								
Yer	No								
Yes	No	PONNON	60						
Yes	No	Outside diar	neter of v	rault gasket?					
Yes	No.	MOD-97	>						
Yes	Ny								
Yes	No								
Yes	N/					_			
	Yes Yes Yes Yes Yes Yes Yes	Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No	Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No	Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No	Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No	Yes No Yes No Yes No Yes No Yes No Outside diameter of valuit gasket? Yes No Yes No Yes No Yes No Yes No Yes No			

As-built depth of well?			ured depth	of well?)ifference	
Condition of bottom of well?	5oft	tag?	Yes	No	Firm tag?	Yes	No
Maintenance Itcm: Yes		No	Commer	ıt;		-	
Well is visible and accessible?	V	1 35					
Surrounding area is free of vegetation, waste, and debris	V	. No					
Well name is present and egiple on extendor of well?	12	15					
Protective casing is not damaged or corroced?	1	Mar					
Guard posts (if present) are in good condition?	5=	7					
is the area round the well flooged?	715	N					
Sinfage and exists and is not cracked or deteriorated?	V	TL					
Well yault [.f present) is in)	14.					
gade condition? (m. no shadag water and bode and (gad)		~	FERIN				
Dues welt gasket need to be replaced?	V	. N =	Outside o		ault gasket?		
Well tag is present within well monument and is legithe? (with noncommon, so obtaining elevation (nor all, total as-port depth)	1	V	ADDE	D			
Locks are present and in good could from (i.e., no rust)?	LYST	5					
Well cools present and is wateringht?	>	10					
Top-of-casing survey mark exists and is legible?	25%	1					
Additional comments:							

Maintenance item: Well is visible and accessible? Surrounding area is free of registerion, waste, and debris wolf name is present and epible on exterior of well? Protective casing is not training of registerior of sold posts (if present) are in good condition? Is the area round the well flooded? Surface pad exists and is out tracked or deteriorated? Well vault (if present) is in good condition? Ite, no standing water and brossne right Does vault gasket meet to be replaced? Well tag is present within well monument and is legible? four nanezhonier, top 2-tesing device from all, total is-built depth tooks are present and in good condition (i.e., no rost)? Well cop is present and in good condition (i.e., no rost)? Well cop is present and is good condition (i.e., no rost)? Well cop is present and is good condition (i.e., no rost)? Well cop is present and is good condition (i.e., no rost)?	As-built depth of well?			ured depth o		Difference?		
Well is visible and accessible? Surrounding area is free of coppetation, waste, and debris wolf name is present and copile on exterior of well? Protective casing is not than age of coorded? Surad posts (if present) are in good condition? Is the area round the well flooded? Surroundition? So the area round the well flooded? Well vault (if present) is in good condition? Is a unstanding waster and total a city in the product of the properties of the product of th	Condition of bottom of well?	Spit	tag?	Ves	No	Firm tag ²	Yes	No
Surrounding area is free of segetation, waste, and debris woll name is present and legible on exterior of well? Forefective casing is not changed or corroded? Guard posts (if present) are in good condition? Is the area round the well flooded? Surface pad exists and is out cracked or deteriorated? Well condition? Be, no standing out conditions are ignit. Does vault gasket medit to be replaced? Wealtag is present within well monument and is legible? Guard name/number, top of casing each and in good condition (see, no rost)? Well cop is present and in good condition (see, no rost)? Well cop is present and is wateringht? Top-of-casing survey mark	Maintenance Item:	Yes	No	Comment				
regetation, waste, and debris Woll name is present and expise on exterior of well? Protective casing is not italianced or corroded? Guard posts (if present) are in good condition? Is the area round the well flooded? Surface pad exists and is out tracked or deteriorated? We'l vault (if present) is in good tondition? is an assending water and torsand remit Does vault gasket meet to be replaced? We'l tag is present within well monument and is legible? Isset annothing, top a traing between firmall, total as-board depth tooks are present and in good tundition (i.e., no rust)? We'l cop is present and is wateringht? Top-of-casing survey mark	Well is visible and accessible?	1	W			-	-	
Repote on exterior of well? Protective casing is not diamaged or corroded? Guard posts (if present) are in gnod condition? Is the area round the well flooded? Surface pad exists and is out cracked or deteriorated? We'l vault (if present) is in gued condition? We'l vault (if present) is in gued condition? We'l vault (if present) is in gued condition? We'l tag is present within well repraced? We'l tag is present within well nature/number, top of casing elevation fromal), total as-built depth; Locks are present and in good condition (i.e., no rust)? We'l cap is present and is wateringht? Top-of-casing survey mark		1	21					
damaged or corroded? Goord posts (if present) are in gnod condition? Is the area round the well flooded? Surface pad exists and is out cracked or deteriorated? We'l vault (if present) is in good condition? See, no standary warer and tots are right? Does vault gasket meet to be replaced? Well tag is present within well monument and is legible? See no standard in monument and is legible? See no monument and is legible? See no monument and in good condition (see, no root)? We'l cop is present and in good condition (see, no root)? We'l cop is present and is wateringht? Top-of-casing survey mark	Woll name is present and logiste on exterior of well?	V	16.					
good roudition? Is the area round the well flooded? Surface pad exists and is out cracked or deteriorated? We'l vault (if present) is in good condition? See, no standay water and tours are right Does vault gusket meet to be repfaced? We'l tag is present within well monument and is legible? food name/nombe, top shearing weard on financial, textains-burk depth Looks are present and in good condition (dec., po rust)? We'l cop is present and is wateringht? Top-of-casing survey mark	Protective casing is not damaged or corroded?	1						
flooded? Surface pad exists and is not cracked or deteriorated? We'l vault (if present) is in good condition? See, no standing water and bots are tignif. Does vault gasket need to be replaced? We'l tag is present within we'll monument and is legible? four nane/nomber, top of-casing seed depth; Looks are present and in good condition (see, no root)? We'l cop is present and is wateringht? Top-of-casing survey mark			V					
cracked or deteriorated? Wo'l vault (if present) is in good condition? (s.e., no standing warer and borsons right) Does vault gasket most to be replaced? We'l tag is present within well monument and is legible? (wat name/number, top of casing several or firmal), total is-built depth; Locks are present and in good condition (i.e., no rust)? We'l cop is present and is waternight? Top-of-casing survey mark			V					
Round condition? See, no standing warer and bottom regular to be replaced? Well tag is present within well monument and is legible? (will name), top of casing elevation (i.e., no rust)? Well cop is present and is watertight? Top-of-casing survey mark		6	*					
repfaced? Well tag is present within well monument and is legible? (well name/number, top of-casing well depth) Locks are present and in good condition (i.e., no rust)? We'll cop is present and is waternight? Top-of-casing survey mark	good condition? So, na standing	1	×					
monument and is legible? (see name from the form of the form of the form of the form), total is seen the form of t		V	17	The second secon	meter of va	oult gasker?		
Condition (c.e., no rost)? We'll cop is present and is waternight? Top-of-casing survey mark	monument and is legible? form name/number, top of-coons skynton firmual), total as-built depthi	V		MARI				
We'll cop is present and is waternight? Top-of-casing survey mark exists and is legible?	condition (ce., no rust) ⁹		V					
LOZ		V	11-					
			1					

WellID: 38624E 3	862E)ate: 4-/	24/17		
Inspection Conducted By:	C. CH.					
As built depth of well?	Mea	sured depth (of well?		ifference?	
Condition of bottom of well?	Soft tag?	Yes	Na	Firm tag?	Yes	No
Maintenance Item:	Yes Na	Comment	9			
Well is visible and accessible?						
Surrounding area is free of vegetation, waste, and debris	V					
Well name is present and legible on exterior of well?						
Frotective casing is not damaged or corroced?						
Guard posts (if present) are in good condition?	-					
ls the area round the we'll flooded?	·					
Surface pad exists and is not cracked or deteriorated?						
Well vault (if present) is in good condition?) (e. no sandug water and talls are tight)		S(XAD)	יום ייונאי	THE FETTH	কাচেন্ট)	
Odes yoult gasket need to be replaced?	Vi	Ontside dia		eult gasket?		
Wild tag is present within well monureent and is legible? (we rank/hunder, spacificating elevation) north, total as built healt]	~	MDE	D			
cocks are present and in good condition (i.e., no rust)?	V					
We I cap is present and is watert sht?						
Top: of casing survey mark exists and is legible?	V					
Additional comments:						

Well ID: 38700			D	ote: 4.2	617		
Inspection Conducted By:	3.0	GOK	<u> </u>				
As-built depth of well?		Meas	ured depth of	well?	239	Difference?	
Condition of bottom of well?	Soft	tag?	Yes	No	Firm tag	? Yes	No
Maintenance Itam:	Yes	No	Comment:				
Well is visible and accessible?	7	Mo					
Surrounding area is free of vegetation, waste, and debris	Vs	As:					
Well name is present and legible on exterior of well?	V	Me			2000		
Protective casing is not damaged or corroded?	V	Vc					
Guard posts (if present) are in good condition?	Yeu	سيبند					
is the area round the well flooded?	Yes	J					
Surface pad exists and is not cracked or deteriorated?	J	t ^{lee}				3	
Well vault (if present) is in good condition? (i.e., no standing water and boits are tight)	Yes	V		unto			
Does vault gasket need to be replaced?	V	120 1	Outside diar	neter of vaul	t gasket?	1 16	ult.
Well tag is present within well monument and is legible? (well name/number, tap-of-casing elevation (in msl), total as-built depth)	, . · · S	U					
Locks are present and in good condition (i.e., no rust)?	Yes	V					
Well cap is present and is watertight?	V	No	Ì			-	
Top-of-casing survey mark exists and is legible?	Yes	1					_
Additional comments: Replaced Missing	1	://	tag.	adde	160	1+	\

As-built depth of well?		Measi	ured depth (of well?		Difference	?
Condition of bottom of well?	50ft	tag?	Yes	MD	Firm taga	Yes	No
Maintenance Item:	Yes	No	Commen	tt			
Well is visible and accessible?	155	Ne					
Surrounding area is free of vegetation, waste, and debris	1	75.09					
Well name is present and legible on exterior of wall?	V	Site					
Protective casing is not damaged or corroded?	I AT	Sex					
Guard posts (if present) are in good condition?	nes.	100					
Is the area round the well flooded?	Yas	10					
Surface pad exists and is not cracked or deteriorated?	You	7.00					
Well yoult (if present) is in good condition? (i.e., no standing water and bolts are tight)	V-	71,	PETHAN	NO TO			
Does vault gasket need to be replaced?	**************************************	N÷	Outside di		vault gasket?		
Well tag is present within well monument and is legible? (well name/number, top-photoang elevation (in msl), total as-Luat depth)	Ves	FVc.	AQ-DIED	•			
Locks are present and in good condition (i.e., no rust)?	1	150				3. 11.0	
Well cap is present and is watertight?	¥E5	MA					
Top-of-casing survey mark exists and is legible?	NES.	10	17				
Additional comments:							

Well IC: 387! J				Date: 4	126/17		
Inspection Conducted By:	2.	SAR	MER				
As-built depth of well?		Mets	ured depth	of well?		Difference	7
Condition of bottom of well?	Soft	teg?	Yes	Na	Firm tag?	Yes	No
Maintenance Item:	Yes	No	Commer	11:			
Well is visite a and accessible?	12	750					
Surrounding area is free of vogetation, waste, and debris	V	šm					
Well name is present and legible on exterior of well?	-	50					
Protective casing is not damaged or composed?	1						
Guard posts (if present) are in good condition?		12					
is the area round the well Couced?	98	V					
Surface pad axists and is not cracked or not eriorated?	1	5.21					
Well east t (if present) is in good condition? (i.e., no standing water and by its are ught)	~	ite.	PATHE	CACADO			
Does voult gasket need to be repraced?	V	5 n	0.its de c	iameter of vi	oult gasket?		
Well tag is present within well monument and is hypide? (well name/number, top-of-casing elevation forms!), totales built seath;	/	- 11	MOS				
Locks are present and in good condition (i.e., no rust)?	V	10					
Well cap is present and is अंतरणसंद्रितर	21	41					
Top of rosing survey mark exists and is legible?	7:	V					

As built depth of well?	Î	Mass	ured depth	of weell?	T	Difference i	,
CONTROL STATE OF THE CONTROL OF THE STATE OF							
Condition of bottom of well?	Soft	tag?	Yes	No	Firm tag?	Yes	No
Maintenance Item:	Yes	No	Commen	t:			
Well is visible and accessin 4?	350	190					
Surrounding area is rice of vegetation, waste, and debris	1	317					
We I name is present and legible on extendor of wel?	1	Va.					
Protective casing is not damaged or corroded?	1	111					
Guard posts (if present) are in good condition?	i w	11)					
is the area round the well Coocled?	100	25					
Surface pad exists and is not cracked or deteriorated?	200	720					
Well cault (if pierent) is in good condition? (i.e., no state in; water and such are tight)	-70	74.4					
Odes vault gasket need to be replaced?	3	11	Outside di विकर्		ault gasket?		
Well dag is present within well monument and is legible? (well name?/ uniter, top-of-casing elevation (in ms), total as-body decta).		17.0	*99	Ð			
cocks are present and in good condition (i.e., no rust)?	4	1	Page 17	Beit	S		
Well cap is present and is watertights	No.	-5		797-10			
Top-of-casing survey mark exists and is legible?	1.3	21					

watertight? Top of-casing survey mark	As-built depth of well?	Ì	Meas	urad depth	of well?	C	oliference	
Surrouncing area is free of segetation, waste, and debris will have been and debris will have been and debris will have been and debris will have been and debris will have been and debris will have been and acceptable? Protective cosing is not demanded? Surface pad exists and is not incoded? Surface pad exists and is not unabled or deterior sted? Well yoult (if present) is in good condition? I will have been and is not good condition? I will have been and is legible? (we have a more state undestinated is legible? (we have a more series and in good condition (i.e., no mit)? Well cap is present within well more more mention for an and is legible? (we have a more minuted in good condition (i.e., no mit)? Well cap is present and in good condition (i.e., no mit)? Well cap is present and is good condition (i.e., no mit)? Well cap is present and in good condition (i.e., no mit)? Well cap is present and in good condition (i.e., no mit)? Well cap is present and in good condition (i.e., no mit)?	Condition of bottom of well?	Soft	tug?	Yes	No	Firm tag?	Yes	No
Surrounding area is free of regetation, waste, and debris Well name is present and legith in constraint or well? Protective cosing is not damaged or conclete? Sughal books (if present) are in good condition? so the area round the well Report of well worth or deteriorated? Well voult (if present) is in good condition? It is no standard water area as are optic. Outside diameter of vault gasket? Well tag is present within well moroument and is legible? (we harne/nunbor, top of case k document or in its justicle and in good condition (i.e., no mult)? Well cap is present and in good condition (i.e., no mult)? Well cap is present and is well? Well cap is present and is good condition (i.e., no mult)? Well cap is present and is well and its production (i.e., no mult)? Well cap is present and is well and its production (i.e., no mult)?	Maintenance Item:	Yes	No	Commen	it:	****		
regetation, waste, and debris Well name is present and egit nonexterior of well? Protective casing is not damaged on convoked? South as a real round the well is so a condition? In the area round the well is so a condition? Well valit (if present) is in soon of the conditio	Well is visible and accessibile?	V	107.					
egin non-exterior of we P Protective during is not damaged or corrected? Suant politis (if present) are in good condition? Is the area round the we I dood a wasts and is not maked or deteriorated? Well yout (if present) is in good condition? I good to be a some from the edition well more more in the last should feet in the good condition of its last should feet in the good to be in the present and in good to odd tion file I, no minut? Well cap is present and in good to odd to present and in good to odd to present and is good to odd to present and is weter taget? Well cap is present and in good to office in present and is weter taget? Well cap is present and in good to office in present and is weter taget? Well cap is present and in good to office in present and is weter taget? Well cap is present and in good to office in present and in good to office in spread and in good to office in grant and in good to of		V	1					
damaged or concided? Social dipoles (if present) are in good condition? Is the area round the well flooded? Surface pad exists and is not unoked or deteriorated? Well youth (if present) is in good condition? (i.e., no sonding water area to is are debt) Does yoult gasket need to be replaced? Woll tag is present widhin well more ment and is legigle? (we hame/number, top of case wide more from is into all substantial feat (i.e., no ment)? Well cap is present and in good condition (i.e., no ment)? Well cap is present and is wetering it? Top of casing survey mark		1	148					
good condition? Is the area round the well Robered? Surface pad exists and is not sunctionated? Well wuit (ill present) is in good condition? (i.e., no sondup water and no is and upth) Upoes you't gasker need to its replaced? Well tag is present within well mortument and is legible? (we harrefrunter, top of case widos; or firm is (i) total about featt? Locks are increased and in good condition (i.e., no mist)? Well cap is present and is well and in good condition (i.e., no mist)? Well cap is present and is well as well and in good condition (i.e., no mist)? Well cap is present and is well as well and in good condition (i.e., no mist)?		V	1-1					
Surface pad exists and is not concluded problems and is not concluded or deterior sted? Well would (if present) is in good conditionally between and not sare upto) Uposs you'ld gasked need to ite replaced? Well tag is present within well moreometric, top of casing down or in not iterate bout feed to look and in good condition (i.e., no mult)? Well cap is present and in good condition (i.e., no mult)? Well cap is present and is well as well and in good condition (i.e., no mult)? Well cap is present and is well as well and in good condition (i.e., no mult)?			V.					
well vault (ill present) is in good condition? (ill present) is in good condition? (ill present) is in good condition? (ill present) is in water and notice and option. Upoes yealt gasket need to be replaced? Worlf tag is present within well in condition and its legiple? (we hame/number, top of case a doctor of in its (ill braids about feat); tooks are in esemitiand in good condition (ill eli, not mult)? Well cap is present and is wetertight? Top of-casing survey mark			v			£.	Mg	
Scood condition? (i.e., no sondar) water and no is and upht) Updes yealt gasketineed to be replaced? Well tag is present within well interception and is legible? (we hamefrumber, top of case within earli): Locks one interest and in good condition (i.e., no vinit)? Well cap is present upon is wetertight? Well cap is present upon is wetertight?		L. rain						
Well tag is present within well monument and is legiple? (we name/rumber, top of case k downsor for its is total as should feeth? Locks are invesent and in good condition (i.e., no vinit)? Well cap is present and is wetertight? Top of-casing survey mark	gdod cenditum? (i.e., no sionan) water and no is are debt) Does yault gasket need to lier	V	1	Outside d	iameter of v	ault gesket?	-	
Condition (i.e., no vinit) // Well cap is present unions wetertight? Top of-casing survey mark	Wolf tag is present within well monument and is tegible? (we hame/number, top of case), down on in his basial sobult feat! (v	+		1			
Well cap is present and is wetertight? Top of-casing survey mark exists and is fedicle?	7.		1					
	wetertight?							

			Date:	1/24/17		
C. C	tok					
	Meas	ured dep	th of well?		Difference	?
Soft	tag?	Yes	No	Firm tag	Yes	No
Yes	No	Comm	ent:			
V						
o'						
V						
V	M					
	1					
,	V					
-						
V		१ ८ ७	PEADED			
	1					
1	HY	ADD	೯೦			
1.00	0					
	1					
	1					
	Soft Yes	Yes No	Measured dep Soft tag? Yes Yes No Comm V V V Cutsiae Lopu	Measured depth of well? Soft tag? Yes No Yes No Comment: V Perimpeador Outside diameter of toppacing up.	Measured depth of well? Soft tag? Yes No Firm tag: Yes No Comment: V Perapectual Outside diameter of vault gasket? Reputation 4/14	Measured depth of well? Soft tag? Yes No Firm tag? Yes

legible on exterior of well?

Protective casing is not damaged or corroded?

Guard posts (if present) are in

is the area round the wel-

cracked or deteriorated?

Well yault (if present) is in good condition? (i.e. no standing)

water and polits are light;

Surface pad exists and is not

Does vault gasket need to be-

Well tag is present within well monument and is legible? [will

elevation (in ms.) total as to its depon-Locks are present and in good condition (i.e., no mst)? Well cap is present and is

name/number, top-oticesing.

Top-of-sasing survey mark exists and is legitle?

Additional comments:

21

good condition?

flab ded?

replaced?

watertight?

WellID: 3872N				Date: 4/	24/17		
Inspection Conducted By:	CHAP	uE					
As-built depth of well?		Meas	ured depti	of well?		Difference?	?
Condition of bottom of well?	Soft	tag?	Yes	No	Firm tag?	Yes	No
Maintenance Item:	Yes	No	Comme	nt:			
Well is visible and accessible?	V	1985					
Surrounding area is freq of vegetation, waste, and debris	10						
Well hame is present and	70	100					

PETHE SUPER

ADD DD

*-00-50

Outside diameter of vault gasket?

As built depth of well?		Meas	ured depti	of well?		Difference?	
Condition of battam of well?	Soft	tag?	Yes	No	Firm tag?	Ves	No
Maintenance Item:	Yes	No	Comme	nt:			
Well is visible and accessible?	Yes	No					
Surrounding area is free of vegetation, waste, and debris	Vas	No		÷	4.4		
Well name is present and legible on exterior of well?	Ves	No					
Protective casing is not damaged or corruded?	Y#5	No					
Guard posts (if present) are in good condition?	YHS	No					
is the area round the well flooded?	V+5	No					
Surface pad exists and is not cracked or deteriorated?	Yes	No					
Well vault (if present) is in good condition? (i.e., no standing water and bolts are tight)	Yes	Ho	#ETHP	exten .	il=4ln		
Does vault gasket need to be replaced?	~	Мт	Outside o	liameter of s	vault gasket?		
Well tag is present within well moreoment and is legible? [well name/number, top-of-casing closetton (in mel), total as-built depth)		Nox					
Locks are present and in good condition (i.e., no rust)?	-	No					
Well cap is present and is watertight?	100	No					
Top-of-casing survey mark exists and is legible?	TAK	No					
Additional comments:							

As-built depth of well?		Meas	ured depth	of well?		Difference	7
Condition of bottom of well?	Saft	tag?	Yes	Na	Firm tag	Yes	No
Maintenance Item:	Yes	No	Commen	it:			
Well is visible and accessible?	7	fill.					
Surrounding area is free of vegetation, waste, and debris	V	179					
Well name is present and legible on exterior of well?	V	-Ko					
Protective casing is not damaged or corroded?	~	E ₁ 0.					
Guard posts (if present) are in good condition?	-	10					
is the area round the well flooded?	- 1	1					
Surface pad exists and is not cracked or deteriorated?	~	}					
Well vault (if present) is in good condition? (i.e., an standing water and bolts are light)	4	1	BOUT F	loces pe	THPOADO	4/24/17	
Does vault gasket need to be replaced?	1	treat	Outside d	ameter of	vault gasket? t/2 1/ 17	7	
Well tag is present within well monument and is legible? (well name/number top-of-casing elevation (in msl), total applied entitle.	/	No	人员为国际	mel 4	atliz		
Locks are present and in good condition (i.e., no rust)?	502	10					
Well cap is present and is waterlight?	1	(5)-0					
Top-of-casing survey mark exists and is legible?		250					
Additional comments:							

Inspection Conducted By:	£. =	平形	KT ER				
As-built depth of well?	_ [Meas	ured dept	of well?		Difference?	
Condition of bottom of well?	Soft	tagî	Yes	No	Firm tag?	Yes	No
Maintenance Item:	Yes	No	Comme	nt;			
Well is visible and accessible?	Ĉ	P}:			- e. () . s		
Surrounding area is free of vagetation, waste, and debris	i	-71					
Well name is present and legible on exterior of well?	2	R.					
Protective casing is not damaged or composed?	1	M-					
Guard posts (if present) are in good condition?	3	<u> 21</u> -					
Is the area round the well flooded?	115	١١٥					
Surface pad exists and is not cracked or deterior stee?	-	ři.					
Well vault (if present) is in good condition? (.e., no standing water and bolts are tight)	9	70.					
Does vaultigasket need to be replaced?	1 4	71	Outside o	ilameterofy So	ault gasket?		
Well tag is present within well inonument and is legible? (we hame/number top-of-casing elevation (in mall, total asseult dentiti	10	1) > 	P-700				
Locks are present and in good condition (i.e., no rust)?	WAS .	====	Penal	4 BOUTS			
Well cap is present and is waterdight?	المحادث	alle.					
Top-of-casing survey mark exists and is legible?	7	7/2					
Additional comments:			1				

As-built depth of well?	- 1	Meas	ured depth	of well?	ĺ	Difference	}
Condition of battom of well?	Soft	tag?	Yes	No	Firm tag?	Yes	Nc
Maintenance Item:	Yes	No	Comme	nt:			
Well is visible and accessible?	-	No.					
Surrounding area is free of vegetation, waste, and debris	Y	(SE)					
Well name is present and legible on exterior of well?	Yes	tin					
Protective casing is not damaged or corroded?	Ter	Box					
Guard posts (if present) are in good condition?	100	135					
is the area round the well flooded?	190.5	16)					
Surface pad exists and is not cracked or deteriorated?	70.5	ŢĮ()					
Well vault (if present) is in good condition? (i.e., no standing water and bolts are tight)	Yes.	100					
Does vault gasket need to be replaced?	12	15%	The state of the s	fiameter of v	ault gasket?		
Well tag is present within well improment and is legible? (well name/number, top-of-casing elevation (in msl), total as-built depth)	Y64	\$167 	ADS	X (2)			
Locks are present and in good condition (i.e., no rust)?	90i	1/5	PIEN	to Bot	2		
Welf cap is present and is watertight?	1016	ida					
Top-of-casing survey mark exists and is legible?	17	ž](i					
Additional comments							

As-built depth of well?		Meas	ured depth	of well?		Difference'	7
Condition of bottom of well?	Soft	tag?	Yes	Nα	Firm tag?	Yes	No
Maintenance Item:	Y85	No	Commen	ti		-	
Well is visible and accessible?	Y 75	Mt					
Surrounding area is free of vegetation, waste, and debris	YW	Ma					
Well name is present and legible an exterior of well?	Yes	V					
Protective casing is not damaged or corrolled?	V	NE					
Guard posts (If present) are in good condition?	Yes	510					
is the area round the well flooded?	Yes	No					
Surface pad exists and is not cracked or deteriorated?	Vas	No	CEA	deed .	Pud		
Well vault (if present) is in good condition? (i.e., no standing water and bolts are (ight)	V	Ma					
Does vault gasket need to be replaced?	V	HX.	Dutside d	lameter of	vault gasket?		
Well tag is present within well monument and is legible? (well name/number, top-of-cating devation (m mil), total as-built depth)	10	J					
Locks are present and in good condition (i.e., no rust)?	YPI	J					
Well cap is present and is watertight?	184	VI					
Top-of-casing survey mark exists and is legible?	Yas	1					
Additional comments: Relabel well; 1							4

As-built depth of well?		Meas	ured depth of	f wall?		Difference?	
Condition of bottom of well?	Soft	tag?	Yes	No	Firm tag?	Yes	No
Maintenance Item:	Yes	No	Comment:	,			
Well is visible and accessible?	Ves	No					
Surrounding area is free of vegetation, waste, and debris	W	fla					
Well name is present and legible on exterior of well?	Ves	V					
Protective casing is not damaged or corroded?	V	1/2					
Guard posts (If present) are in good condition?	162	30			-		
is the area round the well flooded?	Yes	J				*	
Surface pad exists and is not cracked or deteriorated?	U	Pa d					
Well vault (if present) is in good condition? (i.e., no steeding water and bold are sight)	V	7.5					
Does vault gasket need to be replaced?	V	A.	Outside dia	meter of vau	it gasket?		
Well tag is present within well monument and is legible? (well same/number, top-of-casing elevation (in mal), total as-built depth)) w	1					
Locks are present and in good condition (i.e., no rust)?	Yes	No		, .	-100.7754		
Well cap is present and is watertight?	Yes	V					
Top-of-casing survey mark exists and is legible?	Yes	V					
Additional comments: Relabel we well vault	1:9	add	vell ors list	tag have	bolt	holes	

Soft Yes	No.	Yes	Na	Firm tag?	Yes	No
- /-	No	Commer				-
1			at:			
V	rje.					
V	110					
	V					
1	11:					
-	-					
	2				US-19-74	
V	1					
J	3.0					
V		Outside o	liameter of	vanlt gasket?		
	V					57
.111						
-	V					
	1					
	- VJ V		V Outside of	Ontside diameter of a	Outside diameter of vanit gasket?	Outside diameter of vanit goaket?

7.0	CONF						
	Meas	ured dept	h of well?		Difference?		
5oft	tyg?	Yes	No	Firm tagi	Yes	No	
Yes	No	Comme	ent:				
J	PIC						
1,	Ma						
1	Pia				,		
J	No						
J	No.						
TH5	V						
J	Mari						
J	No						
V	200				anshe	14	
y v ar	V				9		
J	1/2						
V	ř.						
1	Ner						
	Ves J J J J J J J J J J J J J J J J J J J	Me Place Pla	Yes No Comme Vi	Yes No Comment: Pla Pla Pla No No No Outside diameter of Internal Hugh	Yes No Comment: No Pic No	Yes No Comment: Pic Pic Pic Pic No Pic	

Maintenance Item: Well is visible and accessible? Surcounding area is free of vegetation, waste, and debris Well name is present and legithe on exterior of well? Protective cosing is not damaged or corrolled? Guard posts (if present) are in good condition? Is the area round the well flooded? Surface pad exists and is not cracked or deteriorated? Well vault (if present) is in good condition? (i.e., no standing water and boits are tight) Does voult gasker, need to be replaced? Well tag is present within well monument and is legible? (well rame) number, top of racing pleaston (on ms), total as boult depth)	As-built depth of well?		Meas	ured depth	of well?	10	onereitic	?
Well is visible and arcessible? Surrounding area is free of vegetation, waste, and debris Well name is present and legitive on exterior of well? Protective cosing is not damaged or corroited? Guard posts (if present) are in good condition? Is the area round the well flooded? Surface pad exists and is not cracked or deteriorated? Well vault (if present) is in good condition? (i.e., no standing water and boits are tight) Does yoult gasket need to be replaced? Well tag is present within well manufronteer, tap of razing pleasance (m.ms), total as bould depth) bocks are present and in good condition (i.e., no rust)? Well cap is present and in good condition (i.e., no rust)? Well cap is present and is posteroid.	Condition of bottom of well?	Soft	tag?	Yes	No	Firm (ag?	Yes	No
Surrounding area is free of vegetation, waste, and debris Well name is present and legible on exterior of well? Protective cosing is not damaged or corroiled? Guard posts (if present) are in good condition? Is the area round the well illooded? Surface pad exists and is not cracked or deteriorated? Well vault (if present) is in good condition? (i.e., no standing water and boits are tight) Does vault gasker, need to be replaced? Well tag is present within well name/number, tap of racking pleyation (i.e., no rust)? Well cap is present and in good condition (i.e., no rust)? Well cap is present and is good condition (i.e., no rust)? Well cap is present and is	Maintenance Item:	Yes	No	Commer	it:			
wegetation, waste, and debris Well name is present and legithe on exterior of well? Protective casing is not damaged or corrorled? Guard posts (if present) are in good condition? Is the area round the well illooded? Surface pad exists and is not cracked or deteriorated? Well wault (if present) is in good condition? (i.e., no standing water and boits are tight) Does vault gasket need to be replaced? Well tag is present within well manument and is legible? (well name/number, tap of racing pleyation (i.e., no rust)? Well cap is present and in good condition (i.e., no rust)? Well cap is present and is.	Well is visible and accessible?		Die					
legible on exterior of well? Protective cosing is not damaged or corroded? Guard posts (if present) are in good condition? Is the area round the well flooded? Surface pad exists and is not crecked or deteriorated? Well vault (if present) is in good condition? (i.e., no standing water and boits are tight) Does vault gasker, need to be replaced? Well tag is present within well manument and is legible? (well rame/number, top of racing elevation (i.e., no rust)? Well cap is present and in good condition (i.e., no rust)? Well cap is present and is	1886 B. B. B. B. B. B. B. B. B. B. B. B. B.	V	Mil					
damaged or corroled? Guard posts (if present) are in good condition? Is the area round the well flooded? Surface pad exists and is not cracked or deteriorated? Well vault (if present) is in good condition? (i.e., no standing water and boits are tight) Does vault gasker need to be replaced? Well tag is present within well manument and is legible? (well name/number, tap of racing elevation (in mal), total as built depth) Locks are present and in good condition (i.e., no rust)? Well cap is present and is			Mar					
Is the area round the well flooded? Surface pad exists and is not cracked or deteriorated? Well wault (if present) is in good condition? (i.e., no standing water and boits are tight) Does you'll gasker need to be replaced? Well tag is present within well monument and is legible? (well name/number, tap of razing pleyation (im ma), total as built depth) Locks are present and in good condition (i.e., no rust)? Well cap is present and is		1	17					
Surface pad exists and is not cracked or deteriorated? Well wault (if present) is in good condition? (i.e., no standing water and boits are tight) Does vault gasket need to be replaced? Well tag is present within well manument and is legible? (well rame/number, tap of racing elevation (in mal), tytal anabout depth) Locks are present and in good condition (i.e., no rust)? Well cap is present and is		7	/		200			
Well vault (if present) is in good condition? (i.e., no standing water and boits are tight) Does vault gasker, need to be replaced? Well tag is present within well manument and is legible? (well rame/number, tap of racing elevation (in msi), total as built depth) Locks are present and in good condition (i.e., no rust)? Well cap is present and is	The state of the s	×=	12			11.5		
good condition? (i.e., no standing water and boits are tight) Does vault gasket need to be replaced? Well tag is present within well manument and is legible? (reall rame/number, tap of racing pleyation (in ms), total assignit depth) Locks are present and in good condition (i.e., no rust)? Well cap is present and is		V	H			2770		
replaced? Well tag is present within well monument and is legible? (well rame/number, tap of racing elevation (in msi), total as-built depth) Locks are present and in good condition (i.e., no rust)? Well cap is present and is	. 사용물은 마시를 보이는 것 같아. [10] 프라이스 보이스 보이트를 보지 않는 것 같아. [10] 보다 보다 보다 보다 보다 보다 보다 보다 보다 보다 보다 보다 보다		140					
monument and is legible? (well name/number, top of racing elevation (in ms), total as built depth) Locks are present and in good condition (i.e., no rust)? Well cap is present and is	. (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	1	1	Qutside d	ameter of v	vault gasket?		
Condition (i.e., no rust)? Well cap is present and is	manument and is legible? (well rame/number, top of racing		71.	₩ MB	LL TAG A	who dod who	4/17	
	1	V	-1					
		4	71.5					
Top-of-casing survey mark exists and is legible?		100	7					

As-built depth of well?		Meas	ured depth	of wall?	Difference?		
Condition of bottom of well?	Soft	tag?	Yes	No	Firm tag?	Yes	No
Mainténance Item:	Yes	No	Comme	nt:			
Well to viscole and accessible?	U	11.0					
Surrounding area is free of vegetation, waste, and debris	V	3=					
Well name is present and egible on exterior of well?	V	1.5					
Protective casing is not damaged or corroded?	V	1					
Guard posts (if present) are in good condition?	سي	-					
Is the area round the well Rooded?	tr.	17					
Surface pad exists and is not cracked or deteriorated?	J						
Welf yoult (if present) is in 2000 condition? file, no standing water and columns tight)	V	7					
Does yould gasket need to be replaced?	V	1 3	Outside o	dianceter of s	vault gasket?		
Welliteg is present within well monument and is legible? (we name/number, top-of saving sleve ten to mist) total whould be ath).		V					
Locks are present and in good condition (i.e., no rest!?	سلسين	-					
Well cap is present and is watertight?	1	J					
Top-of-casing survey mark exists and is legible?		J					
Additional comments: Relabel well, R							

As-built depth of well?		Meas	ured depti	of well?		Difference?	
Condition of bottom of well?	Soft	tug?	Yes	No	Firm tag?	Yes	No
Maintenance Item:	Yes	No	Commer	nt:			
Well is visible and accessible?	1	10-					
Surrounding area is five of vonctoon, waste, and delicis	V						
Well name is present and egible on exterior of well?	1						
Protective casing is not damaged or corrected?	V						
Cound posts (it present) are in good condition?		-					
is the area round the woll flooded?		1					
Surface pad exists and is not cracked of deteriorated?	v'						
Woll yoult (if present) is in grown condition? (i.e., no seeding — water and be is are agen	~	å					
Does vault gasket need to be replaced?	1		Outside :	hameler of v	ault gauset?		
Well tag is present within well invitument and is legisle? (will name/funder top classing present)	1	75	Po P	p 4/24	/17		
Locks are present and in good roudition (i.e., no rost)?	1	1					
Wellkisp is present and is watertight?		11					
Top-of-casing survey mark exists and is legible?		1					

Well 10: 8-1-cut 27			Đ	ate: 4/	24/17		
Inspection Conducted By:	L CH	ou					
As-built depth of well?		Meas	ured depth of	(well)		Difference?	
Condition of bottom of well?	Soft	lag ⁹	Yes	No	Firm tag?	Yes	No
Maintenance Item:	Yes	No	Comment:			-	
Well is visible and accessible?	~	1/10					
Surrounding area is free of vegetation, waste, and debris	~	-1261-					
Well name is present and legible on exterior of well?	*	chi					
Protective casing is not damaged or corroded?	1	the					
Guard posts (if present) are in good condition?		1					
Is the area round the well. flooded?	7	-					
Surface pad exists and is not cracked or deteriorated?	1	p =					
Well vault (if present) is in good condition? (i.e., no standing, water and balls are (ight)	wif	1	STAID	nig, what	10F2 . PS4	esist)	
Does vault gasket need to be replaced?	3	v	Outside diam		uult gasketi Hooso 4/	24/17	
Welf tag is present within well monument and is legible? (well name/number, top-of-casing elevation (in mal), total as best depth)	\ \ \	1	whosp !			-1/11	
Locks are present and in good condition (i.e., no rust)?		1					
Well cap is present and is watertight?							
Top-of-casing survey mark exists and is legible?	The	-					
Additional comments:	-		L.	= 577.55			

Maintenance item: Well is visible and accessible? Well is visible and accessible? Surrounding area is free of vegetation, waste, and debris Well name is present and legible on exterior of well? Protective casing is not damaged or controded? Guard posts (if present) are in good condition? Is the area round the well flooded? Surface pad exists and is not eracked or deteriorated? Surface pad exists and is not eracked or deteriorated? Well vault (if present) is in good condition? (i.e., no transing water and bolts are high!) Dues walk gasket need to be replaced? Well cag is present within well monument and is legible? (well ranse/number, top-of-cating decadon (in ms); total as bulk depth) Looks are present and in good condition (i.e., no rost)? Well cap is present and is good condition (i.e., no rost)? Well cap is present and is watertight?	As-built depth of well?		Meas	ured depth	of well?		Difference?		
Well is visible and accessible? Surrounding area is free of vegetation, waste, and debris Well name is present and legible on exterior of well? Protective easing is not damaged or comoded? Guard posts (if present) are in good condition? Is the area round the well (flooded?) Surface pad exists and is not oracled or deteriorated? Well vault (if present) is in good condition? (i.e., no standing water and bolts are tight) Does vault gasket need to be replaced? Well tag is present within well monument and is legible? (wall tames/number, top-of-asing elevation (in mil), total as-built depth) Locks are present and in good condition (i.e., no rust)? Well cap is present and is good condition (i.e., no rust)? Well cap is present and is watertight?	Condition of bottom of well?	Soft	tag?	Yes	No	Firm tag	Yes	No	
Surrounding area is free of vegetation, waste, and debris Well name Is present and legible on exterior of well? Protective casing is not damaged or corroded? Guard posts (if present) are in good condition? Is the area round the well (flooded? Surface pad exists and Is not cracked or deteriorated? Well vault (if present) is in good condition? (i.e., no standing water and bolts are high!) Does wault gaskef need to be replaced? Well tag is present within well monument and is legible? (well name/number, ope-of-a sing elevation (immi), total as-built depth) Locks are present and in good condition? (i.e., no rust)? Well cap is present and is good condition? (i.e., no rust)? Well cap is present and is watertight?	Maintenance Item:	Yes	No	Comme	nt:				
wegetation, waste, and debris Well name is present and legible on exterior of well? Protective casing is not damaged or corroded? Guard posts (if present) are in good condition? Is the area round the well flooded? Surface pad exists and is not cracked or deteriorated? Well vault (if present) is in good condition? (i.e., no standing water and bolts are tight) Does woult gasket need to be replaced? Well tag is present within well rannourment and is legible? (wall name/numbur, op-of-cating elevation (in ms i), tetal as built depth) Locks are present and in good condition (i.e., no rust)? Well cap is present and is watertight?	Well is visible and accessible?	J.	No						
legible on exterior of well? Protective casing is not diamaged or corroded? Guard posts (if present) are in good condition? Is the area round the well flooded? Surface pad exists and is not cracked or deteriorated? Well vault (if present) is in good condition? (i.e., no standing water and bolts are tight) Does vault gaskef need to be replaced? Well tag is present within well monument and is legible? (wall name/number, top-of-casing devalors (i.e., no rust)? Well cap is present and in good condition (i.e., no rust)? Well cap is present and is watertight?	2 (1.1.1)	V	No						
damaged or corroded? Guard posts (if present) are in good condition? Is the area round the well (flooded?) Surface pad exists and is not cracked or deteriorated? Well vault (if present) is in good condition? (i.e., no standing walm and bolts are tight) Oues wank gasket need to be replaced? Well tag is present within well monument and is legible? (wall name/number, top-of-to ing elevation (in ms); ceal as built depth) Locks are present and in good condition (i.e., no rust)? Well cap is present and is watertight?		Ves	y						
good condition? Is the area round the well flooded? Surface pad exists and is not cracked or deteriorated? Well vault (if present) is in good condition? (i.e., no standing water and bolts are tight) Does vault gaskef need to be replaced? Well tag is present within well monument and is legible? (well mane/number, top-of-tailing elevation (inms); total as-built depth) Looks are present and in good condition (i.e., no rust)? Well cap is present and is watertight?	Protective casing is not damaged or corroded?	V	ME						
Surface pad exists and is not cracked or deteriorated? Well vault (if present) is in good condition? (i.e., no standing water and bolts are tight) Ones wault gasket need to be replaced? Well tag is present within well monument and is legible? (wall name/number, top-of-taing elevation (in ms); total as built depth) Locks are present and in good condition (i.e., no rust)? Well cap is present and is watertight?		2012	No						
Well vault (if present) is in good condition? (i.e., no standing water and bulks are tight) Does vault gasket need to be replaced? Well tag is present within well monument and is legible? (wall name/number, top-of-tailing elevation (in ms), total as-built depth) Locks are present and in good condition (i.e., no rust)? Well cap is present and is watertight?		Yes	1						
good condition? (i.e., no standing water and bolts are tight) Outside diameter of vault gasket? Outside diameter of vault gasket? Well tag is present within well monument and is legible? (well name/number, top-of-taking elevation (in mall, total as-built depth) Locks are present and in good condition (i.e., no rust)? Well cap is present and is watertight?	그리아 그들이 하는 그 그래요? 그리아 얼마나면서 그렇게 되어 한 때문에 되었습니다. 그들은 사람이 없는데 없는데 없다고 있다면 없다고 있다면 되었습니다.	49	34.						
Over woult gasket need to be replaced? Well tag is present within well monument and is legible? (well name/number, top-of-cating elevation (in ms i), total as-built depth) Locks are present and in good condition (i.e., no rust)? Well cap is present and is watertight?	good condition? (i.e., no standing	1	513						
monument and is legible? (wall name/number, top-of-casing elevation (n.ms); total as-built depth) Locks are present and in good condition (i.e., no rust)? Well cap is present and is watertight?	Ooes vauk gasket need to be replaced?	J	4400	Outside	diameter of	vault gasket?			
tooks are present and in good condition (i.e., no rust)? Well cap is present and is watertight?	monument and is legible? (wall name/number, top-of-tailing	125	1						
watertight?	Locks are present and in good	i	V,						
You of sector was a sector of the sector of		1	U						
exists and is legible?	Top-of-casing survey mark exists and is legible?	V	Win						

As-built depth of well?		Meas	ured depth	of wall?		Difference?		
Condition of bottom of well?	Soft	tag?	Yes	No	Firmtag	Yes	No	
Maintenance Item:	Yes	Na	Commen	t:				
Well is visible and accessible?	V	Na						
Surrounding area is free of vegetation, waste, and debris	V	Mo						
Well name is present and legible on exterior of well?	V	No						
Protective casing is not damaged or correded?	V	féo						
Guard posts (If present) are in good condition?	100	Film.	Teach	J wall	de	<u> </u>		
is the area round the well flooded?	761	V					_	
Surface pad exists and is not cracked or deteriorated?	J	No.						
Well vault (if present) is in good condition? (i.e., no standing water and bolts are dight)	V	05cm						
Does vault gasket need to be replaced?	V	Ma	Cuiside d	lameter of va	ult gasket?			
Well tag is present within well monument and is legible? (well name/number, top-of-casing elevation (in mai), total as-built depth)	Yes	1						
Locks are present and in good condition (i.e., no rust)?	Yer	V						
Well cap is present and is watertight?	943	V				-		
Top-of-casing survey mark exists and is legible?	V81	V						
Additional comments: Replace gas								

	. Co							
As built depth of well?		Meas	ured depth	of well?		Difference?		
Condition of bottom of well?	Soft	tag?	Yes	No	Firm tag?	Yes	No	
Maintenance Item:	Yes	No	Commen	tì				
Well is visible and accessible?	V	360						
Surrounding area is free of vegetation, waste, and debris	VV	No.						
Well name is present and legible on exterior of well?	V	No						
Protective casing is not damaged or corroded?	V	658						
Guard posts (if present) are in good condition?	Yes	Mo	Gas	rd wel	100			
is the area round the well flooded?	Yes	V						
Surface pad exists and is not cracked or dateriorated?	V	NO						
Well vault (if present) is in good condition? (i.e., no standing was at and bots are tight)	V	Ma						
Does vault gasket need to be replaced?	V	Mo	Outside di	ameter of v	Ault gasket?			
Well tag is present within well monument and is legible? (well name/number, top-of-casing elevation (in mal), total as-built depth)	VAS	V						
Locks are present and in good condition (i.e., no rust)?	7.45	V	2.0	3				
Well cap is present and is watertight?	Nes.	1				-		
Top-of-casing survey mark exists and is legible?	Yes	V						
Additional comments:	*							

Measi tagž	vred depth of well?	Difference?	
		Difference?	
tag?			
	Yes No Firm tag	? Yes	No
No	Comment:		
-02			
)			
20			
1	T Total		
2			
3.0			
7.8			
V	Ourside diameter of yoult gasket?		
.0.	rece a		
3,-			
S. T			
-0			
	3 3 3	Outside dianterer of valuit gasket?	Outside dianterer of vault gasket?

Tt-PHO2				Date: 4	126/17		
Inspection Conducted By:	P.	SABI	ATER.				
As-built depth of well?		Meas	ured depth	of well?		Difference	
Condition of bottom of well?	Soft	tag?	Yes	No	Firm tag?	Yes	No
Maintenance Item:	Yes	No	Comme	nt:			
Well is visible and accessine?	100	35					
Surrounding area is free of vegetation, waste, and debris	1	i N					
Well name is present and legible on extendr of well?	791	1					
Protective casing is not dantaged or comoded?	13	M.C.					
Guard posts (if present) are in good condition?	197	V			-		
is the area round the well flooded?	i)e	~					
Surface pad exists and is not cracked or deteriorated?		72.=					
Well vault [if oresent] is in good conditional free ne standing water and before the tight]	V						
Dides vault gasket need to be replaced?	15	V	Outside :	iameter of v	ault gasket?		
Well rag is present within well monument and is legible? (well rame, humber, loo-dicasing elevation (in ms), total as-built death)		a I	ADDG	Ð			
Locks are present and in good - condition (de., no rust)?	in the	1					
Well cap is present and is watertight?	10	780					
Top-of-casing survey mark exists and is legible?	15	N.					

		Ca	-				
As-built depth of well?			ured depth of	well?		Difference?	
Condition of bottom of well?	Soft	tag?	Yes	No	Firm tag?	Yes	No
Maintenance Itam:	Yes	Ne	Comment	2			
Well is visible and accessible?	V	No					
Surrounding area is free of regetation, weste, and debris	V	No					
Well name is present and legible on exterior of well?	Afri	V					
Protective casing is not damaged or corroded?	V	No					
Guard posts (If present) are in)et	No					
s the area round the well flooded?	Yes	y					
Surface pad exists and is not cracked or deteriorated?	Y.	No !					
Well vault (if present) is in good condition? (i.e., no standing water and boits are tight)	1	Nla s		32467			
Does vault gasket need to be replaced?	V	No.	Outside dis	materofy	ault gasket?	ji.	
Well tag is present within well monument and is legible? (well name/number, top-of-casing elevation (in mal), total as-built depth)	Yés	No					
Locks are present and in good condition (i.e., no rust)?	_	1					
Well cap is present and is watertight?	185	1	well a	top cutt	of cash	heed .	te
Top-of-casing survey mark exists and is legible?	Yes	1				9	

Well ID: 56005				Date: 4.76	-17		
Inspection Conducted By:	J.(e	معان					
As-built depth of well?		Meas	ured depti	of well?		Difference?	
Condition of bottom of well?	Soft	tag?	Yes	No	Firm tag?	Yes	No
Maintenance Item:	Yes	No	Comme	nt:			
Well is visible and accessible?	V ^S	ฟอ					
Surrounding area is free of vegetation, waste, and debris	125	Mo					
Well name is present and legible on exterior of well?	VES.	80					
Protective casing is not damaged or corroded?	V	No				-	
Guard posts (If present) are in good condition?	Y-7115	Nij					
is the area round the well flooded?	Yes	V					
Surface pad exists and is not cracked or deteriorated?	V S	No					
Well vault (if present) is in good condition? (.e., no standing water and bolts are right)	1	No	i				
Does vault gasket need to be replaced?	Yes	V	Outside o	liameter of vau	lt gasket?	•	
We'll tag is present within well monument and is legible? (well name/number, top-of-casing elevation (in msl), total as-built depth)	Yes	1					
Locks are present and in good condition (i.e., no rust)?	968	1					
Well cap is present and is watertight?	V	119				5 8	
Top-of-casing survey mark exists and is legible?	V	1					
Replace well EMCOVOLULT	tag						

Field Personnel: R. SARATOR

Field Personnels_____

MAI ID	Date Measured	Time Measured	2016 Depth to groundwater (feet bloc)	2017 Depth to groundwater (foot blue)	Comments
1830			151.50		
4948			242.25		
\$8 10H)			229.72		
38308	,		520.52		
38310	4/18/17	1022	191.05	178.30	
1808A	4/20/17	_ 1002_	218.05	228.15	3
385HV			197.12		
ใชร์(ค.)		f	191 50		
785cH8			191.19		
38508			Ducked		
35 50 F	4/19/19	1428	215 52	224.58	
33.9(1)	4/19/17	1414	218 94	228.25	
38 SOV			225 70		
3650W			225-41		
'851M			185.21		
WIN			184 17		
385215	4/18/17	topl	1 32 27	148.03	
48526	4/12/17	1,51	11146		BOLT ON LID STUCK, PETCUPAL LA
385211	4/10/17	1010	146.25	149.65	and the Annah to Manager to
38.501.	4/10/17	0945	186.95	164.95	
MS586		0915	132 62	136.91	
3852N	4/1 <u>8/17</u> 4/18/17	0921	(37,12	137.94	
38000			197 (K)		
38646			204.45		
386LD			157 67		
386H.			1,36 82		
жын			453.70	-	***
486212	Hlielin	0831	1.27 .27	133.36	

Field Personnel: P. SACATOR

Field Personnel:

Well ID	Date Measured	Time Measured	2016 Depth to graund water (fact bine)	2017 Depth to groundwater (feet bloc)	Comments
58828	4/12/17	0835	124.68	130.32	
087011			162 4"		
587133	4/18/17	0846	. 41.23	38.19	
38711	4/10/17	OĐ 52.	127.26	132.80	
7-721.	4/18/0	9080	165 03	110.68	
087254	4/18/17	0812	105/58	10658	
1872/8	4/18/17	C\$ 0820	917 186	108.49	
1872()	4/18/17	0749	14 /11	20.81	
38 720	4/10/17	0754	1,4 03	120.87	
Ja 72S	4/18/17	0757	1132	117.30	
49497			358.50		
5 W-			2.77 04		
5W-5			2.27 (X)		
A-L-CWC3			315.20		
a i čweski			110,75		
A44 CWH			21.79		
A T CW95		3	219/70		
As14CW07	4/19/17	1445	::: A3	DRY	TD = 2-10.54
A-1-CW08	4/19/17	1435	21186	226.60	
A CANIE			201.92		
B-1-CWII			JI4.80		
FT:WIE		- 1	351.22		
B. R. SVC3			132.03		
H-1/2WCC			120.29		
II.5 73827			1383		
3 (3 W20			124 75		
K-1-(W25	3 54		175.16		
16-1 CW27	-		172 (9		

Field Personnels	
Field Personnel:	

Well ID	Date Measured	Time Measured	2016 Depth to groundwater (Feet bloc)	2017 Depth to groundwater (feet bloc)	Comments
R 1-C.M38			185,00		
B-1-CW29			165 \$3		
B 5 CW02			2:26:32		
D 5 CW03			276.07		
1000/1660			227 02		
Bio CWos			250.21		
R 6 CWIN	7		252.66		
B o-CWO			253.89		"
los-CWHI	4/14/17	1506	2.48-54	247.00	
B 6-CWI4	4/19/19	1458	232.58	240.76	
B-6-CW16			040.94		
tisa-CW17		1	266.65		
C 1 CW02	1.7		264.23		
C-1-C3003			264.43	1	
C-1-CA02			246 39		
C+{ W85			Dity		
Cal-CW(7)	4/19/17	P93¶	250 78	264.71	-
C-1-CW/8	4/19/17	0434 0430	25661	264.40	
5159-01			lwy.		
MW-un			Dity		
MW ox			3.00 (8)		
M W 04			2.37.80		
MW-05			235.25		
MW 4%			20,805		
MW 0/			18 42.5		
MW-0a			235.15		
Tr-PW-01			150.00		
Tr PW-02			14149		

Field Personnels	
Field Personnel:	

Well ID	Date Measured	Time Measured	2016 Depth to granadwater (feet bloc)	2017 Depth to groundwater (feet bloc)	Comments
OW-VOIA-R			158,68		
OW-VOIB-R			157.55		
R-ASOV-WO	·		164.15		
OW-VO28-R			164.15		
OW-VO3A-R	_		168.45		
OW-VO3B-R			167.69		<u> </u>
OW-YOAA	·		179.4R		
OW-VO4B			173.89		
OW-YOSA			185.92		
OW-YORB			180.12		<u> </u>
OW-VO6A			194.22		
OW-VO6B		_	193.80		
OW-VO7A			205.32		
OW-VO7B	·		201.40		
ANOV-WO					
OW-VCHB		Ş.			

Field Personnel:			
Field Personnels			

Well ID	Date Measured	Time Measured	2016 Depth to groundwater (Seet bise)	2017 Depth to groundwater (feet bloe)	Comments
J640	4/12/13	0 145	131.30	151.24	700
4948			262 25		
Work)	4-18-17	1501	3,29,73	235.16	BIC
383905	4-18.17	1510	229 12	235.31	210C
жио	27		121.05		
185064	<u> </u>		218.97		
PasinN	4.20-17	1111	147.17	20201	8) oc.
485(K,)	1-1-1-1-1	1113	191.8)	148,43	nop of country labor
48 5018	14.2017	1114	154.16	14835	15/00-
383845	HAROKT		Illo, Keri	7383X	7105
3850F	-		215.52		
3 850 U	RS RS		218.94		
385095	4.18.2017	0455	225.30	133.75	TUP of sounding tube
280 PM	4-18.2017	1343	225.41	7.33.45	Tops of sounding tube
185151	11-14.17	1012	185.21	19119	TOC
18,51%	4.4.7	100व	(81.17	100 40	70C
384215	R.S		142.77		
485001	25		[J.E.J.ift		
3857#	PS		1.16.35		
VR521.	7-5		176 111		
3850M	24		1 52 62		
38526	85	-	131 32		
esom	18/18/17 10 10 10 10 10 10 10 10 10 10 10 10 10 1	6201	(A) LMF	203 54	TOC.
8860K	4-18-17	102B	504.42	112.21	TOU
38611)	4-10-17	Ogyo	157.67	16420	WC -
3864E	211117	<i>0</i> वयन	156.82	163.60	tac .
1861[2	4-(6-(7	0437	153.70	154.44	B10C
3862D	85		. 27 27		-6

W W

Field GW Elevations 1Q 2017

Field Personnel:			
Field Personnel:			

Well ID	Date Measured	Time Measured	2016 Depth to groundwater (feet bloc)	2017 Depth to groundwater (feet bloc)	Coxessents	
38/12E	25	المبادي	1.24,68		Joř	
5870D	4-15-2017	0747	162.47	169.28	ruc	
3871 H	RS.		*31.21			7
38711	75		127,36			
38721.	P.S		205,07			
387284	RS		[(n) x8		7	
367357	25		102.6\$			7
38720	P.5		114.70			7
3872R	P.S		114.0)			
38728	25		111.32			
464%			258.59			٦
SWat	4/18/17	0815	237 94	244 75	TOC	
5\V-\$	4/15/17	0827	327,00	235.37	TOC	
A-1-CWu2	44.7	1045	216-20	222 80	Tice	7
4-1-CW03t	4.14.17	1844	219.75	226.96	TOC.	1
A-L-CW04	4.14.17	1403	211.19	217 52	Toc	7
A-1-CW05	4.14.17	1414	209.70	216.18	Tac	٦,
A-1-CW07	25		211,60			1
A-1 CW08	85		217.89			٦
A-1-CW09	4-18-2017	1217	2(6),92	217.67	700	-
B-1-CW1)	4.19.17	0137	F4-1,80	150 40	100	_
R-I-CWI2	4.140	0735	151,22	155.56	- Ticc	-
H-I-CW13	476/17	0911	192.03	200 05	Ta:	Τ.
B-I-CWIG	4 447	1074	17/170	146.44	TEC	1
13-14CW17	J.19.17	व्यव	135 64	140,51	700	,
B-1-CW20	4.4.57	0921	134.75	14055	TOC	1
B-1-CW25	U-19.17	0820	17816	185.45	TOU	1
K-1-CW27	0.14.17	0816	172.55	17036	to	1

Field Personnel:		
Wald Demonstr		

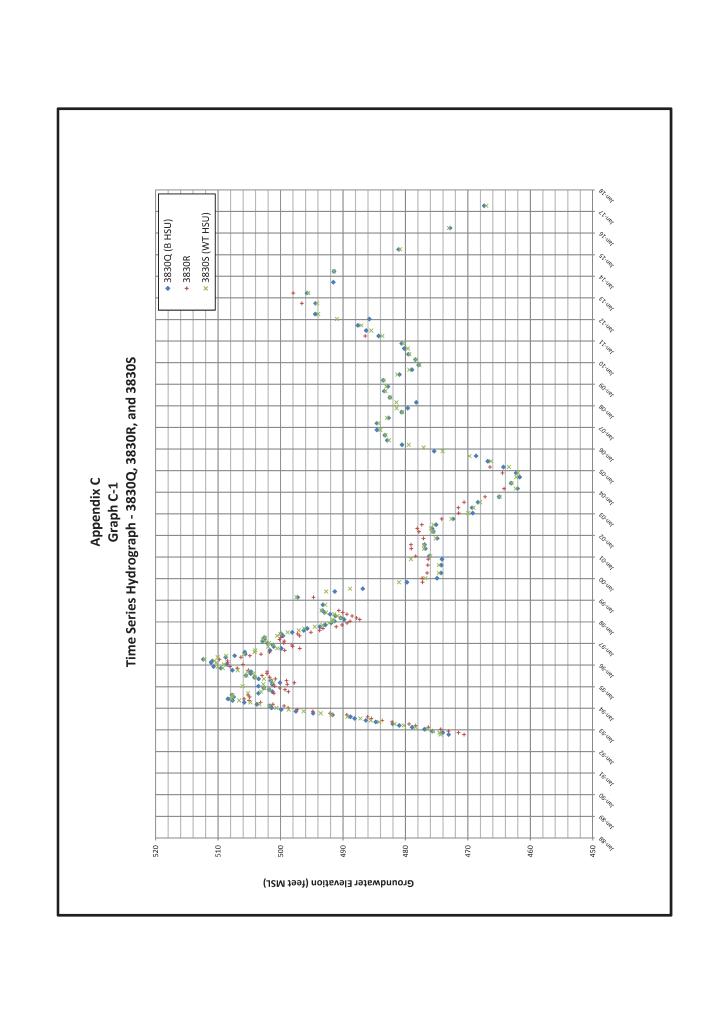
	Well ID	Date Measured	Time Measured	2016 Depth to groundwater (feet blac)	2017 Depth to groundwater (feet blac)	Comments
١	Bit-CW28	4/20/17	08 30	185.40	191.65	TOC
	B-1-CW29	4492017	0751	(65.43	171.74	700 70 171.65"
	B-5-CW02	4:12.2011		226 37	232.60	BEC
	B-5-CW03	4/12/17	14 40	226,07	J 28.38	DE 176
	B-6-CW912	4-18-2017	(006	237.02	234.04	BTOC
	II-6-CW05	4/18/17	1323	150.73	257 07	Toc
	B-5-CW08	4-197617	1256	252.66	259.90	137oC
	B 6-CW69	4 19:2017	1259	253 by	257.45	tiop of sounding hope, DRY
Γ	B-6-CW10	RS		238.34		7
	B-6-CW14	25		237.1%		
	B-6-0 W (6)	4.18.2017	1400	242,94	250.78	TOC
	BalsicW17	4.19:201	1331	266 to	271,93	CROC
	C-1 GW02	418 17	1257	264.23	270.59	70C
1	C-1-CW03	4.18.17	1300	264.45	171.01	Toe
	C-1-CW05	4-18-17	1231	246.39	251.71	TOC
1	C-1-CW(X)	4.18-17	1240	Dry	247.12	DRYTD
	C-1-CW07	4-5		256.58		
	C-1-CW08	135		256,61		
	MW-01	4-18-7017	0901	Day	21/0.25	DRV TD
	MW-02	4-18-7017	0855	Dry	238.71	URY TD
	MW-13	24 Thy	0842	2490.9	257.09	TOE
	MW-04	4-19-2017	0917	322 40	240.90	TOC
	MW/05	4/18/17	3969	235.25	4.3.04	Toc
	MW-06	4/11/17	15915	20,48,94	241.04	DRY TO
	MW-01	4-18-(7	व्यथा	229.81	- 3-7 63 - 7 7 6	were the
	MW-08	4/11/17	0934	235,16	237. 82	Toc
	Te-PW-0);	11.2017	1131	150,00	156.66	B764.
	Tr PW-02	21/20/17	1148	(4),39	147,45	3.7.6.6

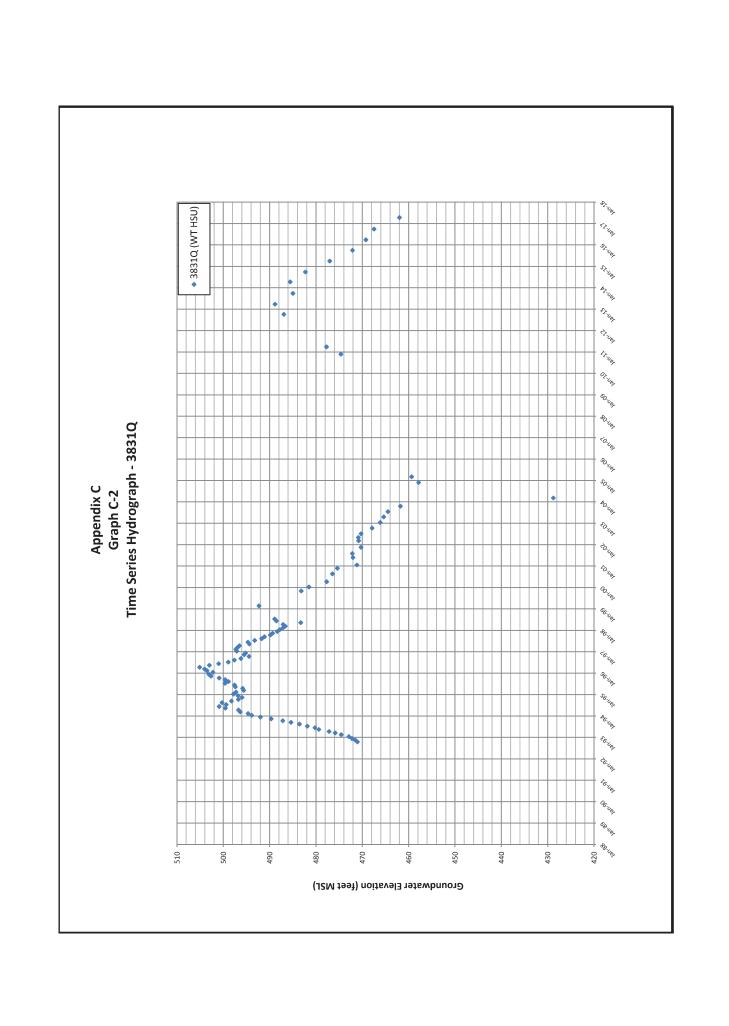
Field Personnel:	
Field Personnel:	

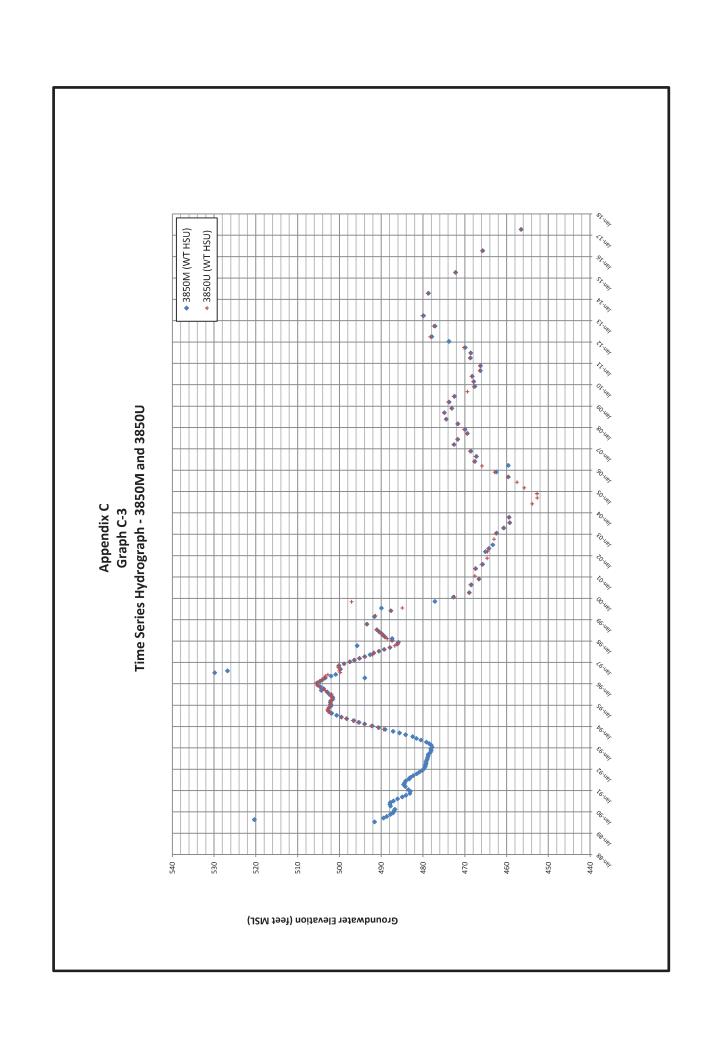
Well ID	Date Measured	Time Measured	2016 Depth to groundwater (feet bloc)	2017 Depth to groundwater (feet bloc)	Comments
OW YOLAR	4.14.77	0853	15.4 u/J	167.62	13000
OW-YOUD-P	4.19.17	0857	157:55	167.48	Broc
OW VO7A-P		0343	161 15	179.15	BTOC.
ом уорв в	4.14.17	0847	161.15	16471	BTOL
OW YOUAR	4-19-17	0327	168.45	176.72	BIOC
OW-VOMOR	4-19-11	2830	167.69	169.19	RIOC
CW-VO1A	4 2017	0352	179,48	185,85	Tograf Sanding hige
ON: VO410	4-2017	0855	173.69	18223	top of noundry labe
OW-V00A	4 7057	1103	185.93	199.13	Front Ronally file
OW YOOR	42017	1104	180,12	198.40	love of sounding inte
OW-Y(MA	4-10-17	1110	194.22	20223	Top of sounding the
OM-MONIT	4 20.17	1109	[93,80	197.77.	Top of sounding the
ACDZ WO	97013	1119	205 32	211.99	top of Sonaving type
OW-YOUR	4.30.17	1175	211.70	204.45	TOP of well OUP
OW VOKA	4-10.11	0955	FEERAN.	197.61	Broc
OM AOSE	43411	0.450		1-(1), व्यय	DIOC

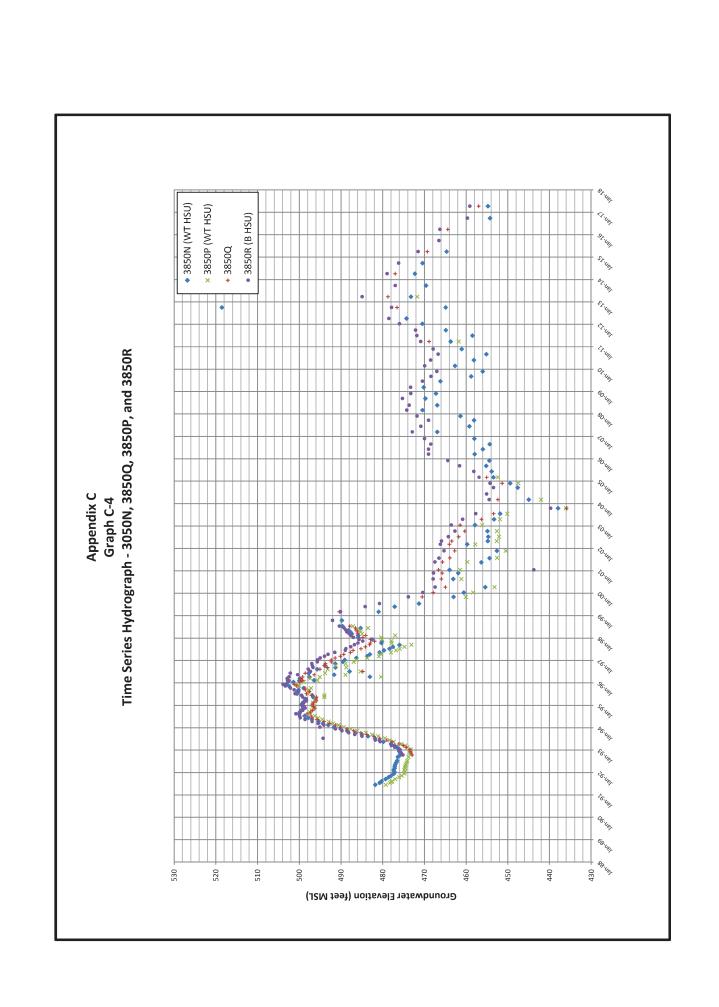
B-1-6230	4-14-17	0751	164.80	700
B-1-6433	4.49	0914	170.59 148.16 189.80	foe
8-1-(36)	4-14/7	6730	15452	Tor.

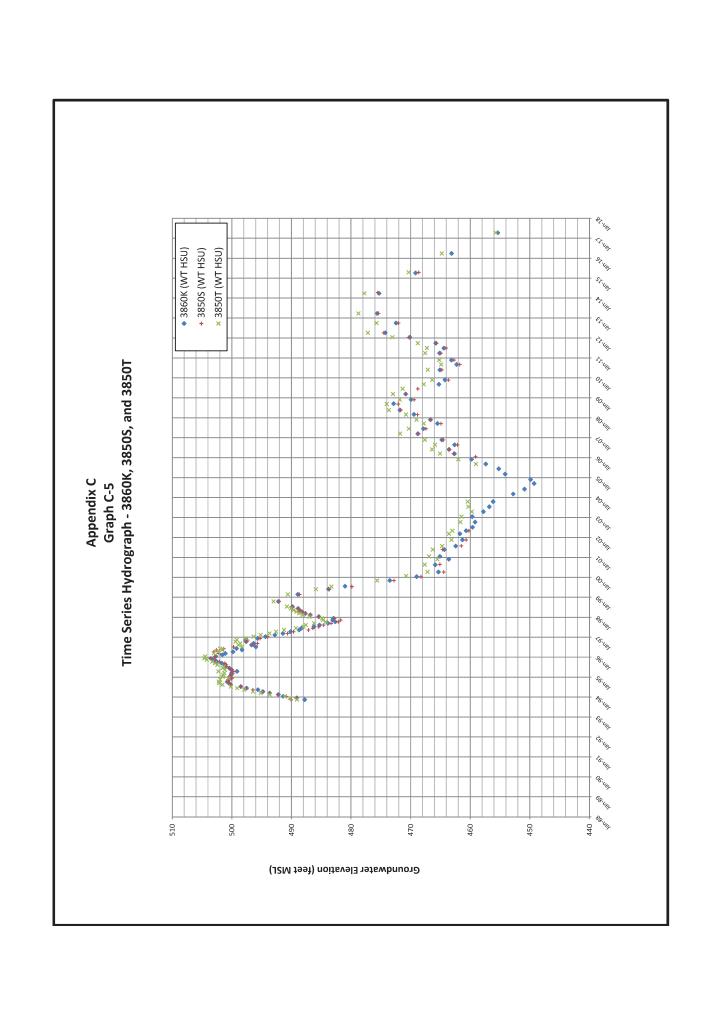
Appendix C

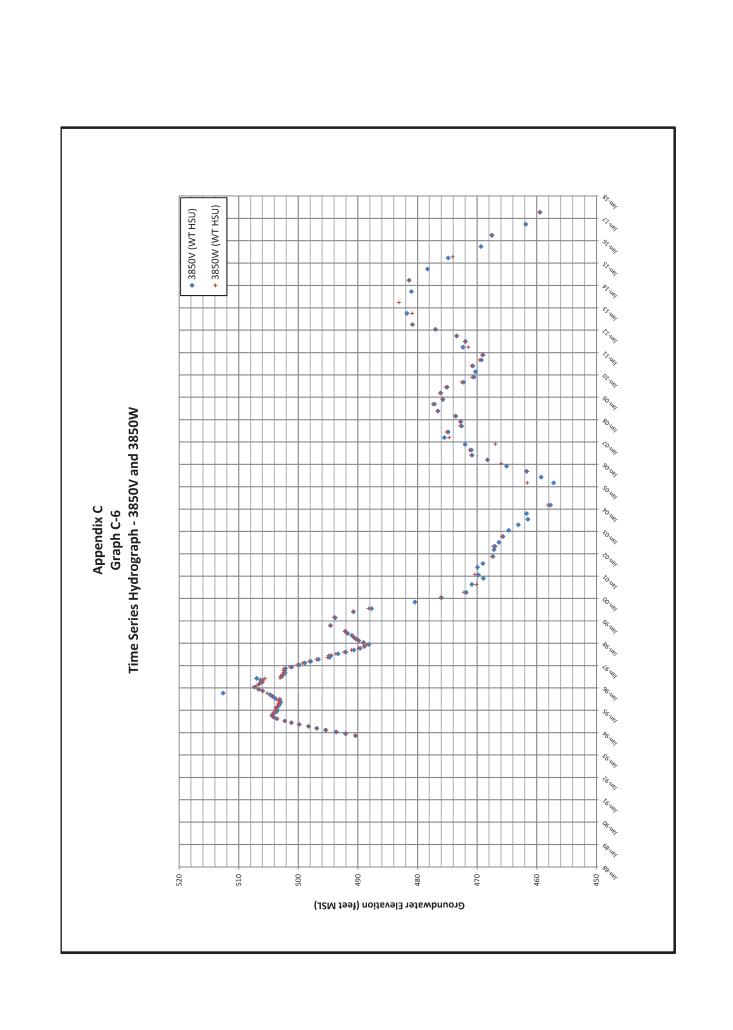

Hydrographs for Select Monitoring Wells

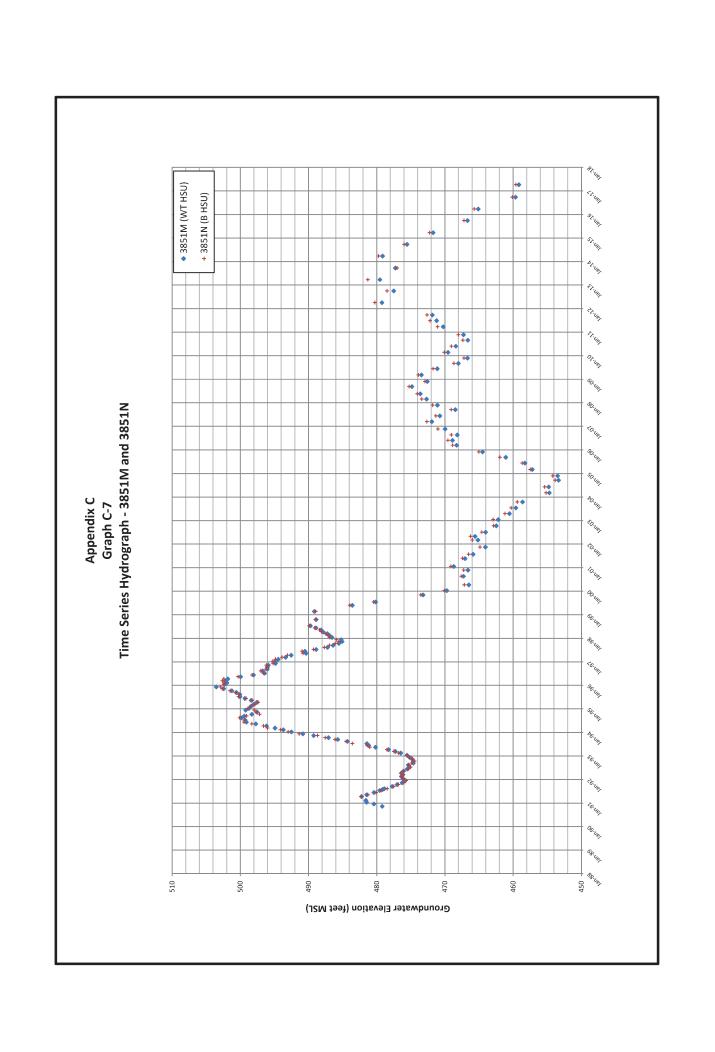

Annual Groundwater Monitoring Report, Second Quarter 2017

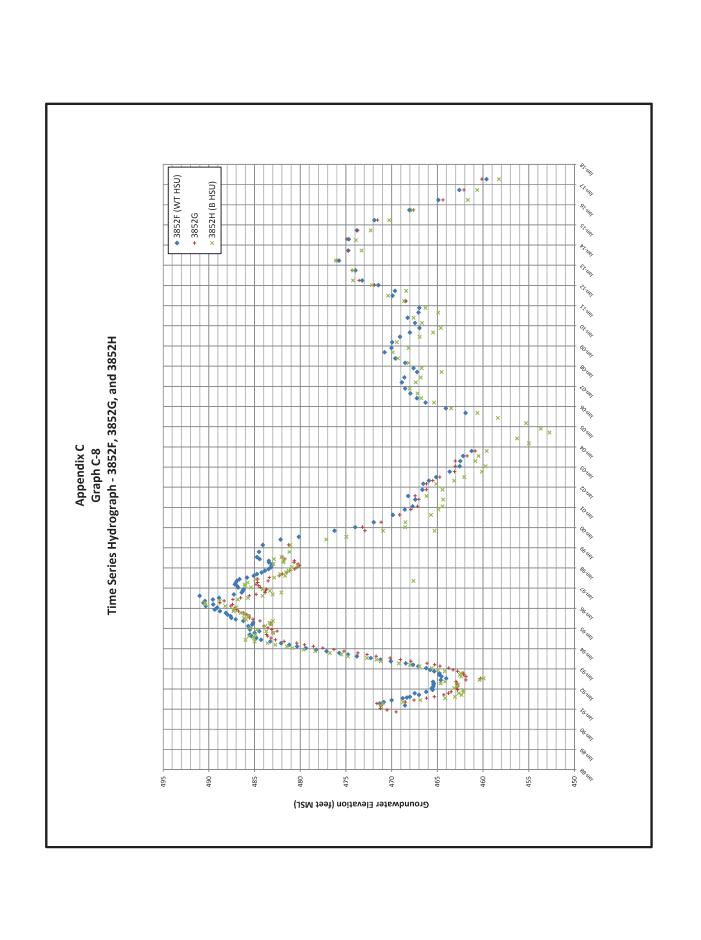

Lockheed Martin Corporation

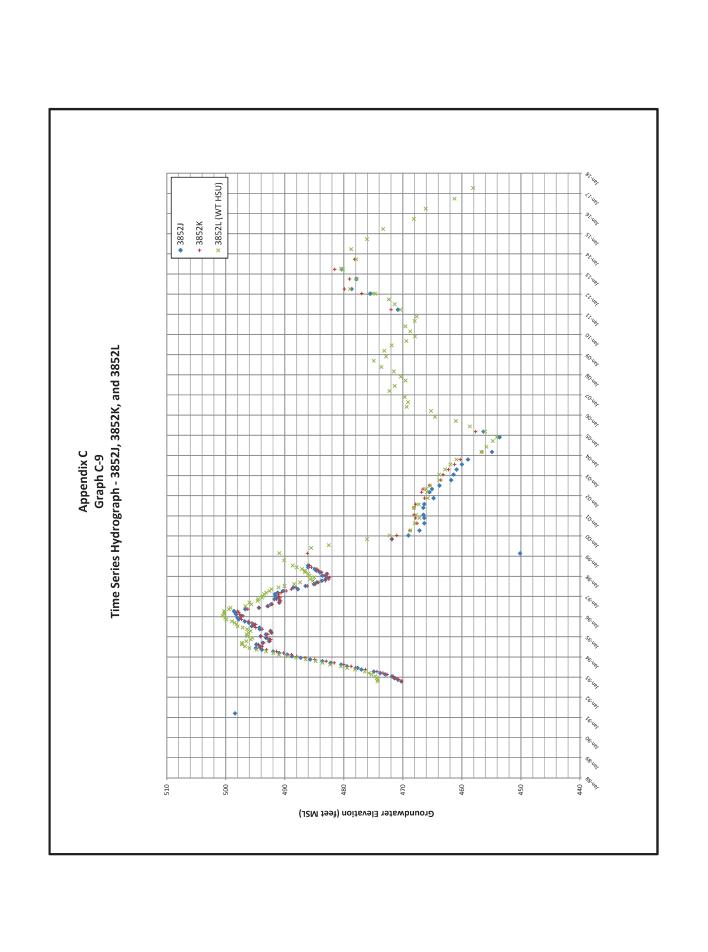

Burbank Operable Unit, Burbank, CA

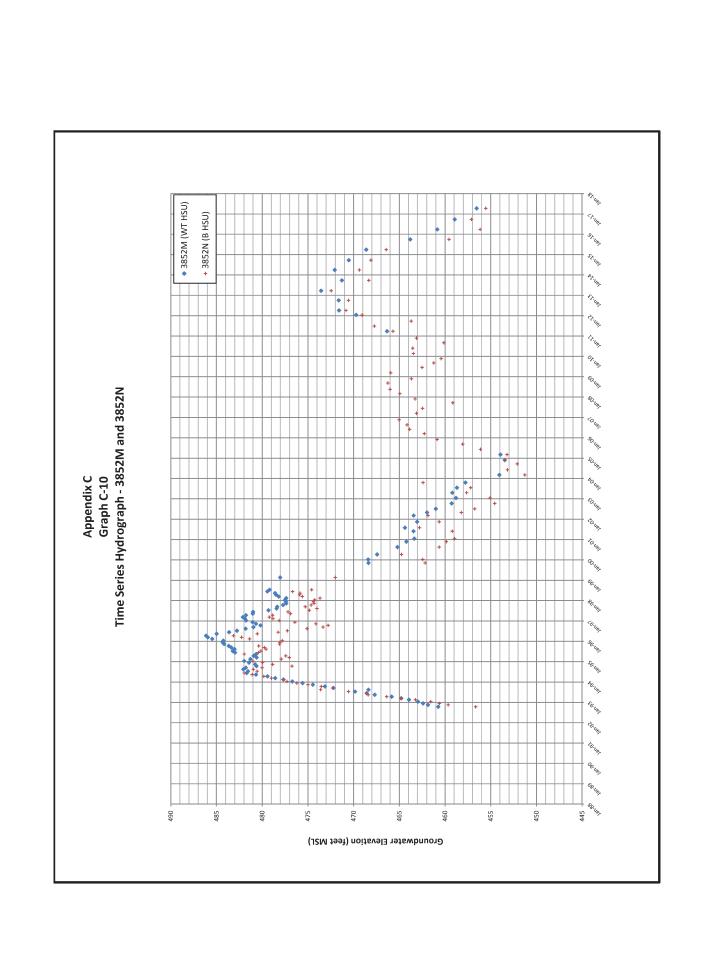

Tetra Tech August 2017

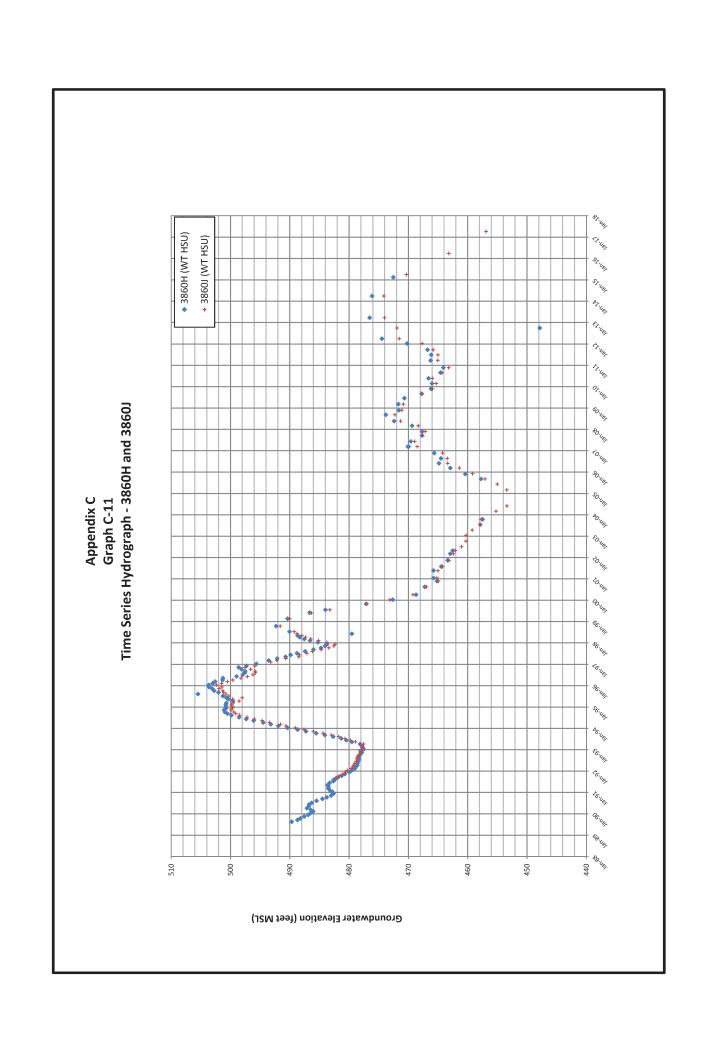


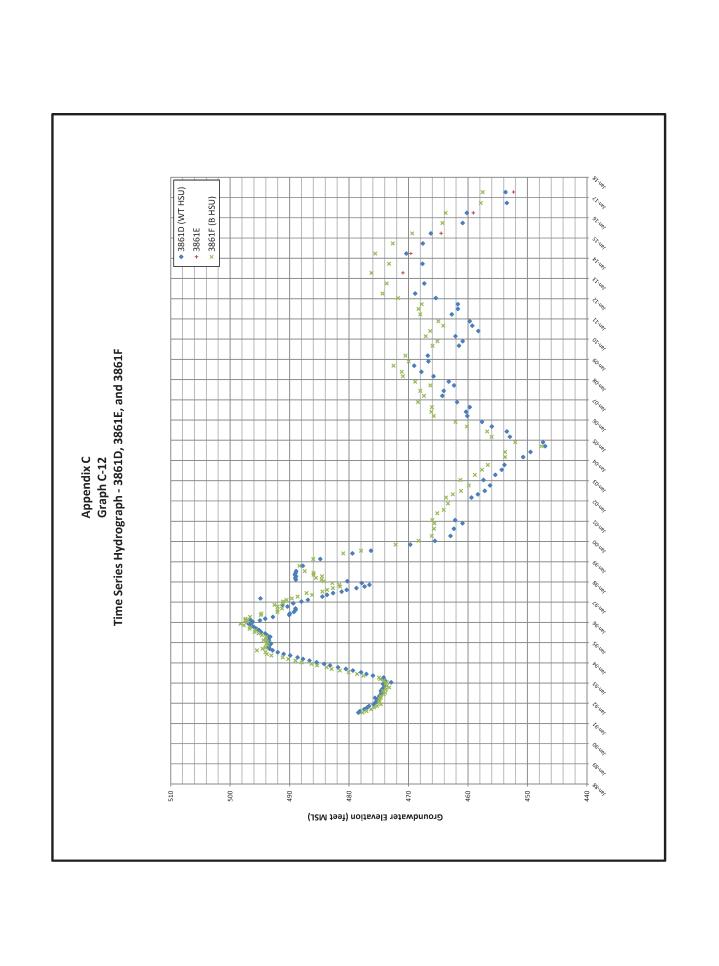


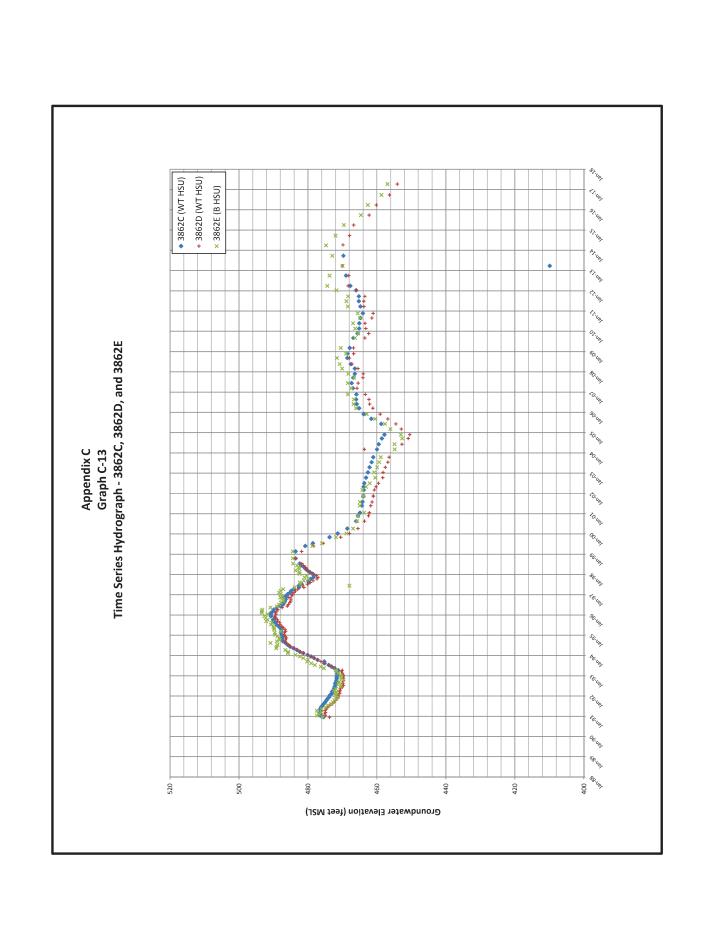


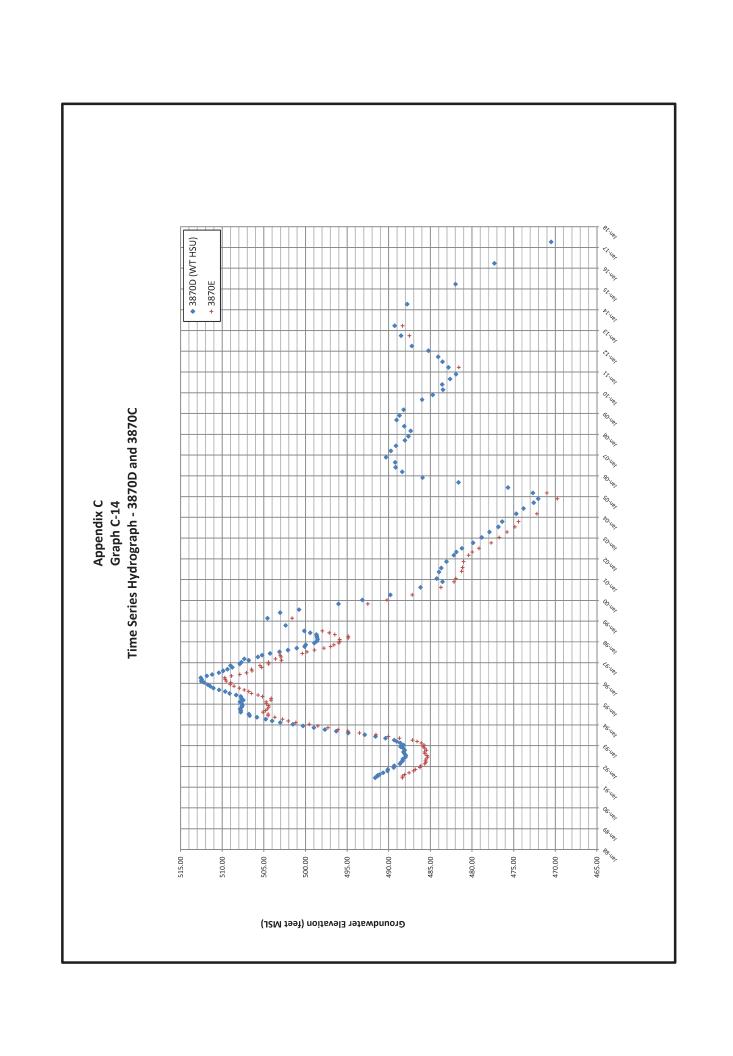


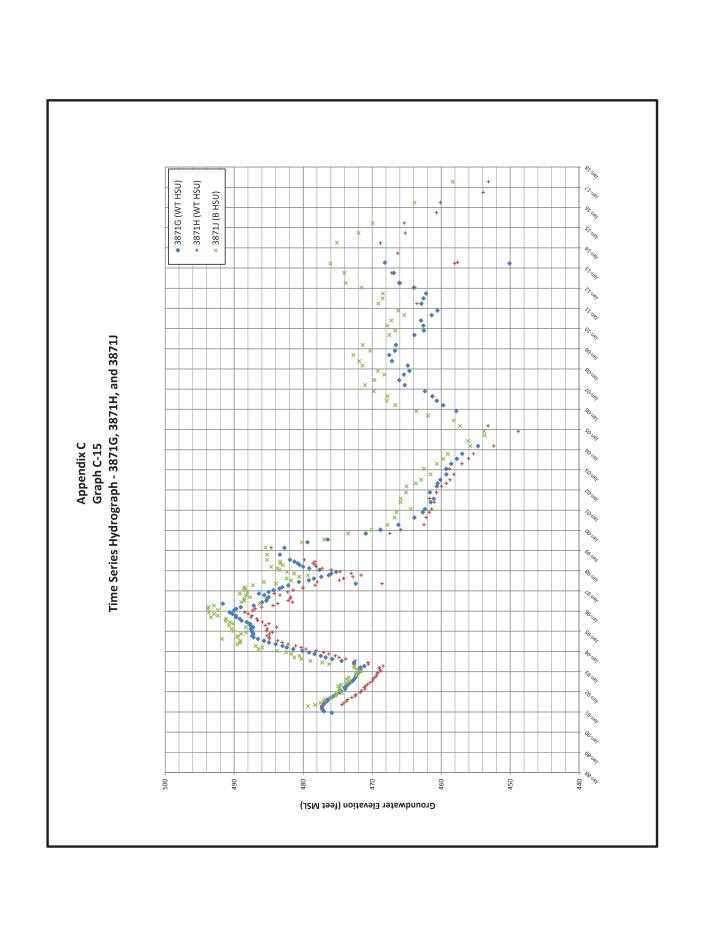


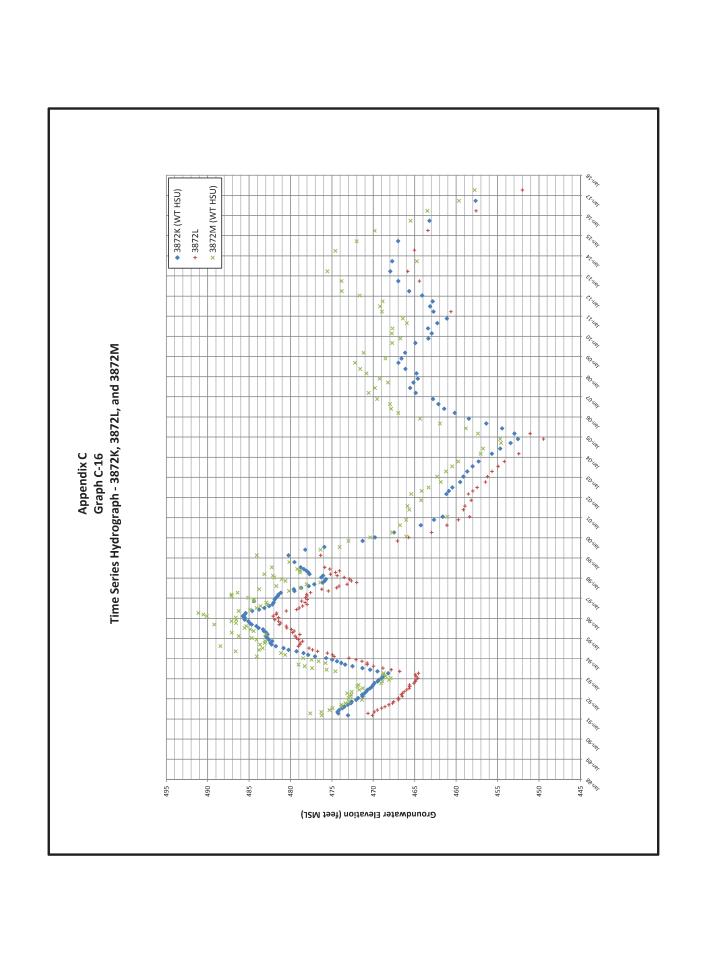


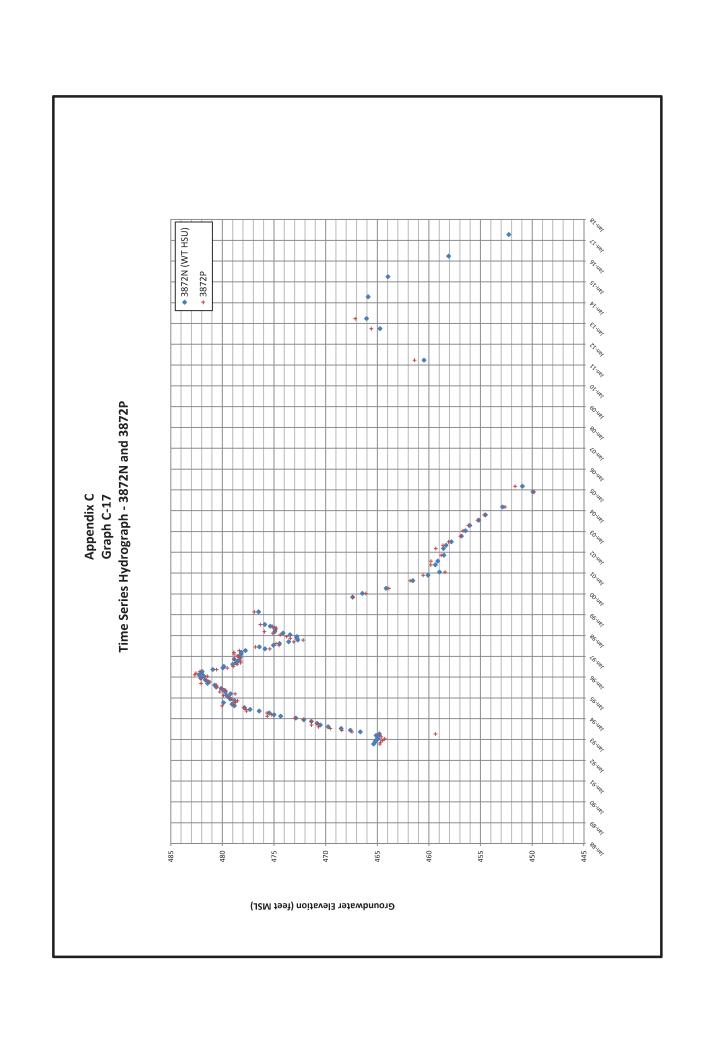


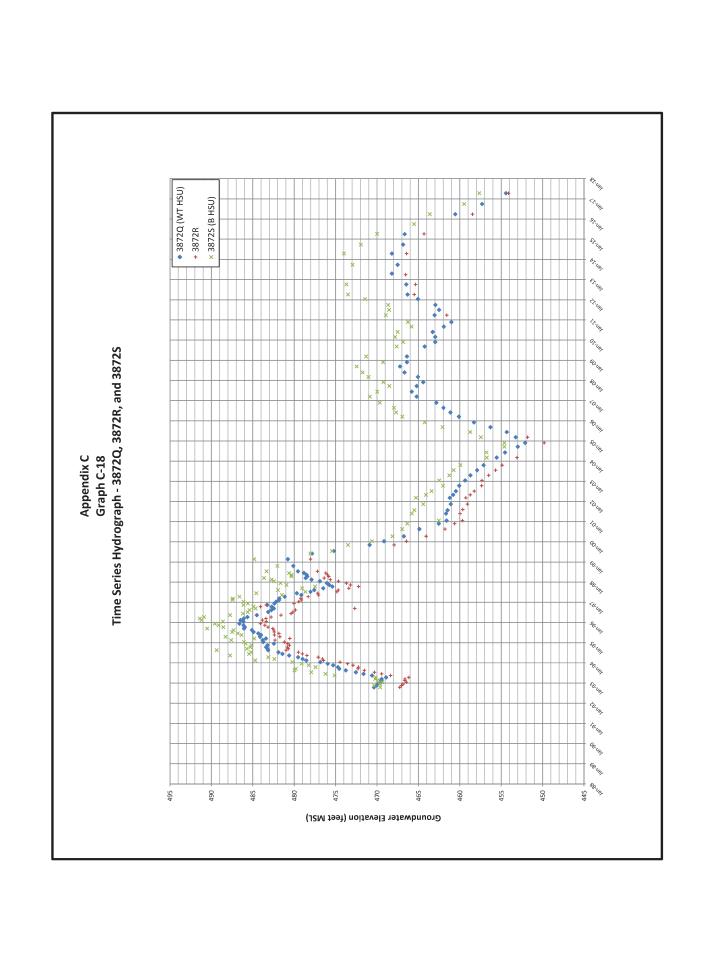


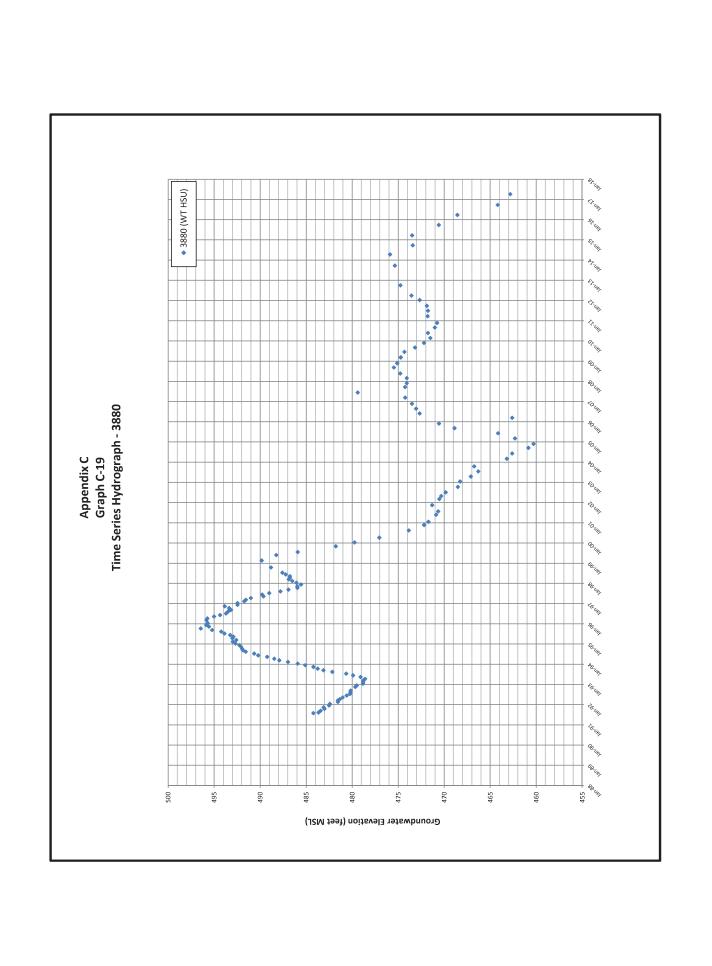


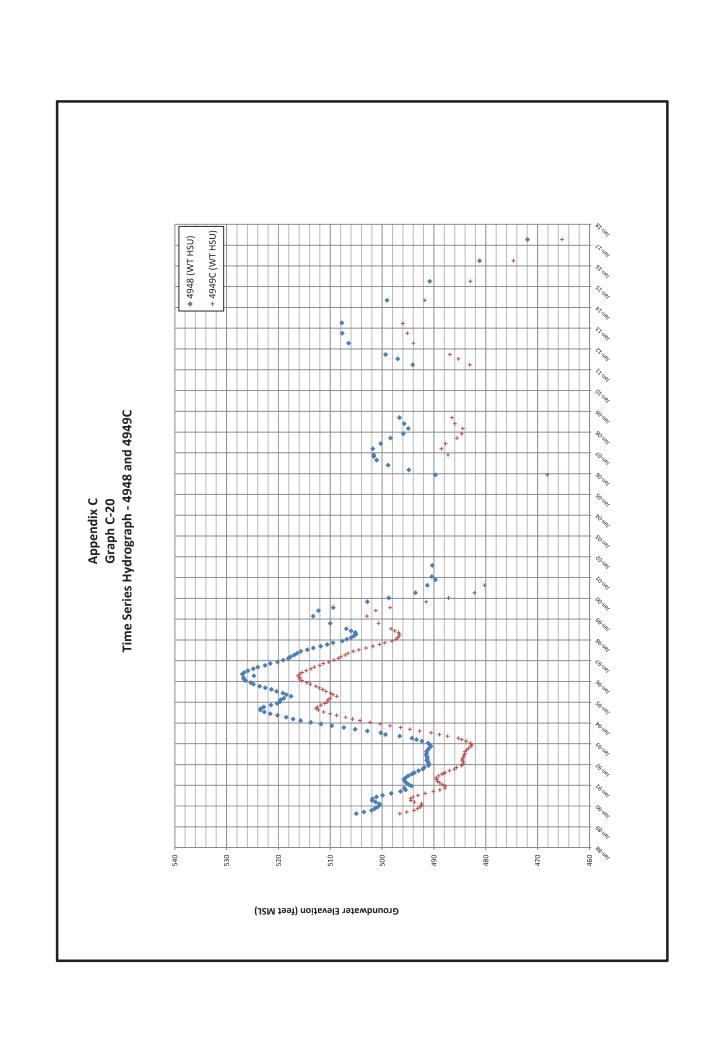


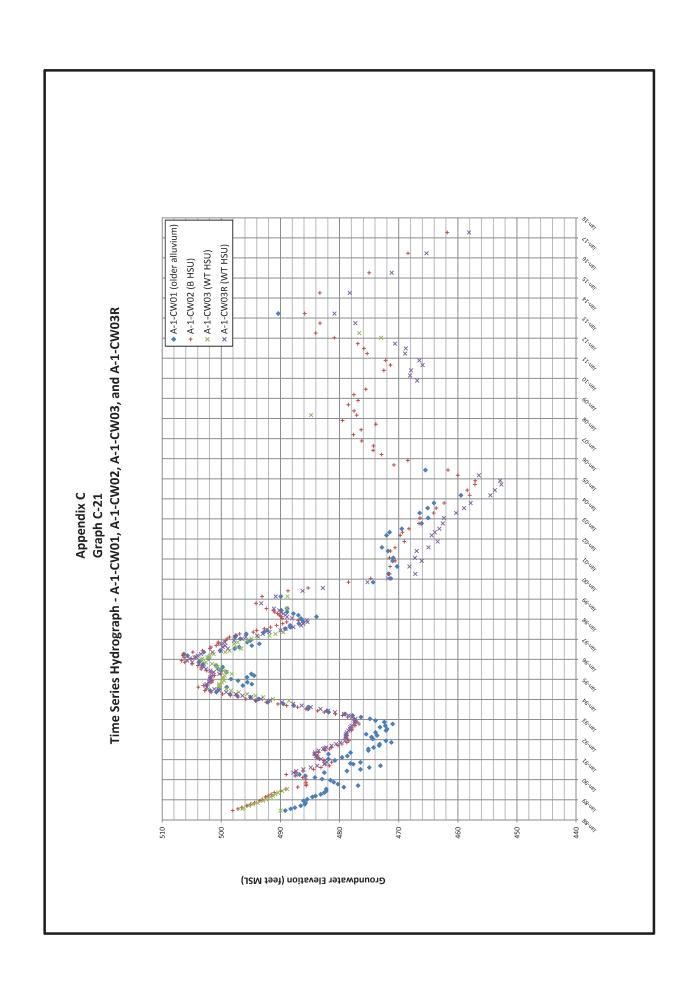


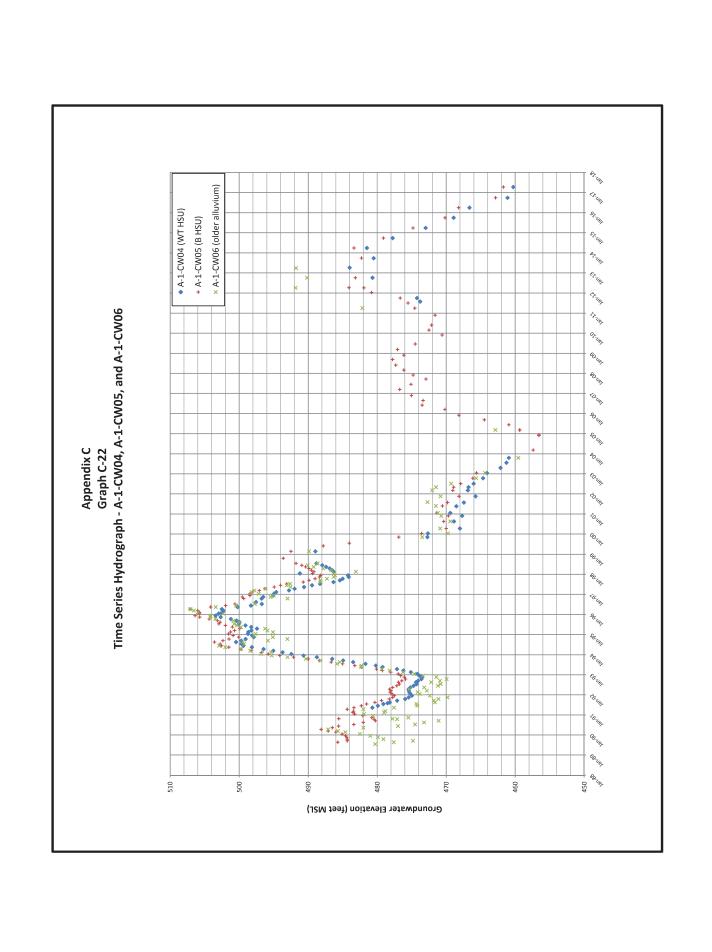


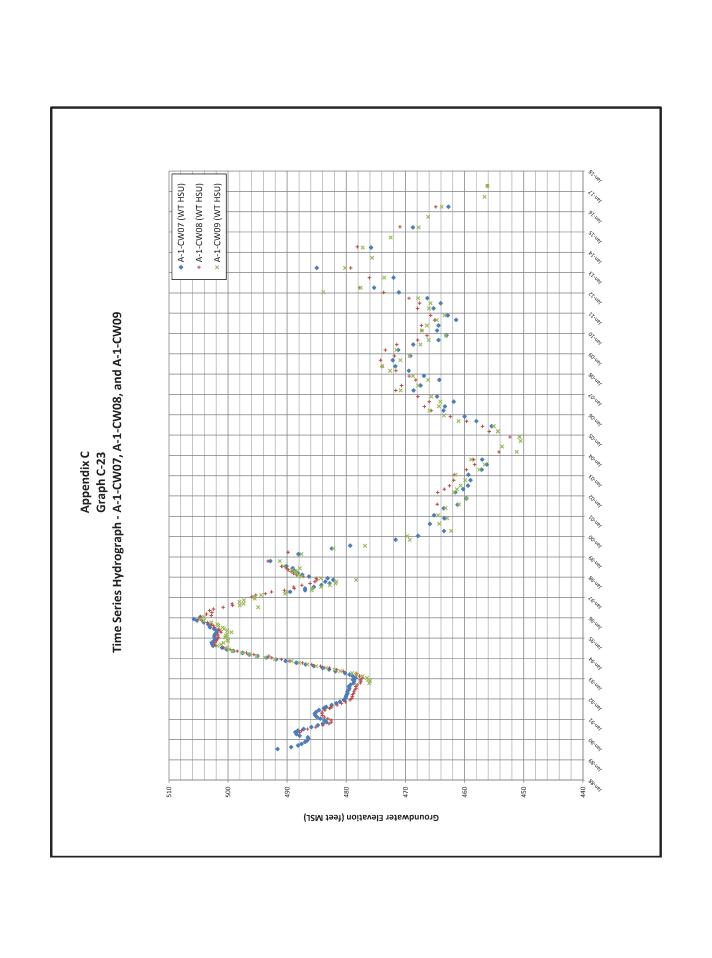


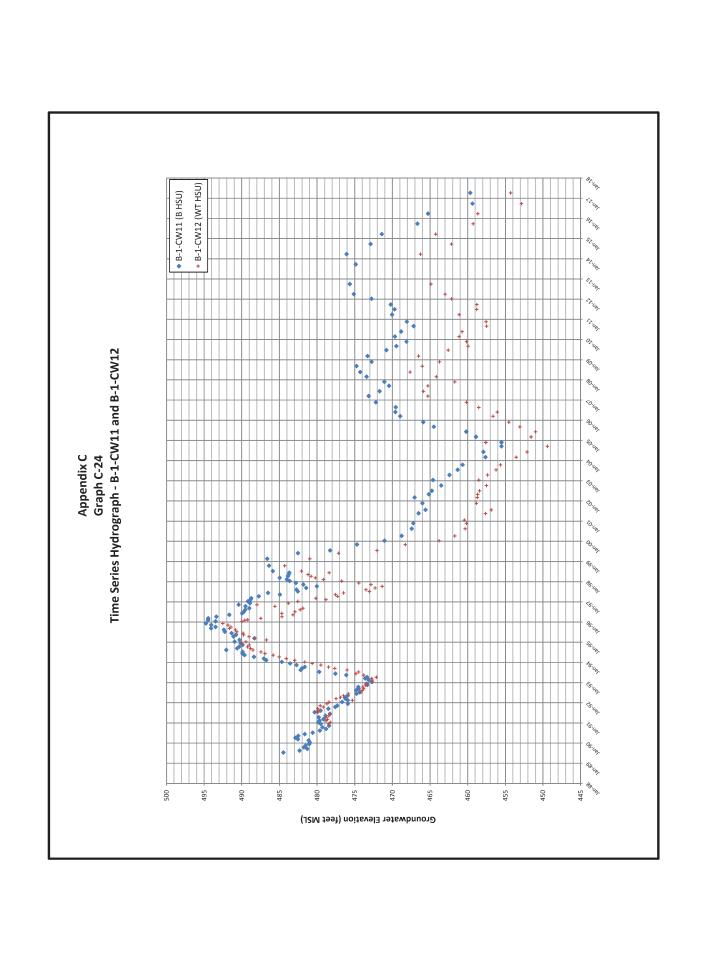


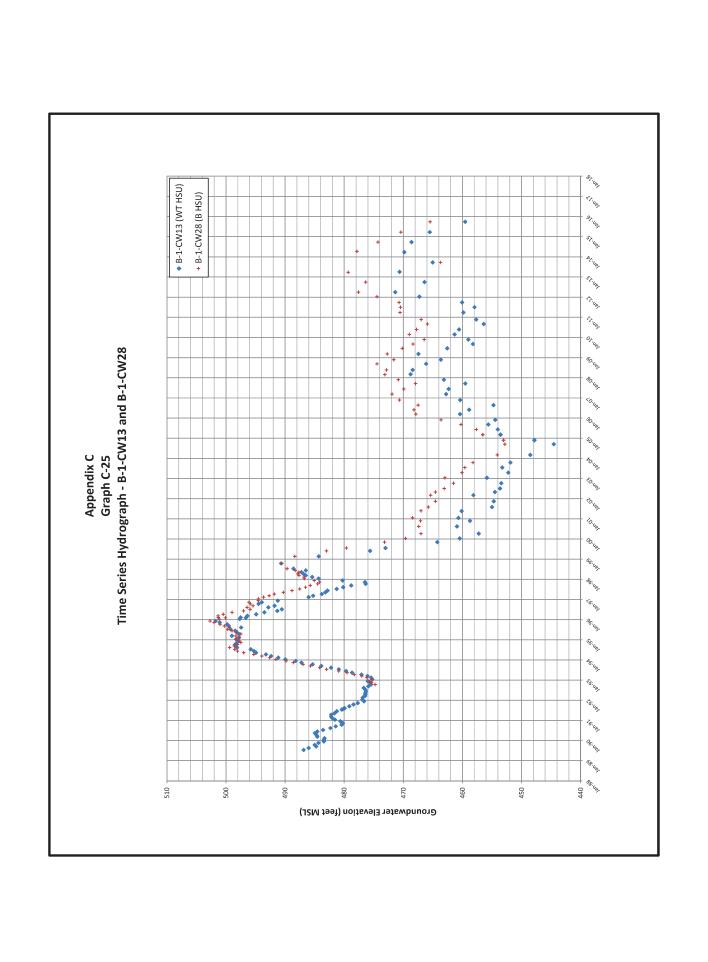


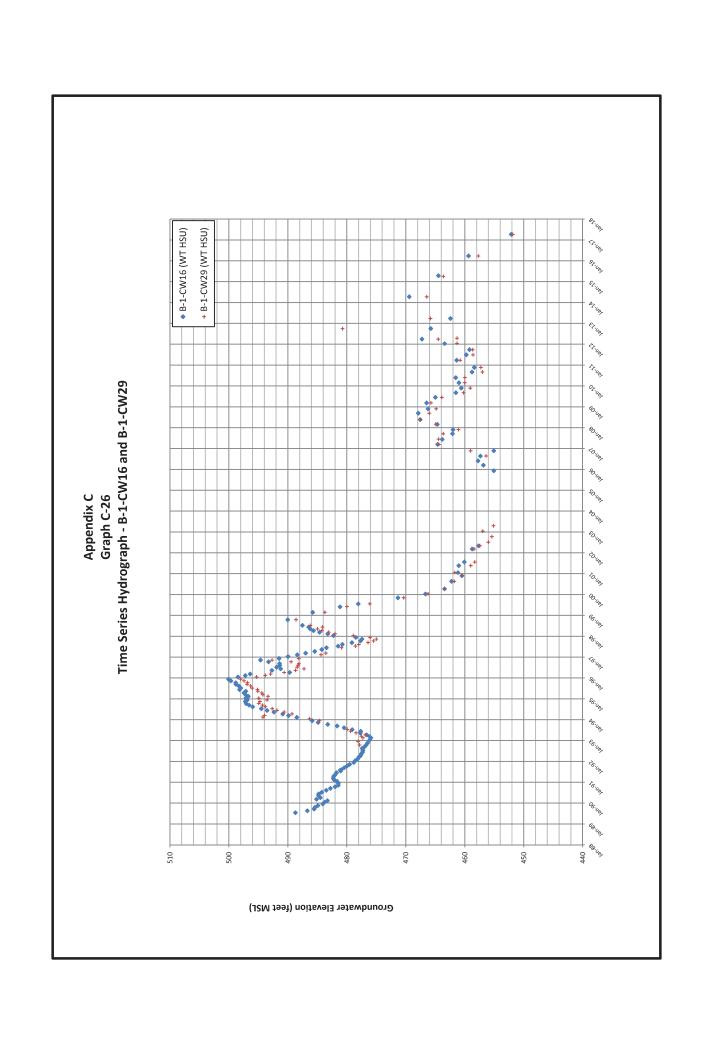


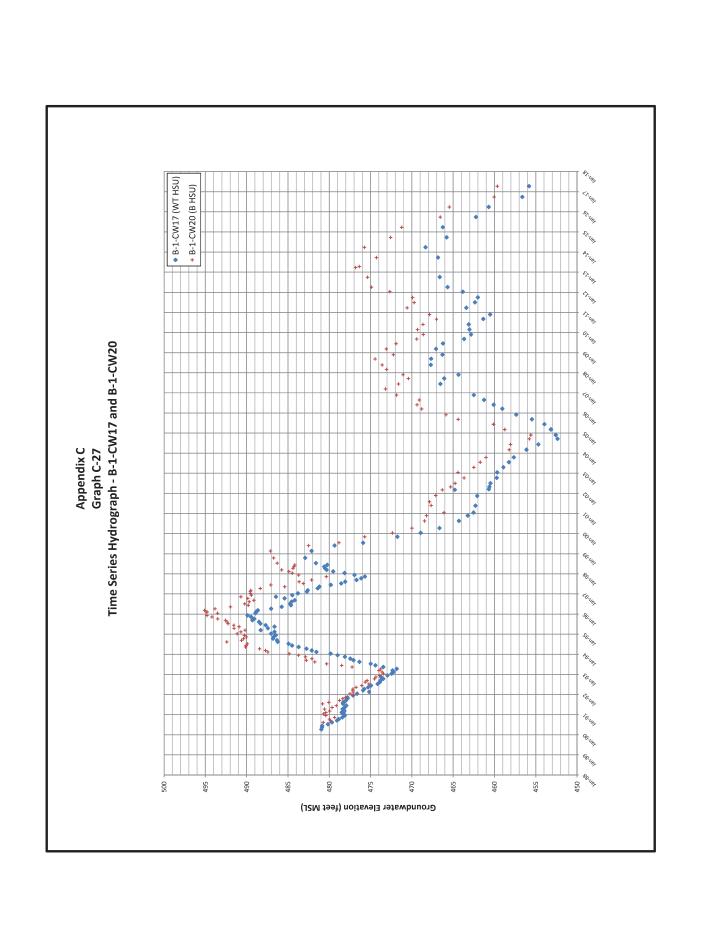


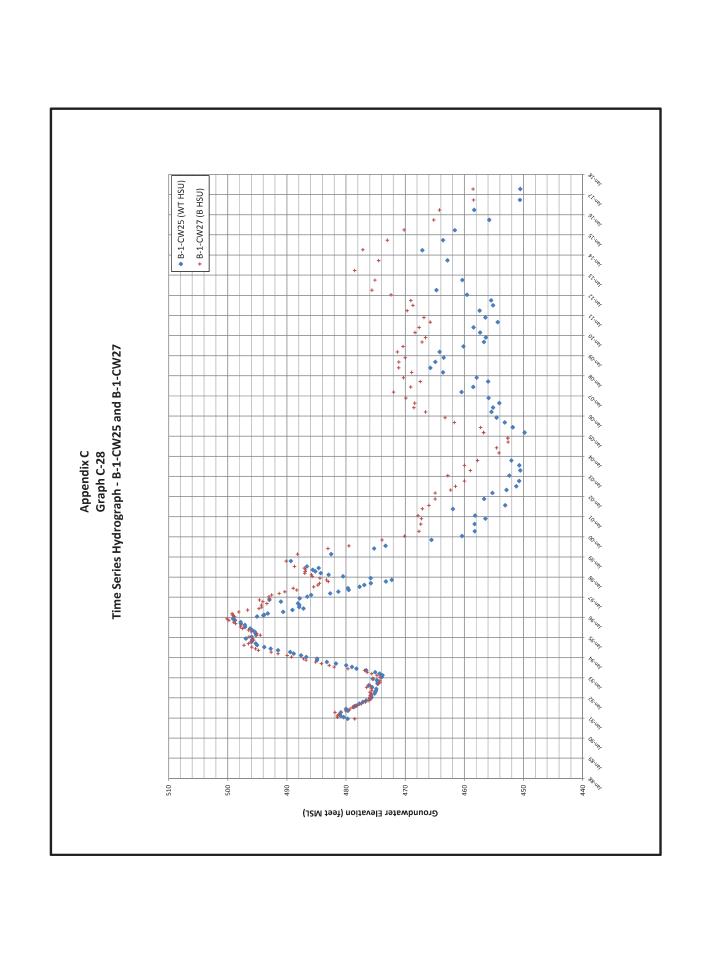


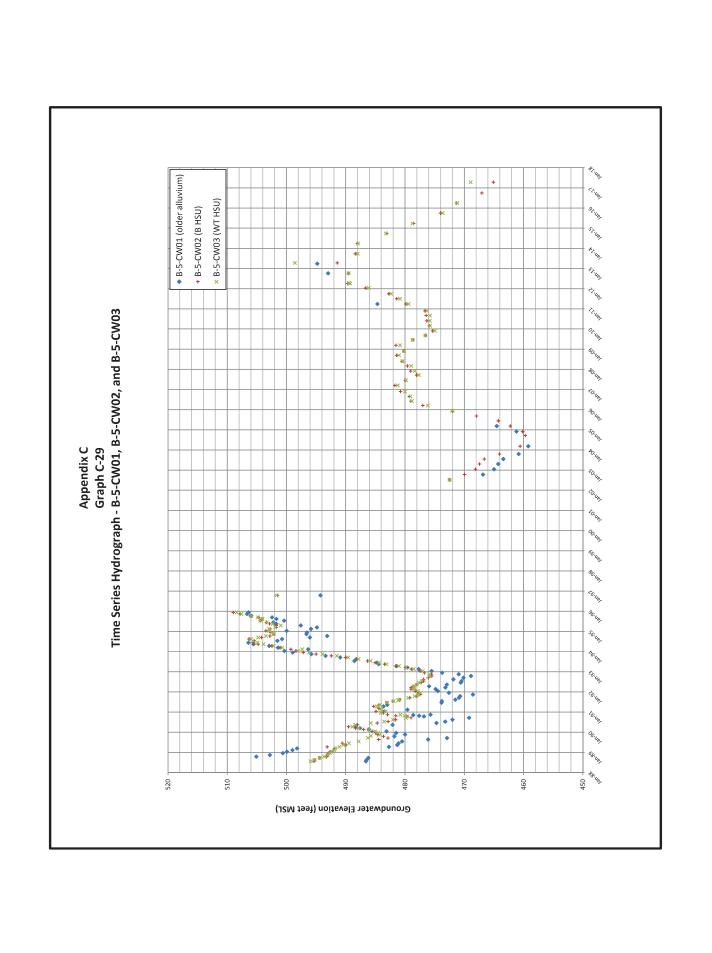


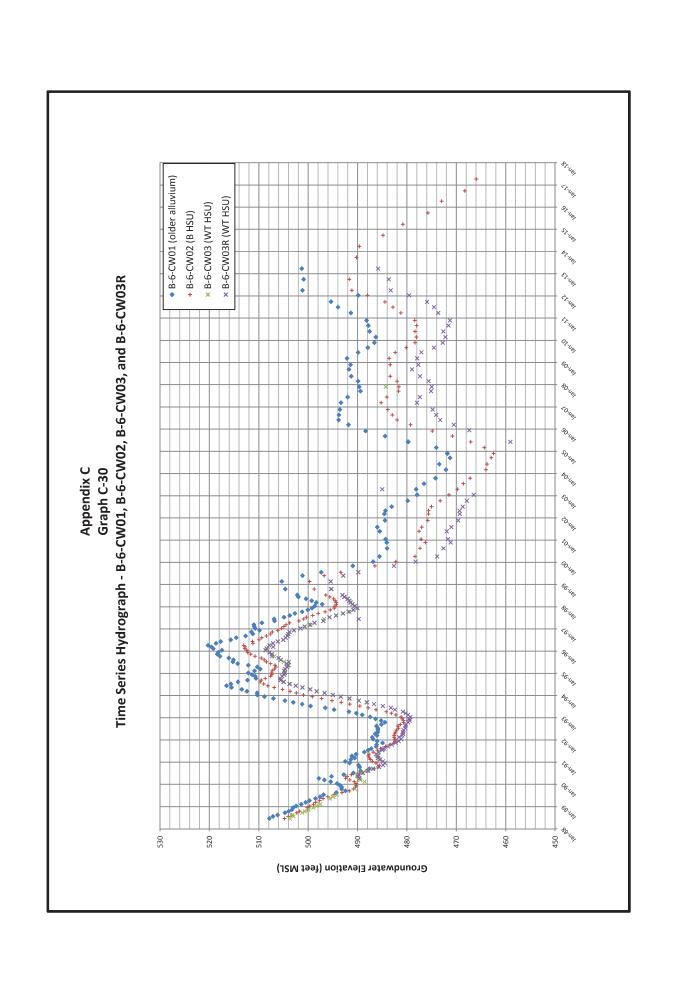


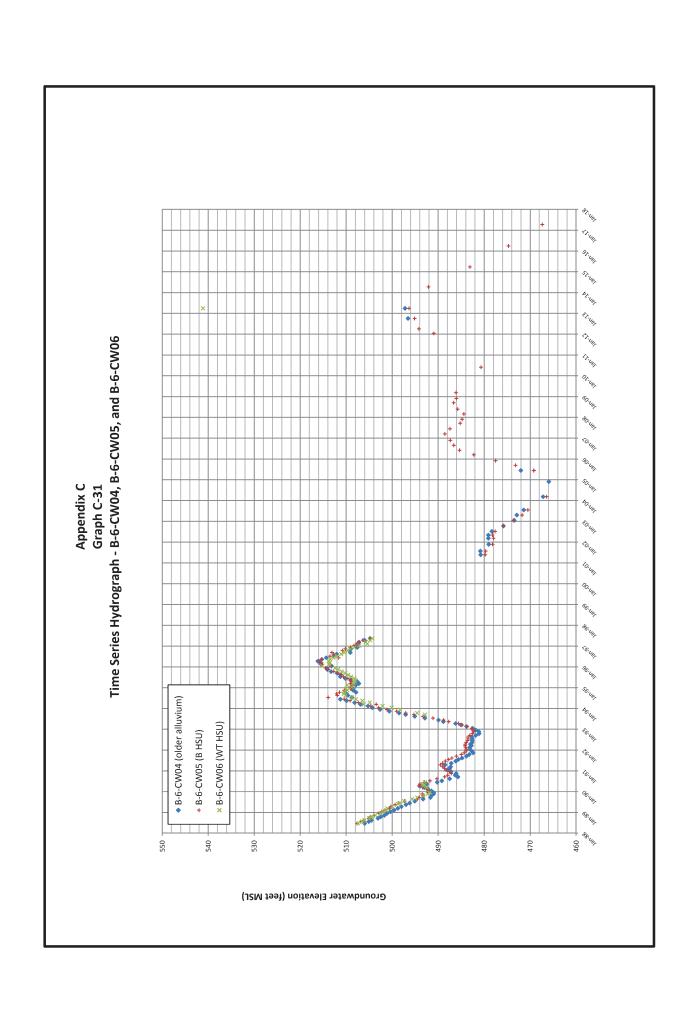


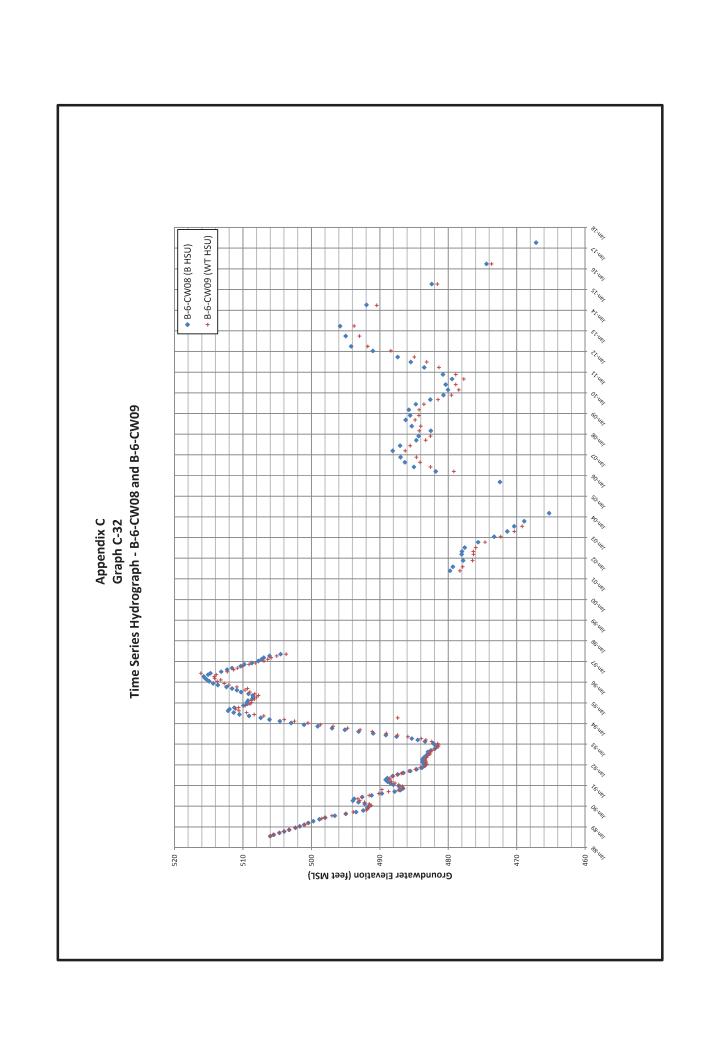


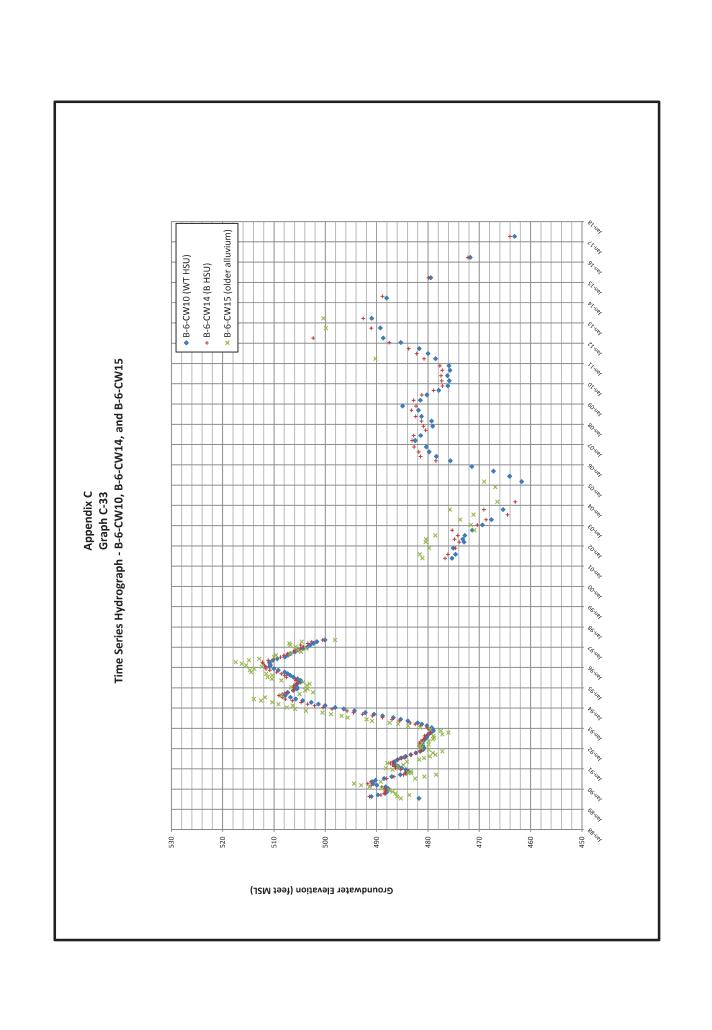


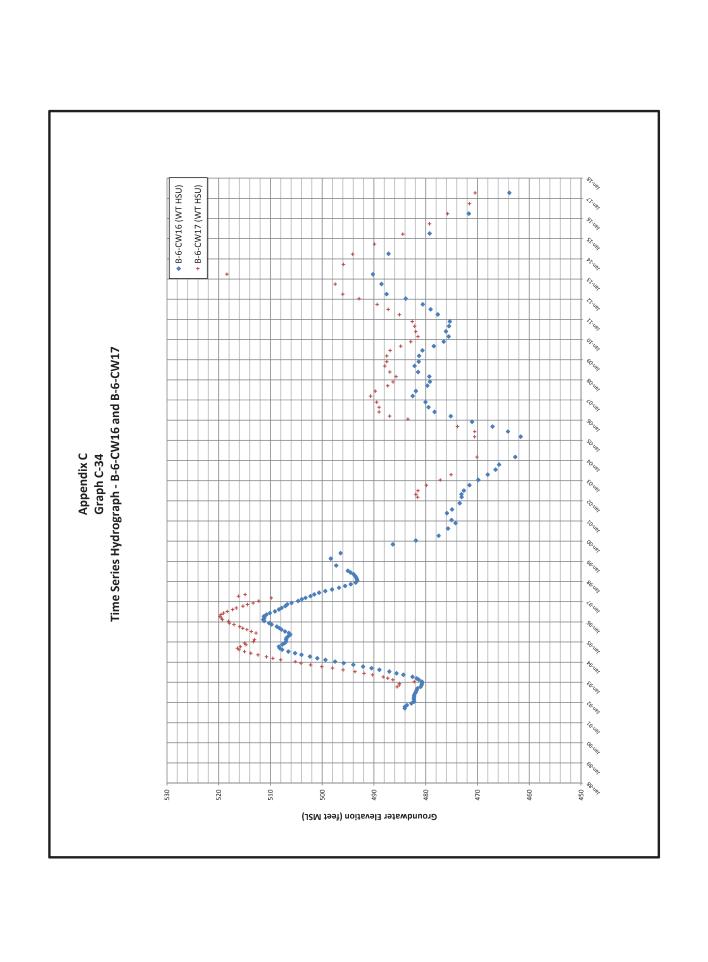


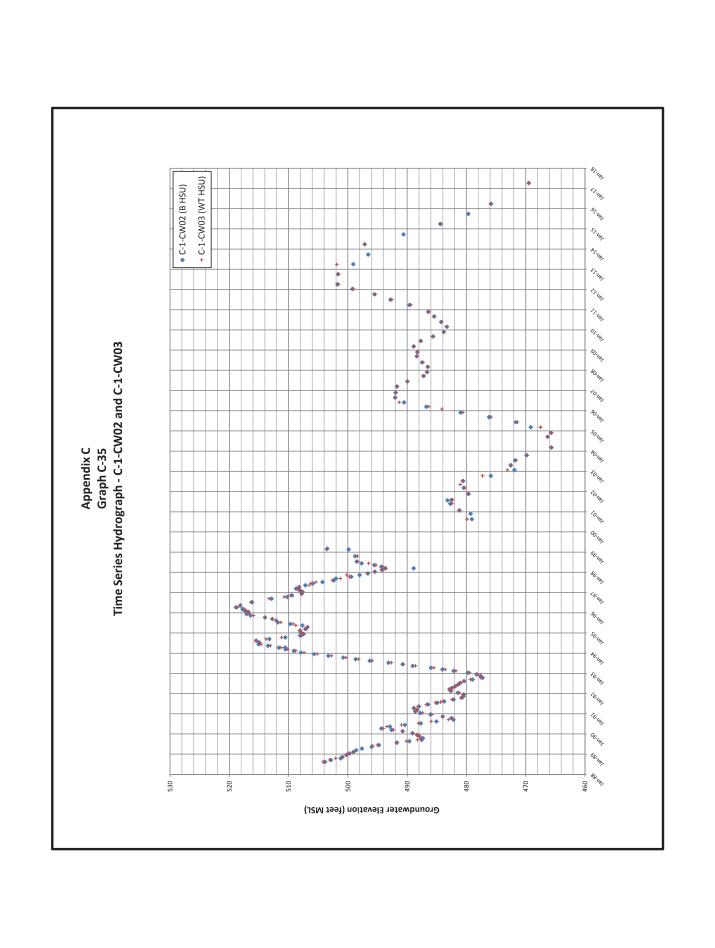


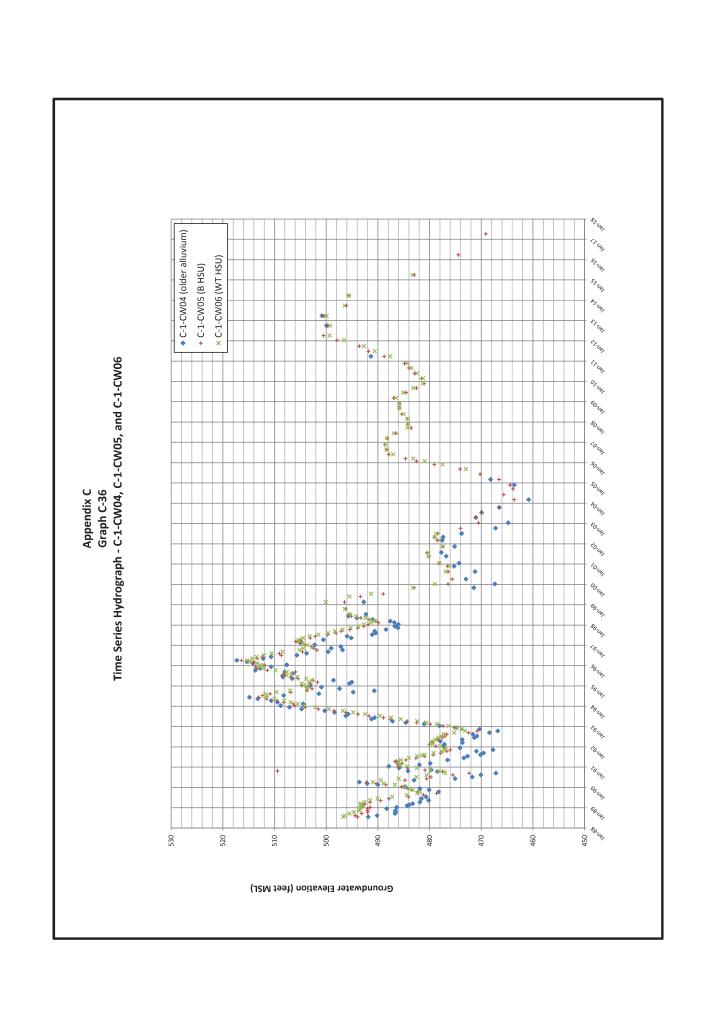


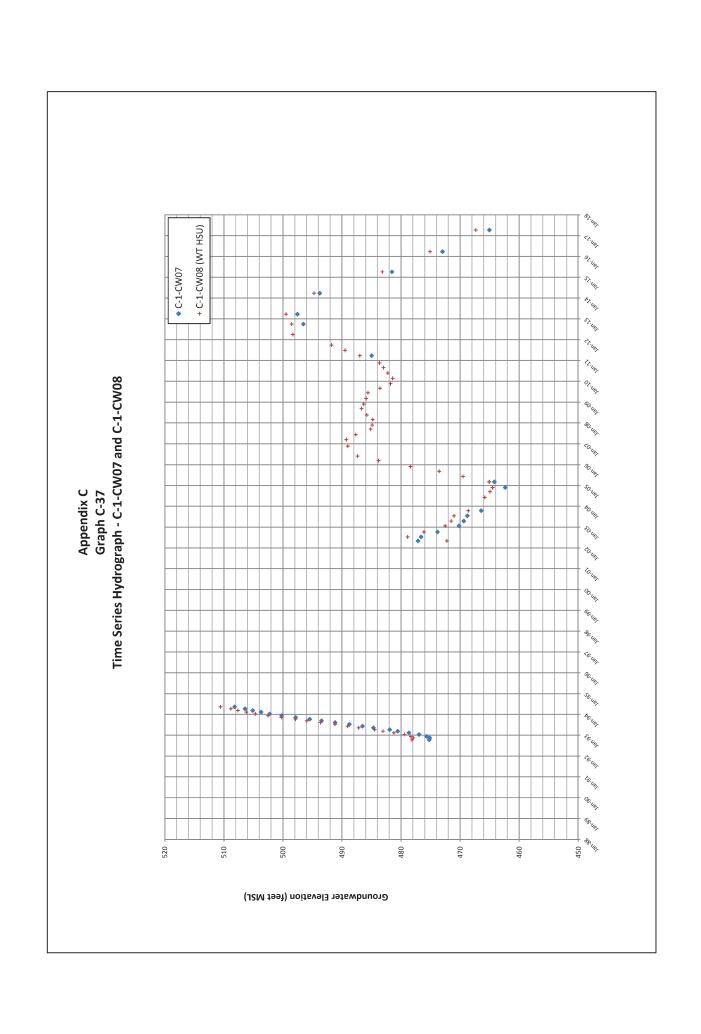












Appendix D Data Validation Summary

Annual Groundwater Monitoring Report, Second Quarter 2017
Lockheed Martin Corporation
Burbank Operable Unit, Burbank, CA

Tetra Tech August 2017

TETRA TECH, INC. DATA VALIDATION SUMMARY REPORT

TO: Thomas Villeneuve, Project Manager; Robert Sabater, Deputy Project Manager

FROM: Michael Wilson, Senior Chemist

DATE: May 31, 2017

SUBJECT: One Hundred Percent Data Validation Review for the Burbank Operational Unit

(BOU) Groundwater Sample Analyses Data Results from Eurofins Calscience

Laboratory in Garden Grove, CA

Introduction

This report summarizes the findings from data validation efforts conducted on one hundred percent of the sample data results for Lockheed Martin Corporation's (LMC) BOU soil project. The validation guidance used in evaluating the data is presented in the current versions of *USEPA National Functional Guidelines for Inorganic Data Review* and *USEPA National Functional Guidelines for Organic Data Review*. The data were audited at a Level II effort. The Level II effort requires review of all applicable Quality Control (QC) sample results as it relates to the field data under review. Level II effort also determines the usability of the data based on the Data Quality Objectives (DQOs) for the project.

Executive Summary

The Eurofins Calscience data for the project were contained in one Sample Delivery Groups (SDGs) designated as 17-01-0944.

The total data set consisted of 5460 individual (per analyte) results from environmental samples analyses. The number of samples per analytical method (or method group) is given below.

- 1. Sixty five samples for Hexavalent Chromium by Method E218.6
- 2. Sixty five samples for Total Chromium by Method SW6020
- 3. Sixty five samples for VOCs by Method SW8260B
- 4. Sixty five samples for 12,3-Trichloropropane by Method SW8270C M Isotope Dilution
- 5. Sixty five samples for 1,4-Dioxane by Method SW8270M

The samples were logged into the lab under compliant Chain of Custody documentation with no exceptions noted. The samples were analyzed in one or two preparation batch per analytical method per SDG. All QC samples were reviewed and if the QC result caused the data to be qualified the reason for the qualification was identified.

The data showed the laboratory analyzed all samples in accordance with method guidelines. The instances where qualification was required are listed below and explained under individual method sections. All other data is of known precision and accuracy and did not require any qualification and can be used as stated.

All data for this BOU sampling event were usable for their intended purpose.

Evaluation Criteria

The data were evaluated by results from the following Quality Control (QC) entities.

- Method/Field Blanks
- Laboratory Control Samples
- Holding Times
- Surrogate Recovery (Organic Methods)
- Spiked and Field Duplicate Compliance
- Calibration Compliance
- Compound Identification
- Analytical Method Compliance

Chain-of-Custody (COC) forms were reviewed and no unresolved discrepancies were noted.

Evaluation of Accuracy, Precision, Representativeness, Comparability, and Completeness

- 1. Accuracy is established by reviewing spiked sample analysis. A blank spike (LCS) measures the accuracy of the instrument and the LCS results for this data set were all found to be within control limits. Therefore, accuracy for the BOU project meets the Data Quality Objectives (DQO).
- 2. Precision is established by calculating the RPD values for MS/MSD pairs and field duplicates. The RPD values calculated for the BOU project show that >95% of the RPD calculated were within control limits. Therefore, the precision for the BOU projects meets the DQO.
- 3. Representativeness is established by using standard field sampling techniques. Because the field sampling was conducted under approved work plans and by following an established SOP, the sampling is judge to have adequate representativeness. The DQO was met.
- 4. Comparability of the data is preserved if the analytical analyses are conducted under approved and vetted EPA analytical methods. Because the EPA methods are constructed with comparability built into the methods. By using approved analytical methods for the BOU project, the BOU data is comparable. The DQO was met.
- 5. Completeness is measured by determine the amount of valid data produced by the laboratory as compared to the total possible data from the chain. This data set had no rejected data and all samples were analyzed as per the chains. Therefore, the data completeness is 100% which is above the 90% criterion. The DQO was met.

Validation Qualifiers and Comment Descriptors Definitions

Qualifier Definitions

The upper case letters are used to denote NFG allowed qualifiers.

J- Estimated. The associated numerical value is an estimated quantity with a negative bias. The analyte was detected but the reported value may not be accurate or precise. The data are usable as estimated values.

- J+ Estimated. The associated numerical value is an estimated quantity with a positive bias. The analyte was detected but the reported value may not be accurate or precise. The data are usable as estimated values.
- J Estimated. The associated numerical value is an estimated quantity. It is not possible to assess the direction of the potential bias. The analyte was detected but the reported value may not be accurate or precise. The "J" qualification indicates the data fell outside the QC limits, but the exceedance was not sufficient to cause rejection of the data. The data the data are usable as estimated values.
- R Rejected. The data is unusable (the compound or analyte may or may not be present). Use of the "R" qualifier indicates a significant variance from functional guideline acceptance criteria. Either resampling or reanalysis is necessary to determine the presence or absence of the rejected analyte.
- U Not detected. Analyses were performed for the compound or analyte, but it was not detected. The "U" designation is also applied to suspected blank contamination. The "U" flag is used to qualify any result that is detected in an environmental sample and associated blank at less than the PQL. For example, when any blank has a detection of the analyte that is below the PQL, and any associated field samples to that blank that also has detections of analytes below the PQL, then the samples are qualified as not detected at the PQL level. However, the data result is not censored by using the default PQL level and instead have the blank level reported in the sample qualified as not detected.
- UJ Estimated/Not detected. Analyses were performed for the compound or analyte, but it was not detected and the sample quantitation or detection limit is an estimated quantity due to poor accuracy or precision. This qualification is also used to flag possible false negative results in the case where low bias in the analytical system is indicated by low calibration response, surrogate, or other spike recovery.

Qualifier Descriptor Comments

- a: The analyte was found in the method blank.
- b: The surrogate spike recovery was outside control limits.
- c: The Matrix Spike and/or Matrix Spike Duplicate recoveries were outside control limits.
- d: The Laboratory Control Sample (LCS) recovery was outside control limits.
- e: A holding time violation occurred.
- f: The duplicate samples Relative Percent Difference (RPD) was outside the control limit.
- g: The datum met prescribed method criteria.
- h: The method requires a confirmation result, but none was performed.
- k: The analyte was found in a field blank.
- 1: The second column confirmation result indicates the analyte was not confirmed.

- p: The result was qualified based on professional judgment.
- q: The analyte detection was below the Practical Quantitation Limit (PQL).
- r: The result is above the instrument's calibration range.
- t: The sample temperature was outside acceptance criteria.
- n: The laboratory case narrative indicated a QC problem.

1.0 Hexavalent Chromium by Method E218.6

1.1 Method/Field Blanks

The method blanks and field blanks reported no detections of target analytes above the detection limit. One method blank was extracted for each preparation batch. The method blanks were compliant with the analytical method.

1.2 Laboratory Control Samples

The laboratory control sample (LCS) analysis showed the method required spiked analytes were recovered within control limits. One LCS was extracted for each preparation batch. The LCSs were compliant with the analytical method.

1.3 Holding Times

All extraction and analysis holding times were in compliance.

1.4 Surrogate Recovery

Surrogates do not apply to method E218.6

1.5 Spiked and Field Duplicate Compliance

The matrix spike/matrix spike duplicate analyses and field duplicates were performed and found to be in compliance with the control limits.

1.6 Calibration Compliance

The calibration of the analytical instrument met criteria.

1.7 Compound Identification

All reported compound detections were identified by the correct retention time.

1.8 Analytical Method Compliance

The Level II data review showed the data to be method compliant.

1.9 Conclusions

Based on the results of this Level II Data Validation effort, it is concluded that the data for method E218.6 are usable as reported. The target analyte identifications are considered correct and reliable. The DQOs were satisfied as per the Work Plan and the data is usable for its intended purpose. The DQOs were satisfied as per the Work Plan and the data is usable for its intended purpose.

2.0 Total Chromium by Method SW6020

2.1 Method/Field Blanks

The method and field blanks showed no Chromium detections.

2.2 Laboratory Control Samples

The laboratory control sample (LCS) analysis showed the method required spiked analytes were recovered within control limits. One LCS was extracted for each preparation batch. The LCSs were compliant with the analytical method.

2.3 Holding Times

All extraction and analysis holding times were met.

2.4 Surrogate Recovery

This method does not use surrogates.

2.5 Spiked and Field Duplicate Compliance

The matrix spike/matrix spike duplicate analyses were performed and found they were in compliance with control limits.

Field duplicate results that exceeded the RPD requirement cause 0.18% of the data to be qualified as estimated and assigned a "J" qualifier. The estimated data is usable as estimated values

2.6 Calibration Compliance

The calibration of the analytical instrument met criteria.

2.7 Compound Identification

Compound identification meet method guidelines.

2.8 Analytical Method Compliance

The Level II data review showed the data to be method compliant.

2.9 Conclusions

Based on the results of this Level II Data Validation effort, it is concluded that the data for method SW6010B are usable as reported and qualified. The target analyte identifications are considered correct and reliable The DQOs were satisfied as per the Work Plan and the data is usable for its intended purpose.

3.0 Volatile Organic Compounds (VOCs) by Method SW8260B

3.1 Method/Field Blanks

The method blanks reported no detection of a target analyte. One method blank was extracted for each preparation batch.

Field blank contamination caused 0.12% of the data to be qualified as not detected and assigned a "U" qualifier. The data is usable as not detected values.

3.2 Laboratory Control Samples

The laboratory control sample (LCS) analysis showed the method required spiked analytes were recovered within control limits. One LCS was extracted for each preparation batch. The LCSs were compliant with the analytical method.

3.3 Holding Times

All extraction and analysis holding times were met.

3.4 Surrogate Recovery

All surrogates were within limits.

3.5 Spiked and Field Duplicate Compliance

The matrix spike/matrix spike duplicate analyses and field duplicates were performed and found there were in compliance except as listed below.

MS/MSD recovery outside control limits caused 0.025% of the data to be qualified as estimated and assigned a "J" qualifier. The estimated data is usable for the intended purpose.

3.6 Calibration Compliance

The calibration of the analytical instrument met criteria.

3.7 Compound Identification

All compounds were correctly identified.

3.8 Analytical Method Compliance

The Level II data review showed the data to be method compliant.

3.9 Conclusions

Based on the results of this Level II Data Validation effort, it is concluded that the data for method SW8260B are usable as reported and qualified. The target analyte identifications are considered correct and reliable The DQOs were satisfied as per the Work Plan and the data is usable for its intended purpose.

4.0 Low Level 1,2,3-Trichloropropane by Method SW8260B SIM

4.1 Method/Field Blanks

The method blanks and field blanks reported no detection of a target analyte. One method blank was extracted for each preparation batch.

4.2 Laboratory Control Samples

The laboratory control sample (LCS) analysis showed the method required spiked analytes were recovered within control limits. One LCS was extracted for each preparation batch. The LCSs were compliant with the analytical method.

4.3 Holding Times

All extraction and analysis holding times were met.

4.4 Surrogate Recovery

All surrogates were within limits.

4.5 Spiked and Field Duplicate Compliance

The matrix spike/matrix spike duplicate analyses and field duplicates were performed and found they were in compliance with the control limits except as listed below.

MS/MSD recovery outside control limits caused 9.2% of the data to be qualified as estimated and assigned a "J" qualifier. The estimated data is usable for the intended purpose.

4.6 Calibration Compliance

The calibration of the analytical instrument met criteria.

4.7 Compound Identification

All compounds were correctly identified.

4.8 Analytical Method Compliance

The Level II data review showed the data to be method compliant.

4.9 Conclusions

Based on the results of this Level II Data Validation effort, it is concluded that the data for method SW8260B SIM are usable as reported and qualified. The target analyte identifications are considered correct and reliable The DQOs were satisfied as per the Work Plan and the data is usable for its intended purpose.

5.0 Low level 1,4-Dioxane by Method SW8270C ID

5.1 Method/Field Blanks

The method blanks and field blanks reported no detection of a target analyte. One method blank was extracted for each preparation batch.

5.2 Laboratory Control Samples

The laboratory control sample (LCS) analysis showed the method required spiked analytes were recovered within control limits. One LCS was extracted for each preparation batch. The LCSs were compliant with the analytical method.

5.3 Holding Times

All extraction and analysis holding times were met.

5.4 Surrogate Recovery

All surrogates were within limits.

5.5 Spiked and Field Duplicate Compliance

The matrix spike/matrix spike duplicate analyses and field duplicates were performed and found there were no results outside control limits

5.6 Calibration Compliance

The calibration of the analytical instrument met criteria.

5.7 Compound Identification

All compounds were correctly identified.

5.8 Analytical Method Compliance

The Level II data review showed the data to be method compliant.

5.9 Conclusions

Based on the results of this Level II Data Validation effort, it is concluded that the data for method SW8270C ID are usable as reported and qualified. The target analyte identifications are considered correct and reliable The DQOs were satisfied as per the Work Plan and the data is usable for its intended purpose.

Appendix E Trend Analysis

Annual Groundwater Monitoring Report, Second Quarter 2017
Lockheed Martin Corporation
Burbank Operable Unit, Burbank, CA

Tetra Tech August 2017

Appendix E

Trend Analysis (Period QI-1996 to Q2-2017)
2017 Annual Groundwater Monitoring Report
Lockheed Martin Corporation
Burbank Operable Unit, Burbank, CA

				1137	L)				F		Dall Dallk	operanie c	IIII, Durbai	III, CA				F			Tatana	O and builting	(a)		
	Number of	Number of Number of	Moon	11-C,2,1	1,2,3-1 ricilloropropalic	a L	M-K	Magnifude of Trand	of Trond	Number of	Number of	Moon	1,4	1,4-Dioxalic	a I	M-K	Magnifudo of Trond	\mp	Number of Number of	har of Maan	L	T P All Samples T C E	_ _	M-K M	Mounitud
Well	Samples	Decections	(IIe/L)	т	-	Trend	т	(%/vr)	(ug/L/vr)		Decections	(Ilg/L)		QN	Trend	1_	(%/vr) (us	\perp	Samples Dec	1	Slone	QN	,	+	%/vr)
3830Q	19	+	-	4.5E.04	T	NT	PD	-	9000	61	2	0.28	1.2E-05	No	S	╀	_	L	-	1	_	No	┝		-7.30
3830S	20	5		-2.4E-04	No	NT	NT			20	11	1.30	7.4E-05	No	NT	NT			26	26 16.0	Н	No	D	D	-3.83
3831Q	8	8	0.15	8.0E-04	No	D	D	-14.6	-0.022	7	9	1.40	-3.4E-05	No	S	NT			6	9 18.0	-4.1E-04	No	D	D	-7.48
3850M	7	4		4.6E-04	No	I	I	8.40	0.0021	4	3	0.74	-8.6E-04	No	S	S			17	7	$\overline{}$	No	D	D	-8.21
3850N	24	24	\neg	7.2E 04	No 2	Δ,	O E	-13.1	-0.18	19	17	1.70	2.7E.04	oN 2	G .	O F	-4.93	80.0	35	1	+	No.	<u>a</u> .	<u>a</u> -	-5.66
3850K	4 6	٠,	0.0081	4.2E-04	No No	- -	II.	/9/	0.00062	, ,	4 9	1.10	1.9E-04	No No	Z E	Į o			53	\dagger	\top	No	- 6		76.7
3851M	=	0	+	8.8E-05	ON S	- 5	2 0			~	0 0	0.47	9.5E.05	o Z	Z o	2 00	+		61	19 4	-3.3E-04	ov ov			7.12
3851N	6	2	-	5.9E 04	No	D	PD	-10.8	-0.0013	7	-	0.40	1.6E-04	No	S	S			61		\top	No	۵	D	-14.4
3852F	. ∞	5	-	5.0E-04	No.	Ιd	ĮN			. 9	2	0.59	5.8E-04	No	IN	PI	\vdash	90.0	91		+	No	S	S	
3852H	=	10	-	1.8E-05	No	IN	Į			7	_	0.34	-1.7E-04	No	PD	PD	3.10	-0.01	20	20 18.0	+	No	Ω	D	-2.92
3852L	6	7	т	4.9E-04	No	-	PI	8.94	0.0080	9	-	0.34	-2.2E-04	No	Q	D	┝	-0.01	20		-	No	IN	NT	
3852M	9	9		6.8E-04	No	I	I	12.4	0.016	9	1	0.30	-8.2E-05	No	S	S			8	8 32		No	D	D	-2.92
3852N	9	2	0.0029	4.9E 04	No	PD	NT			9	0	0.31	2.1E-04	Yes	ND	ND			7	7 8.80	1.1E-04	No	D	D	-2.01
3860J	7	0	0.0062	-1.4E-04	Yes	ND	ND			4	0	0.29	2.9E-04	Yes	ND	ND			18	18 33	-3.1E-05	No	S	S	
3860K	15	15	$\overline{}$	3.5E-04	No	I	NT			9	3	0.62	-7.7E-05	No	S	S			21	3	0 -2.7E-04	No	D	D	-4.93
3861D	8	4	0.015	5.4E-05	No	NT	NT			9	0	0.31	-2.1E-04	Yes	ND	ND			17	17 320	-4.7E-04	No	D	D	-8.58
3861F	∞	5	0.015	3.5E 04	No	NT	N			5	0	0.32	-2.2E-04	Yes	ND	ND			16	16 31	-2.5E-04	No	D	D	-4.56
3862D	6	7	0.020	1.8E-04	No	PI	NT			7	2	0.42	-1.6E-04	No	PD	D	2.92	-0.01	18	18 250	-3.0E-04	No	D	D	-5.48
3862E	6	7	0.018	1.2E-04	No	NT	NT			7	3	0.47	-1.1E-04	No	S	S	Н		20	20 88	-2.2E-04	No	D	D	-4.02
3870D	5	0	0.00080	1.4E-07	Yes	ND	ND			5	2	0.39	-9.5E-04	No	D	D	_	-0.07	5		1 -3.7E-04	Yes	ND	ND	
3871H	9	9		2.8E 04	No	D	D	-5.11	-0.0087	5	3	0.56	-1.3E-03	No	D	D	24	-0.13	8	8 590		No	S	D	-3.10
3871.J	9	0		1.3E-04	Yes	ND	ND			9	0	0.31	-2.1E-04	Yes	ND	ON			7	3 5.00	\neg	No	D	NT	
3872L	5	5		6.4E-04	No	-	-	11.7	9000	5	0	0.26	-1.9E-04	Yes	Q	QN			7	+	\neg	No	Ω	NT	
3872M	6	-		-2.2E-04	%	Į	Ź			7	0	0.34	-2.2E-04	Yes	2	2			20	20 13.0	\rightarrow	No		Ω	-5.19
3872N	so :	5	т	9.8E-05	%	Į,	Ę		0000	2	2	0.36	8.0E-04	oN ;	Ω !	s l			r 0	\dagger	\neg	S S	م	S (
38720	14	13	0.26	4.9E-04	0N 2	م د	O FIN	-8.94	-0.023	14	0	0.28	1.7E 04	Yes	2 2				× 0	8 710	\neg	No N	0 0	O 8	4.75
2000	0	7 -		100004	N	ء د	Z c			0 4	0	07.0	3.3E-03	I CS					0	1.30	\top	N.		J. S	-0.94
2000	0 4	10	0.0014	1.9E-04	ONI	م ا	۰ E	T		0 4	-	0.20	7 0F 04	S N	2 -	ON CO	14.4	10.04	0 %	9 34	-5.9E-04	No	20	0 0	
49.40	, v			1.4E-07	Vac			T	T	2 4	- 0	10.0	1.3E 04	Vac	2 5		+	10.0	0 1	01001	\neg	No.	o -	2 1	T
A-1-CW02	0 8	0		1.0E 07	Yes	Q Q	2 2			5 1	4	0.63	9.3E 04	S N	PD	S			5	+	+	No.	- S	S	
A-1-CW03R	_	7		7.5E-04	No No	۵	D	-13.7	-1.01	9	5	1.70	3.5E-04	No	S	PD	6.39	-0.11	- 11		-	No	LN	s	
A-1-CW04	9	5	6.10	1.6E-03	No	I	-	29	1.78	5	5	1.80	6.4E-05	No	NT	S			14	14 600		No	D	D	-10.6
A-1-CW05	9	0	0.0073	3.5E-04	Yes	ND	ND			4	4	2.20	1.1E-04	No	NT	NT			16	16 79	-3.4E-04	No	D	D	-6.21
A-1-CW07	18	18		-4.9E-04	No	D	D	-8.94	-6.26	14	9	29	4.2E-04	No	NT	PI	7.67	2.22	27	27 660	_	No	Q	D	-2.56
A-1-CW08	13	13	┪	1.4E-04	No	Ы	ΡΙ	2.56	1.41	12	7	1.10	2.4E-04	No	Į.	Į.	\dashv		61	+	\neg	No	D	D	-3.47
A-1-CW09	21	20	-	3.7E-04	S ;	- 5	- 1	6.75	0.30	7	S	1.70	5.2E-04	%	- 2	I m	9.49	91.0	33	33 310	-	No No	Δ,	Q !	-10.4
B-1-CW11	0 %	- 8	0.0013	1.8E-04	oN oN	INI Old	I L	Ì		0 1	0 0	0.70	2.3E-04	o N	E G	Z E	t	t	, y _E	36 180	3 9F-04	No No		IN C	7.17
B-1-CW13	24	24	\top	3.0E-04	N S	- 1	-	5.48	0.88	15	1 00	0.80	3.1E-04	S N	-	-	+	0.05	33	33 1.200	+	No.	2 0	2 0	6.75
B-1-CW17	24	13	т	2.9E-04	N _o	Ϋ́	ĮN.			12	2	96.0	4.9E-04	No.	-		8.94	60:0	32	\top	$\overline{}$	No		S	
B-1-CW20	15	-	\top	2.0E-04	No	ZN	ĮN			6	0	0.35	1.8E-04	Yes	QN	QN			34		-	No	Q	D	-6.21
B-1-CW25	12	6	0.093	-5.7E-05	No	NT	NT			9	4	1.10	1.4E-04	No	NT	NT			35	1	0 -3.8E-04	No	D	D	-6.94
B-1-CW27	23	5	\neg	3.1E-04	No	PD	NT			18	0	0.28	-1.7E-04	Yes	ND	ND			34	34 34	H	No	D	D	-3.29
B-1-CW28	4	-	\neg	5.9E-06	No.	-	N			7	2	0.39	-5.2E-05	oN.	S	S			37	36 25	\rightarrow	No	-	_	3.65
B-1-CW29	9	0	\rightarrow	-3.1E-03	Yes	ND	QN			4	0	0.29	2.9E-04	Yes	N Q	QN			25	_	\neg	No	Q	D	-6.02
B-1-CW30	2	0	\neg	0.0E+00	Yes	N/A	N/A			2	0	0.14	0.0E+00	Yes	N/A	N/A			2	2 82	\dashv	No	N/A	N/A	
B-1-CW31	2	0	$\overline{}$	0.0E+00	Yes	N/A	N/A			2	0	0.1	0.0E+00	Yes	N/A	N/A			2	2 35	\dashv	No	N/A	N/A	
B-1-CW32	2	2	0.0098	0.0E+00	No	V/V	N/A			2	0	0.14	0.0E+00	Yes	N/A	N/A			2	2 11.0	\dashv	No	N/A	N/A	
B-1-CW33	2 (2	$\overline{}$	0.0E+00	No No	A/N	N/A	T	T	2	2 0	1.80	0.0E+00	No No	N/A	N/A	\dagger	†	2	2 510	0.0E+00	No I	N/A	N/A	T
B-1-Cw34	7 6	٦		0.0E+00	Yes	N/A	N/A	1	†	7 8	D 5	0.14 0.00	0.0E+00	Yes	N/A	N/A	+	+	7 10	+	\top	No	N/A	A/A	103
B-5-CW02	23	7	0.0042	3.1E-05	No	Z	Z	_		07.	10	0.60	8.5E-05	oN	Z	S		=	24	24 36	-1.0E-03	No No	<u>_</u>	_	-18.3

Appendix E

Trend Analysis (Period Q1-1996 to Q2-2017)
2017 Annual Groundwater Monitoring Report
Lockheed Martin Corporation
Burbank Operable Unit, Burbank, CA

											Burbank	Operable 1	Burbank Operable Unit, Burbank, CA	nk, CA												
				1,2,3-T.	1,2,3-Trichloropropane	opane							1,4	l,4-Dioxane								Tetrachl	Tetrachlorothylene (PCE)	CE)		
	Number of	Number of Number of	Mean	LR	All Samples	es LR	M-K	Magnitude of Trend	of Trend	Number of Number of	Number of	Mean	LR /	All Samples	LR	M-K	Magnitude of Trend		Number of Number of	Number of	Mean	LR A	All Samples	LR	M-K M	Magnitude
Well	Samples	Decections	(µg/L)	Slope	QN	Trend	Trend	(%/yr)	(µg/L/yr)	Samples	Decections	(hg/L)	Slope	ND	Trend	Trend	(%/yr) ((µg/L/yr)	Samples	Decections	(hg/L)	Slope	ND	Trend	Trend ((%/yr)
B-5-CW03	16	16	59	1.1E-04	No	NT	Id	2.01	0.58	15	8	00.6	4.7E-04	No	LN	IN			17	17	36	-5.4E-04	No	D	D	-986
B-6-CW02	15	3	0.071	-1.9E-05	No	L	LN			13	0	0.27	1.7E-04	Yes	ND	QN			61	9	0.61	1.8E-04	No	PI	I	3.29
B-6-CW05	5	0	0.0008	1.4E-07	Yes	2	QN			2	0	0.26	1.9E-04	Yes	QN	Q.			9	5	2.60	-8.3E-05	No	s	s	
B-6-CW08	6	_	0.14	7.4E-04	No	IN	NT			6	2	0.34	5.2E-05	No	s	IN			7	7	46	-1.8E-04	No	Ω	PD	-3.29
B-6-CW10	7	7	0.72	1.4E-04	No	Ιd	NT			9	5	1.10	4.6E 04	No	PD	D	-8.40	-0.09	∞	~	160	-2.0E-04	No	D	D	-3.65
B-6-CW14	13	3	0.23	-5.6E-04	No	IN	NT			12	7	88.0	6.3E-04	No	I	I	11.5	0.10	8	8	26	6.1E-05	No	NT	LN	
B-6-CW16	16	2	0.039	0.039 -3.9E-04	No	PD	NT			10	1	0.27	-2.0E-04	No	S	S			15	15	110	-3.7E-04	No	D	D	-6.75
B-6-CW17	13	4	0.062	0.062 -4.0E-04	No	IN	Q	-7.30	-0.005	12	5	0.45	3.8E-04	No	1	I	6.94	0.03	~	~	190	-2.7E-04	No	Ω	Q	-4.93
C-1-CW02	22	3	0.044	1.7E-05	No	IN	NT			19	9	0.50	2.6E-04	No	ī	PI	4.75	0.02	28	27	2.40	2.40 -1.6E-04	No	Q	D	-2.92
C-1-CW03	21	3	0.027	0.027 -7.7E-05	No	NT	NT			17	6	1.2	-2.1E-04	No	IN	D	-3.83	-0.05	25	25	8.90	8.90 -1.8E-04	No	D	D	-3.29
C-1-CW05	21	3	0.0052	0.0052 1.4E-04	No	NT	NT			19	3	0.31	5.9E-05	No	NT	PI	1.08	0.00	23	22	1.10	1.10 5.9E-05	No	NT	S	
C-1-CW06	16	1	0.0040	0.0040 4.7E-05	No	NT	NT			15	4	0.41	4.6E-04	No	_	I	8.40	0.03	22	22	50	-1.5E-04	No	PD	D	-2.74
C-1-CW07	4	0	0.00088	0.00088 -1.4E-04	Yes	QN	QN			5	5	2.80	2.0E 04	No	s	S			5	5	17.0	17.0 -6.0E-04	No	S	s	
C-1-CW08	22	3	0.0060	0.0060 -1.7E-05	No	NT	NT			19	8	1.00	2.4E-04	No	LN	ΡΙ	4.4	0.04	20	20	- 19	-7.2E-04	No	D	D	-13.1
MW-01	4	4	12.0	3.0E-03	No	1	I	55	6.57	4	4	18.0	5.1E-03	No	I	I	93	8.91	4	4	130	1.0E-03	No	l I	LN	
MW-03	18	18	3.20	7.4E-04	No	I	I	13.5	0.43	18	8	1.00	3.9E-04	No	I	I	7.12	0.07	18	18	71	-7.3E-05	No	S	S	
MW-04	16	16	1.10	1.1E-03	No	I	I	20	0.22	16	4	92.0	4.2E-04	No	I	PI	79.7	90.0	16	16	53	-9.0E-05	No	S	S	
MW-07	16	16	0.36	9.9E-04	No	I	I	18.1	0.07	17	3	0.26	1.5E-04	No	IN	NT			17	17	41	-1.4E-06	No	D	S	
MW-08	16	16	1.30	8.6E-04	No		Ι	15.7	0.20	17	8	4.80	6.0E-04	No	1	I	11.0	0.53	17	17	100	-1.9E-04	No	D	D	-3.47
SW-1	10	1	0.0020	0.0020 -1.0E-05	No	NT	NT			12	2	0.63	-2.2E-04	No	NT	NT			21	0	09.0	-3.1E-04	Yes	ND	ND	
SW-5	10	3	0.0042	0.0042 -2.2E-04	No	NT	NT			11	10	100	1.3E-03	No	D	D	-24	-24	19	19	260	-2.6E-04	No	D	D	-4.75
Notes:																										
Trend Categories and Definitions	nd Definition	Şİ			-1	2,3-Trichlo	ropropane	1,2,3-Trichloropropane (# wells)	% Total						4.1	1,4-Dioxane	(# wells) % Total	% Total					Tetrachl	Tetrachlorothylene (PCE)		(# wells)
"N/A"-Insufficient Data(< 4 sampling events)	lata(< 4 sample	ling events)						5									5									5
Blank-No data								0									0									0
"ND" - Non Detect								10	14								16	23.19								2
"NT" - No Trend								33	48								13	18.84								7
"S" - Stable								2	3								14	20.29								14
"I" - Increasing								=	16								6	13.04								3
"PI" -Probably Increasing	asing							4	9								9	8.70								0
"D" - Decreasing								7	10								∞	11.59								41
"PD" -Probably Decreasing	reasing							2	3								3	4.35								2
								69	100							l	69	100.00								69

Appendix E

Trend Analysis (Period Q1-1996 to Q2-2017)
2017 Annual Groundwater Monitoring Report
Lockheed Martin Corporation
Burbank Operable Unit, Burbank, CA
Hexavalent Chromium

3	H	L	計	e (TCE)	H		E 9	-	-	Ľ	xa/	mium	一				_ h		Total	Total Chromium	H		
	Number of Mean	an LK	All Samples	Trond	A-W-W	$\overline{}$	Magnitude of 1 rend	Number of	Number of	Mean L.K	All Samples	S LK	Twond	Magnitude of 1 rend	of I rend	Number of	Number of	Mean (na/l)	Slone	All Samples	LK	Trond (0/ /sm)	Magnitude of 1 rend
_	-	┿.			+	+	-	Sampres 16	-	+:		PD	+	+	-0.01	_	_		310 pc	t	+	+	+
L	t	$\overline{}$	No No	P I		3.83	2.38	21	20			DG.	IN		*000	24	5 41	+	2.2E-04	oN.	-	H	+
	99 6	\vdash		PI		-2.92	-1.93	∞	7	-		s	s			8	7	\vdash	3.0E-05	No	┝	NT	
		П	04 No	D	D	-3.29	-24	7	7			NT	LN			11	9		1.5E-04	No		NT	
_	35 460	0 4.7E.04			+	-8.58	-39	22	22	22 -3.0E-04	-04 No	O F	PD	-5.48	-1.20	26	26	34 -1	1.2E.04	No No	PD	IN E	1
\perp	t	+	0N N	10	- E	+	1.0	6	+ 9	+		S	S S			2 5	- 6	\top	0.0E 0.0	2 2	+	S	
L	19 35	Т			+	-6.02	-2.11	19	16	+		IN	PD CA	-2.19	-0.07	21	12	\top	1.7E-04	oN.	N N	N IN	
		90 -8.1E-04		Ω			-1.32	∞	∞	0.59 1.2E-04		IN	PI	2.19	0.01	11	9	3.60 8	8.6E-05	No		IN	
		0 -1.9E-04	04 No	PI				7	7	1.80 6.1E-06		_	TN			10	~	7.20	-2.8E-05	No		IN	
Ц	П			D	Н	-2.01	-0.36	8	8	1.20 4.5E-05		NT	PI	0.82	0.01	11	9	3.60	1.1E-04	No	Н	NT	
	18 5.60	50 -3.7E-05		Z				8	8	1.60 5.9E-05	05 No	NT	NT			11	6	16.0	1.2E-04	No	NT	NT	
				D		-2.01	-0.42	9	9	0.86 2.4E-04		NT	LN			9	9	4.10	-1.9E-04	No		PD -3.47	-0.14
	5			D			-0.47	9	9	1.70 -9.0E-0'	_	D	LN			7	9	3.70 1	1.7E-05	No	NT	NT	
	Н	2 -1.9E-04		D		-3.47	-0.76	9	9	3.20 -1.1E-04	-04 No	S	D	-2.01	90:0-	6	8	13.0	1.3E-04	No	I	1 2.37	Н
		$\overline{}$		ם			-16.4	8	8	2.10 -1.7E-04		S	S			12	2	4.00	3.0E-04	No			
	17 620	$\overline{}$		D			-48	7	7	4.20 4.2E 05		S	S			10	10	$\overline{}$	-8.5E-05	No		PD -1.55	-0.13
		П	04 No	D	D		-0.52	7	7	$\overline{}$		NT	PI	1.41	0.04	10	9	$\overline{}$	2.0E-04	No	_	\dashv	
	17 640	0 -2.6E-04		ū	-		-30	∞	~	13.0 -2.1E-04	-04 No	D	Д	-3.83	-0.50	11	10	14.0	-4.2E-05	No	S	PD -0.77	-0.11
				D		-2.74	-1.64	8	8			S	S			11	5		3.4E-05	No		NT	
	0 0.22			ND	\dashv			5	4	10.0 4.8E-03	03 No	PI	I	88	8.76	4	4	59 -1	-1.1E-03	No	LN	NT	
\dashv	8 310	\neg		Z	I S	\dashv	\dashv	9	9	\neg		S	LN			9	9	\neg	9.9E-05	No		NT	
\dashv	2 2.90	\neg		٦	4	-10.0	-0.29	9	9	-		S	S			9	9	╛	-2.0E-05	No	S	S	
\downarrow	1	\neg			\dashv	\dashv		5	5	\dashv		NT	TN			5	2	9.7	-3.1E-05	No	S	S	
4	20 3.90	\neg	05 No	PD	D O	-0.86	-0.03	∞	∞ -	_		D	ĮN.		:	10	9	\dashv	1.8E-04	oN :	ĮN.	S	
4	1	\neg		2	+	+		0	4	\neg		-	_	08	2.49	<u>م</u>	٥ :	\neg	9.0E-06	oN :	-	s l	_
4	8 270	\neg		1	+	+	-15.8	15	14	\rightarrow		NT	S			16	= 1	\rightarrow	-6.4E-05	°Z ;	Į,	ĮN į	
4	3 1.70	\dashv		1	+	-7.48	-0.13	9	9	+		S	S			9	9	╗	8.7E-07	°Z :	_	S	
4	1	\neg		z	+	+	0	14	14	+		L	Į,			13	13	\neg	1.4E-04	oN ;	Į,	IN,	
4	8 5.20	\neg		^	PD	+	-0.09	0	c ·	\neg		Į,	Ω			c	c	\neg	1.2E-04	oN :	+	2	
4		\neg	05 No	Z	+	99.0-	-0.04	4	4	Ť		S	S			7	9	\dashv	6.8E-05	°N ;	+	LN	
4	+	$\overline{}$		S)	+	1		\$	m =	\neg		ĮN į	Į,			4	4	\neg	1.2E-03	oN 2	IN E	IN	
+	11 32	0 -5 3E-04	No No	2 0	+	+	16.4	۷	† 4	0.54 6.0E-03	00 NO	I V	Į,	T		2	0	1 30	4.3E-04	No.	+	TN	1
+	t	\top		1		16.7	-0.38	v	,	\top	l	, FN	, F				- 4	$\overline{}$	1 2E 05	e la	, L		_
ļ	T	т		S oc	H	1 100	200	17	1 5	\top		PID		8.58	-0.11	22	. 19	\top	2.5E-04	S N	+	IN	
Ļ		\top		S				9	9	_		S	S			10	S	\top	2.8E-05	No.	\vdash	IN	
L	33 110	т	04 No	D	D	-9.49	-10.4	6	6	9.60 -2.9E-04		NT	TN			15	7	6.20	1.9E-04	No	ZN	NT	
	5 1.20	20 -3.0E-04		PD	S C			7	7	2.20 -2.2E-04	-04 No	S	S			8	8	6.20	1.3E-04	No		D -2.37	-0.15
		0 -4.6E-04		J		-8.40	-50	28	28	22 -2.2E-04	-04 No	D	D	-4.02	-0.88	31	30	- 19	3.2E-04	No	D	D -5.84	-3.91
	33 790		04 No	D		-4.75	-37	6	6	1.80 -1.2E-04		S	S			19	7	2.90	1.0E-04	No		Н	
	32 230	0 -2.2E-04		D	D	-4.02	-9.23	32	32	37 -1.9E-04	-04 No	D	D	-3.47	-1.28	33	32	41 -1	-1.2E-04	No	D	D -2.19	-0.90
		\neg	04 No	D		-8.03	-0.41	10	10	\neg		D	D	-5.48	-0.16	18	12	4.70	1.3E-04	No	L	S	
	35 350			J		-8.76	-31	8	8	6.90 -2.5E-04		PD	PD	-4.56	-0.31	17	14	9.10 4	4.0E-05	No		S	
				D		-2.37	-0.40	∞	8	3.20 -8.0E-05	-05 No	S	TN			16	6	3.90 2	2.3E-04	No		NT	
\dashv	36 4.90	00 -2.6E-05	05 No	S		-0.47	-0.02	∞	5	\neg		S	s			18	6	╗	1.6E-04	No	\dashv	NT	
		- 1		ני	-		-3.53	5	5	\dashv		S	s			Ξ	10	┪	2.1E-04	No	\dashv	TN.	
_	2 160	\neg		N/A	\dashv			2	2	\neg		N/A	N/A			2	2	\neg	0.0E+00	No	\dashv	N/A	
	2 26	\neg	00 No	N/A	A N/A			2	2	\neg		N/A	N/A			2	2	\neg	0.0E+00	No	+	N/A	
4	+	\neg	\perp	Ż	+	_		2	2	\dashv		N/A	V/N	T		2	2	ヿ	0.0E+00	oN.	+	N/A	1
4	1	\neg	00 00	N/A	+	_		2	2	\neg		N/A	V/A			2	2	\dashv	0.0E+00	°Z	+	N/A	
4	1	\neg		N/A	4	4		2	2	\neg		N/A	V/A	1	1	2	2	\rightarrow	0.0E+00	°Z :	A/A	N/A	
	14 3.60	50 -1.2E-03		D	Ω	-22	-0.79	22	∞	0.12 -6.9E-04	-04 No	D	D	-12.6	-0.02	22	10	2.90 4	4.5E-05	No	_	NT	

Appendix E

Trend Analysis (Period Q1-1996 to Q2-2017)
2017 Annual Groundwater Monitoring Report
Lockheed Martin Corporation
Burbank Operable Unit, Burbank, CA

	ım	s LR M-K Magnitude of Trend	Trend Trend (%/yr) (µg/L/yr)	NT NT TN	PI I 5.29 0.13	TN TN	TN TN	D NT	D PD -3.47 -0.10	PI I 7.85 0.42	S	TN TN	TN TN	D D -4.75 -0.11	S D -2.01 -0.07	TN TN	TN TN	N/A N/A	TN TN	S LN	SS	I S	D D -11.0 -15.3	TN TN	
	Total Chromium	LR All Samples	obe ND	3-04 No	3-04 No	3-04 No	E-05 No	E-04 No	E-04 No	3-04 No	E-04 No	E-05 No	3-05 No	E-04 No	E-04 No	3-04 No	3-04 No	9N No	3-05 No	3-05 No	E-05 No	3-06 No	E-04 No	E-04 No	
		Mean L	(µg/L) Slope	4.60 1.3E-04	2.40 2.9E-04	12.0 5.8E-04	2.10 -9.1E-05	2.70 -2.1E-04	2.90 -1.9E-04	5.40 4.3E-04	4.10 -1.7E-04	2.60 -3.2E-05	4.10 5.6E-05	2.40 2.6E-04	3.70 -1.1E-04	43 1.9E-04	21 3.3E-04	2.70 0.0E+00	4.60 7.1E-05	3.70 6.5E-05	4.10 -4.5E-05	4.40 9.7E-06	140 -6.0E-04	76 -1.2E-04	
		$\overline{}$	Decections (µg	13 4.	6 2.	4	6 2.	5 2.	10 2.	9 5.	8	10 2.	15 4.	10 2.	13 3.	5 4	11	2 2.	13 4.	12 3.	12 4.	12 4.	13 1-	11 7	
		Number of Number of	Samples Dece	17 1	14	4	11	7	13 1	17	13	24	21 1	22	20 1	5	21 1	3	18	15 1	16 1	16 1	13 1	11 1	
	_			2	3						.5		3		2		_			5		0			
		Magnitude of Trend	r) (µg/L/yr	0.12	2 0.03						8 -10.5		7 0.03		0 -0.02		2 -0.01			5 0.05		0.10		4 -2.81	
			(%/yr)	7.30	4.02						-7.48		79.7		-3.10		-2.92			3.65		7.12		-10.4	
		M-K	nd Trend	Id	PI	S	IN	NT	S	ĮN	C PD	IN	I	S	PD	IN NT	CI PD	S	ĮN	I	TN J	I	S	D	
-bank, CA	romium	les LR	Trend	I		ĮN	IN	PI	S	S	IN	IN	_	IN	S	NT	IN	S	PI	IN	IN	PI	S	D	
Burbank Operable Unit, Burbank, CA	Hexavalent Chromium	All Samples	ΩN	oN	No	No	No	No	No	οN	No	No	No	No	No	No	No	No	οN	No	No	No	No	No	
c Operable	Hexa	LR	Slope	4.0E-04	2.2E-04	3.3E-04	3.2E-04	4.4E-04	-1.5E-04	-8.8E-05	-4.1E-04	-2.6E-05	4.2E-04	1.7E-04	-1.7E-04	-1.5E-03	-1.6E-04	-1.1E-03	3.0E-04	2.0E-04	1.2E-04	3.9E-04	-8.1E-05	-5.7E-04	
Burbank		Mean	(J/gr/) s	1.60	0.79	0.09	90.0	0.53	99.0	1.00	140	0.05	0.39	0.07	0.74	0.18	0.32	1.10	2.00	1.40	1.30	1.40	4.80	27	
		Number of	Decections	16	14	6	2	5	10	13	12	9	15	9	18	2	Ξ	4	17	15	16	14	12	11	
		Number of N	Samples	17	14	2	=	9	12	13	12	23	20	21	19	2	21	4	18	16	17	17	12	11	
		\vdash	(µg/L/yr)	4.10			80.0-	-0.43		-1.66	-0.46		-0.02		-39		-1.59		-0.55	-0.44	-0.25	-1.69		-4.85	
		Magnitude of Trend	(%/yr)	-9.31			-1.41	-1.48		-6.39	-4.20		-2.56		-4.38		-16.1		-2.92	-2.92	-2.56	-3.83		-3.47	
		M-K M	Trend (PD	N Q	S	Q	D	LN	Q	Ω	s	D	LN	Q	S	D	IN	Q	Ω	Q	PD	LN	D	
	Œ)	LR	Trend	Q	N	PD	PD	PD	LN	Ω	Ω	Q	Ω	S	Ω	S	Q	IN	Ω	PD	Ω	PD	Ω	D	
	Trichloroethylene (TCE)	All Samples	QN	οN	Yes	%	ν̈́	No	No	%	ν̈́	ν̈́	%	oN	%	ν̈́	oN	%	%	ν̈́	οN	°N	%	No	
	Trichlor	LR	Slope	5.1E-04	7.2E 05	1.0E-03	-7.7E-05	8.1E-05	4.5E-05	-3.5E-04	-2.3E-04	7.8E 05	-1.4E-04	-3.6E-05	-2.4E-04	1.5E 04	-8.8E-04	2.8E-04	-1.6E-04	1.6E-04	1.4E-04	-2.1E-04	-2.3E-04	-1.9E-04	
		Mean	(mg/L)	44	0.19	0.51	5.80	- 67	8.80 4	26	11.0	0.22	0.65	0.20	068	1.30	10	52 2	- 61	15	10	44	2.40	140	
		ı	Decections	17	0	3	7	8	∞	15	∞	2	14	_	22	2	61	4	81	91	17	17	01	19	
		Number of Number of	Samples	17	61	2	7	8	8	15	8	28	25	23	22	2	20	4	18	91	17	17	21	19	
		e of Trend	(µg/L/yr)	-3.55	0.02		-1.51	-5.84		7.43	-9.36	-0.07	-0.29		-1.37		-8.02					-3.47		-12.3	

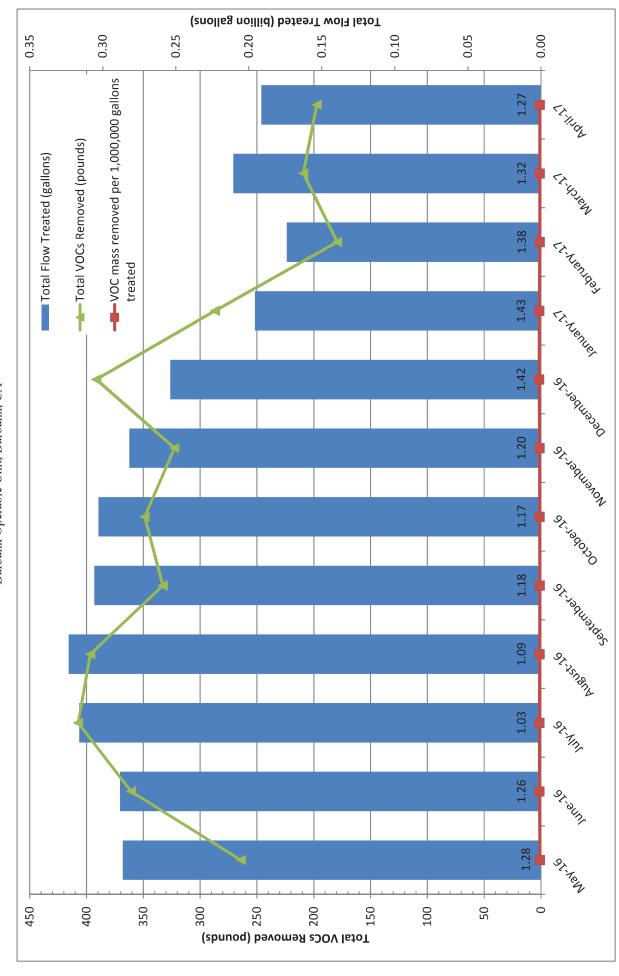
Total Chromium (# wels). % Total 6 0	0 0000 40 58.82 13 19.12 3 441 1 1.47 6 882 5 735 68 100.00
Hexavalent Chromium (# wells) % Total 5 0	0 0.00 23 33.33 21 30.43 5 7.25 5 7.25 9 13.04 6 8.70 69 100.00
Trichloroethylene (TCE) (# wells) % Total 5 0	3 4 9 13 9 13 1 1 1 1 1 7 7 10 69 100
% Total	2.90 10.14 20.29 4.35 0.00 5.842 2.90 100.00

Tetra Tech

Appendix F BOU Extraction Well Performance

Annual Groundwater Monitoring Report, Second Quarter 2017
Lockheed Martin Corporation
Burbank Operable Unit, Burbank, CA

Tetra Tech August 2017


Appendix F

BOU Cummulative Mass Removal Summary (January 1996 - April 2016) 2016 Annual Groundwater Montoring Report Lockheed Martin Corporation Burbank Operable Unit, Burbank, CA

Year	Total Flow Treated (gallons)	Cummulative Flow Treated (gallons)	Total VOC Mass Removed (pounds)	Cummulative VOC Mass Removed (pounds)
1996	2,250,086,147	2,250,086,147	27,663	27,663
1997	3,408,059,569	5,658,145,716	28,519	56,182
1998	371,154,459	6,029,300,175	3,908	60,090
1999	3,956,423,830	9,985,724,005	39,569	99,659
2000	3,194,062,916	13,179,786,921	24,036	123,695
2001	3,146,371,256	16,326,158,177	20,575	144,271
2002	3,357,074,416	19,683,232,593	17,356	161,627
2003	2,942,948,496	22,626,181,089	14,827	176,454
2004	3,204,536,159	25,830,717,248	11,547	188,000
2005	2,274,141,614	28,104,858,862	6,818	194,819
2006	3,364,467,193	31,469,326,055	10,286	205,105
2007	3,153,855,623	34,623,181,678	7,513	212,618
2008	2,280,818,078	36,903,999,756	4,784	217,402
2009	3,280,836,166	40,184,835,922	6,706	224,108
2010	3,282,379,861	43,467,215,783	6,160	230,268
2011	3,355,059,726	46,822,275,509	5,870	236,138
2012	3,543,049,805	50,365,325,314	5,384	241,522
2013	3,637,576,057	54,002,901,370	5,164	246,686
2014	3,114,113,237	57,117,014,607	3,707	250,393
2015	3,365,140,780	60,482,155,387	4,368	254,761
2016	3,133,756,552	63,615,911,939	3,789	258,550
2017 (Jan - April)	771,530,941	64,387,442,880	873	255,634

Appendix F

Monthly Mass Removed (May 2016 - April 2017) Burbank Operable Unit Water Treatment Plant 2017 Annual Groundwater Montoring Report Lockheed Martin Corporation Burbank Operable Unit, Burbank, CA

Total Flow Treated (billion galllons) 2016 2017 (Jan - April) ---- Cummulative VOC Mass Removed (pounds) Cummulative Flow Treated (gallons) 50,000 350,000 100,000 200,000 300,000 250,000 150,000 Total VOCs Removed (pounds)

Appendix F

Cumulative Mass Removed (January 1996 - April 2017)
Burbank Operable Unit Water Treatment Plant
2017 Annual Groundwater Monitoring Report
Lockheed Martin Corporation
Burbank Operable Unit, Burbank, CA

Appendix G Laboratory Analytical Results

Annual Groundwater Monitoring Report, Second Quarter 2017
Lockheed Martin Corporation
Burbank Operable Unit, Burbank, CA

Tetra Tech August 2017

Calscience

WORK ORDER NUMBER: 17-04-1908

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: Tetra Tech, Inc.

Client Project Name: LMC BOU

Attention: Robert Sabater

301 E. Vanderbilt Way, Suite 450 San Bernardino, CA 92408-3562

Vikas Patel

Approved for release on 05/10/2017 by:

Vikas Patel Project Manager

ResultLink >

Email your PM >

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name: LMC BOU
Work Order Number: 17-04-1908

1	Work Order Narrative	3
2	QC Association Summary	4
3	Detections Summary	5
4	Client Sample Data. 4.1 EPA 218.6 Hexavalent Chromium Low Level (Aqueous). 4.2 EPA 6020 ICP/MS Metals (Aqueous). 4.3 1,4-Dioxane by EPA 8270C (M) Isotope Dilution (Aqueous). 4.4 EPA 8260B Volatile Organics (Aqueous). 4.5 EPA 8260B SIM Emergent Volatiles (Aqueous).	7 8 9 11 29
5	Quality Control Sample Data. 5.1 MS/MSD. 5.2 PDS/PDSD. 5.3 LCS/LCSD.	31 31 38 39
6	Sample Analysis Summary	46
7	Glossary of Terms and Qualifiers	47
8	Chain-of-Custody/Sample Receipt Form	48

Work Order Narrative

Work Order: 17-04-1908 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 04/25/17. They were assigned to Work Order 17-04-1908.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

QC Association Summary

Work Order: 17-04	4-1908				Pag	e 1 of 1
Client Sample ID	Method Name	<u>Type</u>	Ext Name	Instrument	MS/MSD/SDP	LCS/LCSD
C-1-CW03-N-17Q2	EPA 218.6 Hexavalent Chromium Low Level		N/A	IC 16	170425S01	170425L01
C-1-CW03-N-17Q2	EPA 6020 ICP/MS Metals		EPA 3020A Total	ICP/MS 03	170502SA4	170502LA4A
C-1-CW03-N-17Q2	EPA 8260B Volatile Organics		EPA 5030C	GC/MS FFF	170505S003	170505L003
C-1-CW03-N-17Q2	EPA 8260B SIM Emergent Volatiles		EPA 5030C	GC/MS M	170502S030	170502L048
C-1-CW03-N-17Q2	1,4-Dioxane by EPA 8270C (M) Isotope Dilution		EPA 3510C	GC/MS DDD	170427S08	170427L08
SW-1-N-17Q2	EPA 218.6 Hexavalent Chromium Low Level		N/A	IC 16	170425S01	170425L01
SW-1-N-17Q2	EPA 6020 ICP/MS Metals		EPA 3020A Total	ICP/MS 03	170502SA4	170502LA4A
SW-1-N-17Q2	EPA 8260B Volatile Organics		EPA 5030C	GC/MS FFF	170505S003	170505L003
SW-1-N-17Q2	EPA 8260B SIM Emergent Volatiles		EPA 5030C	GC/MS M	170502S030	170502L048
SW-1-N-17Q2	1,4-Dioxane by EPA 8270C (M) Isotope Dilution		EPA 3510C	GC/MS DDD	170427S08	170427L08
LTB-20170425	EPA 8260B Volatile Organics		EPA 5030C	GC/MS FFF	170505S003	170505L003
LTB-20170425	EPA 8260B SIM Emergent Volatiles		EPA 5030C	GC/MS M	170502S030	170502L048
3850U-N-17Q2	EPA 218.6 Hexavalent Chromium Low Level		N/A	IC 16	170425S01	170425L01
3850U-N-17Q2	EPA 6020 ICP/MS Metals		EPA 3020A Total	ICP/MS 03	170502SA4	170502LA4A
3850U-N-17Q2	EPA 8260B Volatile Organics		EPA 5030C	GC/MS FFF	170505S003	170505L003
3850U-N-17Q2	EPA 8260B Volatile Organics	R	EPA 5030C	GC/MS UU	170506S005	170506L015
3850U-N-17Q2	EPA 8260B SIM Emergent Volatiles		EPA 5030C	GC/MS M	170504S023	170504L054
3850U-N-17Q2	1,4-Dioxane by EPA 8270C (M) Isotope Dilution		EPA 3510C	GC/MS DDD	170427S08	170427L08
B-6-CW16-N-17Q2	EPA 218.6 Hexavalent Chromium Low Level		N/A	IC 16	170425S01	170425L01
B-6-CW16-N-17Q2	EPA 6020 ICP/MS Metals		EPA 3020A Total	ICP/MS 03	170502SA4	170502LA4A
B-6-CW16-N-17Q2	EPA 8260B Volatile Organics		EPA 5030C	GC/MS FFF	170505S003	170505L003
B-6-CW16-N-17Q2	EPA 8260B SIM Emergent Volatiles		EPA 5030C	GC/MS M	170504S023	170504L054
B-6-CW16-N-17Q2	1,4-Dioxane by EPA 8270C (M) Isotope Dilution		EPA 3510C	GC/MS DDD	170427S08	170427L08

Detections Summary

Client: Tetra Tech, Inc.

Work Order: Project Name: 17-04-1908

301 E. Vanderbilt Way, Suite 450 San Bernardino, CA 92408-3562 Project Name: LMC BOU Received: 04/25/17

Attn: Robert Sabater

Page 1 of 2

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	Method	<u>Extraction</u>
C-1-CW03-N-17Q2 (17-04-1908-1)						
Chromium, Hexavalent	0.88		0.020	ug/L	EPA 218.6	N/A
Chromium	0.00266		0.00100	mg/L	EPA 6020	EPA 3020A Total
Bromodichloromethane	0.34	J	0.20*	ug/L	EPA 8260B	EPA 5030C
Chloroform	0.74		0.50	ug/L	EPA 8260B	EPA 5030C
Tetrachloroethene	0.38	J	0.20*	ug/L	EPA 8260B	EPA 5030C
SW-1-N-17Q2 (17-04-1908-2)						
Chromium, Hexavalent	5.6		0.020	ug/L	EPA 218.6	N/A
Chromium	0.00653		0.00100	mg/L	EPA 6020	EPA 3020A Total
Bromodichloromethane	0.80		0.50	ug/L	EPA 8260B	EPA 5030C
Chloroform	3.3		0.50	ug/L	EPA 8260B	EPA 5030C
.TB-20170425 (17-04-1908-3)				-		
Acetone	5.0	J	4.0*	ug/L	EPA 8260B	EPA 5030C
850U-N-17Q2 (17-04-1908-4)						
Chromium, Hexavalent	0.87		0.020	ug/L	EPA 218.6	N/A
Chromium	0.00919		0.00100	mg/L	EPA 6020	EPA 3020A Total
1,1,1-Trichloroethane	0.23	J	0.20*	ug/L	EPA 8260B	EPA 5030C
1,1,2-Trichloro-1,2,2-Trifluoroethane	4.9		0.50	ug/L	EPA 8260B	EPA 5030C
1,1-Dichloroethene	6.9		0.50	ug/L	EPA 8260B	EPA 5030C
1,2,3-Trichloropropane	1.3		1.0	ug/L	EPA 8260B	EPA 5030C
1,2-Dichloroethane	0.44	J	0.20*	ug/L	EPA 8260B	EPA 5030C
Carbon Tetrachloride	0.35	J	0.20*	ug/L	EPA 8260B	EPA 5030C
Chloroform	1.5		0.50	ug/L	EPA 8260B	EPA 5030C
Trichloroethene	19		0.50	ug/L	EPA 8260B	EPA 5030C
c-1,2-Dichloroethene	0.35	J	0.20*	ug/L	EPA 8260B	EPA 5030C
Tetrachloroethene	27		1.0	ug/L	EPA 8260B	EPA 5030C
1,2,3-Trichloropropane	1.6		0.12	ug/L	EPA 8260B SIM	EPA 5030C
1,4-Dioxane	1.4		1.0	ug/L	EPA 8270C (M) Isotope Dilution	EPA 3510C
3-6-CW16-N-17Q2 (17-04-1908-5)						
Chromium, Hexavalent	1.4		0.020	ug/L	EPA 218.6	N/A
Chromium	0.0289		0.00100	mg/L	EPA 6020	EPA 3020A Total
1,1,1-Trichloroethane	0.42	J	0.20*	ug/L	EPA 8260B	EPA 5030C
1,1,2-Trichloro-1,2,2-Trifluoroethane	1.3		0.50	ug/L	EPA 8260B	EPA 5030C
1,1-Dichloroethene	8.4		0.50	ug/L	EPA 8260B	EPA 5030C
Carbon Tetrachloride	0.46	J	0.20*	ug/L	EPA 8260B	EPA 5030C
Chloroform	0.84		0.50	ug/L	EPA 8260B	EPA 5030C
Tetrachloroethene	6.9		0.50	ug/L	EPA 8260B	EPA 5030C
Trichloroethene	3.9		0.50	ug/L	EPA 8260B	EPA 5030C

^{*} MDL is shown

Detections Summary

Client: Tetra Tech, Inc.

301 E. Vanderbilt Way, Suite 450

San Bernardino, CA 92408-3562

Work Order:

17-04-1908

Project Name:

LMC BOU

Received:

04/25/17

Attn: Robert Sabater Page 2 of 2

Client SampleID

Analyte Result Qualifiers RL Units Method Extraction

Subcontracted analyses, if any, are not included in this summary.

Chromium, Hexavalent

Analytical Report

 Tetra Tech, Inc.
 Date Received:
 04/25/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-1908

 San Bernardino, CA 92408-3562
 Preparation:
 N/A

 Method:
 EPA 218.6

 Units:
 ug/L

Project: LMC BOU Page 1 of 1

Client Sample N	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
C-1-CW03-N-1	7Q2	17-04-1908-1-K	04/25/17 14:18	Aqueous	IC 16	N/A	04/25/17 20:42	170425L01
Comment(s):	- Results were evaluated to	o the MDL (DL), con	centrations >= t	to the MDL (DI	L) but < RL (LO	Q), if found, are	e qualified with a	"J" flag.
<u>Parameter</u>		Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>(ualifiers</u>

SW-1-N-17Q2 17-04-1908-2-K 04/25/17 Aqueous IC 16 N/A 04/25/17 170425L01 08:22 20:53

0.020

0.0099

1.00

0.88

		00.22			20.5	
Comment(s):	- Results were evaluated to the MDL	DL), concentration	ons >= to the MDL (I	DL) but < RL (LOQ),	if found, are qualifi	ed with a "J" flag.
<u>Parameter</u>		Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Chromium, Hex	avalent	5.6	0.020	0.0099	1.00	

3850U-N-17Q2	17-04-190	8-4-L 04/25/17 11:07	Aqueous	IC 16	N/A	04/25/17 21:04	170425L01
Comment(s):	- Results were evaluated to the MDL (D	L), concentrations >	= to the MDL (DI	L) but < RL (L0	DQ), if found, are	e qualified with a	"J" flag.
<u>Parameter</u>		Result	<u>RL</u>	MDL	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
Chromium, Hexa	avalent	0.87	0.020	0.0099	1.00		

B-6-CW16-N-17Q2	17-04-1908-5-K	04/25/17 14:41	Aqueous	IC 16	N/A	04/25/17 21:15	170425L01

Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

Parameter

Chromium, Hexavalent

1.4

0.020

0.0099

1.00

Method Blank	099-14-567-240	N/A	Aqueous	IC 16	N/A	04/25/17	170425L01

Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
Chromium, Hexavalent	ND	0.020	0.0099	1.00	

15:43

Qualifiers

Qualifiers

<u>DF</u>

1.00

MDL

0.000402

Comment(s): Parameter

Chromium

Analytical Report

Date Received: 04/25/17 Tetra Tech, Inc. Work Order: 17-04-1908 301 E. Vanderbilt Way, Suite 450 Preparation: EPA 3020A Total San Bernardino, CA 92408-3562 Method: EPA 6020 Units: mg/L Project: LMC BOU Page 1 of 1 Client Sample Number Lab Sample Date/Time Matrix Instrument Date Date/Time QC Batch ID Number Collected Prepared Analyzed C-1-CW03-N-17Q2 17-04-1908-1-L 04/25/17 05/08/17 Aqueous ICP/MS 03 05/02/17 170502LA4A 14:18 15:35 - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. Comment(s): <u>Parameter</u> MDL <u>DF</u> Result <u>RL</u> Qualifiers Chromium 0.00266 0.00100 0.000402 1.00 SW-1-N-17Q2 17-04-1908-2-L 04/25/17 Aqueous ICP/MS 03 05/02/17 05/08/17 170502LA4A 08:22 15:38 - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. Comment(s): Qualifiers Parameter Result RL MDL DF Chromium 0.00653 0.00100 0.000402 1.00 3850U-N-17Q2 17-04-1908-4-M 04/25/17 Aqueous ICP/MS 03 05/02/17 05/08/17 170502LA4A 11:07 - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. Comment(s): MDL <u>DF</u> Qualifiers **Parameter** Result <u>RL</u> Chromium 0.00919 0.00100 0.000402 1.00 B-6-CW16-N-17Q2 17-04-1908-5-L 04/25/17 Aqueous ICP/MS 03 05/02/17 05/08/17 170502LA4A

Method Blank	096-06-003-5560	N/A	Aqueous	ICP/MS 03	05/02/17	05/03/17 17:11	170502LA4A
Comment(s):	- Results were evaluated to the MDL (DL), cond	entrations	>= to the MDL (DL) but < RL (LC	Q), if found, ar	re qualified with a	a "J" flag.

- Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

0.00100

14:41

 Parameter
 Result
 RL
 MDL
 DF

 Chromium
 ND
 0.00100
 0.000402
 1.00

Result

0.0289

Tetra Tech, Inc.

Date Received: 04/25/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-1908

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 3510C

Method: EPA 8270C (M) Isotope Dilution

Units: ug/L
Project: LMC BOU Page 1 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
C-1-CW03-N-17Q2	17-04-1908-1-M	04/25/17 14:18	Aqueous	GC/MS DDD	04/27/17	04/28/17 16:56	170427L08
Comment(s): - Results were evalu	uated to the MDL (DL), con-	centrations >= t	o the MDL (DL	.) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	Qualifiers
1,4-Dioxane	ND		1.0	0.28	1.00		
Surrogate	Rec.	(%)	Control Limits	Qualifiers			
Nitrobenzene-d5	104		56-123				
1.4-Dioxane-d8(IDS-IS)	41	;	30-120				

SW-1-N-17Q2		17-04-1908-2-K	04/25/17 08:22	Aqueous	GC/MS DDD	04/27/17	04/28/17 17:12	170427L08
Comment(s):	- Results were evaluated to	the MDL (DL), conc	entrations >=	to the MDL (DL) but < RL (LOC	(a), if found, are	qualified with	a "J" flag.
<u>Parameter</u>		Resul	<u>t</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
1,4-Dioxane		ND		1.0	0.28	1.00		
<u>Surrogate</u>		Rec.	<u>(%)</u>	Control Limits	<u>Qualifiers</u>			
Nitrobenzene-d5	5	112		56-123				
1,4-Dioxane-d8(IDS-IS)	39		30-120				

3850U-N-17Q2		17-04-1908-4-M	04/25/17 11:07	Aqueous	GC/MS DDD	04/27/17	04/28/17 17:27	170427L08
Comment(s):	- Results were evaluated to	the MDL (DL), cond	entrations >	= to the MDL (DL	.) but < RL (LOC	Q), if found, are	qualified with a	a "J" flag.
<u>Parameter</u>		Resul	<u>It</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	9	<u>Qualifiers</u>
1,4-Dioxane		1.4		1.0	0.28	1.00		
<u>Surrogate</u>		Rec.	(%)	Control Limits	Qualifiers			
Nitrobenzene-d5	5	112		56-123				
1,4-Dioxane-d8(IDS-IS)	40		30-120				

B-6-CW16-N-17Q2	17-04-1908-5-M	04/25/17 14:41	Aqueous	GC/MS DDD	04/27/17	04/28/17 17:43	170427L08
Comment(s): - Results were evaluated to	the MDL (DL), conc	entrations >= t	to the MDL (DL) but < RL (LOC	(a), if found, are	qualified with	a "J" flag.
<u>Parameter</u>	Resul	<u>t</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
1,4-Dioxane	ND		1.0	0.28	1.00		
Surrogate	Rec. (%)	Control Limits	Qualifiers			
Nitrobenzene-d5	106		56-123				
1,4-Dioxane-d8(IDS-IS)	39	;	30-120				

Date Received: 04/25/17 Tetra Tech, Inc.

Work Order: 17-04-1908 301 E. Vanderbilt Way, Suite 450 Preparation: **EPA 3510C** San Bernardino, CA 92408-3562

> Method: EPA 8270C (M) Isotope Dilution

Units: ug/L

Project: LMC BOU Page 2 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-16-216-1023	N/A	Aqueous	GC/MS DDD	04/27/17	04/28/17 15:37	170427L08
Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.							
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>(ualifiers</u>
1,4-Dioxane	ND		1.0	0.28	1.00		
<u>Surrogate</u>	Rec.	(%)	Control Limits	Qualifiers			
Nitrobenzene-d5	116		56-123				
1,4-Dioxane-d8(IDS-IS)	42	;	30-120				

Project: LMC BOU

Analytical Report

Tetra Tech, Inc.

Date Received:

04/25/17

301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-1908

San Bernardino, CA 92408-3562

Preparation:

EPA 5030C

Method: EPA 8260B

Units: ug/L Page 1 of 18

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
C-1-CW03-N-17Q2	17-04-1908-1-A	04/25/17 14:18	Aqueous	GC/MS FFF	05/05/17	05/05/17 11:01	170505L003
Comment(s): - Results were evaluated	to the MDL (DL), cond	centrations >=	to the MDL (DI	L) but < RL (LO	Q), if found, are	qualified with a	a "J" flag.
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>(</u>	Qualifiers
1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,1-Trichloroethane	ND		0.50	0.20	1.00		
1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		0.50	0.24	1.00		
1,1,2-Trichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethene	ND		0.50	0.28	1.00		
1,1-Dichloropropene	ND		0.50	0.30	1.00		
1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,3-Trichloropropane	ND		1.0	0.40	1.00		
1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,4-Trimethylbenzene	ND		0.50	0.20	1.00		
1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00		
1,2-Dibromoethane	ND		0.50	0.20	1.00		
1,2-Dichlorobenzene	ND		0.50	0.20	1.00		
1,2-Dichloroethane	ND		0.50	0.20	1.00		
1,2-Dichloropropane	ND		0.50	0.20	1.00		
1,3,5-Trimethylbenzene	ND		0.50	0.20	1.00		
1,3-Dichlorobenzene	ND		0.50	0.28	1.00		
1,3-Dichloropropane	ND		1.0	0.40	1.00		
1,4-Dichlorobenzene	ND		0.50	0.20	1.00		
2,2-Dichloropropane	ND		1.0	0.40	1.00		
2-Butanone	ND		5.0	2.0	1.00		
2-Chlorotoluene	ND		0.50	0.20	1.00		
2-Hexanone	ND		10	4.0	1.00		
4-Chlorotoluene	ND		0.50	0.36	1.00		
4-Methyl-2-Pentanone	ND		5.0	2.0	1.00		
Acetone	ND		10	4.0	1.00		
Benzene	ND		0.50	0.20	1.00		
Bromobenzene	ND		0.50	0.32	1.00		
Bromochloromethane	ND		1.0	0.40	1.00		
Bromodichloromethane	0.34		0.50	0.20	1.00		J
Bromoform	ND		0.50	0.25	1.00		
Bromomethane	ND		1.0	0.40	1.00		
			-				

 Tetra Tech, Inc.
 Date Received:
 04/25/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-1908

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 2 of 18

1 Tojoot: Livio Boo					1 ago 2 01 10
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Carbon Disulfide	ND	1.0	0.40	1.00	
Carbon Tetrachloride	ND	0.50	0.20	1.00	
Chlorobenzene	ND	0.50	0.20	1.00	
Chloroethane	ND	0.50	0.32	1.00	
Chloroform	0.74	0.50	0.20	1.00	
Chloromethane	ND	0.50	0.29	1.00	
Dibromochloromethane	ND	0.50	0.20	1.00	
Dibromomethane	ND	0.50	0.20	1.00	
Dichlorodifluoromethane	ND	1.0	0.40	1.00	
Ethylbenzene	ND	0.50	0.20	1.00	
Isopropylbenzene	ND	0.50	0.20	1.00	
Methylene Chloride	ND	1.0	0.80	1.00	
Naphthalene	ND	1.0	0.40	1.00	
Styrene	ND	0.50	0.20	1.00	
Tetrachloroethene	0.38	0.50	0.20	1.00	J
Toluene	ND	0.50	0.20	1.00	
t-1,2-Dichloroethene	ND	0.50	0.20	1.00	
Trichloroethene	ND	0.50	0.29	1.00	
Trichlorofluoromethane	ND	0.50	0.20	1.00	
Vinyl Acetate	ND	5.0	2.0	1.00	
Vinyl Chloride	ND	0.50	0.20	1.00	
c-1,3-Dichloropropene	ND	0.50	0.20	1.00	
c-1,2-Dichloroethene	ND	0.50	0.20	1.00	
n-Butylbenzene	ND	0.50	0.20	1.00	
n-Propylbenzene	ND	0.50	0.20	1.00	
o-Xylene	ND	0.50	0.32	1.00	
p-Isopropyltoluene	ND	0.50	0.20	1.00	
sec-Butylbenzene	ND	0.50	0.20	1.00	
t-1,3-Dichloropropene	ND	0.50	0.20	1.00	
tert-Butylbenzene	ND	0.50	0.20	1.00	
p/m-Xylene	ND	0.50	0.20	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	0.50	0.20	1.00	
2-Chloroethyl Vinyl Ether	ND	5.0	4.2	1.00	
Hexachloro-1,3-Butadiene	ND	2.0	0.80	1.00	
Iodomethane	ND	10	5.0	1.00	
Surrogate	<u>Rec. (%)</u>	Control Limits	Qualifiers		
1,4-Bromofluorobenzene	87	68-120			
Dibromofluoromethane	103	80-127			

Tetra Tech, Inc.	Date Received:	04/25/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-1908
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOU		Page 3 of 18

Surrogate	Rec. (%)	Control Limits	Qualifiers
1,2-Dichloroethane-d4	105	80-128	
Toluene-d8	97	80-120	

Project: LMC BOU

Analytical Report

Tetra Tech, Inc.

Date Received:

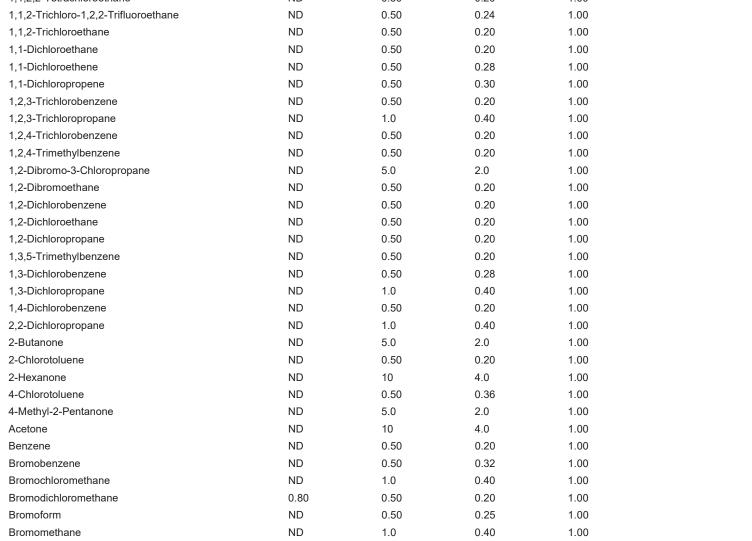
04/25/17

301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-1908

San Bernardino, CA 92408-3562


Preparation:

EPA 5030C

Method: EPA 8260B

Units: ug/L Page 4 of 18

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SW-1-N-17Q2	17-04-1908-2-A	04/25/17 08:22	Aqueous	GC/MS FFF	05/05/17	05/05/17 16:15	170505L003
Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.							
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,1-Trichloroethane	ND		0.50	0.20	1.00		
1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1 1 2-Trichloro-1 2 2-Trifluoroethane	ND		0.50	0.24	1 00		

 Tetra Tech, Inc.
 Date Received:
 04/25/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-1908

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 5 of 18

				<u> </u>
<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
ND	1.0	0.40	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.32	1.00	
3.3	0.50	0.20	1.00	
ND	0.50	0.29	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	1.0	0.40	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	1.0	0.80	1.00	
ND	1.0	0.40	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.29	1.00	
ND	0.50	0.20	1.00	
ND	5.0	2.0	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.32	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	5.0	4.2	1.00	
ND	2.0	0.80	1.00	
ND	10	5.0	1.00	
Rec. (%)	Control Limits	<u>Qualifiers</u>		
88	68-120			
103	80-127			
	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND 1.0 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 1.0 ND 0.50	ND 1.0 0.40 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.32 3.3 0.50 0.29 ND 0.50 0.29 ND 0.50 0.20 ND 0.50 0.20 ND 1.0 0.40 ND 0.50 0.20 ND 0.50 0.20 ND 1.0 0.40 ND 0.50 0.20 ND 1.0 0.40 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND <t< td=""><td>ND</td></t<>	ND

Tetra Tech, Inc.	Date Received:	04/25/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-1908
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOU		Page 6 of 18

SurrogateRec. (%)Control LimitsQualifiers1,2-Dichloroethane-d410680-128Toluene-d89680-120

Tetra Tech, Inc.

Date Received:

04/25/17

301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-1908

San Bernardino, CA 92408-3562

Preparation:

EPA 5030C

Method: EPA 8260B

Units: ug/L

Project: LMC BOU Page 7 of 18

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID		
LTB-20170425	17-04-1908-3-A	04/25/17 06:30	Aqueous	GC/MS FFF	05/05/17	05/05/17 16:46	170505L003		
Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.									
<u>Parameter</u>	Resul	<u>t</u>	<u>RL</u>	MDL	<u>DF</u>		<u>Qualifiers</u>		
1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00				
1,1,1-Trichloroethane	ND		0.50	0.20	1.00				
1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00				
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		0.50	0.24	1.00				
1,1,2-Trichloroethane	ND		0.50	0.20	1.00				
1,1-Dichloroethane	ND		0.50	0.20	1.00				
1,1-Dichloroethene	ND		0.50	0.28	1.00				
1,1-Dichloropropene	ND		0.50	0.30	1.00				
1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00				
1,2,3-Trichloropropane	ND		1.0	0.40	1.00				
1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00				
1,2,4-Trimethylbenzene	ND		0.50	0.20	1.00				
1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00				
1,2-Dibromoethane	ND		0.50	0.20	1.00				
1,2-Dichlorobenzene	ND		0.50	0.20	1.00				
1,2-Dichloroethane	ND		0.50	0.20	1.00				
1,2-Dichloropropane	ND		0.50	0.20	1.00				
1,3,5-Trimethylbenzene	ND		0.50	0.20	1.00				
1,3-Dichlorobenzene	ND		0.50	0.28	1.00				
1,3-Dichloropropane	ND		1.0	0.40	1.00				
1,4-Dichlorobenzene	ND		0.50	0.20	1.00				
2,2-Dichloropropane	ND		1.0	0.40	1.00				
2-Butanone	ND		5.0	2.0	1.00				
2-Chlorotoluene	ND		0.50	0.20	1.00				
2-Hexanone	ND		10	4.0	1.00				
4-Chlorotoluene	ND		0.50	0.36	1.00				
4-Methyl-2-Pentanone	ND		5.0	2.0	1.00				
Acetone	5.0		10	4.0	1.00		J		
Benzene	ND		0.50	0.20	1.00				
Bromobenzene	ND		0.50	0.32	1.00				
Bromochloromethane	ND		1.0	0.40	1.00				
Bromodichloromethane	ND		0.50	0.20	1.00				
Bromoform	ND		0.50	0.25	1.00				
Bromomethane	ND		1.0	0.40	1.00				

 Tetra Tech, Inc.
 Date Received:
 04/25/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-1908

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 8 of 18

				<u> </u>
Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
ND	1.0	0.40	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.32	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.29	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	1.0	0.40	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	1.0	0.80	1.00	
ND	1.0	0.40	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.29	1.00	
ND	0.50	0.20	1.00	
ND	5.0	2.0	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.32	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	5.0	4.2	1.00	
ND	2.0	0.80	1.00	
ND	10	5.0	1.00	
Rec. (%)	Control Limits	<u>Qualifiers</u>		
89	68-120			
102	80-127			
	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND 1.0 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 1.0 ND 0.50 ND 1.0 ND 0.50 ND 1.0 ND 0.50 </td <td>ND 1.0 0.40 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.32 ND 0.50 0.29 ND 0.50 0.29 ND 0.50 0.20 ND 0.50 0.20 ND 1.0 0.40 ND 0.50 0.20 ND 1.0 0.40 ND 0.50 0.20 ND 1.0 0.40 ND 0.50 0.20 ND 1.0 0.40 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND</td> <td>ND</td>	ND 1.0 0.40 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.32 ND 0.50 0.29 ND 0.50 0.29 ND 0.50 0.20 ND 0.50 0.20 ND 1.0 0.40 ND 0.50 0.20 ND 1.0 0.40 ND 0.50 0.20 ND 1.0 0.40 ND 0.50 0.20 ND 1.0 0.40 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND	ND

Tetra Tech, Inc.	Date Received:	04/25/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-1908
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOU		Page 9 of 18

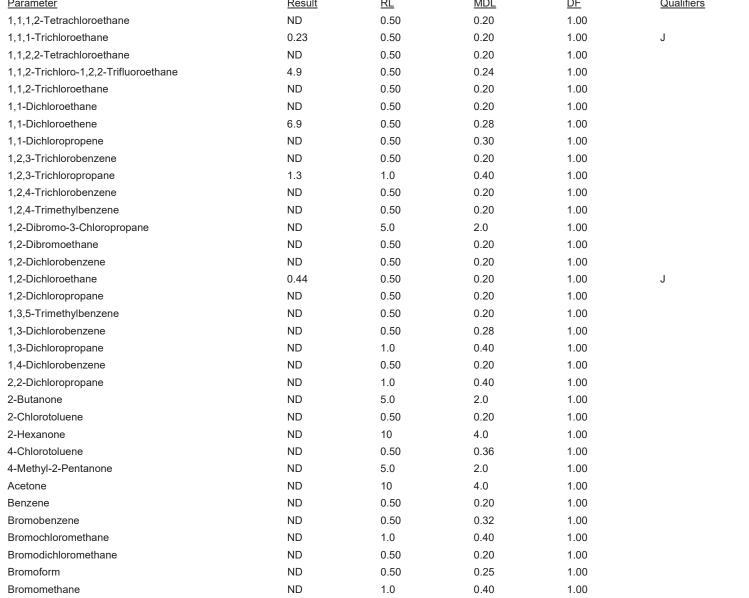
<u>Surrogate</u>	Rec. (%)	Control Limits	<u>Qualifiers</u>
1,2-Dichloroethane-d4	105	80-128	
Toluene-d8	100	80-120	

San Bernardino, CA 92408-3562

Project: LMC BOU

Analytical Report

Tetra Tech, Inc.


Date Received: 04/25/17
301 E. Vanderbilt Way, Suite 450

Work Order: 17-04-1908

Preparation: EPA 5030C Method: EPA 8260B

Units: ug/L Page 10 of 18

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
3850U-N-17Q2	17-04-1908-4-A	04/25/17 11:07	Aqueous	GC/MS FFF	05/05/17	05/05/17 17:18	170505L003
Comment(s): - Results were evaluated to	the MDL (DL), cond	entrations >= to	the MDL (DI	_) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	<u>Resu</u>	<u>It</u> <u>F</u>	<u> </u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
1,1,1,2-Tetrachloroethane	ND	().50	0.20	1.00		
1,1,1-Trichloroethane	0.23	().50	0.20	1.00	J	

 Tetra Tech, Inc.
 Date Received:
 04/25/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-1908

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

Project: LMC BOU Page 11 of 18

				1 age 11 61 16
<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
ND	1.0	0.40	1.00	
0.35	0.50	0.20	1.00	J
ND	0.50	0.20	1.00	
ND	0.50	0.32	1.00	
1.5	0.50	0.20	1.00	
ND	0.50	0.29	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	1.0	0.40	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	1.0	0.80	1.00	
ND	1.0	0.40	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
19	0.50	0.29	1.00	
ND	0.50	0.20	1.00	
ND	5.0	2.0	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
0.35	0.50	0.20	1.00	J
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.32	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	5.0	4.2	1.00	
ND	2.0	0.80	1.00	
ND	10	5.0	1.00	
Rec. (%)	Control Limits	Qualifiers		
85	68-120			
105	80-127			
106	80-128			
	ND 0.35 ND ND 1.5 ND ND ND ND ND ND ND ND ND ND ND ND ND	ND 1.0 0.35 0.50 ND 0.50 ND 0.50 1.5 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 1.0 ND 0.50 ND 1.0 ND 0.50 ND 1.0 ND 0.50	ND 1.0 0.40 0.35 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.29 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 1.0 0.40 ND 0.50 0.20 ND 1.0 0.80 ND 1.0 0.80 ND 1.0 0.40 ND 0.50 0.20 ND 1.0 0.40 ND 0.50 0.20 ND 1.0 0.40 ND 0.50 0.20 ND 0.50 0.	ND 1.0 0.40 1.00 0.35 0.50 0.20 1.00 ND 0.50 0.2

Date Received: 04/25/17 Tetra Tech, Inc. Work Order: 17-04-1908 301 E. Vanderbilt Way, Suite 450 Preparation: **EPA 5030C** San Bernardino, CA 92408-3562 Method: **EPA 8260B** Units: ug/L

Page 12 of 18 Project: LMC BOU

Surrogate Rec. (%) **Control Limits** Qualifiers

Toluene-d8 97 80-120

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
3850U-N-17Q2	17-04-1908-4-2	04/25/17 11:07	Aqueous	GC/MS UU	05/06/17	05/06/17 17:34	170506L015

Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. <u>Parameter</u> Result <u>RL</u> **MDL** Qualifiers

Tetrachloroethene 0.40 2.00 27 1.0

<u>Surrogate</u>	Rec. (%)	Control Limits	<u>Qualifiers</u>
1,4-Bromofluorobenzene	94	68-120	
Dibromofluoromethane	116	80-127	
1,2-Dichloroethane-d4	102	80-128	
Toluene-d8	100	80-120	

Tetra Tech, Inc.

Date Received:

04/25/17

301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-1908

San Bernardino, CA 92408-3562

Preparation:

EPA 5030C

Method: EPA 8260B

Units: ug/L

Project: LMC BOU Page 13 of 18

Comment(s): - Results were evaluated to the MDL (DL): concentrations >= to the MDL (DL) but < RL (LOO), if found, are qualified with a "J" flag. Parameter Result RL MDL DE Qualifiers	Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Parameter Result RL MDL DE Qualifiers 1.1,1.2-Tetrachloroethane 0.42 0.50 0.20 1.00 J 1,1.2-Trichloroethane ND 0.50 0.20 1.00 J 1,1,2-Trichloro-1,2-Z-Trifluoroethane 1.3 0.50 0.24 1.00 J 1,1,2-Trichloro-1,2-Z-Trifluoroethane ND 0.50 0.20 1.00 J 1,1-Dichloroethane ND 0.50 0.20 1.00 J 1,2-Britchlorobenzene ND 0.50 0.20 1.00 J 1,2-Britchlorobenzene ND 0.50 0.20 1.00 J 1,2-Dichlorobenzene ND 0.50 0.20 1.00 J 1,2-Dichlorobenzene ND	B-6-CW16-N-17Q2	17-04-1908-5-A		Aqueous	GC/MS FFF	05/05/17		170505L003
1,1,1,2-Tetrachloroethane ND 0.50 0.20 1.00 J 1,1,1-Tichloroethane 0.42 0.50 0.20 1.00 J 1,1,2-Trichloroethane ND 0.50 0.20 1.00 1,1,2-Trichloroethane ND 0.50 0.20 1.00 1,1,2-Tichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethane 8.4 0.50 0.28 1.00 1,1-Dichloropropene ND 0.50 0.20 1.00 1,1-Dichloropropane ND 0.50 0.20 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,3-Trichloropropane ND 0.50 0.20 1.00 1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2-Dichloromoethane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 <td>Comment(s): - Results were evaluated</td> <td>to the MDL (DL), cond</td> <td>centrations >= 1</td> <td>to the MDL (D</td> <td>L) but < RL (LO</td> <td>Q), if found, are</td> <td>qualified with</td> <td>a "J" flag.</td>	Comment(s): - Results were evaluated	to the MDL (DL), cond	centrations >= 1	to the MDL (D	L) but < RL (LO	Q), if found, are	qualified with	a "J" flag.
1,1,1-Trichloroethane 0.42 0.50 0.20 1.00 J 1,1,2,2-Trichloroethane ND 0.50 0.20 1.00 J 1,1,2-Trichloroethane ND 0.50 0.24 1.00 J 1,1,2-Trichloroethane ND 0.50 0.20 1.00 J 1,1-Dichloroethane ND 0.50 0.28 1.00 J 1,1-Dichloroethane ND 0.50 0.28 1.00 J 1,1-Dichloroethane ND 0.50 0.20 1.00 J 1,1-Dichloroethane ND 0.50 0.20 1.00 J 1,2,3-Trichloropropane ND 0.50 0.20 1.00 J 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 J 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 J <td><u>Parameter</u></td> <td>Resu</td> <td><u>ılt</u></td> <td><u>RL</u></td> <td><u>MDL</u></td> <td><u>DF</u></td> <td></td> <td><u>Qualifiers</u></td>	<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
1,1,2,2-Tetrachloroethane ND 0.50 0.20 1.00 1,1,2-Trichloro-1,2,2-Triflurorethane 1.3 0.50 0.24 1.00 1,1,2-Trichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethane ND 0.50 0.28 1.00 1,1-Dichloropropene ND 0.50 0.30 1.00 1,1-Dichloropropene ND 0.50 0.30 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.28 1.00	1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,2-Trichloro-1,2,2-Triffuoroethane 1.3 0.50 0.24 1.00 1,1,2-Trichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethane ND 0.50 0.20 1.00 1,1-Dichloroptoethene 8.4 0.50 0.28 1.00 1,1-Dichloropropene ND 0.50 0.30 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,3-Trichloroproprane ND 1.0 0.40 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2,2-Dibromo-3-Chloropropane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.20 1.00	1,1,1-Trichloroethane	0.42		0.50	0.20	1.00		J
1,1,2-Trichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethane 8.4 0.50 0.28 1.00 1,1-Dichloroptopene ND 0.50 0.30 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,3-Trichloropropane ND 1.0 0.40 1.00 1,2,4-Trichloroptopapane ND 0.50 0.20 1.00 1,2,4-Trichloroptopapane ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,3-Si-Trimethylbenzene ND 0.50 0.20 1.00 1,3-Si-Trimethylbenzene ND 0.50 0.20 1.00 1,3	1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethene 8.4 0.50 0.28 1.00 1,1-Dichloropropene ND 0.50 0.30 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trichloropenzene ND 0.50 0.20 1.00 1,2,4-Trinethylbenzene ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.28 1.00 1,4-Dichlorobenzene ND 0.50 0.28 1.00 1,4-Dichloropropane ND 0.50 0.20 1.00 2,2-Dichlor	1,1,2-Trichloro-1,2,2-Trifluoroethane	1.3		0.50	0.24	1.00		
1,1-Dichloroethene 8.4 0.50 0.28 1.00 1,1-Dichloropropene ND 0.50 0.30 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,3-Trichlorobenzene ND 1.0 0.40 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.28 1.00 1,4-Dichlorobrezene ND 0.50 0.20 1.00 1,4	1,1,2-Trichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloropropene ND 0.50 0.30 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,3-Trichloropropane ND 1.0 0.40 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trinchly/benzene ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.28 1.00 1,3-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.20 1.00 2,Dichloropropane ND 0.50 0.20 1.00 2-Dichloropropane<	1,1-Dichloroethane	ND		0.50	0.20	1.00		
1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,3-Trichloropropane ND 1.0 0.50 0.20 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2-Chibromo-3-Chloropropane ND 5.0 0.20 1.00 1,2-Dibromoethane ND 0.50 0.20 1.00 1,2-Dibromoethane ND 0.50 0.20 1.00 1,2-Dibromoethane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Eutanone ND 1.0 0.40 1.00 2-Eutanone ND 1.0 0.40 1.00 2-Hexanone ND 1.0 0.50 0.20 1.00 2-Hexanone ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 0.50 0.20 1.00 Benzene ND 0.50 0.20 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromodichloromethane ND 0.50 0.20 1.00	1,1-Dichloroethene	8.4		0.50	0.28	1.00		
1,2,3-Trichloropropane ND 1,0 0.40 1,00 1,2,4-Trichlorobenzene ND 0.50 0.20 1,00 1,2,4-Trimethylbenzene ND 0.50 0.20 1,00 1,2-Dibromo-3-Chloropropane ND 5.0 2.0 1,00 1,2-Dibrhomo-sthane ND 0.50 0.20 1,00 1,2-Dichlorobenzene ND 0.50 0.20 1,00 1,2-Dichloroptopane ND 0.50 0.20 1,00 1,2-Dichloroptopane ND 0.50 0.20 1,00 1,2-Dichloroptopane ND 0.50 0.20 1,00 1,2-Dichloroptopane ND 0.50 0.20 1,00 1,3-Dichloroptopane ND 0.50 0.20 1,00 1,3-Dichloroptopane ND 0.50 0.20 1,00 1,4-Dichloroptopane ND 0.50 0.20 1,00 2,2-Dichloroptopane ND 0.50 0.20 1,00 2-Butanone ND 0.50 0.20 1,00 2-Hexanone ND </td <td>1,1-Dichloropropene</td> <td>ND</td> <td></td> <td>0.50</td> <td>0.30</td> <td>1.00</td> <td></td> <td></td>	1,1-Dichloropropene	ND		0.50	0.30	1.00		
1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 2.0 1.00 1,2-Dibromoethane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.28 1.00 1,3-Dichloropropane ND 0.50 0.28 1.00 1,3-Dichloropropane ND 0.50 0.20 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 0.50 0.20 1.00 2,2-Dichloropropane ND 0.50 0.20 1.00 2-Butanone <	1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 2.0 1.00 1,2-Dibromoethane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-Frimethylbenzene ND 0.50 0.20 1.00 1,3-Frimethylbenzene ND 0.50 0.28 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Hexanone ND 0.50 0.20 1.00 4-Chlorotoluene ND <td< td=""><td>1,2,3-Trichloropropane</td><td>ND</td><td></td><td>1.0</td><td>0.40</td><td>1.00</td><td></td><td></td></td<>	1,2,3-Trichloropropane	ND		1.0	0.40	1.00		
1,2-Dibromo-3-Chloropropane ND 5.0 2.0 1.00 1,2-Dibromoethane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloroptopane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 1.0 0.40 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 0.50	1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2-Dibromoethane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloroethane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3,5-Trimethylbenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichloropropane ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 1.0 0.40 1.00 2-Butanone ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.20 1.00 4-Kelpiorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 0.50	1,2,4-Trimethylbenzene	ND		0.50	0.20	1.00		
1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloroethane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-5-Trimethylbenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 0.50 0.20 1.00 Acetone ND 0.50 0.20 1.00 Benzene ND 0.50 0.32 1.00 Bromobloromethane ND 0.50 0.20	1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00		
1,2-Dichloroethane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3,5-Trimethylbenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromobiloromethane ND 0.50 0.20 1.0	1,2-Dibromoethane	ND		0.50	0.20	1.00		
1,2-Dichloropropane ND 0.50 0.20 1.00 1,3,5-Trimethylbenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Hexanone ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromodichloromethane ND 0.50 0.20 1.00	1,2-Dichlorobenzene	ND		0.50	0.20	1.00		
1,3,5-Trimethylbenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.20 1.00	1,2-Dichloroethane	ND		0.50	0.20	1.00		
1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 0.50 0.32 1.00 Bromoform ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	1,2-Dichloropropane	ND		0.50	0.20	1.00		
1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.36 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	1,3,5-Trimethylbenzene	ND		0.50	0.20	1.00		
1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	1,3-Dichlorobenzene	ND		0.50	0.28	1.00		
2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.20 1.00	1,3-Dichloropropane	ND		1.0	0.40	1.00		
2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 0.50 0.20 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	1,4-Dichlorobenzene	ND		0.50	0.20	1.00		
2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	2,2-Dichloropropane	ND		1.0	0.40	1.00		
2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	2-Butanone	ND		5.0	2.0	1.00		
4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	2-Chlorotoluene	ND		0.50	0.20	1.00		
4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	2-Hexanone	ND		10	4.0	1.00		
Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	4-Chlorotoluene	ND		0.50	0.36	1.00		
Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	4-Methyl-2-Pentanone	ND		5.0	2.0	1.00		
Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	Acetone	ND		10	4.0	1.00		
Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	Benzene	ND		0.50	0.20	1.00		
Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	Bromobenzene	ND		0.50	0.32	1.00		
Bromoform ND 0.50 0.25 1.00	Bromochloromethane	ND		1.0	0.40	1.00		
Bromoform ND 0.50 0.25 1.00	Bromodichloromethane			0.50	0.20			
	Bromoform	ND		0.50	0.25	1.00		
	Bromomethane			1.0				

 Tetra Tech, Inc.
 Date Received:
 04/25/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-1908


 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

Project: LMC BOU Page 14 of 18

Project: LMC BOU					Page 14 of 18
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Carbon Disulfide	ND	1.0	0.40	1.00	
Carbon Tetrachloride	0.46	0.50	0.20	1.00	J
Chlorobenzene	ND	0.50	0.20	1.00	
Chloroethane	ND	0.50	0.32	1.00	
Chloroform	0.84	0.50	0.20	1.00	
Chloromethane	ND	0.50	0.29	1.00	
Dibromochloromethane	ND	0.50	0.20	1.00	
Dibromomethane	ND	0.50	0.20	1.00	
Dichlorodifluoromethane	ND	1.0	0.40	1.00	
Ethylbenzene	ND	0.50	0.20	1.00	
Isopropylbenzene	ND	0.50	0.20	1.00	
Methylene Chloride	ND	1.0	0.80	1.00	
Naphthalene	ND	1.0	0.40	1.00	
Styrene	ND	0.50	0.20	1.00	
Tetrachloroethene	6.9	0.50	0.20	1.00	
Toluene	ND	0.50	0.20	1.00	
t-1,2-Dichloroethene	ND	0.50	0.20	1.00	
Trichloroethene	3.9	0.50	0.29	1.00	
Trichlorofluoromethane	ND	0.50	0.20	1.00	
Vinyl Acetate	ND	5.0	2.0	1.00	
Vinyl Chloride	ND	0.50	0.20	1.00	
c-1,3-Dichloropropene	ND	0.50	0.20	1.00	
c-1,2-Dichloroethene	ND	0.50	0.20	1.00	
n-Butylbenzene	ND	0.50	0.20	1.00	
n-Propylbenzene	ND	0.50	0.20	1.00	
o-Xylene	ND	0.50	0.32	1.00	
p-Isopropyltoluene	ND	0.50	0.20	1.00	
sec-Butylbenzene	ND	0.50	0.20	1.00	
t-1,3-Dichloropropene	ND	0.50	0.20	1.00	
tert-Butylbenzene	ND	0.50	0.20	1.00	
p/m-Xylene	ND	0.50	0.20	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	0.50	0.20	1.00	
2-Chloroethyl Vinyl Ether	ND	5.0	4.2	1.00	
Hexachloro-1,3-Butadiene	ND	2.0	0.80	1.00	
Iodomethane	ND	10	5.0	1.00	
Surrogate	<u>Rec. (%)</u>	Control Limits	Qualifiers		
1,4-Bromofluorobenzene	86	68-120			
Dibromofluoromethane	103	80-127			

Tetra Tech, Inc.	Date Received:	04/25/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-1908
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOU		Page 15 of 18

Surrogate	Rec. (%)	Control Limits	Qualifiers
1,2-Dichloroethane-d4	103	80-128	
Toluene-d8	99	80-120	

04/25/17

Project: LMC BOU

Analytical Report

Date Received: Tetra Tech, Inc. Work Order: 17-04-1908 301 E. Vanderbilt Way, Suite 450 Preparation: **EPA 5030C** San Bernardino, CA 92408-3562

> Method: **EPA 8260B**

Units: ug/L Page 16 of 18

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-10-025-4683	N/A	Aqueous	GC/MS FFF	05/05/17	05/05/17 09:58	170505L003
Comment(s): - Results were evaluated to	the MDL (DL), cond	entrations >=	to the MDL (DI	L) but < RL (LO	Q), if found, are	qualified with	a "J" flag.
<u>Parameter</u>	Resul	<u> t</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,1-Trichloroethane	ND		0.50	0.20	1.00		
1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		0.50	0.24	1.00		
1,1,2-Trichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethene	ND		0.50	0.28	1.00		
1,1-Dichloropropene	ND		0.50	0.30	1.00		
1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,3-Trichloropropane	ND		1.0	0.40	1.00		
1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,4-Trimethylbenzene	ND		0.50	0.20	1.00		
1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00		
1,2-Dibromoethane	ND		0.50	0.20	1.00		
1,2-Dichlorobenzene	ND		0.50	0.20	1.00		
1,2-Dichloroethane	ND		0.50	0.20	1.00		
1,2-Dichloropropane	ND		0.50	0.20	1.00		
1,3,5-Trimethylbenzene	ND		0.50	0.20	1.00		
1,3-Dichlorobenzene	ND		0.50	0.28	1.00		
1,3-Dichloropropane	ND		1.0	0.40	1.00		
1,4-Dichlorobenzene	ND		0.50	0.20	1.00		
2,2-Dichloropropane	ND		1.0	0.40	1.00		
2-Butanone	ND		5.0	2.0	1.00		
2-Chlorotoluene	ND		0.50	0.20	1.00		
2-Hexanone	ND		10	4.0	1.00		
4-Chlorotoluene	ND		0.50	0.36	1.00		
4-Methyl-2-Pentanone	ND		5.0	2.0	1.00		
Acetone	ND		10	4.0	1.00		
Benzene	ND		0.50	0.20	1.00		
Bromobenzene	ND		0.50	0.32	1.00		
Bromochloromethane	ND		1.0	0.40	1.00		
Bromodichloromethane	ND		0.50	0.20	1.00		
Bromoform	ND		0.50	0.25	1.00		
Bromomethane	ND		1.0	0.40	1.00		

MDL: Method Detection Limit. RL: Reporting Limit. DF: Dilution Factor.

 Tetra Tech, Inc.
 Date Received:
 04/25/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-1908

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 17 of 18

Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
ND	1.0	0.40	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.32	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.29	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	1.0	0.40	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	1.0	0.80	1.00	
ND	1.0	0.40	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.29	1.00	
ND	0.50	0.20	1.00	
ND	5.0	2.0	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.32	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	5.0	4.2	1.00	
ND	2.0	0.80	1.00	
ND	10	5.0	1.00	
Rec. (%)	Control Limits	<u>Qualifiers</u>		
87	68-120			
101	80-127			
	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND 1.0 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 1.0 ND 0.50 ND 1.0 ND 0.50 ND 1.0 ND 0.50 </td <td>ND 1.0 0.40 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.32 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 1.0 0.40 ND 0.50 0.20 ND 1.0 0.80 ND 1.0 0.80 ND 1.0 0.40 ND 0.50 0.20 ND 1.0 0.40 ND 0.50 0.20 ND 1.0 0.50 0.20 ND 0.50</td> <td>ND</td>	ND 1.0 0.40 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.32 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 1.0 0.40 ND 0.50 0.20 ND 1.0 0.80 ND 1.0 0.80 ND 1.0 0.40 ND 0.50 0.20 ND 1.0 0.40 ND 0.50 0.20 ND 1.0 0.50 0.20 ND 0.50	ND

<u>Surrogate</u>

1,2-Dichloroethane-d4

Analytical Report

Tetra Tech, Inc.	Date Received:	04/25/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-1908
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L

Project: LMC BOU	Page 18	of 18
	·	

Rec. (%)

105

Tolu	ene-d8	95		80-120				
Clier	nt Sample Number	Lab Sample	Date/Time	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID

Control Limits

80-128

Qualifiers

Method Blank	099-10-025-46	87 N/A	Aqueous	GC/MS UU	05/06/17	05/06/17 14:30	170506L015
Comment(s):	- Results were evaluated to the MDL (DL),	concentratio	ons >= to the MDL (DL) but < RL (LO	Q), if found, are	e qualified with a	"J" flag.
<u>Parameter</u>	<u>.</u>	<u>lesult</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Q</u>	<u>ualifiers</u>
Tetrachloroethen	ne N	ID	0.50	0.20	1.00		

Surrogate	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>
1,4-Bromofluorobenzene	92	68-120	
Dibromofluoromethane	109	80-127	
1,2-Dichloroethane-d4	102	80-128	
Toluene-d8	99	80-120	

 Tetra Tech, Inc.
 Date Received:
 04/25/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-1908

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B SIM

 Units:
 ug/L

Project: LMC BOU Page 1 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
C-1-CW03-N-17Q2	17-04-1908-1-H	04/25/17 14:18	Aqueous	GC/MS M	05/02/17	05/02/17 18:38	170502L048

Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

Parameter

1,2,3-Trichloropropane

Result

ND

0.0050

0.0025

1.00

Surrogate Rec. (%) Control Limits Qualifiers

1,4-Dichlorobutane 109 80-120

SW-1-N-17Q2	17-04-1908-2-H	04/25/17 08:22	Aqueous	GC/MS M	05/02/17	05/02/17 19:08	170502L048

Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

Parameter Result RL MDL DF Qualifiers

1,2,3-Trichloropropane ND 0.0050 0.0025 1.00

<u>Surrogate</u> <u>Rec. (%)</u> <u>Control Limits</u> <u>Qualifiers</u>

1,4-Dichlorobutane 105 80-120

LTB-20170425	17-04-1908-3-C	04/25/17 A 06:30	queous GC/MS N	M 05/02/17	05/02/17 170 14:39	0502L048
Comment(s): - Results v	vere evaluated to the MDL (DL), cond	centrations >= to the	MDL (DL) but < RL	(LOQ), if found, are	qualified with a "J" fla	ag.
<u>Parameter</u>	Resu	<u>llt</u> <u>RL</u>	MDL	<u>DF</u>	Qualifie	<u>ers</u>
1,2,3-Trichloropropane	ND	0.00	50 0.002	25 1.00		
Surrogate	Rec	(%) Cont	rol Limits Qual	ifiers		

Surrogate rec. (70) Control Limits Qualifiers

1,4-Dichlorobutane 110 80-120

3850U-N-17Q2		17-04-1908-4-F	04/25/17 11:07	Aqueous G	SC/MS M	05/04/17	05/04/17 16:37	170504L054
Comment(s):	- Results were evaluated to	the MDL (DL), cond	centrations >= to th	ne MDL (DL) b	out < RL (LOQ)	, if found, are q	ualified with a "J	l" flag.
<u>Parameter</u>		Resu	<u>It</u> <u>RL</u>		<u>MDL</u>	<u>DF</u>	<u>Qu</u>	<u>alifiers</u>
1,2,3-Trichlorop	ropane	1.6	0.12	2	0.062	25.0		
Surrogate		Rec.	(%) Cor	ntrol Limits	Qualifiers			
1.4-Dichlorobuta	ane	99	80-	120				

Page 2 of 2

Project: LMC BOU

1,2,3-Trichloropropane

Analytical Report

Tetra Tech, Inc.

Date Received:

04/25/17

301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-1908

San Bernardino, CA 92408-3562

Preparation:

EPA 5030C

Method: EPA 8260B SIM

1.00

Units: ug/L

Client Sample Number Lab Sample Date/Time Matrix Instrument Date Date/Time QC Batch ID Prepared Number Collected Analyzed B-6-CW16-N-17Q2 17-04-1908-5-F 04/25/17 05/04/17 05/04/17 **Aqueous** GC/MS M 170504L054 14:41 16:07

Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

Parameter Result RL MDL DF Qualifiers

1,2,3-Trichloropropane ND 0.0050 0.0025 1.00

Surrogate Rec. (%) Control Limits Qualifiers

1,4-Dichlorobutane 106 80-120

Method Blank

099-15-118-497 N/A Aqueous GC/MS M 05/02/17 05/02/17 11:40

170502L048

Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

0.0050

0.0025

<u>Parameter</u> <u>Result</u> <u>RL</u> <u>MDL</u> <u>DF</u> <u>Qualifiers</u>

Surrogate Rec. (%) Control Limits Qualifiers

ND

1,4-Dichlorobutane 113 80-120

Method Blank	099-15-118-498 I	N/A Aque	ous GC/MS M	05/04/17	05/04/17 15:37	170504L054
Comment(s): - Results were	evaluated to the MDL (DL), concer	ntrations >= to the MD	DL (DL) but < RL (LC	OQ), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>(</u>	<u>Qualifiers</u>
1,2,3-Trichloropropane	ND	0.0050	0.0025	1.00		
<u>Surrogate</u>	Rec. (%	<u>Control L</u>	<u>imits</u> <u>Qualifier</u>	<u>'S</u>		
1,4-Dichlorobutane	106	80-120				

Tetra Tech, Inc.

Date Received:

04/25/17

301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-1908

San Bernardino, CA 92408-3562

Preparation:

N/A

Method:

EPA 218.6

Project: LMC BOU Page 1 of 7

Quality Control Sample ID	Туре		Matrix	Inst	rument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
C-1-CW03-N-17Q2	Sample		Aqueous	IC 1	6	N/A	04/25/17	20:42	170425S01	
C-1-CW03-N-17Q2	Matrix Spike		Aqueous	IC 1	6	N/A	04/25/17	21:26	170425S01	
C-1-CW03-N-17Q2	Matrix Spike D	uplicate	Aqueous	IC 1	6	N/A	04/25/17	21:38	170425S01	
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Chromium, Hexavalent	0.8780	10.00	11.11	102	11.23	103	85-121	1	0-25	

 Tetra Tech, Inc.
 Date Received:
 04/25/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-1908

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 3005A Filt.

 Method:
 EPA 6020

Project: LMC BOU Page 2 of 7

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Batch Number	
17-04-2243-3	Sample	Aqueous	ICP/MS 03	05/02/17	05/03/17 17:26	170502SA4	
17-04-2243-3	Matrix Spike	Aqueous	ICP/MS 03	05/02/17	05/03/17 17:16	170502SA4	
17-04-2243-3	Matrix Spike Duplicate	Aqueous	Aqueous ICP/MS 03		05/03/17 17:19	170502SA4	
<u>Parameter</u>	Sample Spike Conc. Added	MS MS Conc. %F	S MSD Conc.	MSD %Rec.	%Rec. CL RPD	RPD CL Qualifiers	
Chromium	0.01167 0.1000	0.1098 98	0.1151	103	73-133 5	0-11	

San Bernardino, CA 92408-3562

Quality Control - Spike/Spike Duplicate

Date Received: 04/25/17 Tetra Tech, Inc. Work Order: 17-04-1908 301 E. Vanderbilt Way, Suite 450

Preparation: **EPA 3510C** Method:

EPA 8270C (M) Isotope Dilution Page 3 of 7 Project: LMC BOU

Quality Control Sample ID	Туре	Ma	trix	Instrument	Date Prepared	Date Analyz	zed N	MS/MSD Bate	ch Number
C-1-CW03-N-17Q2	Sample	Aq	ueous	GC/MS DDD	04/27/17	04/28/17 16	3:56	170427S08	
C-1-CW03-N-17Q2	Matrix Spike	Aq	ueous	GC/MS DDD	04/27/17	04/28/17 16	:08 1	170427S08	
C-1-CW03-N-17Q2	Matrix Spike Du	plicate Aq	Aqueous GC/MS DDD		04/27/17	04/28/17 16	:24 1	170427S08	
Parameter	Sample S Conc. A	<u>ipike</u> <u>MS</u> idded <u>Con</u>	<u>MS</u> <u>%Re</u>	MSD c. Conc.	MSD %Rec.	%Rec. CL F	RPD	RPD CL	Qualifiers
1,4-Dioxane	ND 2	0.00 18.7	7 94	20.08	100	50-130 7	7	0-20	

Tetra Tech, Inc.

Date Received:

04/25/17

301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-1908

San Bernardino, CA 92408-3562

Preparation:

EPA 5030C

Method:

EPA 8260B

Project: LMC BOU Page 4 of 7

Quality Control Sample ID	Туре		Matrix	ı	Instrument	Date Prepared	d Date Ana	lyzed	MS/MSD Bat	ch Number
17-05-0457-2	Sample		Aqueou	s (GC/MS UU	05/06/17	05/06/17	15:07	170506S005	
17-05-0457-2	Matrix Spike		Aqueou	s (GC/MS UU	05/06/17	05/06/17	15:44	170506S005	
17-05-0457-2	Matrix Spike	Duplicate	Aqueou	s (GC/MS UU	05/06/17	05/06/17	16:21	170506S005	
<u>Parameter</u>	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Red	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Benzene	ND	10.00	9.721	97	10.12	101	75-125	4	0-20	
Carbon Tetrachloride	ND	10.00	10.37	104	11.00	110	69-135	6	0-20	
Chlorobenzene	ND	10.00	9.910	99	10.42	104	75-125	5	0-20	
1,2-Dibromoethane	ND	10.00	10.07	101	10.70	107	75-126	6	0-20	
1,2-Dichlorobenzene	ND	10.00	10.08	101	10.74	107	75-125	6	0-20	
1,2-Dichloroethane	ND	10.00	9.838	98	10.28	103	75-127	4	0-20	
1,1-Dichloroethene	ND	10.00	10.01	100	10.47	105	66-126	4	0-20	
Ethylbenzene	ND	10.00	10.55	105	10.76	108	75-125	2	0-20	
Toluene	ND	10.00	9.880	99	10.33	103	75-125	4	0-20	
Trichloroethene	ND	10.00	9.697	97	10.06	101	75-125	4	0-20	
Vinyl Chloride	ND	10.00	9.919	99	10.87	109	52-142	9	0-20	
p/m-Xylene	ND	20.00	20.54	103	21.19	106	75-125	3	0-20	
o-Xylene	ND	10.00	10.37	104	10.76	108	75-127	4	0-20	
Methyl-t-Butyl Ether (MTBE)	ND	10.00	9.717	97	10.19	102	71-131	5	0-20	

 Tetra Tech, Inc.
 Date Received:
 04/25/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-1908

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

Project: LMC BOU Page 5 of 7

Quality Control Sample ID	Туре		Matrix	Ir	nstrument	Date Prepared	d Date Ana	lyzed	MS/MSD Bat	ch Number
C-1-CW03-N-17Q2	Sample		Aqueou	s G	C/MS FFF	05/05/17	05/05/17	11:01	170505S003	
C-1-CW03-N-17Q2	Matrix Spike		Aqueou	s G	C/MS FFF	05/05/17	05/05/17	11:32	170505S003	
C-1-CW03-N-17Q2	Matrix Spike	Duplicate	Aqueou	s G	C/MS FFF	05/05/17	05/05/17	12:04	170505S003	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,1-Dichloroethene	ND	10.00	8.016	80	8.551	86	66-126	6	0-20	
1,2-Dibromoethane	ND	10.00	9.626	96	9.716	97	75-126	1	0-20	
1,2-Dichlorobenzene	ND	10.00	9.409	94	9.654	97	75-125	3	0-20	
1,2-Dichloroethane	ND	10.00	9.134	91	9.339	93	75-127	2	0-20	
Benzene	ND	10.00	9.102	91	9.186	92	75-125	1	0-20	
Carbon Tetrachloride	ND	10.00	9.433	94	9.832	98	69-135	4	0-20	
Chlorobenzene	ND	10.00	9.480	95	9.602	96	75-125	1	0-20	
Ethylbenzene	ND	10.00	9.358	94	9.535	95	75-125	2	0-20	
Toluene	ND	10.00	9.174	92	9.413	94	75-125	3	0-20	
Trichloroethene	ND	10.00	9.199	92	9.424	94	75-125	2	0-20	
Vinyl Chloride	ND	10.00	10.03	100	10.30	103	52-142	3	0-20	
o-Xylene	ND	10.00	9.261	93	9.646	96	75-127	4	0-20	
p/m-Xylene	ND	20.00	18.41	92	19.06	95	75-125	3	0-20	
Methyl-t-Butyl Ether (MTBE)	ND	10.00	9.469	95	9.598	96	71-131	1	0-20	

Tetra Tech, Inc.

Date Received:

04/25/17

301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-1908

Preparation:

EPA 5030C

Method:

EPA 8260B SIM

Project: LMC BOU Page 6 of 7

Quality Control Sample ID	Туре		Matrix	Matrix Instrument I		Date Prepared Date Analyzed		lyzed	MS/MSD Batch Number	
17-04-1547-5	Sample		Aqueous	Aqueous GC/MS M		05/02/17 05/02/17 12:		12:10	170502S030	
17-04-1547-5	Matrix Spike		Aqueous	ous GC/MS M		GC/MS M 05/02/17		13:09	170502S030	
17-04-1547-5	Matrix Spike	Matrix Spike Duplicate		Aqueous GC/MS M		05/02/17	05/02/17	13:40	170502S030	
<u>Parameter</u>	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,2,3-Trichloropropane	ND	0.02000	0.02290	114	0.02860	143	72-132	22	0-20	3,4

 Tetra Tech, Inc.
 Date Received:
 04/25/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-1908

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B SIM

Project: LMC BOU	Page / of /

Quality Control Sample ID	Туре	Туре		Ins	strument	Date Prepared	Date Analyzed		MS/MSD Bat	ch Number
3850U-N-17Q2	Sample	Sample		Aqueous GC/MS M		05/04/17	05/04/17	16:37	170504S023	
3850U-N-17Q2	Matrix Spike		Aqueou	s G	C/MS M	05/04/17	05/04/17	19:48	170504S023	
3850U-N-17Q2	Matrix Spike	Duplicate	Aqueou	s G	C/MS M	05/04/17	05/04/17	20:18	170504S023	
<u>Parameter</u>	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> <u>Added</u>	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,2,3-Trichloropropane	1.568	0.5000	2.210	128	1.928	72	72-132	14	0-20	

Project: LMC BOU

Quality Control - PDS

Date Received: 04/25/17 Tetra Tech, Inc. Work Order: 17-04-1908 301 E. Vanderbilt Way, Suite 450 Preparation: EPA 3005A Filt. San Bernardino, CA 92408-3562 Method: EPA 6020

Page 1 of 1

Quality Control Sample ID	Туре	N	∕/atrix	Instrument	Date Prepared	Date Analyzed	PDS/PDSD Batch Number
17-04-2243-3	Sample	Α	Aqueous	ICP/MS 03	05/02/17 00:00	05/03/17 17:26	170502SA4
17-04-2243-3	PDS	A	Aqueous	ICP/MS 03	05/02/17 00:00	05/03/17 18:43	170502SA4
<u>Parameter</u>		Sample Conc.	Spike Added	d PDS Conc	PDS %Re	<u>%Rec. C</u>	<u>Qualifiers</u>
Chromium		0.01167	0.1000	0.1065	95	75-125	

RPD: Relative Percent Difference. CL: Control Limits

Project: LMC BOU

Quality Control - LCS

Tetra Tech, Inc.

Date Received:

04/25/17

301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-1908

San Bernardino, CA 92408-3562

Preparation:

N/A

Method:

EPA 218.6

Page 1 of 7

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-14-567-240	LCS	Aqueous	IC 16	N/A	04/25/17 19:10	170425L01
<u>Parameter</u>		Spike Added	Conc. Recove	ered LCS %R	ec. %Rec	. CL Qualifiers
Chromium, Hexavalent		10.00	10.00	100	95-10	7

Tetra Tech, Inc.

Date Received: 04/25/17

301 E. Vanderbilt Way, Suite 450

Work Order: 17-04-1908

San Bernardino, CA 92408-3562

Preparation: EPA 3020A Total

Method: EPA 6020

Project: LMC BOU Page 2 of 7

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
096-06-003-5560	LCS	Aqueous	ICP/MS 03	05/02/17	05/03/17 17:14	170502LA4A
<u>Parameter</u>		Spike Added	Conc. Recovere	ed LCS %Re	ec. %Rec	. CL Qualifiers
Chromium		0.1000	0.1065	106	80-120)

04/25/17

17-04-1908

EPA 3510C

Quality Control - LCS

Tetra Tech, Inc.

301 E. Vanderbilt Way, Suite 450

San Bernardino, CA 92408-3562

Date Received:

Work Order:

Preparation:

Method: EPA 8270C (M) Isotope Dilution

Project: LMC BOU Page 3 of 7

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-16-216-1023	LCS	Aqueous	GC/MS DDD	04/27/17	04/28/17 15:53	170427L08
<u>Parameter</u>		Spike Added	Conc. Recover	red LCS %Re	ec. %Rec	. CL Qualifiers
1,4-Dioxane		20.00	18.96	95	50-130)

Tetra Tech, Inc. 301 E. Vanderbilt Way, Suite 450 San Bernardino, CA 92408-3562 Date Received: Work Order: Preparation: Method:

17-04-1908 EPA 5030C EPA 8260B

04/25/17

Project: LMC BOU Page 4 of 7

Quality Control Sample ID	Туре	Matrix	K	Instrument	Date Prep	pared Date Ana	lyzed LCS Bate	ch Number
099-10-025-4687	LCS	Aque	ous	GC/MS UU	05/06/17	05/06/17	13:17 170506L	.015
<u>Parameter</u>	·	Spike Added	Conc.	Recovered	LCS %Rec.	%Rec. CL	ME CL	<u>Qualifiers</u>
Benzene		10.00	9.336		93	80-120	73-127	
Carbon Tetrachloride		10.00	10.33		103	80-129	72-137	
Chlorobenzene		10.00	9.716		97	80-120	73-127	
1,2-Dibromoethane		10.00	10.07		101	80-120	73-127	
1,2-Dichlorobenzene		10.00	10.05		101	80-120	73-127	
1,2-Dichloroethane		10.00	9.782		98	80-122	73-129	
1,1-Dichloroethene		10.00	9.275		93	77-120	70-127	
Ethylbenzene		10.00	9.964		100	80-120	73-127	
Toluene		10.00	9.478		95	80-120	73-127	
Trichloroethene		10.00	9.401		94	80-120	73-127	
Vinyl Chloride		10.00	9.328		93	63-135	51-147	
p/m-Xylene		20.00	19.64		98	80-120	73-127	
o-Xylene		10.00	9.983		100	80-120	73-127	
Methyl-t-Butyl Ether (MTBE)		10.00	9.464		95	75-123	67-131	

Total number of ME compounds: 14
Total number of ME compounds: 0
Total number of ME compounds allow

Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass

Tetra Tech, Inc. 301 E. Vanderbilt Way, Suite 450 San Bernardino, CA 92408-3562 Date Received: Work Order: Preparation: Method: 04/25/17 17-04-1908 EPA 5030C

EPA 8260B

Page 5 of 7

Project: LMC BOU

Quality Control Sample ID	Туре	Matrix	K	Instrument	Date Prepar	ed Date Analyze	d LCS Batch N	umber
099-10-025-4683	LCS	Aque	ous	GC/MS FFF	05/05/17	05/05/17 09:2	26 170505L003	
<u>Parameter</u>		Spike Added	Conc. R	ecovered LC	S %Rec.	%Rec. CL	ME CL	Qualifiers
1,1-Dichloroethene		10.00	8.192	82		77-120	70-127	
1,2-Dibromoethane		10.00	9.132	91		80-120	73-127	
1,2-Dichlorobenzene		10.00	9.539	95		80-120	73-127	
1,2-Dichloroethane		10.00	9.204	92		80-122	73-129	
Benzene		10.00	8.806	88		80-120	73-127	
Carbon Tetrachloride		10.00	8.809	88		80-129	72-137	
Chlorobenzene		10.00	9.346	93		80-120	73-127	
Ethylbenzene		10.00	9.267	93		80-120	73-127	
Toluene		10.00	9.267	93		80-120	73-127	
Trichloroethene		10.00	8.964	90		80-120	73-127	
Vinyl Chloride		10.00	9.828	98		63-135	51-147	
o-Xylene		10.00	9.522	95		80-120	73-127	
p/m-Xylene		20.00	18.80	94		80-120	73-127	
Methyl-t-Butyl Ether (MTBE)		10.00	8.968	90		75-123	67-131	

Total number of ME compounds: 14
Total number of ME compounds: 0

Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass

Date Received: 04/25/17 Tetra Tech, Inc. Work Order: 17-04-1908 301 E. Vanderbilt Way, Suite 450 Preparation: **EPA 5030C** San Bernardino, CA 92408-3562 Method: **EPA 8260B SIM**

Project: LMC BOU Page 6 of 7

Quality Control Sample ID	Type	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-15-118-497	LCS	Aqueous	GC/MS M	05/02/17	05/02/17 10:40	170502L048
<u>Parameter</u>		Spike Added	Conc. Recovered	ed LCS %Re	ec. %Rec	. CL Qualifiers
1,2,3-Trichloropropane		0.02000	0.01880	94	72-13	2

Date Received: 04/25/17 Tetra Tech, Inc. Work Order: 17-04-1908 301 E. Vanderbilt Way, Suite 450 Preparation: **EPA 5030C** San Bernardino, CA 92408-3562 Method: **EPA 8260B SIM** Project: LMC BOU Page 7 of 7

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-15-118-498	LCS	Aqueous	GC/MS M	05/04/17	05/04/17 15:07	170504L054
<u>Parameter</u>		Spike Added	Conc. Recovere	ed LCS %R	ec. %Rec	. CL Qualifiers
1,2,3-Trichloropropane		0.02000	0.01720	86	72-132	2

Sample Analysis Summary Report

Work Order: 17-04-1908				Page 1 of 1
Method	<u>Extraction</u>	Chemist ID	Instrument	Analytical Location
EPA 218.6	N/A	1065	IC 16	1
EPA 6020	EPA 3020A Total	598	ICP/MS 03	1
EPA 8260B	EPA 5030C	996	GC/MS UU	2
EPA 8260B	EPA 5030C	996	GC/MS FFF	2
EPA 8260B SIM	EPA 5030C	486	GC/MS M	2
EPA 8270C (M) Isotope Dilution	EPA 3510C	928	GC/MS DDD	1

Location 1: 7440 Lincoln Way, Garden Grove, CA 92841 Location 2: 7445 Lampson Avenue, Garden Grove, CA 92841

Χ

Ζ

Glossary of Terms and Qualifiers

Work Order: 17-04-1908 Page 1 of 1

Qualifiers	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
CI	See case narrative.
Е	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
SG	The sample extract was subjected to Silica Gel treatment prior to analysis.

Analyte presence was not confirmed by second column or GC/MS analysis.

% Recovery and/or RPD out-of-range.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

医肾管

Calscience

SAMPLE RECEIPT CHECKLIST

COOLER _ OF _

CLIENT: TE TECH	DATE: 04	125	/ 2017
TEMPERATURE: (Criteria: 0.0°C = 6.0°C, not frozen except sediment/tissue) Thermometer ID: SC (CF: 0.0°C); Temperature (w/o CF):°C (w/ CF):°C (w/ CF):°C ID Sample(s) outside temperature criteria (PM/APM contacted by:) ID Sample(s) outside temperature criteria but received on ice/chilled on same day of sampling temperature.		l Sample	,
☐ Sample(s) received at ambient temperature; placed on ice for transport by courier Ambient Temperature: ☐ Air ☐ Filter	Check	ed by: _	704
CUSTODY SEAL: Cooler		ed by: _} ed by: <u>}</u>	
SAMPLE CONDITION:	Yes	Νo	N/A
Chain-of-Custody (COC) document(s) received with samples	/ /		
COC document(s) received complete	ja/		
☐ Sampling date ☐ Sampling time ☐ Matrix ☐ Number of containers	-		
☐ No analysis requested ☐ Not relinquished ☐ No relinquished date ☐ No relinquished	time		
Sampler's name indicated on COC			
Sample container label(s) consistent with COC	F		
Sample container(s) intact and in good condition			
Proper containers for analyses requested	≱		
Sufficient volume/mass for analyses requested	🗷	ū	
Samples received within holding time	9′		
Aqueous samples for certain analyses received within 15-minute holding time			,
□ pH □ Residual Chlorine □ Dissolved Sulfide □ Dissolved Oxygen	/	□	ø
Proper preservation chemical(s) noted on COC and/or sample container	······ 9′		
Unpreserved aqueous sample(s) received for certain analyses	,		
☐ Volatile Organics ☐ Total Metals ☐ Dissolved Metals	· /		
Container(s) for certain analysis free of headspace	<u>p</u>		
✓ Volatile Organics □ Dissolved Gases (RSK-175) □ Dissolved Oxygen (SM 4500)			
☐ Carbon Dioxide (SM 4500) ☐ Ferrous Iron (SM 3500) ☐ Hydrogen Sulfide (Hach)			1
Tedlar™ bag(s) free of condensation		ina a c	~ h
CONTAINER TYPE: / 10 (Trip Blank Lot No			<u> </u>
Aqueous: UVOA 12 VOAh UVOAna 11 100PJ U100PJna 11 125AGB U125AGBh U1	125AGBp □	125PB	
□ 125PBznne □ 250AGB □ 250CGB □ 250CGBs 250PB □ 250PBn 2 500AGB □ 50		AGJs	
□ 500PB □ 1AGB □ 1AGBma₂ □ 1AGBs □ 1PB □ 1PBma □ □ □ □ □ □			
Solid: 4ozCGJ 8ozCGJ 16ozCGJ Sleeve () EnCores® () TerraCo			
Air: □ Tedler™ □ Cenister □ Sorbent Tube □ PUF □ Other Matrix (ــــــــــــــــــــــــــــــــــــــ	_	

Container: A = Amber, B = Bottle, C = Clear, E = Envelope, G = Glass, J = Jar, P = Plastic, and Z = Ziploc/Resealable Bag

 $s = H_2SO_4$, u = ultre-pure, $x = Na_2SO_3+NaHSO_4$. H_2O , $zana = Zn (CH_3CO_2)_2 + NaOH$

Preservative: b = buffered, f = filtered, b = HOI, $n = HNO_3$, na = NaOH, $na_2 = Na_2S_2O_3$, $p = H_3PO_4$,

Labeled/Checked by: 10

Reviewed by: 69

Calscience

WORK ORDER NUMBER: 17-04-1778

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: Tetra Tech, Inc.

Client Project Name: LMC BOU

Attention: Robert Sabater

301 E. Vanderbilt Way, Suite 450 San Bernardino, CA 92408-3562

Vikas Patel

Approved for release on 05/10/2017 by:

Vikas Patel Project Manager

ResultLink)

Email your PM >

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name: LMC BOU
Work Order Number: 17-04-1778

1	Work Order Narrative	3
2	QC Association Summary	4
3	Detections Summary	5
4	Client Sample Data. 4.1 EPA 218.6 Hexavalent Chromium Low Level (Aqueous). 4.2 EPA 6020 ICP/MS Metals (Aqueous). 4.3 1,4-Dioxane by EPA 8270C (M) Isotope Dilution (Aqueous). 4.4 EPA 8260B Volatile Organics (Aqueous). 4.5 EPA 8260B SIM Emergent Volatiles (Aqueous).	6 7 8 9 24
5	Quality Control Sample Data. 5.1 MS/MSD. 5.2 PDS/PDSD. 5.3 LCS/LCSD.	26 26 32 33
6	Sample Analysis Summary	39
7	Glossary of Terms and Qualifiers	40
8	Chain-of-Custody/Sample Receipt Form	41

Work Order Narrative

Work Order: 17-04-1778 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 04/24/17. They were assigned to Work Order 17-04-1778.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

QC Association Summary

Work Order: 17-04-1778					Page 1 of 1	
Client Sample ID	Method Name	Type	Ext Name	Instrument	MS/MSD/SDP	LCS/LCSD
LTB-20170424	EPA 8260B Volatile Organics		EPA 5030C	GC/MS L	170504S018	170504L022
LTB-20170424	EPA 8260B SIM Emergent Volatiles		EPA 5030C	GC/MS M	170501S019	170501L036
B-1-CW25-N-17Q2	EPA 218.6 Hexavalent Chromium Low Level		N/A	IC 16	170424S01	170424L01
B-1-CW25-N-17Q2	EPA 6020 ICP/MS Metals		EPA 3020A Total	ICP/MS 03	170426SA1	170426LA1
B-1-CW25-N-17Q2	EPA 8260B Volatile Organics		EPA 5030C	GC/MS L	170504S018	170504L022
B-1-CW25-N-17Q2	EPA 8260B Volatile Organics	R	EPA 5030C	GC/MS L	170504S018	170504L022
B-1-CW25-N-17Q2	EPA 8260B SIM Emergent Volatiles		EPA 5030C	GC/MS M	170426S017	170426L041
B-1-CW25-N-17Q2	1,4-Dioxane by EPA 8270C (M) Isotope Dilution		EPA 3510C	GC/MS DDD	170425S04	170425L04
B-1-CW25-FD-17Q2	EPA 218.6 Hexavalent Chromium Low Level		N/A	IC 16	170424S01	170424L01
B-1-CW25-FD-17Q2	EPA 6020 ICP/MS Metals		EPA 3020A Total	ICP/MS 03	170426SA1	170426LA1
B-1-CW25-FD-17Q2	EPA 8260B Volatile Organics		EPA 5030C	GC/MS L	170504S018	170504L022
B-1-CW25-FD-17Q2	EPA 8260B Volatile Organics	R	EPA 5030C	GC/MS L	170504S018	170504L022
B-1-CW25-FD-17Q2	EPA 8260B SIM Emergent Volatiles		EPA 5030C	GC/MS M	170426S017	170426L041
B-1-CW25-FD-17Q2	1,4-Dioxane by EPA 8270C (M) Isotope Dilution		EPA 3510C	GC/MS DDD	170425S04	170425L04
B-6-CW10-N-17Q2	EPA 218.6 Hexavalent Chromium Low Level		N/A	IC 16	170424S01	170424L01
B-6-CW10-N-17Q2	EPA 6020 ICP/MS Metals		EPA 3020A Total	ICP/MS 03	170426SA1	170426LA1
B-6-CW10-N-17Q2	EPA 8260B Volatile Organics		EPA 5030C	GC/MS L	170504S018	170504L022
B-6-CW10-N-17Q2	EPA 8260B SIM Emergent Volatiles		EPA 5030C	GC/MS M	170501S019	170501L036
B-6-CW10-N-17Q2	1,4-Dioxane by EPA 8270C (M) Isotope Dilution		EPA 3510C	GC/MS DDD	170425S04	170425L04

Robert Sabater

Detections Summary

Client: Tetra Tech, Inc.

Attn:

Work Order: 17-04-1778
Project Name: LMC BOU

301 E. Vanderbilt Way, Suite 450 San Bernardino, CA 92408-3562

Received: 04/24/17 Page 1 of 1

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	Method	Extraction
3-1-CW25-N-17Q2 (17-04-1778-2)						
Chromium, Hexavalent	3.8		0.020	ug/L	EPA 218.6	N/A
Chromium	0.00801		0.00100	mg/L	EPA 6020	EPA 3020A Total
1,1,2-Trichloro-1,2,2-Trifluoroethane	0.92		0.50	ug/L	EPA 8260B	EPA 5030C
1,1-Dichloroethene	0.62		0.50	ug/L	EPA 8260B	EPA 5030C
Acetone	4.1	J	4.0*	ug/L	EPA 8260B	EPA 5030C
Chloroform	2.6		0.50	ug/L	EPA 8260B	EPA 5030C
Trichloroethene	19		0.50	ug/L	EPA 8260B	EPA 5030C
Tetrachloroethene	72		2.0	ug/L	EPA 8260B	EPA 5030C
1,2,3-Trichloropropane	0.022		0.0050	ug/L	EPA 8260B SIM	EPA 5030C
3-1-CW25-FD-17Q2 (17-04-1778-3)						
Chromium, Hexavalent	3.8		0.020	ug/L	EPA 218.6	N/A
Chromium	0.00793		0.00100	mg/L	EPA 6020	EPA 3020A Total
1,1,2-Trichloro-1,2,2-Trifluoroethane	0.82		0.50	ug/L	EPA 8260B	EPA 5030C
1,1-Dichloroethene	0.51		0.50	ug/L	EPA 8260B	EPA 5030C
Chloroform	2.1		0.50	ug/L	EPA 8260B	EPA 5030C
Trichloroethene	15		0.50	ug/L	EPA 8260B	EPA 5030C
Tetrachloroethene	72		2.0	ug/L	EPA 8260B	EPA 5030C
1,2,3-Trichloropropane	0.022		0.0050	ug/L	EPA 8260B SIM	EPA 5030C
3-6-CW10-N-17Q2 (17-04-1778-4)						
Chromium, Hexavalent	0.28		0.020	ug/L	EPA 218.6	N/A
Chromium	0.00255		0.00100	mg/L	EPA 6020	EPA 3020A Total
1,1,2-Trichloro-1,2,2-Trifluoroethane	0.34	J	0.24*	ug/L	EPA 8260B	EPA 5030C
1,2,3-Trichloropropane	0.86	J	0.40*	ug/L	EPA 8260B	EPA 5030C
Carbon Tetrachloride	0.50	J	0.20*	ug/L	EPA 8260B	EPA 5030C
Chloroform	1.7		0.50	ug/L	EPA 8260B	EPA 5030C
Tetrachloroethene	30		0.50	ug/L	EPA 8260B	EPA 5030C
Trichloroethene	13		0.50	ug/L	EPA 8260B	EPA 5030C
c-1,2-Dichloroethene	0.35	J	0.20*	ug/L	EPA 8260B	EPA 5030C
1,2,3-Trichloropropane	1.5		0.12	ug/L	EPA 8260B SIM	EPA 5030C

Subcontracted analyses, if any, are not included in this summary.

^{*} MDL is shown

Qualifiers

Analytical Report

 Tetra Tech, Inc.
 Date Received:
 04/24/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-1778

 San Bernardino, CA 92408-3562
 Preparation:
 N/A

 Method:
 EPA 218.6

 Units:
 ug/L

Project: LMC BOU Page 1 of 1

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-1-CW25-N-17Q2	17-04-1778-2-G	04/24/17 11:29	Aqueous	IC 16	N/A	04/24/17 22:22	170424L01
Comment(s): - Results were evaluated t	to the MDL (DL), cond	centrations >= t	o the MDL (DL) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
Chromium, Hexavalent	3.8		0.020	0.0099	1.00		

B-1-CW25-FD-	17Q2	17-04-1778-3-G	04/24/17 11:29	Aqueous	IC 16	N/A	04/24/17 22:33	170424L01
Comment(s):	- Results were evaluated t	to the MDL (DL), cond	entrations >=	to the MDL (DL	.) but < RL (L	OQ), if found, a	re qualified with a	"J" flag.
<u>Parameter</u>		Resul	<u> t</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Q</u>	<u>(ualifiers</u>
Chromium, Hex	avalent	3.8		0.020	0.0099	1.00)	

B-6-CW10-N-1	7Q2	17-04-1778-4-K	04/24/17 15:46	Aqueous	IC 16	N/A	04/24/17 22:45	170424L01
Comment(s):	- Results were evaluated t	o the MDL (DL), cond	centrations >=	to the MDL (DL	.) but < RL (LC	Q), if found, are	e qualified with a	"J" flag.
<u>Parameter</u>		Resu	<u>lt</u>	<u>RL</u>	MDL	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
Chromium, Hex	avalent	0.28		0.020	0.0099	1.00		

Method Blank		099-14-567-239	N/A	Aqueous	IC 16	N/A	04/24/17 20:19	170424L01
Comment(s):	- Results were evaluated to t	he MDL (DL) conc	entrations >= to	the MDL (DI) but < RL ((LOO) if found	are qualified with a	".l" flag

 Parameter
 Result
 RL
 MDL
 DF

 Chromium, Hexavalent
 ND
 0.020
 0.0099
 1.00

04/24/17

17-04-1778

Page 1 of 1

Qualifiers

Project: LMC BOU

Comment(s):

Analytical Report

Date Received: Tetra Tech, Inc. Work Order: 301 E. Vanderbilt Way, Suite 450 San Bernardino, CA 92408-3562

Preparation: EPA 3020A Total Method: EPA 6020

Units: mg/L

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-1-CW25-N-17Q2	17-04-1778-2-I	04/24/17	Aqueous	ICP/MS 03	04/26/17	04/27/17 13:04	170426LA1

Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. <u>Parameter</u> Result <u>RL</u> <u>MDL</u> <u>DF</u> Qualifiers Chromium 0.00801 0.00100 0.000402 1.00

E	3-1-CW25-FD-17Q2	17-04-1778-3-H	04/24/17 11:29	Aqueous	ICP/MS 03	04/26/17	04/27/17 13:06	170426LA1
(Comment(s): - Results were evaluated to	the MDL (DL), cond	centrations >=	to the MDL (DL) but < RL (LOC	Q), if found, are	qualified with a	"J" flag.
<u> </u>	<u>Parameter</u>	<u>Resu</u>	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Q</u>	<u>(ualifiers</u>
(Chromium	0.007	793	0.00100	0.000402	1.00		

B-6-CW10-N-1	7Q2	17-04-1778-4-L	04/24/17 15:46	Aqueous	ICP/MS 03	04/26/17	04/27/17 13:09	170426LA1
Comment(s):	- Results were evaluated	to the MDL (DL), cond	centrations >:	to the MDL (D	L) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>		Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>(</u>	<u>Qualifiers</u>
Chromium		0.002	255	0.00100	0.000402	1.00		

Method Blank 096-06-003-5550 Aqueous ICP/MS 03 04/26/17 04/27/17 170426LA1 12:56

- Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

<u>Parameter</u> Result **MDL** <u>DF</u> ND 0.00100 0.000402 1.00 Chromium

Tetra Tech, Inc.

Date Received: 04/24/17

301 E. Vanderbilt Way, Suite 450 Work Order: 17-04-1778 San Bernardino, CA 92408-3562 Preparation: EPA 3510C

Method: EPA 8270C (M) Isotope Dilution

Units: ug/L

Project: LMC BOU Page 1 of 1

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-1-CW25-N-17Q2	17-04-1778-2-K	04/24/17 11:29	Aqueous	GC/MS DDD	04/25/17	04/26/17 04:18	170425L04
Comment(s): - Results were evaluated	to the MDL (DL), con	centrations >= t	o the MDL (DL	.) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	Qualifiers
1,4-Dioxane	ND		1.0	0.28	1.00		
Surrogate	Rec.	(%)	Control Limits	Qualifiers			
Nitrobenzene-d5	104		56-123				
1,4-Dioxane-d8(IDS-IS)	38	:	30-120				

B-1-CW25-FD-17Q2	17-04-1778-3-I	04/24/17 11:29	Aqueous	GC/MS DDD	04/25/17	04/26/17 04:33	170425L04
Comment(s): - Results were evaluated to	the MDL (DL), con	centrations >=	to the MDL (DL	.) but < RL (LOC	Q), if found, are	e qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
1,4-Dioxane	ND		1.0	0.28	1.00		
<u>Surrogate</u>	Rec.	<u>(%)</u>	Control Limits	<u>Qualifiers</u>			
Nitrobenzene-d5	88		56-123				
1,4-Dioxane-d8(IDS-IS)	42		30-120				

B-6-CW10-N-17	Q2	17-04-1778-4-M	04/24/17 15:46	Aqueous	GC/MS DDD	04/25/17	04/26/17 04:49	170425L04
Comment(s):	- Results were evaluated to	the MDL (DL), conc	entrations >=	to the MDL (DL	.) but < RL (LOC), if found, are	qualified with a	"J" flag.
<u>Parameter</u>		Resul	<u>t</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Q	<u>ualifiers</u>
1,4-Dioxane		ND		1.0	0.28	1.00		
<u>Surrogate</u>		<u>Rec. (</u>	(%)	Control Limits	Qualifiers			
Nitrobenzene-d5	5	81		56-123				
1,4-Dioxane-d8(I	IDS-IS)	41		30-120				

Method Blank		099-16-216-1019	N/A	Aqueous	GC/MS DDD	04/25/17	04/26/17 00:49	170425L04
Comment(s):	- Results were evaluated to t	he MDL (DL), conce	entrations >=	to the MDL (DL	.) but < RL (LOC	Q), if found, are	qualified with	a "J" flag.
<u>Parameter</u>		Result	<u>t</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
1,4-Dioxane		ND		1.0	0.28	1.00		
Surrogate		<u>Rec. (</u>	<u>%)</u>	Control Limits	Qualifiers			
Nitrobenzene-d5	j	117		56-123				
1,4-Dioxane-d8(IDS-IS)	42		30-120				

04/24/17

ug/L

Project: LMC BOU

Analytical Report

Date Received: Tetra Tech, Inc. Work Order: 301 E. Vanderbilt Way, Suite 450 San Bernardino, CA 92408-3562

17-04-1778 Preparation: **EPA 5030C** Method: **EPA 8260B** Units:

Page 1 of 15

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
LTB-20170424	17-04-1778-1-A	04/24/17 07:00	Aqueous	GC/MS L	05/04/17	05/04/17 20:44	170504L022	
Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.								
<u>Parameter</u>	Resu	<u>ult</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>(</u>	Qualifiers	
1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00			
1,1,1-Trichloroethane	ND		0.50	0.20	1.00			
1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00			
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		0.50	0.24	1.00			
1,1,2-Trichloroethane	ND		0.50	0.20	1.00			
1,1-Dichloroethane	ND		0.50	0.20	1.00			
1,1-Dichloroethene	ND		0.50	0.28	1.00			
1,1-Dichloropropene	ND		0.50	0.30	1.00			
1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00			
1,2,3-Trichloropropane	ND		1.0	0.40	1.00			
1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00			
1,2,4-Trimethylbenzene	ND		0.50	0.20	1.00			
1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00			
1,2-Dibromoethane	ND		0.50	0.20	1.00			
1,2-Dichlorobenzene	ND		0.50	0.20	1.00			
1,2-Dichloroethane	ND		0.50	0.20	1.00			
1,2-Dichloropropane	ND		0.50	0.20	1.00			
1,3,5-Trimethylbenzene	ND		0.50	0.20	1.00			
1,3-Dichlorobenzene	ND		0.50	0.28	1.00			
1,3-Dichloropropane	ND		1.0	0.40	1.00			
1,4-Dichlorobenzene	ND		0.50	0.20	1.00			
2,2-Dichloropropane	ND		1.0	0.40	1.00			
2-Butanone	ND		5.0	2.0	1.00			
2-Chlorotoluene	ND		0.50	0.20	1.00			
2-Hexanone	ND		10	4.0	1.00			
4-Chlorotoluene	ND		0.50	0.36	1.00			
4-Methyl-2-Pentanone	ND		5.0	2.0	1.00			
Acetone	ND		10	4.0	1.00			
Benzene	ND		0.50	0.20	1.00			
Bromobenzene	ND		0.50	0.32	1.00			
Bromochloromethane	ND		1.0	0.40	1.00			
Bromodichloromethane	ND		0.50	0.20	1.00			
Bromoform	ND		0.50	0.25	1.00			
Bromomethane	ND		1.0	0.40	1.00			

 Tetra Tech, Inc.
 Date Received:
 04/24/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-1778

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 2 of 15

					1 490 2 01 10
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Carbon Disulfide	ND	1.0	0.40	1.00	
Carbon Tetrachloride	ND	0.50	0.20	1.00	
Chlorobenzene	ND	0.50	0.20	1.00	
Chloroethane	ND	0.50	0.32	1.00	
Chloroform	ND	0.50	0.20	1.00	
Chloromethane	ND	0.50	0.29	1.00	
Dibromochloromethane	ND	0.50	0.20	1.00	
Dibromomethane	ND	0.50	0.20	1.00	
Dichlorodifluoromethane	ND	1.0	0.40	1.00	
Ethylbenzene	ND	0.50	0.20	1.00	
Isopropylbenzene	ND	0.50	0.20	1.00	
Methylene Chloride	ND	1.0	0.80	1.00	
Naphthalene	ND	1.0	0.40	1.00	
Styrene	ND	0.50	0.20	1.00	
Tetrachloroethene	ND	0.50	0.20	1.00	
Toluene	ND	0.50	0.20	1.00	
t-1,2-Dichloroethene	ND	0.50	0.20	1.00	
Trichloroethene	ND	0.50	0.29	1.00	
Trichlorofluoromethane	ND	0.50	0.20	1.00	
Vinyl Acetate	ND	5.0	2.0	1.00	
Vinyl Chloride	ND	0.50	0.20	1.00	
c-1,3-Dichloropropene	ND	0.50	0.20	1.00	
c-1,2-Dichloroethene	ND	0.50	0.20	1.00	
n-Butylbenzene	ND	0.50	0.20	1.00	
n-Propylbenzene	ND	0.50	0.20	1.00	
o-Xylene	ND	0.50	0.32	1.00	
p-Isopropyltoluene	ND	0.50	0.20	1.00	
sec-Butylbenzene	ND	0.50	0.20	1.00	
t-1,3-Dichloropropene	ND	0.50	0.20	1.00	
tert-Butylbenzene	ND	0.50	0.20	1.00	
p/m-Xylene	ND	0.50	0.20	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	0.50	0.20	1.00	
2-Chloroethyl Vinyl Ether	ND	5.0	4.2	1.00	
Hexachloro-1,3-Butadiene	ND	2.0	0.80	1.00	
lodomethane	ND	10	5.0	1.00	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	90	68-120			
Dibromofluoromethane	107	80-127			

Tetra Tech, Inc.	Date Received:	04/24/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-1778
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOU		Page 3 of 15

<u>Surrogate</u>	Rec. (%)	Control Limits	<u>Qualifiers</u>
1,2-Dichloroethane-d4	109	80-128	
Toluene-d8	100	80-120	

04/24/17

17-04-1778

Project: LMC BOU

Analytical Report

Tetra Tech, Inc.

301 E. Vanderbilt Way, Suite 450

San Bernardino, CA 92408-3562

Date Received:

Work Order:

Preparation:

Preparation: EPA 5030C Method: EPA 8260B Units: ug/L

Page 4 of 15

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-1-CW25-N-17Q2	17-04-1778-2-A	04/24/17 11:29	Aqueous	GC/MS L	05/04/17	05/04/17 17:38	170504L022
Comment(s): - Results were evaluate	d to the MDL (DL), cond	entrations >=	to the MDL (DI	L) but < RL (LC	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	MDL	<u>DF</u>	<u>(</u>	Qualifiers
1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,1-Trichloroethane	ND		0.50	0.20	1.00		
1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane	0.92		0.50	0.24	1.00		
1,1,2-Trichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethene	0.62		0.50	0.28	1.00		
1,1-Dichloropropene	ND		0.50	0.30	1.00		
1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,3-Trichloropropane	ND		1.0	0.40	1.00		
1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,4-Trimethylbenzene	ND		0.50	0.20	1.00		
1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00		
1,2-Dibromoethane	ND		0.50	0.20	1.00		
1,2-Dichlorobenzene	ND		0.50	0.20	1.00		
1,2-Dichloroethane	ND		0.50	0.20	1.00		
1,2-Dichloropropane	ND		0.50	0.20	1.00		
1,3,5-Trimethylbenzene	ND		0.50	0.20	1.00		
1,3-Dichlorobenzene	ND		0.50	0.28	1.00		
1,3-Dichloropropane	ND		1.0	0.40	1.00		
1,4-Dichlorobenzene	ND		0.50	0.20	1.00		
2,2-Dichloropropane	ND		1.0	0.40	1.00		
2-Butanone	ND		5.0	2.0	1.00		
2-Chlorotoluene	ND		0.50	0.20	1.00		
2-Hexanone	ND		10	4.0	1.00		
4-Chlorotoluene	ND		0.50	0.36	1.00		
4-Methyl-2-Pentanone	ND		5.0	2.0	1.00		
Acetone	4.1		10	4.0	1.00		I
Benzene	ND		0.50	0.20	1.00		
Bromobenzene	ND		0.50	0.32	1.00		
Bromochloromethane	ND		1.0	0.40	1.00		
Bromodichloromethane	ND		0.50	0.20	1.00		
Bromoform	ND		0.50	0.25	1.00		
Bromomethane	ND		1.0	0.40	1.00		

 Tetra Tech, Inc.
 Date Received:
 04/24/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-1778

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 5 of 15

Project: LIMC BOU					Page 5 of 15
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
Carbon Disulfide	ND	1.0	0.40	1.00	
Carbon Tetrachloride	ND	0.50	0.20	1.00	
Chlorobenzene	ND	0.50	0.20	1.00	
Chloroethane	ND	0.50	0.32	1.00	
Chloroform	2.6	0.50	0.20	1.00	
Chloromethane	ND	0.50	0.29	1.00	
Dibromochloromethane	ND	0.50	0.20	1.00	
Dibromomethane	ND	0.50	0.20	1.00	
Dichlorodifluoromethane	ND	1.0	0.40	1.00	
Ethylbenzene	ND	0.50	0.20	1.00	
Isopropylbenzene	ND	0.50	0.20	1.00	
Methylene Chloride	ND	1.0	0.80	1.00	
Naphthalene	ND	1.0	0.40	1.00	
Styrene	ND	0.50	0.20	1.00	
Toluene	ND	0.50	0.20	1.00	
t-1,2-Dichloroethene	ND	0.50	0.20	1.00	
Trichloroethene	19	0.50	0.29	1.00	
Trichlorofluoromethane	ND	0.50	0.20	1.00	
Vinyl Acetate	ND	5.0	2.0	1.00	
Vinyl Chloride	ND	0.50	0.20	1.00	
c-1,3-Dichloropropene	ND	0.50	0.20	1.00	
c-1,2-Dichloroethene	ND	0.50	0.20	1.00	
n-Butylbenzene	ND	0.50	0.20	1.00	
n-Propylbenzene	ND	0.50	0.20	1.00	
o-Xylene	ND	0.50	0.32	1.00	
p-Isopropyltoluene	ND	0.50	0.20	1.00	
sec-Butylbenzene	ND	0.50	0.20	1.00	
t-1,3-Dichloropropene	ND	0.50	0.20	1.00	
tert-Butylbenzene	ND	0.50	0.20	1.00	
p/m-Xylene	ND	0.50	0.20	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	0.50	0.20	1.00	
2-Chloroethyl Vinyl Ether	ND	5.0	4.2	1.00	
Hexachloro-1,3-Butadiene	ND	2.0	0.80	1.00	
Iodomethane	ND	10	5.0	1.00	
Surrogate	Rec. (%)	Control Limits	Qualifiers		
1,4-Bromofluorobenzene	89	68-120			
Dibromofluoromethane	106	80-127			
1,2-Dichloroethane-d4	105	80-128			

Date Received: 04/24/17 Tetra Tech, Inc. Work Order: 17-04-1778 301 E. Vanderbilt Way, Suite 450 Preparation: **EPA 5030C** San Bernardino, CA 92408-3562 Method: **EPA 8260B** Units: ug/L

Page 6 of 15 Project: LMC BOU

Surrogate Rec. (%) **Control Limits** Qualifiers Toluene-d8 102 80-120

B-1-CW25-N-17Q2	17-04-1778-2-B	04/24/17	Aqueous	GC/MS L	05/04/17	05/04/17	170504L022
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID

Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. <u>Parameter</u> Result <u>RL</u> **MDL** <u>DF</u> 2.0 0.80 4.00 Tetrachloroethene 72

Surrogate	Rec. (%)	Control Limits	Qualifiers
1,4-Bromofluorobenzene	90	68-120	
Dibromofluoromethane	105	80-127	
1,2-Dichloroethane-d4	108	80-128	
Toluene-d8	100	80-120	

Tetra Tech, Inc. 301 E. Vanderbilt Way, Suite 450 San Bernardino, CA 92408-3562

Project: LMC BOU

Date Received:
Work Order:
Preparation:
Method:

17-04-1778 EPA 5030C EPA 8260B

04/24/17

ug/L

Units: u
Page 7 of 15

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-1-CW25-FD-17Q2	17-04-1778-3-A	04/24/17 11:29	Aqueous	GC/MS L	05/04/17	05/04/17 18:12	170504L022
Comment(s): - Results were evaluated	to the MDL (DL), cond	entrations >=	to the MDL (DI	L) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	Qualifiers
1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,1-Trichloroethane	ND		0.50	0.20	1.00		
1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane	0.82		0.50	0.24	1.00		
1,1,2-Trichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethene	0.51		0.50	0.28	1.00		
1,1-Dichloropropene	ND		0.50	0.30	1.00		
1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,3-Trichloropropane	ND		1.0	0.40	1.00		
1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,4-Trimethylbenzene	ND		0.50	0.20	1.00		
1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00		
1,2-Dibromoethane	ND		0.50	0.20	1.00		
1,2-Dichlorobenzene	ND		0.50	0.20	1.00		
1,2-Dichloroethane	ND		0.50	0.20	1.00		
1,2-Dichloropropane	ND		0.50	0.20	1.00		
1,3,5-Trimethylbenzene	ND		0.50	0.20	1.00		
1,3-Dichlorobenzene	ND		0.50	0.28	1.00		
1,3-Dichloropropane	ND		1.0	0.40	1.00		
1,4-Dichlorobenzene	ND		0.50	0.20	1.00		
2,2-Dichloropropane	ND		1.0	0.40	1.00		
2-Butanone	ND		5.0	2.0	1.00		
2-Chlorotoluene	ND		0.50	0.20	1.00		
2-Hexanone	ND		10	4.0	1.00		
4-Chlorotoluene	ND		0.50	0.36	1.00		
4-Methyl-2-Pentanone	ND		5.0	2.0	1.00		
Acetone	ND		10	4.0	1.00		
Benzene	ND		0.50	0.20	1.00		
Bromobenzene	ND		0.50	0.32	1.00		
Bromochloromethane	ND		1.0	0.40	1.00		
Bromodichloromethane	ND		0.50	0.20	1.00		
Bromoform	ND		0.50	0.25	1.00		
Bromomethane	ND		1.0	0.40	1.00		

 Tetra Tech, Inc.
 Date Received:
 04/24/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-1778

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 8 of 15

Project: LIMC BOU					Page 8 of 15
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
Carbon Disulfide	ND	1.0	0.40	1.00	
Carbon Tetrachloride	ND	0.50	0.20	1.00	
Chlorobenzene	ND	0.50	0.20	1.00	
Chloroethane	ND	0.50	0.32	1.00	
Chloroform	2.1	0.50	0.20	1.00	
Chloromethane	ND	0.50	0.29	1.00	
Dibromochloromethane	ND	0.50	0.20	1.00	
Dibromomethane	ND	0.50	0.20	1.00	
Dichlorodifluoromethane	ND	1.0	0.40	1.00	
Ethylbenzene	ND	0.50	0.20	1.00	
Isopropylbenzene	ND	0.50	0.20	1.00	
Methylene Chloride	ND	1.0	0.80	1.00	
Naphthalene	ND	1.0	0.40	1.00	
Styrene	ND	0.50	0.20	1.00	
Toluene	ND	0.50	0.20	1.00	
t-1,2-Dichloroethene	ND	0.50	0.20	1.00	
Trichloroethene	15	0.50	0.29	1.00	
Trichlorofluoromethane	ND	0.50	0.20	1.00	
Vinyl Acetate	ND	5.0	2.0	1.00	
Vinyl Chloride	ND	0.50	0.20	1.00	
c-1,3-Dichloropropene	ND	0.50	0.20	1.00	
c-1,2-Dichloroethene	ND	0.50	0.20	1.00	
n-Butylbenzene	ND	0.50	0.20	1.00	
n-Propylbenzene	ND	0.50	0.20	1.00	
o-Xylene	ND	0.50	0.32	1.00	
p-Isopropyltoluene	ND	0.50	0.20	1.00	
sec-Butylbenzene	ND	0.50	0.20	1.00	
t-1,3-Dichloropropene	ND	0.50	0.20	1.00	
tert-Butylbenzene	ND	0.50	0.20	1.00	
p/m-Xylene	ND	0.50	0.20	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	0.50	0.20	1.00	
2-Chloroethyl Vinyl Ether	ND	5.0	4.2	1.00	
Hexachloro-1,3-Butadiene	ND	2.0	0.80	1.00	
lodomethane	ND	10	5.0	1.00	
Surrogate	Rec. (%)	Control Limits	Qualifiers		
1,4-Bromofluorobenzene	89	68-120			
Dibromofluoromethane	104	80-127			
1,2-Dichloroethane-d4	101	80-128			

1,2-Dichloroethane-d4

Toluene-d8

Analytical Report

Tetra Tech, Inc.	Date Received:	04/24/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-1778
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOU		Page 9 of 15

Surrogate	Rec. (%)	Control Limits	Qualifiers
Toluene-d8	100	80-120	

110

101

B-1-CW25-FD-17Q2	17-04-1778-3-B	04/24/17	Aqueous	GC/MS L	05/04/17	05/04/17	170504L022
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID

Comment(s): - Results were evaluated to the MDL (DL	.), concentrations >=	to the MDL (DL) bu	it < RL (LOQ), if four	nd, are qualified with	ı a "J" flag.
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Tetrachloroethene	72	2.0	0.80	4.00	
<u>Surrogate</u>	Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	88	68-120			
Dibromofluoromethane	107	80-127			

80-128

80-120

 Tetra Tech, Inc.
 Date Received:
 04/24/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-1778

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

Method: EPA 8260B

Units: ug/L

Project: LMC BOU Page 10 of 15

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-6-CW10-N-17Q2	17-04-1778-4-A	04/24/17 15:46	Aqueous	GC/MS L	05/04/17	05/04/17 17:08	170504L022
Comment(s): - Results were evaluated	to the MDL (DL), cond	entrations >=	to the MDL (DI	L) but < RL (LO	Q), if found, are	qualified with a	a "J" flag.
<u>Parameter</u>	Resul	<u>t</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	9	<u>Qualifiers</u>
1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,1-Trichloroethane	ND		0.50	0.20	1.00		
1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane	0.34		0.50	0.24	1.00		J
1,1,2-Trichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethene	ND		0.50	0.28	1.00		
1,1-Dichloropropene	ND		0.50	0.30	1.00		
1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,3-Trichloropropane	0.86		1.0	0.40	1.00		J
1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,4-Trimethylbenzene	ND		0.50	0.20	1.00		
1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00		
1,2-Dibromoethane	ND		0.50	0.20	1.00		
1,2-Dichlorobenzene	ND		0.50	0.20	1.00		
1,2-Dichloroethane	ND		0.50	0.20	1.00		
1,2-Dichloropropane	ND		0.50	0.20	1.00		
1,3,5-Trimethylbenzene	ND		0.50	0.20	1.00		
1,3-Dichlorobenzene	ND		0.50	0.28	1.00		
1,3-Dichloropropane	ND		1.0	0.40	1.00		
1,4-Dichlorobenzene	ND		0.50	0.20	1.00		
2,2-Dichloropropane	ND		1.0	0.40	1.00		
2-Butanone	ND		5.0	2.0	1.00		
2-Chlorotoluene	ND		0.50	0.20	1.00		
2-Hexanone	ND		10	4.0	1.00		
4-Chlorotoluene	ND		0.50	0.36	1.00		
4-Methyl-2-Pentanone	ND		5.0	2.0	1.00		
Acetone	ND		10	4.0	1.00		
Benzene	ND		0.50	0.20	1.00		
Bromobenzene	ND		0.50	0.32	1.00		
Bromochloromethane	ND		1.0	0.40	1.00		
Bromodichloromethane	ND		0.50	0.20	1.00		
Bromoform	ND		0.50	0.25	1.00		
Bromomethane	ND		1.0	0.40	1.00		

 Tetra Tech, Inc.
 Date Received:
 04/24/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-1778

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 11 of 15

Project: LMC BOU					Page 11 of 15
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Carbon Disulfide	ND	1.0	0.40	1.00	
Carbon Tetrachloride	0.50	0.50	0.20	1.00	J
Chlorobenzene	ND	0.50	0.20	1.00	
Chloroethane	ND	0.50	0.32	1.00	
Chloroform	1.7	0.50	0.20	1.00	
Chloromethane	ND	0.50	0.29	1.00	
Dibromochloromethane	ND	0.50	0.20	1.00	
Dibromomethane	ND	0.50	0.20	1.00	
Dichlorodifluoromethane	ND	1.0	0.40	1.00	
Ethylbenzene	ND	0.50	0.20	1.00	
Isopropylbenzene	ND	0.50	0.20	1.00	
Methylene Chloride	ND	1.0	0.80	1.00	
Naphthalene	ND	1.0	0.40	1.00	
Styrene	ND	0.50	0.20	1.00	
Tetrachloroethene	30	0.50	0.20	1.00	
Toluene	ND	0.50	0.20	1.00	
t-1,2-Dichloroethene	ND	0.50	0.20	1.00	
Trichloroethene	13	0.50	0.29	1.00	
Trichlorofluoromethane	ND	0.50	0.20	1.00	
Vinyl Acetate	ND	5.0	2.0	1.00	
Vinyl Chloride	ND	0.50	0.20	1.00	
c-1,3-Dichloropropene	ND	0.50	0.20	1.00	
c-1,2-Dichloroethene	0.35	0.50	0.20	1.00	J
n-Butylbenzene	ND	0.50	0.20	1.00	
n-Propylbenzene	ND	0.50	0.20	1.00	
o-Xylene	ND	0.50	0.32	1.00	
p-Isopropyltoluene	ND	0.50	0.20	1.00	
sec-Butylbenzene	ND	0.50	0.20	1.00	
t-1,3-Dichloropropene	ND	0.50	0.20	1.00	
tert-Butylbenzene	ND	0.50	0.20	1.00	
p/m-Xylene	ND	0.50	0.20	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	0.50	0.20	1.00	
2-Chloroethyl Vinyl Ether	ND	5.0	4.2	1.00	
Hexachloro-1,3-Butadiene	ND	2.0	0.80	1.00	
lodomethane	ND	10	5.0	1.00	
<u>Surrogate</u>	Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	88	68-120			
Dibromofluoromethane	105	80-127			

Tetra Tech, Inc.	Date Received:	04/24/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-1778
San Bernardino, CA 92408-3562	Preparation:	
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOU		Page 12 of 15

<u>Surrogate</u>	Rec. (%)	Control Limits	<u>Qualifiers</u>
1,2-Dichloroethane-d4	95	80-128	
Toluene-d8	99	80-120	

Project: LMC BOU

Analytical Report

 Tetra Tech, Inc.
 Date Received:
 04/24/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-1778

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

Method: EPA 8260B

Units: ug/L Page 13 of 15

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-10-025-4680	N/A	Aqueous	GC/MS L	05/04/17	05/04/17 16:26	170504L022
Comment(s): - Results were evaluated	to the MDL (DL), conc	entrations >= t	o the MDL (DI	L) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resul	<u>t </u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>(</u>	Qualifiers
1,1,1,2-Tetrachloroethane	ND	(0.50	0.20	1.00		
1,1,1-Trichloroethane	ND	(0.50	0.20	1.00		
1,1,2,2-Tetrachloroethane	ND	(0.50	0.20	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	(0.50	0.24	1.00		
1,1,2-Trichloroethane	ND	(0.50	0.20	1.00		
1,1-Dichloroethane	ND	(0.50	0.20	1.00		
1,1-Dichloroethene	ND	(0.50	0.28	1.00		
1,1-Dichloropropene	ND	(0.50	0.30	1.00		
1,2,3-Trichlorobenzene	ND	(0.50	0.20	1.00		
1,2,3-Trichloropropane	ND		1.0	0.40	1.00		
1,2,4-Trichlorobenzene	ND	(0.50	0.20	1.00		
1,2,4-Trimethylbenzene	ND	(0.50	0.20	1.00		
1,2-Dibromo-3-Chloropropane	ND	į	5.0	2.0	1.00		
1,2-Dibromoethane	ND	(0.50	0.20	1.00		
1,2-Dichlorobenzene	ND	(0.50	0.20	1.00		
1,2-Dichloroethane	ND	(0.50	0.20	1.00		
1,2-Dichloropropane	ND	(0.50	0.20	1.00		
1,3,5-Trimethylbenzene	ND	(0.50	0.20	1.00		
1,3-Dichlorobenzene	ND	(0.50	0.28	1.00		
1,3-Dichloropropane	ND		1.0	0.40	1.00		
1,4-Dichlorobenzene	ND	(0.50	0.20	1.00		
2,2-Dichloropropane	ND		1.0	0.40	1.00		
2-Butanone	ND	ļ	5.0	2.0	1.00		
2-Chlorotoluene	ND	(0.50	0.20	1.00		
2-Hexanone	ND		10	4.0	1.00		
4-Chlorotoluene	ND	(0.50	0.36	1.00		
4-Methyl-2-Pentanone	ND	Į	5.0	2.0	1.00		
Acetone	ND		10	4.0	1.00		
Benzene	ND	(0.50	0.20	1.00		
Bromobenzene	ND	(0.50	0.32	1.00		
Bromochloromethane	ND		1.0	0.40	1.00		
Bromodichloromethane	ND	(0.50	0.20	1.00		
Bromoform	ND	(0.50	0.25	1.00		
Bromomethane	ND		1.0	0.40	1.00		

 Tetra Tech, Inc.
 Date Received:
 04/24/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-1778

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 14 of 15

<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Carbon Disulfide	ND	1.0	0.40	1.00	
Carbon Tetrachloride	ND	0.50	0.20	1.00	
Chlorobenzene	ND	0.50	0.20	1.00	
Chloroethane	ND	0.50	0.32	1.00	
Chloroform	ND	0.50	0.20	1.00	
Chloromethane	ND	0.50	0.29	1.00	
Dibromochloromethane	ND	0.50	0.20	1.00	
Dibromomethane	ND	0.50	0.20	1.00	
Dichlorodifluoromethane	ND	1.0	0.40	1.00	
Ethylbenzene	ND	0.50	0.20	1.00	
Isopropylbenzene	ND	0.50	0.20	1.00	
Methylene Chloride	ND	1.0	0.80	1.00	
Naphthalene	ND	1.0	0.40	1.00	
Styrene	ND	0.50	0.20	1.00	
Tetrachloroethene	ND	0.50	0.20	1.00	
Toluene	ND	0.50	0.20	1.00	
t-1,2-Dichloroethene	ND	0.50	0.20	1.00	
Trichloroethene	ND	0.50	0.29	1.00	
Trichlorofluoromethane	ND	0.50	0.20	1.00	
Vinyl Acetate	ND	5.0	2.0	1.00	
Vinyl Chloride	ND	0.50	0.20	1.00	
c-1,3-Dichloropropene	ND	0.50	0.20	1.00	
c-1,2-Dichloroethene	ND	0.50	0.20	1.00	
n-Butylbenzene	ND	0.50	0.20	1.00	
n-Propylbenzene	ND	0.50	0.20	1.00	
o-Xylene	ND	0.50	0.32	1.00	
p-Isopropyltoluene	ND	0.50	0.20	1.00	
sec-Butylbenzene	ND	0.50	0.20	1.00	
t-1,3-Dichloropropene	ND	0.50	0.20	1.00	
tert-Butylbenzene	ND	0.50	0.20	1.00	
p/m-Xylene	ND	0.50	0.20	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	0.50	0.20	1.00	
2-Chloroethyl Vinyl Ether	ND	5.0	4.2	1.00	
Hexachloro-1,3-Butadiene	ND	2.0	0.80	1.00	
Iodomethane	ND	10	5.0	1.00	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	89	68-120			
Dibromofluoromethane	101	80-127			

Tetra Tech, Inc.	Date Received:	04/24/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-1778
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOLL		Page 15 of 15

Surrogate	Rec. (%)	Control Limits	Qualifiers
1,2-Dichloroethane-d4	106	80-128	
Toluene-d8	99	80-120	

170426L041

B-1-CW25-N-17Q2

Analytical Report

 Tetra Tech, Inc.
 Date Received:
 04/24/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-1778

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B SIM

Units: ug/L

04/26/17

04/27/17

Project: LMC BOU Page 1 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
LTB-20170424	17-04-1778-1-C	04/24/17 07:00	Aqueous	GC/MS M	05/01/17	05/01/17 12:42	170501L036
Comment(s): - Results were evaluated to	o the MDL (DL), cond	centrations >= t	to the MDL (DL) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	ı <u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
1,2,3-Trichloropropane	ND		0.0050	0.0025	1.00		
Surrogate 1,4-Dichlorobutane	<u>Rec.</u> 99		Control Limits 80-120	Qualifiers			

	11:29			03:26			
Comment(s): - Results were	evaluated to the MDL (DL), concentration	but < RL (LOQ),	if found, are qualifi	ed with a "J" flag.			
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>		
1,2,3-Trichloropropane	0.022	0.0050	0.0025	1.00			
<u>Surrogate</u>	Rec. (%)	Control Limits	<u>Qualifiers</u>				
1,4-Dichlorobutane	120	67-133					

Aqueous

GC/MS M

04/24/17

17-04-1778-2-D

B-1-CW25-FD-17Q2		04/24/17 11:29	Aqueous	GC/MS M	04/26/17	04/27/17 03:56	170426L041
Comment(s): - Results were evaluated to	the MDL (DL), conce	entrations >= to	the MDL (DL)	but < RL (LOQ), if found, are o	qualified with a "	J" flag.
<u>Parameter</u>	Result	<u>RI</u>	L	<u>MDL</u>	<u>DF</u>	<u>Q</u> ı	<u>ıalifiers</u>
1,2,3-Trichloropropane	0.022	0.0	0050	0.0025	1.00		
<u>Surrogate</u> 1,4-Dichlorobutane	<u>Rec. (9</u> 120		ontrol Limits 7-133	<u>Qualifiers</u>			

B-6-CW10-N-17Q2	17-04-1778-4-G	04/24/17 15:46	Aqueous	GC/MS M	05/01/17	05/01/17 13:11	170501L036
Comment(s): - Results were evaluated to	the MDL (DL), conc	entrations >= to tl	he MDL (DL)) but < RL (LOC	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	<u>Resul</u>	<u>t</u> <u>RL</u>		<u>MDL</u>	<u>DF</u>	Q	<u>ualifiers</u>
1,2,3-Trichloropropane	1.5	0.1	2	0.062	25.0		
<u>Surrogate</u>	Rec. (<u>(%)</u> <u>Co</u>	ntrol Limits	<u>Qualifiers</u>			
1,4-Dichlorobutane	119	80-	-120				

04/24/17

EPA 5030C

Analytical Report

Date Received: Tetra Tech, Inc. Work Order: 17-04-1778 301 E. Vanderbilt Way, Suite 450

San Bernardino, CA 92408-3562 Method: **EPA 8260B SIM**

Preparation:

Units: ug/L

Page 2 of 2 Project: LMC BOU

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-15-118-495	N/A	Aqueous	GC/MS M	04/26/17	04/26/17 21:59	170426L041

Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

<u>Parameter</u> Result <u>RL</u> <u>MDL</u> <u>DF</u> Qualifiers

1,2,3-Trichloropropane ND 0.0050 0.0025 1.00

Control Limits Surrogate Rec. (%) Qualifiers

1,4-Dichlorobutane 108 67-133

Method Blank		099-15-118-496	N/A	Aqueous	GC/MS M	05/01/17	05/01/17 12:11	170501L036
Comment(s):	- Results were evaluated to	the MDL (DL), conc	entrations >	to the MDL (DL) but < RL (LO	Q), if found, are	qualified with a "	J" flag.
<u>Parameter</u>		Resul	<u>t</u>	<u>RL</u>	MDL	<u>DF</u>	<u>Q</u> ı	<u>ıalifiers</u>
1,2,3-Trichloropro	opane	ND		0.0050	0.0025	1.00		

Surrogate Rec. (%) **Control Limits** Qualifiers

1,4-Dichlorobutane 80-120

 Tetra Tech, Inc.
 Date Received:
 04/24/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-1778

 San Bernardino, CA 92408-3562
 Preparation:
 N/A

 Method:
 EPA 218.6

Project: LMC BOU Page 1 of 6

Quality Control Sample ID	Туре	M	1atrix	Instrument	Date Prepared	Date Analy	yzed	MS/MSD Bate	ch Number
17-04-1764-4	Sample	А	queous	IC 16	N/A	04/24/17 2	21:04	170424S01	
17-04-1764-4	Matrix Spike	Α	queous	IC 16	N/A	04/24/17 2	21:37	170424S01	
17-04-1764-4	Matrix Spike Dup	olicate A	queous	IC 16	N/A	04/24/17 2	21:49	170424S01	
Parameter	Sample Sp Conc. Ac	pike <u>MS</u> dded <u>Co</u>	S MS onc. %Re	MSD c. Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Chromium, Hexavalent	10.42 10	0.00 20.	.94 105	20.71	103	85-121	1	0-25	

Date Received: 04/24/17 Tetra Tech, Inc. Work Order: 17-04-1778 301 E. Vanderbilt Way, Suite 450 Preparation: EPA 3020A Total San Bernardino, CA 92408-3562 Method: EPA 6020

Project: LMC BOU Page 2 of 6

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Bato	ch Number
17-04-1676-4	Sample	Aqueous	ICP/MS 03	04/26/17	04/27/17 13:34	170426SA1	
17-04-1676-4	Matrix Spike	Aqueous	ICP/MS 03	04/26/17	04/27/17 13:24	170426SA1	
17-04-1676-4	Matrix Spike Duplica	e Aqueous	ICP/MS 03	04/26/17	04/27/17 13:26	170426SA1	
<u>Parameter</u>	Sample Spike Conc. Added	MS <u>N</u> <u>N</u> <u>Conc.</u> 9	MSD MSD Conc.	MSD %Rec.	%Rec. CL RPD	RPD CL	Qualifiers
Chromium	ND 0.100	0.09415 9	4 0.09830	98	73-133 4	0-11	

Date Received: 04/24/17 Tetra Tech, Inc. Work Order: 17-04-1778 301 E. Vanderbilt Way, Suite 450

Preparation: **EPA 3510C** San Bernardino, CA 92408-3562

Method: EPA 8270C (M) Isotope Dilution Project: LMC BOU Page 3 of 6

Quality Control Sample ID	Туре		Matrix	Ir	nstrument	Date Prepared	Date Anal	yzed	MS/MSD Bat	ch Number
17-04-1707-7	Sample		Aqueous	G	C/MS DDD	04/25/17	04/26/17	01:53	170425S04	
17-04-1707-7	Matrix Spike		Aqueous	G	C/MS DDD	04/25/17	04/26/17	01:21	170425S04	
17-04-1707-7	Matrix Spike Du	plicate	Aqueous	G	C/MS DDD	04/25/17	04/26/17	01:37	170425S04	
<u>Parameter</u>	Sample S Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,4-Dioxane	ND 2	20.00	20.54	103	19.77	99	50-130	4	0-20	

 Tetra Tech, Inc.
 Date Received:
 04/24/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-1778

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

Project: LMC BOU Page 4 of 6

Quality Control Sample ID	Type		Matrix	Ir	nstrument	Date Prepared	l Date Ana	lvzed	MS/MSD Bat	ch Number
B-6-CW10-N-17Q2	Sample		Aqueou	ıs G	C/MS L	05/04/17	05/04/17	17:08	170504S018	
B-6-CW10-N-17Q2	Matrix Spike		Aqueou	ıs G	C/MS L	05/04/17	05/04/17	18:42	170504S018	
B-6-CW10-N-17Q2	Matrix Spike	Duplicate	Aqueou	ıs G	C/MS L	05/04/17	05/04/17	19:13	170504S018	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,1-Dichloroethene	ND	10.00	7.749	77	8.407	84	66-126	8	0-20	
1,2-Dibromoethane	ND	10.00	8.802	88	8.557	86	75-126	3	0-20	
1,2-Dichlorobenzene	ND	10.00	9.070	91	8.814	88	75-125	3	0-20	
1,2-Dichloroethane	ND	10.00	8.651	87	8.545	85	75-127	1	0-20	
Benzene	ND	10.00	8.155	82	8.298	83	75-125	2	0-20	
Carbon Tetrachloride	ND	10.00	7.690	77	8.251	83	69-135	7	0-20	
Chlorobenzene	ND	10.00	8.471	85	8.368	84	75-125	1	0-20	
Ethylbenzene	ND	10.00	8.664	87	8.700	87	75-125	0	0-20	
Toluene	ND	10.00	8.425	84	8.424	84	75-125	0	0-20	
Trichloroethene	13.48	10.00	24.56	111	24.52	110	75-125	0	0-20	
Vinyl Chloride	ND	10.00	10.93	109	11.14	111	52-142	2	0-20	
o-Xylene	ND	10.00	8.793	88	8.773	88	75-127	0	0-20	
p/m-Xylene	ND	20.00	17.19	86	17.16	86	75-125	0	0-20	
Methyl-t-Butyl Ether (MTBE)	ND	10.00	8.639	86	8.826	88	71-131	2	0-20	

 Tetra Tech, Inc.
 Date Received:
 04/24/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-1778

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B SIM

 Project: LMC BOU
 Page 5 of 6

Quality Control Sample ID	Type		Matrix	Ins	trument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
17-04-1918-1	Sample		Aqueous	GC	C/MS M	04/26/17	04/26/17	22:28	170426S017	
17-04-1918-1	Matrix Spike		Aqueous	GC	C/MS M	04/26/17	04/26/17	22:58	170426S017	
17-04-1918-1	Matrix Spike	Duplicate	Aqueous	GC	C/MS M	04/26/17	04/26/17	23:28	170426S017	
<u>Parameter</u>	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	<u>Qualifiers</u>
1,2,3-Trichloropropane	ND	0.02000	0.01900	95	0.01960	98	55-135	3	0-30	

 Tetra Tech, Inc.
 Date Received:
 04/24/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-1778

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B SIM

 Project: LMC BOU
 Page 6 of 6

Quality Control Sample ID	Туре	Mai	trix	Instrument	Date Prepared	Date Analy	zed	MS/MSD Bate	ch Number
B-6-CW10-N-17Q2	Sample	Aqı	ueous	GC/MS M	05/01/17	05/01/17 13	3:11	170501S019	
B-6-CW10-N-17Q2	Matrix Spike	Aqı	ueous	GC/MS M	05/01/17	05/01/17 14	4:11	170501S019	
B-6-CW10-N-17Q2	Matrix Spike Dup	olicate Aqu	ueous	GC/MS M	05/01/17	05/01/17 14	4:41	170501S019	
Parameter	Sample S Conc. A	<u>pike</u> <u>MS</u> dded <u>Con</u>	<u>MS</u> c. %Red	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,2,3-Trichloropropane	1.472 0.	.5000 2.35	8 177	1.915	88	72-132	21	0-20	3,4

Quality Control - PDS

Date Received: 04/24/17 Tetra Tech, Inc. Work Order: 17-04-1778 301 E. Vanderbilt Way, Suite 450 Preparation: EPA 3020A Total San Bernardino, CA 92408-3562

> Method: EPA 6020

Project: LMC BOU Page 1 of 1

Quality Control Sample ID	Туре	N	Matrix	Instrument	Date Prepared	Date Analyzed	PDS/PDSD Batch Number
17-04-1676-4	Sample	A	Aqueous	ICP/MS 03	04/26/17 00:00	04/27/17 13:34	170426SA1
17-04-1676-4	PDS	A	Aqueous	ICP/MS 03	04/26/17 00:00	04/27/17 13:29	170426SA1
<u>Parameter</u>		Sample Conc.	Spike Added	d PDS Conc	PDS %Re	ec. <u>%</u> Rec. 0	CL Qualifiers
Chromium		ND	0.1000	0.09897	99	75-125	

RPD: Relative Percent Difference. CL: Control Limits

Quality Control - LCS

Tetra Tech, Inc.

Date Received:

04/24/17

301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-1778

San Bernardino, CA 92408-3562

Preparation:

N/A

Method:

EPA 218.6

Project: LMC BOU Page 1 of 6

Quality Control Sample ID	Type	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-14-567-239	LCS	Aqueous	IC 16	N/A	04/24/17 20:30	170424L01
<u>Parameter</u>		Spike Added	Conc. Recover	ed LCS %Re	c. %Rec	. CL Qualifiers
Chromium, Hexavalent		10.00	10.13	101	95-107	7

Quality Control - LCS

Date Received: 04/24/17 Tetra Tech, Inc. Work Order: 17-04-1778 301 E. Vanderbilt Way, Suite 450 Preparation: EPA 3020A Total San Bernardino, CA 92408-3562

> Method: EPA 6020

Project: LMC BOU Page 2 of 6

Quality Control Sample ID	Type	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
096-06-003-5550	LCS	Aqueous	ICP/MS 03	04/26/17	04/27/17 12:58	170426LA1
<u>Parameter</u>		Spike Added	Conc. Recovered	ed LCS %Re	ec. %Rec	. CL Qualifiers
Chromium		0.1000	0.1054	105	80-12	0

04/24/17

17-04-1778

Quality Control - LCS

Date Received: Tetra Tech, Inc. Work Order: 301 E. Vanderbilt Way, Suite 450 Preparation: San Bernardino, CA 92408-3562

EPA 3510C Method: EPA 8270C (M) Isotope Dilution

Page 3 of 6 Project: LMC BOU

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-16-216-1019	LCS	Aqueous	GC/MS DDD	04/25/17	04/26/17 01:05	170425L04
<u>Parameter</u>		Spike Added	Conc. Recovered	ed LCS %Re	ec. %Rec	. CL Qualifiers
1,4-Dioxane		20.00	19.08	95	50-130)

Quality Control - LCS

Tetra Tech, Inc. 301 E. Vanderbilt Way, Suite 450 San Bernardino, CA 92408-3562

Project: LMC BOU

Date Received: Work Order: Preparation: Method:

17-04-1778 **EPA 5030C EPA 8260B**

04/24/17

Page 4 of 6

Quality Control Sample ID	Type	Matrix	x Ir	strument	Date Prepared	Date Analyzed	LCS Batch Nu	mber
099-10-025-4680	LCS	Aque	ous G	C/MS L	05/04/17	05/04/17 15:25	170504L022	
Parameter		Spike Added	Conc. Re	covered LCS	S %Rec. %F	Rec. CL M	E CL	<u>Qualifiers</u>
1,1-Dichloroethene		10.00	10.72	107	77-	-120 70)-127	
1,2-Dibromoethane		10.00	10.12	101	80-	-120 73	3-127	
1,2-Dichlorobenzene		10.00	10.11	101	80-	-120 73	3-127	
1,2-Dichloroethane		10.00	9.762	98	80-	-122 73	3-129	
Benzene		10.00	9.952	100	80-	-120 73	3-127	
Carbon Tetrachloride		10.00	9.516	95	80-	-129 72	2-137	
Chlorobenzene		10.00	9.862	99	80-	-120 73	3-127	
Ethylbenzene		10.00	10.56	106	80-	-120 73	3-127	
Toluene		10.00	10.06	101	80-	-120 73	3-127	
Trichloroethene		10.00	10.14	101	80-	-120 73	3-127	
Vinyl Chloride		10.00	9.284	93	63-	-135 51	I-147	
o-Xylene		10.00	10.42	104	80-	-120 73	3-127	
p/m-Xylene		20.00	21.09	105	80-	-120 73	3-127	
Methyl-t-Butyl Ether (MTBE)		10.00	10.11	101	75-	-123 67	7-131	

Total number of LCS compounds: 14 Total number of ME compounds: 0

Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass

RPD: Relative Percent Difference. CL: Control Limits

Quality Control - LCS

 Tetra Tech, Inc.
 Date Received:
 04/24/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-1778

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B SIM

 Project: LMC BOU
 Page 5 of 6

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-15-118-495	LCS	Aqueous	GC/MS M	04/26/17	04/26/17 20:59	170426L041
<u>Parameter</u>		Spike Added	Conc. Recove	red LCS %R	ec. %Rec	. CL Qualifiers
1,2,3-Trichloropropane		0.02000	0.02030	102	72-13	2

Project: LMC BOU

Quality Control - LCS/LCSD

Tetra Tech, Inc.Date Received:04/24/17301 E. Vanderbilt Way, Suite 450Work Order:17-04-1778San Bernardino, CA 92408-3562Preparation:EPA 5030C

Method: EPA 8260B SIM Page 6 of 6

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Pre	pared Date	Analyzed	LCS/LCSD Ba	atch Number
099-15-118-496	LCS	Aqı	ueous	GC/MS M	05/01/17	05/0	1/17 10:42	170501L036	
099-15-118-496	LCSD	Aqι	ueous	GC/MS M	05/01/17	05/0	1/17 11:12	170501L036	
<u>Parameter</u>	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	<u>Qualifiers</u>
1,2,3-Trichloropropane	0.02000	0.01890	94	0.02180	109	72-132	14	0-20	

Sample Analysis Summary Report

Work Order: 17-04-1778	Page 1 of 1			
Method	<u>Extraction</u>	Chemist ID	Instrument	Analytical Location
EPA 218.6	N/A	834	IC 16	1
EPA 6020	EPA 3020A Total	598	ICP/MS 03	1
EPA 8260B	EPA 5030C	316	GC/MS L	2
EPA 8260B SIM	EPA 5030C	486	GC/MS M	2
EPA 8270C (M) Isotope Dilution	EPA 3510C	928	GC/MS DDD	1

Location 1: 7440 Lincoln Way, Garden Grove, CA 92841 Location 2: 7445 Lampson Avenue, Garden Grove, CA 92841

Χ

Ζ

Glossary of Terms and Qualifiers

Work Order: 17-04-1778 Page 1 of 1

<u>Qualifiers</u>	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
CI	See case narrative.
Е	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
SG	The sample extract was subjected to Silica Gel treatment prior to analysis.

Analyte presence was not confirmed by second column or GC/MS analysis.

% Recovery and/or RPD out-of-range.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

💸 eurofins 🕴

Calscience

WORK ORDER NUMBER: 17-04- 1778

SAMPLE RECEIPT CHECKLIST COOLER ! OF ____

CLIENT:	(PA DECH			DAT	re: 04	124	/ 2017
Thermometer ID Sample(s) Sample(s) Sample(s) rec	: SC (CF: 0.0°C): Ter cutalde temperature outside temperature	.0°C, not frozen except secin r perature (w/o CF): 3 · O criteria (PM/APM contacted to criteria but received on ice/of perature: placed on ice for tri	oy:) nilled on same day o			Samp	
	-	7.00				*****	
	Present and intact Present and intact	☐ Present but Not Intact ☐ Present but Not Intact	Not Present	□ N/A □ N/A	Check	ed by:	659
SAMPLE COND	ITION:			105 1 1	Y-98	No	N/A
Chain-of-Custod;	y (COC) document(s)	received with samples			M		D
☐ Sampling d	late Samping tim	e ☐ Matrix ☐ Number of o	entainers				Ē
		elinquished D No relinquish					189.0
Sampler's name	Indicated on COC				P		
		мэн сос				N	
Comment of the second		notfbres b					
THE RESERVE OF THE PARTY OF THE		sted					
		equested					O
		sea received withir, 15-minut		erioral nearici	ø		
□ pH □ Res	dual Chlerine Di	ssolved Sulfide I Dissolved	d Oxygen		0		D'
Unpreserved	aqueous sample(s) n	i on COC and/or sample con sceived for certain analyses	talner		P	_	п
		ils 🗆 Dissolved Marels of headspace			pf.	n.	ri
☑ Volatile Org	anics Dissolved	Gases (RSK-175) ☐ Dissol ferrous Iron (SM 3500) ☐ H	ved Oxygen (SM 45	00)			
	보다 계속을 즐겁게 하셨다면 이 경영하다 하다.	게 그 그는 그 그 그 없는 그 경기 하는 그 그 그 없는 그 없다.			П	П	D'
CONTAINER TY			(Trip Blan	k Lot Numbe	r: 170	328,	A
☐ 125P8znna ☐ ☐ 50CP8 ☐ 1AG Solid: ☐ 40zCGJ Air: ☐ Tedlar ^{ne} ☐ Container: A = Ami	250AGB © 250CGI B D 1AGBna2 D 1. D 802CGJ D 1602 D Carlsta: D Sorber ber, B = Sottle, C = Cla	3 □ 250 CGBs	250PBn pz 500AG inCores®() Other Matrix (Jar, P = Plastic, and	B D 500AGJ TernaCores ³ ; D Z = Ziptoc/Res	0.00 [2] (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	AG.:8 1 Sag	
		FCI, $n = HNO_2$, $na = NaOH$, $na = NasSO4-NaHSO4, H_2O, Znna$					650

Calscience

WORK ORDER NUMBER: 17-04-

SAMPLE ANOMALY REPORT

DATE: 04/24/2017

SAMPLES	, CONTAIN	ERS, AN	DLABEL	S:		Commen	uts		
Sample)) NOT RECE	IVED but I	lated on CC	C			-		
	s) received bu								- 20
oding l	ime expired (list client a	r EC- samp	e ID and ans	yele)		- 46		
Insufficie	nt sample am	cent for re	quested an	alysis (list am	a.ysls)				
□ Improper	container(a)	usec (list a	malysis)						
□ Improper	preservative	tall) beeu	analysis)			(-2)	Pleased	9 Co	<i>atainar</i>
□ No prese	rvative noted	on CCC o	r label (1st	analysis and i	notify lab)	- UNS	tend o	1 13	
🗆 Sample :	n (e):en atno	ot labeled				6	- VOA V	V/HCL	
☐ Çlient aa	mple label(a)	Degible (Ik	et consiner	type and ans	ilysis)	(-	- 200im	poly	
Client se	mple abe.(a)	do not ma	ich COC (c	mmer.f)			- 257 mi	W/HA	103
□ Proje	ct information						200m;	amber	glass both
☐ Glien	sample ID								· ,
□ Sam	oling date and	Vor time				(4)	Received	1 13 0	ontainers
ZNumi	per of contain	er(s)				ins	tead of	- 9	
☐ Requ	estad analysi	s				1	0- Va	A W/ H	c(
⊆ Sample :	container(s) o	compromise	c (comme:	nt)		1	- 250	m geol	9
□ Broke	en					t	- שמער	2/ 100/0	3 m/44003
□Wate	r prasent in s	ample cont	airer				- 1700	ed acm	beer glass loo
D Air samp	le container(s	s) compron	tisec (com	rent)			P		- 12 · 5 · 1
D Fla:									
☐ Very	low in volume	1					-		
□ Lesk	ing (not transf	ferred; dup	licate pag s	ubmitteo)					1801
□ Leak	rç (Iranaler)	d into EC:	Tedlerry o	age")					
□ Leak	rg (Iranslers	d !nlo clie:	nt's Tedler"	bags")					
" Transfe:	ned an ellient's req	Jest.							
MISCELL	ANEOUS: (I	Describe)				Commer	nts		
HEAD8P							Mario V. P	1.15	
201	in bubble > 6 mm Con Conlater ID	Toka Musika	Sunca &	ECI ECI Codesiones ga	Tox Number	(Cortainen w ECI Sampa ID	en babata for othe ECI Scribber ID	Tistal	Recuested Analysis
Serre ± 10	ACMORTO, 17	PE-SEN	044£3 €	POLYMENT IN	nai A	33.411	of deal of		The same of the sa
		-				-			
Comments					0.4				7.7
			3,0					R	aported by: 017
	The Revenue of	Fine and	37771.80	1 C A POST COM	No.				viewed by: 681

Calscience

WORK ORDER NUMBER: 17-04-1160

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: Tetra Tech, Inc.

Client Project Name: LMC BOU

Attention: Robert Sabater

301 E. Vanderbilt Way, Suite 450 San Bernardino, CA 92408-3562

Ess Och for

Approved for release on 05/05/2017 by: Vikas Patel Project Manager

ResultLink >

Email your PM >

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name: LMC BOU
Work Order Number: 17-04-1160

1	Work Order Narrative	3
2	Detections Summary	4
3	Client Sample Data. 3.1 EPA 218.6 Hexavalent Chromium Low Level (Aqueous). 3.2 EPA 6020 ICP/MS Metals (Aqueous). 3.3 1,4-Dioxane by EPA 8270C (M) Isotope Dilution (Aqueous). 3.4 EPA 8260B Volatile Organics (Aqueous). 3.5 EPA 8260B SIM Emergent Volatiles (Aqueous).	5 5 6 7 8 17
4	Quality Control Sample Data. 4.1 MS/MSD. 4.2 PDS/PDSD. 4.3 LCS/LCSD.	18 18 24 25
5	Sample Analysis Summary	30
6	Glossary of Terms and Qualifiers	31
7	Chain-of-Custody/Sample Receipt Form	32

Work Order Narrative

Work Order: 17-04-1160 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 04/14/17. They were assigned to Work Order 17-04-1160.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Detections Summary

Client: Tetra Tech, Inc.

301 E. Vanderbilt Way, Suite 450

San Bernardino, CA 92408-3562

Work Order:

17-04-1160

Project Name:

LMC BOU

Received:

04/14/17

Attn: Robert Sabater Page 1 of 1

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
4948-N-17Q2 (17-04-1160-2)						
Chromium, Hexavalent	0.82		0.020	ug/L	EPA 218.6	N/A
Chromium	0.00503		0.00100	mg/L	EPA 6020	EPA 3020A Total
Chloroform	0.33	J	0.20*	ug/L	EPA 8260B	EPA 5030C
Tetrachloroethene	3.8		0.50	ug/L	EPA 8260B	EPA 5030C
Trichloroethene	1.3		0.50	ug/L	EPA 8260B	EPA 5030C

Subcontracted analyses, if any, are not included in this summary.

Date Received: 04/14/17 Tetra Tech, Inc. Work Order: 17-04-1160 301 E. Vanderbilt Way, Suite 450 Preparation: N/A San Bernardino, CA 92408-3562 Method: EPA 218.6 Units: ug/L

Page 1 of 1 Project: LMC BOU

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
4948-N-17Q2	17-04-1160-2-L	04/14/17 09:13	Aqueous	IC 16	N/A	04/14/17 20:45	170414L01

Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. <u>Parameter</u> Result <u>RL</u> <u>MDL</u> Qualifiers 0.82 1.00 Chromium, Hexavalent 0.020 0.0099

Method Blank	099-14-567-	238 N/A	Aqueous	IC 16	N/A	04/14/17 17:12	170414L01
Comment(s):	- Results were evaluated to the MDL (DL), concentrations	>= to the MDL (DL	.) but < RL (LO	Q), if found, are	e qualified with a	ı "J" flag.
<u>Parameter</u>		Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>(</u>	<u>Qualifiers</u>
Chromium, Hexa	avalent	ND	0.020	0.0099	1.00		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

04/14/17

17-04-1160

Page 1 of 1

Project: LMC BOU

Analytical Report

Date Received: Tetra Tech, Inc. Work Order: 301 E. Vanderbilt Way, Suite 450 Preparation: EPA 3020A Total San Bernardino, CA 92408-3562

> Method: EPA 6020

Units: mg/L

Date Prepared QC Batch ID Client Sample Number Lab Sample Date/Time Matrix Instrument Date/Time Number Collected Analyzed 04/14/17 4948-N-17Q2 17-04-1160-2-M 04/18/17 04/20/17 **Aqueous** ICP/MS 03 170418LA3 09:13 03:15

Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. <u>Parameter</u> Result <u>RL</u> <u>MDL</u> <u>DF</u> Qualifiers

0.00100 Chromium 0.00503 0.000402 1.00

Method Blank	096-06-003-5531	N/A Aque	ous ICP/MS 03		4/20/17 170418LA3 0:05
Comment(s):	- Results were evaluated to the MDL (DL), cond	centrations >= to the MD	DL (DL) but < RL (LOC	(a), if found, are qua	lified with a "J" flag.
<u>Parameter</u>	Resu	<u>lt</u> <u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Chromium	ND	0.00100	0.000402	1.00	

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Date Received: 04/14/17 Tetra Tech, Inc.

Work Order: 17-04-1160 301 E. Vanderbilt Way, Suite 450 Preparation: **EPA 3510C** San Bernardino, CA 92408-3562

> Method: EPA 8270C (M) Isotope Dilution

Units: ug/L

Project: LMC BOU Page 1 of 1

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
4948-N-17Q2	17-04-1160-2-K	04/14/17 09:13	Aqueous	GC/MS DDD	04/17/17	04/18/17 00:39	170417L10
Comment(s): - Results were evaluated t	o the MDL (DL), con	centrations >= t	to the MDL (DL	.) but < RL (LOC	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
1,4-Dioxane	ND		1.0	0.28	1.00		
Surrogate	Rec.	(%)	Control Limits	Qualifiers			
Nitrobenzene-d5	98		56-123				
1,4-Dioxane-d8(IDS-IS)	35	:	30-120				

Method Blank	099-16-216	-1013 N/A	Aqueous	GC/MS DDD	04/17/17	04/17/17 22:32	170417L10
Comment(s):	- Results were evaluated to the MDL (DI	_), concentration	ons >= to the MDL (DL) but < RL (LOC), if found, are	qualified with a	"J" flag.
<u>Parameter</u>		Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Q	<u>ualifiers</u>
1,4-Dioxane		ND	1.0	0.28	1.00		
0		D (0/.)	O and a lilianita	0			
<u>Surrogate</u>		Rec. (%)	Control Limits	<u>Qualifiers</u>			
Nitrobenzene-d5	5	115	56-123				
1,4-Dioxane-d8(IDS-IS)	40	30-120				

04/14/17

Analytical Report

Date Received: Tetra Tech, Inc. Work Order: 17-04-1160 301 E. Vanderbilt Way, Suite 450 Preparation: **EPA 5030C** San Bernardino, CA 92408-3562

> Method: **EPA 8260B** Units: ug/L

Page 1 of 9 Project: LMC BOU

Comment(s): - Results were evaluated to the MDL (DL). concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flags Parameter Result RL MDL DL OLO Total Comment(s): - Results were evaluated to the MDL (DL). concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flags	Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Parameter Result BL MDL DE Qualifiers 1,1,1,2-Trichtoroethane ND 0.50 0.20 1.00 1.10 1.11,1-Trichtoroethane ND 0.50 0.20 1.00 1.12,1-Trichtoroethane ND 0.50 0.20 1.00 1.12,1-Trichtoroethane ND 0.50 0.24 1.00 1.12,1-Trichtoroethane ND 0.50 0.20 1.00 1.12,1-Trichtoroethane ND 0.50 0.20 1.00 1.12,1-Trichtoroethane ND 0.50 0.20 1.00 1.12,1-Trichtoroethane ND 0.50 0.20 1.00 1.11,1-Trichtoroethane ND 0.50 0.20 1.00 1.11,1-Trichtoroethane ND 0.50 0.20 1.00 1.11,1-Trichtoroethane ND 0.50 0.20 1.00 1.23,1-Trichtoroethane ND 0.50 0.20 1.00 1.24,1-Trichtoroethane ND 0.50 0.20 1.00 1.24,1-Trichtoroethane ND 0.50 0.20 1.00 1.24,1-Trichtoroethane ND 0.50	LTB-20170414	17-04-1160-1-A		Aqueous	GC/MS L	04/26/17		170426L056
1,1,1,2-Tetrachloroethane ND 0.50 0.20 1.00 1,1,1-Trichloroethane ND 0.50 0.20 1.00 1,1,2-Trichloroethane ND 0.50 0.20 1.00 1,1,2-Trichloroethane ND 0.50 0.24 1.00 1,1,2-Trichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethane ND 0.50 0.28 1.00 1,1-Dichloroethane ND 0.50 0.30 1.00 1,1-Dichloropropene ND 0.50 0.30 1.00 1,1-Dichlorobrozene ND 0.50 0.20 1.00 1,2-Brithoropropane ND 0.50 0.20 1.00 1,2-Brithoropropane ND 0.50 0.20 1.00 1,2-Dichloromoethane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichloropropane <td>Comment(s): - Results were evaluated</td> <td>to the MDL (DL), cond</td> <td>centrations >=</td> <td>to the MDL (D</td> <td>L) but < RL (LO</td> <td>Q), if found, are</td> <td>qualified with a</td> <td>ı "J" flag.</td>	Comment(s): - Results were evaluated	to the MDL (DL), cond	centrations >=	to the MDL (D	L) but < RL (LO	Q), if found, are	qualified with a	ı "J" flag.
1,1,1-Trichloroethane ND 0.50 0.20 1.00 1,1,2-Trichloroethane ND 0.50 0.20 1.00 1,1,2-Trichloro-1,2,2-Trifluoroethane ND 0.50 0.24 1.00 1,1,2-Trichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethane ND 0.50 0.28 1.00 1,1-Dichloropropene ND 0.50 0.30 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,3-Trichloropropane ND 1.0 0.40 1.00 1,2,4-Trinethylbenzene ND 0.50 0.20 1.00 1,2,4-Trinethylbenzene ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00	<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>(</u>	Qualifiers
1,1,2,2-Tetrachloroethane ND 0.50 0.20 1.00 1,1,2-Trichloro-1,2,2-Trifluroethane ND 0.50 0.24 1.00 1,1,2-Trichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethane ND 0.50 0.28 1.00 1,1-Dichloroethane ND 0.50 0.28 1.00 1,1-Dichloropropene ND 0.50 0.28 1.00 1,1-Dichloropropene ND 0.50 0.20 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,3-Trichloropropane ND 0.50 0.20 1.00 1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.20 1.00 1,3	1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane ND 0.50 0.24 1.00 1,1,2-Trichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethane ND 0.50 0.28 1.00 1,1-Dichloroethene ND 0.50 0.28 1.00 1,1-Dichloropropene ND 0.50 0.20 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2,2-Dibromo-3-Chloropropane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.28 1.00	1,1,1-Trichloroethane	ND		0.50	0.20	1.00		
1,1,2-Trichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethane ND 0.50 0.28 1.00 1,1-Dichloropropene ND 0.50 0.30 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,3-Trichloropropane ND 1.0 0.40 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trichloropenzene ND 0.50 0.20 1.00 1,2,2-Dichloropenzene ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.20 1.00 1,4-Dichlorobenzene	1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethene ND 0.50 0.28 1.00 1,1-Dichloropropene ND 0.50 0.30 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,3-Trichloropenzene ND 1.0 0.40 1.00 1,2,4-Trinethylbenzene ND 0.50 0.20 1.00 1,2-Hirrinethylbenzene ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.28 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 1,4-Dichloropropan	1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		0.50	0.24	1.00		
1,1-Dichloroethene ND 0.50 0.28 1.00 1,1-Dichloropropene ND 0.50 0.30 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,3-Trichlorobenzene ND 1.0 0.40 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2-Libromo-3-Chloropropane ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 2-Dic	1,1,2-Trichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloropropene ND 0.50 0.30 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,3-Trichloropropane ND 1.0 0.40 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2-Dibromoe-3-Chloropropane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.28 1.00 1,3-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.20 1.00 2,2-Dichloropropane ND 0.50 0.20 1.00 2-Dichloropropa	1,1-Dichloroethane	ND		0.50	0.20	1.00		
1,2,3-Trichlorobenzene	1,1-Dichloroethene	ND		0.50	0.28	1.00		
1,2,3-Trichloropropane ND 1.0 0.40 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 2.0 1.00 1,2-Dibromoethane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloroptopane ND 0.50 0.20 1.00 1,2-Dichloroptopane ND 0.50 0.20 1.00 1,2-Dichloroptopane ND 0.50 0.20 1.00 1,3-Dichloroptopane ND 0.50 0.20 1.00 1,3-Dichloroptopane ND 0.50 0.28 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloroptopane ND 1.0 0.40 1.00 2-E-Butanone ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.20 1.00 4-Hexanone ND	1,1-Dichloropropene	ND		0.50	0.30	1.00		
1,2,3-Trichloropropane ND 1.0 0.40 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 2.0 1.00 1,2-Dibromoethane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloroptopane ND 0.50 0.20 1.00 1,2-Dichloroptopane ND 0.50 0.20 1.00 1,2-Dichloroptopane ND 0.50 0.20 1.00 1,3-Dichloroptopane ND 0.50 0.20 1.00 1,3-Dichloroptopane ND 0.50 0.28 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloroptopane ND 1.0 0.40 1.00 2-E-Butanone ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.20 1.00 4-Hexanone ND	1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 2.0 1.00 1,2-Dibromoethane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloroperpane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-5-Trimethylbenzene ND 0.50 0.20 1.00 1,3-5-Trimethylbenzene ND 0.50 0.28 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.20 1.00 4-Chlorotoluene ND	1,2,3-Trichloropropane	ND		1.0	0.40	1.00		
1,2-Dibromo-3-Chloropropane ND 5.0 2.0 1.00 1,2-Dibromoethane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloropethane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-Frimethylbenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 0.50 0.20 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 0	1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2-Dibromoethane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloroethane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-5-Trimethylbenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloroporpane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 1.0 0.40 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 0.50 0.	1,2,4-Trimethylbenzene	ND		0.50	0.20	1.00		
1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloroethane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-5-Trimethylbenzene ND 0.50 0.28 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 1.0 0.40 1.00 2-Butanone ND 0.50 0.20 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 0.50 0.20 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32	1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00		
1,2-Dichloroethane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3,5-Trimethylbenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 0.50 0.20 1.00 Benzene ND 0.50 0.32 1.00 Bromobloromethane ND 0.50 0.32 1.00 Bromodichloromethane ND 0.50 0.20	1,2-Dibromoethane	ND		0.50	0.20	1.00		
1,2-Dichloropropane ND 0.50 0.20 1.00 1,3,5-Trimethylbenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Hexanone ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromodichloromethane ND 0.50 0.25 1.00	1,2-Dichlorobenzene	ND		0.50	0.20	1.00		
1,3,5-Trimethylbenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.20 1.00	1,2-Dichloroethane	ND		0.50	0.20	1.00		
1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzenee ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	1,2-Dichloropropane	ND		0.50	0.20	1.00		
1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	1,3,5-Trimethylbenzene	ND		0.50	0.20	1.00		
1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 0.50 0.20 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	1,3-Dichlorobenzene	ND		0.50	0.28	1.00		
2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.20 1.00	1,3-Dichloropropane	ND		1.0	0.40	1.00		
2-Butanone	1,4-Dichlorobenzene	ND		0.50	0.20	1.00		
2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	2,2-Dichloropropane	ND		1.0	0.40	1.00		
2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	2-Butanone	ND		5.0	2.0	1.00		
4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	2-Chlorotoluene	ND		0.50	0.20	1.00		
4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	2-Hexanone	ND		10	4.0	1.00		
Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	4-Chlorotoluene	ND		0.50	0.36	1.00		
Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	4-Methyl-2-Pentanone	ND		5.0	2.0	1.00		
Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	Acetone	ND		10	4.0	1.00		
Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	Benzene	ND		0.50	0.20	1.00		
Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	Bromobenzene	ND		0.50	0.32			
Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	Bromochloromethane			1.0	0.40			
	Bromodichloromethane	ND		0.50	0.20	1.00		
	Bromoform	ND		0.50	0.25	1.00		
	Bromomethane							

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

 Tetra Tech, Inc.
 Date Received:
 04/14/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-1160

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 2 of 9

				. age 2 e. e
<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
ND	1.0	0.40	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.32	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.29	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	1.0	0.40	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	1.0	0.80	1.00	
ND	1.0	0.40	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.29	1.00	
ND	0.50	0.20	1.00	
ND	5.0	2.0	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.32	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	5.0	4.2	1.00	
ND	2.0	0.80	1.00	
ND	10	5.0	1.00	
Rec. (%)	Control Limits	<u>Qualifiers</u>		
93	68-120			
101	80-127			
	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND 1.0 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 0.50 <td>ND 1.0 0.40 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.32 ND 0.50 0.20 ND 0.50 0.29 ND 0.50 0.20 ND 0.50 0.20 ND 1.0 0.40 ND 0.50 0.20 ND 1.0 0.40 ND 0.50 0.20 ND 1.0 0.40 ND 0.50 0.20 ND 1.0 0.40 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.29 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND</td> <td>ND</td>	ND 1.0 0.40 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.32 ND 0.50 0.20 ND 0.50 0.29 ND 0.50 0.20 ND 0.50 0.20 ND 1.0 0.40 ND 0.50 0.20 ND 1.0 0.40 ND 0.50 0.20 ND 1.0 0.40 ND 0.50 0.20 ND 1.0 0.40 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.29 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND	ND

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Tetra Tech, Inc.	Date Received:	04/14/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-1160
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Proiect: LMC BOU		Page 3 of 9

<u>Surrogate</u>	Rec. (%)	Control Limits	Qualifiers
1,2-Dichloroethane-d4	109	80-128	
Toluene-d8	101	80-120	

04/14/17

17-04-1160

EPA 5030C

Analytical Report

Tetra Tech, Inc.

301 E. Vanderbilt Way, Suite 450

San Bernardino, CA 92408-3562

Date Received:

Work Order:

Preparation:

Method: EPA 8260B Units: ug/L

Project: LMC BOU Page 4 of 9

4948-N-17Q2	Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID		
Parameter Result BL MDL DF Qualifiers 1,1,1,2-Tetachloroethane ND 0.50 0.20 1.00 1.10 1,1,1,2-Tetachloroethane ND 0.50 0.20 1.00 1.10 1,1,2-Trichloro-1,2,2-Triflurorethane ND 0.50 0.24 1.00 1.10 1,1-Dichloroethane ND 0.50 0.20 1.00 1.10 1,1-Dichloroethane ND 0.50 0.20 1.00 1.10 1,1-Dichloroethane ND 0.50 0.20 1.00 1.10 1,1-Dichloroethane ND 0.50 0.20 1.00 1.10 1,1-Dichloroethane ND 0.50 0.20 1.00 1.20 1,2,3-Trichloroptopane ND 0.50 0.20 1.00 1.20 1,2,2-Trichloroethare ND 0.50 0.20 1.00 1.20 1,2-Dichloroethane ND 0.50 0.20 1.00 1.20 1,2-Dichloroethane	4948-N-17Q2	17-04-1160-2-D		Aqueous	GC/MS L	04/26/17		170426L056		
1,1,1,2-Tetrachloroethane ND 0,50 0,20 1,00 1,1,1-Trichloroethane ND 0,50 0,20 1,00 1,1,2-Trichloroethane ND 0,50 0,20 1,00 1,1,2-Trichloroethane ND 0,50 0,24 1,00 1,1-Dichloroethane ND 0,50 0,20 1,00 1,1-Dichloroethane ND 0,50 0,20 1,00 1,1-Dichloroethane ND 0,50 0,20 1,00 1,1-Dichloropropene ND 0,50 0,20 1,00 1,1-Dichloropropane ND 0,50 0,20 1,00 1,2-3-Trichlorobenzene ND 0,50 0,20 1,00 1,2-4-Trimethylbenzene ND 0,50 0,20 1,00 1,2-Dichromoethane ND 0,50 0,20 1,00 1,2-Dichromoethane ND 0,50 0,20 1,00 1,2-Dichromoethane ND 0,50 0,20 1,00 1,2-Dichromoethane	Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.									
1,1,1-Trichloroethane ND 0.50 0.20 1.00 1,1,2,2-Tetrachloroethane ND 0.50 0.20 1.00 1,1,2-Trichloro-1,2,2-Trifluroethane ND 0.50 0.24 1.00 1,1-Dichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethane ND 0.50 0.30 1.00 1,1-Dichloropropane ND 0.50 0.30 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trinchloropropane ND 0.50 0.20 1.00 1,2,4-Trinchlorobenzene ND 0.50 0.20 1.00 1,2-Dichloroendathane ND 0.50 0.20 1.00 1,2-Dichloroepropane ND 0.50 0.20 1.00 1,3-Dichloroepropane ND 0.50 0.20 1.00 <td< td=""><td><u>Parameter</u></td><td>Resu</td><td><u>ılt</u></td><td><u>RL</u></td><td><u>MDL</u></td><td><u>DF</u></td><td><u>(</u></td><td><u>Qualifiers</u></td></td<>	<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>(</u>	<u>Qualifiers</u>		
1,1,2,2-Tetrachloroethane ND 0.50 0.20 1.00 1,1,2-Trichloro-1,2,2-Trifluroethane ND 0.50 0.24 1.00 1,1,2-Trichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethane ND 0.50 0.28 1.00 1,1-Dichloroethane ND 0.50 0.28 1.00 1,1-Dichloroethane ND 0.50 0.28 1.00 1,1-Dichloroethane ND 0.50 0.20 1.00 1,2,3-Trichloroebrazene ND 0.50 0.20 1.00 1,2,4-Triinlotryblenzene ND 0.50 0.20 1.00 1,2,4-Triinletryblenzene ND 0.50 0.20 1.00 1,2,4-Triinletryblenzene ND 0.50 0.20 1.00 1,2-Dichloroethane ND 0.50 0.20 1.00 1,2-Dichloroethane ND 0.50 0.20 1.00 1,3-Dichloroethane ND 0.50 0.20 1.00 <t< td=""><td>1,1,1,2-Tetrachloroethane</td><td>ND</td><td></td><td>0.50</td><td>0.20</td><td>1.00</td><td></td><td></td></t<>	1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00				
1,1,2-Trichloro-1,2,2-Trifluoroethane ND 0.50 0.24 1.00 1,1,2-Trichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethane ND 0.50 0.28 1.00 1,1-Dichloroptopene ND 0.50 0.28 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,3-Trichloroptopropane ND 1.0 0.40 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2,2-Dichlorobropropane ND 0.50 0.20 1.00 1,2-Dichlorobropropane ND 0.50 0.20 1.00 1,3-Dichlorobropropane ND 0.50 0.28 1.00	1,1,1-Trichloroethane	ND		0.50	0.20	1.00				
1,1,2-Trichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethane ND 0.50 0.28 1.00 1,1-Dichloroptopene ND 0.50 0.30 1.00 1,2,3-Trichloroptopane ND 0.50 0.20 1.00 1,2,3-Trichloroptopane ND 0.50 0.20 1.00 1,2,4-Trinchlorobenzene ND 0.50 0.20 1.00 1,2,4-Trinchlorobenzene ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,3-S-Trimethylbenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.20 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlor	1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00				
1,1-Dichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethene ND 0.50 0.28 1.00 1,1-Dichloropropene ND 0.50 0.20 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2-Dibromoethane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2-Dichloropropane	1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		0.50	0.24	1.00				
1,1-Dichloroethene ND 0.50 0.28 1.00 1,1-Dichloropropene ND 0.50 0.30 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,3-Trichloropropane ND 1.0 0.40 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichlorobrezene ND 0.50 0.20 1.00 1,3-Frimethylbenzene ND 0.50 0.20 1.00 1,3-Dichlorobrezene ND 0.50 0.28 1.00 1,4-Dichlorobrezene	1,1,2-Trichloroethane	ND		0.50	0.20	1.00				
1,1-Dichloropropene ND 0.50 0.30 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,3-Trichloropropane ND 1.0 0.40 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2-Erbirmethylbenzene ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 0.50 0.20 1.00 1,2-Dibromoethane ND 0.50 0.20 1.00 1,2-Dichloroperpane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichloropropane ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.4 1.00 2-Butanone	1,1-Dichloroethane	ND		0.50	0.20	1.00				
1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,3-Trichloropropane ND 1.0 0.40 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 0.50 0.20 1.00 1,2-Dibromo-4-Chloropropane ND 0.50 0.20 1.00 1,2-Dibromoethane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.28 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 0.50 0.20 1.00 2-Eutanone ND 0.50 0.20 1.00 2-Labidropropale <td>1,1-Dichloroethene</td> <td>ND</td> <td></td> <td>0.50</td> <td>0.28</td> <td>1.00</td> <td></td> <td></td>	1,1-Dichloroethene	ND		0.50	0.28	1.00				
1,2,3-Trichloropropane ND 1.0 0.40 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 0.50 0.20 1.00 1,2-Dibromo-sthane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.20 1.00 1,4-Dichloropropane ND 0.50 0.20 1.00 2,2-Dichloropropane ND 0.50 0.20 1.00 2-Butanone ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.36 1.00 4-Hexanone ND	1,1-Dichloropropene	ND		0.50	0.30	1.00				
1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2-Dichromo-3-Chloropropane ND 5.0 2.0 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.20 1.00 1,4-Dichloropropane ND 0.50 0.20 1.00 1,4-Dichloropropane ND 0.50 0.20 1.00 2,2-Dichloropropane ND 0.50 0.20 1.00 2-Butanone ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.20 1.00 4-Hexthyl-2-Pentanone ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND	1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00				
1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 2.0 1.00 1,2-Dibromoethane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloroptopane ND 0.50 0.20 1.00 1,3-Dichloroptopane ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloroptopane ND 0.50 0.28 1.00 1,3-Dichloroptopane ND 0.50 0.28 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2,2-Dichloropropane ND 5.0 0.20 1.00 2,2-Dichloropropane ND 5.0 0.20 1.00 2-Butanone ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.20 1.00 4-Methyl-2-Pentanone ND	1,2,3-Trichloropropane	ND		1.0	0.40	1.00				
1,2-Dibromo-3-Chloropropane ND 5.0 2.0 1.00 1,2-Dibromoethane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloroptopane ND 0.50 0.20 1.00 1,2-Dichloroptopane ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.20 1.00 1,3-Dichloroptopane ND 0.50 0.20 1.00 1,3-Dichloroptopane ND 0.50 0.20 1.00 1,4-Dichloroptopane ND 0.50 0.20 1.00 1,4-Dichloroptopane ND 0.50 0.20 1.00 2,2-Dichloropropane ND 0.50 0.20 1.00 2-Butanone ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 0.50 0.20 1.00 4-Methyl-2-Pentanone ND 0.5	1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00				
1,2-Dibromoethane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloroethane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-Frimethylbenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloroperopane ND 1.0 0.40 1.00 1,4-Dichloroperopane ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Hexanone ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 0.50 0.20 1.00 Benzene ND 0.50 0.20	1,2,4-Trimethylbenzene	ND		0.50	0.20	1.00				
1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloroethane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-Trimethylbenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 0.50 0.20 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.20 1	1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00				
1,2-Dichloroethane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3,5-Trimethylbenzene ND 0.50 0.28 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 0.20 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.36 1.00 4-Chlorotoluene ND 5.0 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 0.50 0.20 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromobiloromethane ND 0.50 0.20 1.0	1,2-Dibromoethane	ND		0.50	0.20	1.00				
1,2-Dichloropropane ND 0.50 0.20 1.00 1,3,5-Trimethylbenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Hexanone ND 0.50 0.20 1.00 4-Hexanone ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Benzene ND 0.50 0.20 1.00 Benzene ND 0.50 0.20 1.00 Bromochloromethane ND 0.50 0.32 1.00 Bromochloromethane ND 0.50 0.20 1.00 Bromochloromethane ND 0.50 0.20 <td< td=""><td>1,2-Dichlorobenzene</td><td>ND</td><td></td><td>0.50</td><td>0.20</td><td>1.00</td><td></td><td></td></td<>	1,2-Dichlorobenzene	ND		0.50	0.20	1.00				
1,3,5-Trimethylbenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 0.50 0.32 1.00 Bromochloromethane ND 0.50 0.20 1.00 Bromochloromethane ND 0.50 0.20 1.00	1,2-Dichloroethane	ND		0.50	0.20	1.00				
1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.36 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.20 1.00	1,2-Dichloropropane	ND		0.50	0.20	1.00				
1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.36 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.20 1.00	1,3,5-Trimethylbenzene	ND		0.50	0.20	1.00				
1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.20 1.00	1,3-Dichlorobenzene			0.50						
2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.20 1.00	1,3-Dichloropropane	ND		1.0	0.40	1.00				
2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromodichloromethane ND 0.50 0.40 1.00 Bromodorm ND 0.50 0.20 1.00	1,4-Dichlorobenzene	ND		0.50	0.20	1.00				
2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromodichloromethane ND 0.50 0.40 1.00 Bromodorm ND 0.50 0.20 1.00	2,2-Dichloropropane			1.0	0.40					
2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	2-Butanone			5.0	2.0	1.00				
4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	2-Chlorotoluene	ND		0.50	0.20	1.00				
4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	2-Hexanone	ND		10	4.0	1.00				
Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	4-Chlorotoluene									
Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	4-Methyl-2-Pentanone	ND		5.0	2.0	1.00				
Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	•	ND								
Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00										
Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00										
Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00										
Bromoform ND 0.50 0.25 1.00										
	Bromomethane	ND		1.0	0.40	1.00				

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

 Tetra Tech, Inc.
 Date Received:
 04/14/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-1160

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 5 of 9

Trojout: Elvio Boo					r age e er e
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Carbon Disulfide	ND	1.0	0.40	1.00	
Carbon Tetrachloride	ND	0.50	0.20	1.00	
Chlorobenzene	ND	0.50	0.20	1.00	
Chloroethane	ND	0.50	0.32	1.00	
Chloroform	0.33	0.50	0.20	1.00	J
Chloromethane	ND	0.50	0.29	1.00	
Dibromochloromethane	ND	0.50	0.20	1.00	
Dibromomethane	ND	0.50	0.20	1.00	
Dichlorodifluoromethane	ND	1.0	0.40	1.00	
Ethylbenzene	ND	0.50	0.20	1.00	
Isopropylbenzene	ND	0.50	0.20	1.00	
Methylene Chloride	ND	1.0	0.80	1.00	
Naphthalene	ND	1.0	0.40	1.00	
Styrene	ND	0.50	0.20	1.00	
Tetrachloroethene	3.8	0.50	0.20	1.00	
Toluene	ND	0.50	0.20	1.00	
t-1,2-Dichloroethene	ND	0.50	0.20	1.00	
Trichloroethene	1.3	0.50	0.29	1.00	
Trichlorofluoromethane	ND	0.50	0.20	1.00	
Vinyl Acetate	ND	5.0	2.0	1.00	
Vinyl Chloride	ND	0.50	0.20	1.00	
c-1,3-Dichloropropene	ND	0.50	0.20	1.00	
c-1,2-Dichloroethene	ND	0.50	0.20	1.00	
n-Butylbenzene	ND	0.50	0.20	1.00	
n-Propylbenzene	ND	0.50	0.20	1.00	
o-Xylene	ND	0.50	0.32	1.00	
p-Isopropyltoluene	ND	0.50	0.20	1.00	
sec-Butylbenzene	ND	0.50	0.20	1.00	
t-1,3-Dichloropropene	ND	0.50	0.20	1.00	
tert-Butylbenzene	ND	0.50	0.20	1.00	
p/m-Xylene	ND	0.50	0.20	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	0.50	0.20	1.00	
2-Chloroethyl Vinyl Ether	ND	5.0	4.2	1.00	
Hexachloro-1,3-Butadiene	ND	2.0	0.80	1.00	
lodomethane	ND	10	5.0	1.00	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	92	68-120			
Dibromofluoromethane	103	80-127			

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Tetra Tech, Inc.	Date Received:	04/14/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-1160
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOU		Page 6 of 9

Control Limits <u>Surrogate</u> Rec. (%) Qualifiers 1,2-Dichloroethane-d4 111 80-128

Toluene-d8 80-120 101

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Tetra Tech, Inc.

Date Received:

04/14/17

301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-1160

San Bernardino, CA 92408-3562

Preparation:

EPA 5030C

Method: EPA 8260B Units: ug/L

Project: LMC BOU Page 7 of 9

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID				
Method Blank	099-10-025-4657	N/A	Aqueous	GC/MS L	04/26/17	04/26/17 23:24	170426L056				
Comment(s): - Results were evaluated	Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.										
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>(</u>	Qualifiers				
1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00						
1,1,1-Trichloroethane	ND		0.50	0.20	1.00						
1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00						
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		0.50	0.24	1.00						
1,1,2-Trichloroethane	ND		0.50	0.20	1.00						
1,1-Dichloroethane	ND		0.50	0.20	1.00						
1,1-Dichloroethene	ND		0.50	0.28	1.00						
1,1-Dichloropropene	ND		0.50	0.30	1.00						
1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00						
1,2,3-Trichloropropane	ND		1.0	0.40	1.00						
1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00						
1,2,4-Trimethylbenzene	ND		0.50	0.20	1.00						
1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00						
1,2-Dibromoethane	ND		0.50	0.20	1.00						
1,2-Dichlorobenzene	ND		0.50	0.20	1.00						
1,2-Dichloroethane	ND		0.50	0.20	1.00						
1,2-Dichloropropane	ND		0.50	0.20	1.00						
1,3,5-Trimethylbenzene	ND		0.50	0.20	1.00						
1,3-Dichlorobenzene	ND		0.50	0.28	1.00						
1,3-Dichloropropane	ND		1.0	0.40	1.00						
1,4-Dichlorobenzene	ND		0.50	0.20	1.00						
2,2-Dichloropropane	ND		1.0	0.40	1.00						
2-Butanone	ND		5.0	2.0	1.00						
2-Chlorotoluene	ND		0.50	0.20	1.00						
2-Hexanone	ND		10	4.0	1.00						
4-Chlorotoluene	ND		0.50	0.36	1.00						
4-Methyl-2-Pentanone	ND		5.0	2.0	1.00						
Acetone	ND		10	4.0	1.00						
Benzene	ND		0.50	0.20	1.00						
Bromobenzene	ND		0.50	0.32	1.00						
Bromochloromethane	ND		1.0	0.40	1.00						
Bromodichloromethane	ND		0.50	0.20	1.00						
Bromoform	ND		0.50	0.25	1.00						
Bromomethane	ND		1.0	0.40	1.00						

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

 Tetra Tech, Inc.
 Date Received:
 04/14/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-1160

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 8 of 9

1 10,000. 2.110 200					. ago o o. o
<u>Parameter</u>	Result	<u>RL</u>	MDL	<u>DF</u>	<u>Qualifiers</u>
Carbon Disulfide	ND	1.0	0.40	1.00	
Carbon Tetrachloride	ND	0.50	0.20	1.00	
Chlorobenzene	ND	0.50	0.20	1.00	
Chloroethane	ND	0.50	0.32	1.00	
Chloroform	ND	0.50	0.20	1.00	
Chloromethane	ND	0.50	0.29	1.00	
Dibromochloromethane	ND	0.50	0.20	1.00	
Dibromomethane	ND	0.50	0.20	1.00	
Dichlorodifluoromethane	ND	1.0	0.40	1.00	
Ethylbenzene	ND	0.50	0.20	1.00	
Isopropylbenzene	ND	0.50	0.20	1.00	
Methylene Chloride	ND	1.0	0.80	1.00	
Naphthalene	ND	1.0	0.40	1.00	
Styrene	ND	0.50	0.20	1.00	
Tetrachloroethene	ND	0.50	0.20	1.00	
Toluene	ND	0.50	0.20	1.00	
t-1,2-Dichloroethene	ND	0.50	0.20	1.00	
Trichloroethene	ND	0.50	0.29	1.00	
Trichlorofluoromethane	ND	0.50	0.20	1.00	
Vinyl Acetate	ND	5.0	2.0	1.00	
Vinyl Chloride	ND	0.50	0.20	1.00	
c-1,3-Dichloropropene	ND	0.50	0.20	1.00	
c-1,2-Dichloroethene	ND	0.50	0.20	1.00	
n-Butylbenzene	ND	0.50	0.20	1.00	
n-Propylbenzene	ND	0.50	0.20	1.00	
o-Xylene	ND	0.50	0.32	1.00	
p-Isopropyltoluene	ND	0.50	0.20	1.00	
sec-Butylbenzene	ND	0.50	0.20	1.00	
t-1,3-Dichloropropene	ND	0.50	0.20	1.00	
tert-Butylbenzene	ND	0.50	0.20	1.00	
p/m-Xylene	ND	0.50	0.20	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	0.50	0.20	1.00	
2-Chloroethyl Vinyl Ether	ND	5.0	4.2	1.00	
Hexachloro-1,3-Butadiene	ND	2.0	0.80	1.00	
Iodomethane	ND	10	5.0	1.00	
Surrogate	Rec. (%)	Control Limits	Qualifiers		
1,4-Bromofluorobenzene	94	68-120			
Dibromofluoromethane	100	80-127			

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Tetra Tech, Inc.	Date Received:	04/14/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-1160
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Proiect: LMC BOU		Page 9 of 9

Surrogate	Rec. (%)	Control Limits	Qualifiers
1,2-Dichloroethane-d4	111	80-128	
Toluene-d8	103	80-120	

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

 Tetra Tech, Inc.
 Date Received:
 04/14/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-1160

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

Method: EPA 8260B SIM Units: ug/L

Project: LMC BOU Page 1 of 1

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
LTB-20170414	17-04-1160-1-C	04/14/17 06:00	Aqueous	GC/MS M	04/24/17	04/25/17 02:02	170424L035
Comment(s): - Resu	ts were evaluated to the MDL (DL), cor	centrations >= t	o the MDL (D	L) but < RL (LC	Q), if found, are	e qualified with a	"J" flag.

<u>Parameter</u> <u>Result</u> <u>RL</u> <u>MDL</u> <u>DF</u> <u>Qualifiers</u>

1,2,3-Trichloropropane ND 0.0050 0.0025 1.00

Surrogate Rec. (%) Control Limits Qualifiers

1,4-Dichlorobutane 120 67-133

4948-N-17Q2	17-04-1160-2-F	04/14/17 09:13	Aqueous	GC/MS M	04/24/17	04/25/17 02:31	170424L035
Comment(s):	- Results were evaluated to the MDL (DL), con	centrations >=	to the MDL (DI	L) but < RL (L	OQ), if found, ar	e qualified with a	a "J" flag.

 Parameter
 Result
 RL
 MDL
 DF
 Qualifiers

 1,2,3-Trichloropropane
 ND
 0.0050
 0.0025
 1.00

Surrogate Rec. (%) Control Limits Qualifiers

1,4-Dichlorobutane 117 67-133

Method Blank		099-15-118-493	N/A	Aqueous	GC/MS M	04/24/17	04/24/17 23:32	170424L035
Comment(s):	- Results were evaluated to	the MDL (DL), conc	entrations >=	to the MDL (DL	.) but < RL (LO	Q), if found, are	qualified with	a "J" flag.
<u>Parameter</u>		<u>Resul</u>	<u>t</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
1,2,3-Trichloropr	opane	ND		0.0050	0.0025	1.00		
Currente		Dog /	(0/)	Control Limita	Qualifian			
<u>Surrogate</u>		<u>Rec. (</u>	(70)	Control Limits	Qualifiers	2		
1,4-Dichlorobuta	ne	101		67-133				

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

 Tetra Tech, Inc.
 Date Received:
 04/14/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-1160

 San Bernardino, CA 92408-3562
 Preparation:
 N/A

 Method:
 EPA 218.6

Project: LMC BOU Page 1 of 6

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Batch Number
4948-N-17Q2	Sample	Aqueous	IC 16	N/A	04/14/17 20:45	170414S01
4948-N-17Q2	Matrix Spike	Aqueous	IC 16	N/A	04/14/17 20:56	170414S01
4948-N-17Q2	Matrix Spike Duplicate	Aqueous	IC 16	N/A	04/14/17 21:07	170414S01
Parameter	Sample Spike Conc. Added	MS MS Conc. %F	S MSD Conc.	MSD %Rec.	%Rec. CL RPD	RPD CL Qualifiers
Chromium, Hexavalent	0.8210 10.00	10.84 10	0 10.60	98	85-121 2	0-25

Tetra Tech, Inc.

Date Received:

04/14/17
301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-1160

Preparation:

EPA 3020A Total

Method:

EPA 6020

Project: LMC BOU Page 2 of 6

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Batch Number
17-04-0841-2	Sample	Aqueous	ICP/MS 03	04/18/17	04/24/17 13:21	170418SA3
17-04-0841-2	Matrix Spike	Aqueous	ICP/MS 03	04/18/17	04/24/17 12:57	170418SA3
17-04-0841-2	Matrix Spike Duplicate	Aqueous	ICP/MS 03	04/18/17	04/24/17 13:00	170418SA3
<u>Parameter</u>	Sample Spike Conc. Added	<u>MS</u> <u>MS</u> <u>Conc.</u> %	S MSD Rec. Conc.	MSD %Rec.	%Rec. CL RPD	RPD CL Qualifiers
Chromium	0.001945 0.1000	0.1007 99	0.1020	100	73-133 1	0-11

Date Received: 04/14/17 Tetra Tech, Inc. Work Order: 17-04-1160 301 E. Vanderbilt Way, Suite 450 Preparation: **EPA 3510C** San Bernardino, CA 92408-3562

Method: EPA 8270C (M) Isotope Dilution

Page 3 of 6 Project: LMC BOU

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Batch Number
17-04-1061-4	Sample	Aqueous	GC/MS DDD	04/17/17	04/18/17 00:08	170417S10
17-04-1061-4	Matrix Spike	Aqueous	GC/MS DDD	04/17/17	04/17/17 23:04	170417S10
17-04-1061-4	Matrix Spike Duplicate	Aqueous	GC/MS DDD	04/17/17	04/17/17 23:19	170417S10
Parameter	Sample Spike Conc. Added	MS M Conc. %	S MSD Rec. Conc.	MSD %Rec.	%Rec. CL RPD	RPD CL Qualifiers
1,4-Dioxane	ND 20.00	20.47 10	20.26	101	50-130 1	0-20

 Tetra Tech, Inc.
 Date Received:
 04/14/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-1160

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

Project: LMC BOU Page 4 of 6

Quality Control Sample ID	Туре		Matrix		Instrument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
17-04-1200-2	Sample		Aqueous		GC/MS L	04/26/17	04/27/17	00:25	170426S026	
17-04-1200-2	Matrix Spike		Aqueous		GC/MS L	04/26/17	04/27/17	00:55	170426S026	
17-04-1200-2	Matrix Spike	Duplicate	Aqueous		GC/MS L	04/26/17 04/27/		01:26	170426S026	
<u>Parameter</u>	Sample Conc.	Spike Added	MS Conc.	MS %Re	MSD ec. Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,1,1,2-Tetrachloroethane	ND	10.00	9.359	94	9.716	97	75-127	4	0-20	
1,1,1-Trichloroethane	ND	10.00	8.908	89	9.474	95	72-132	6	0-20	
1,1,2,2-Tetrachloroethane	ND	10.00	8.965	90	9.231	92	75-132	3	0-20	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	10.00	8.374	84	8.329	83	70-130	1	0-20	
1,1,2-Trichloroethane	ND	10.00	9.468	95	9.712	97	75-125	3	0-20	
1,1-Dichloroethane	1.297	10.00	9.519	82	10.06	88	68-128	6	0-20	
1,1-Dichloroethene	ND	10.00	9.051	91	9.477	95	66-126	5	0-20	
1,1-Dichloropropene	ND	10.00	8.891	89	9.473	95	74-134	6	0-20	
1,2,3-Trichlorobenzene	ND	10.00	8.835	88	9.357	94	75-125	6	0-20	
1,2,3-Trichloropropane	ND	10.00	8.374	84	8.581	86	75-125	2	0-20	
1,2,4-Trichlorobenzene	ND	10.00	8.937	89	9.348	93	75-125	4	0-20	
1,2,4-Trimethylbenzene	ND	10.00	8.160	82	8.503	85	75-125	4	0-20	
1,2-Dibromo-3-Chloropropane	ND	10.00	7.688	77	7.870	79	75-127	2	0-20	
1,2-Dibromoethane	ND	10.00	9.384	94	9.506	95	75-126	1	0-20	
1,2-Dichlorobenzene	ND	10.00	9.244	92	9.592	96	75-125	4	0-20	
1,2-Dichloroethane	ND	10.00	10.31	103	10.67	107	75-127	3	0-20	
1,2-Dichloropropane	ND	10.00	9.233	92	9.609	96	75-125	4	0-20	
1,3,5-Trimethylbenzene	ND	10.00	9.536	95	9.831	98	75-127	3	0-20	
1,3-Dichlorobenzene	ND	10.00	9.058	91	9.471	95	75-126	4	0-20	
1,3-Dichloropropane	ND	10.00	9.464	95	9.723	97	75-125	3	0-20	
1,4-Dichlorobenzene	ND	10.00	9.001	90	9.434	94	75-125	5	0-20	
2,2-Dichloropropane	ND	10.00	6.906	69	7.363	74	52-160	6	0-20	
2-Butanone	ND	10.00	7.714	77	7.275	73	20-180	6	0-40	
2-Chlorotoluene	ND	10.00	9.652	97	10.08	101	75-128	4	0-20	
2-Hexanone	ND	10.00	7.843	78	8.046	80	74-122	3	0-20	
4-Chlorotoluene	ND	10.00	9.018	90	9.490	95	75-125	5	0-20	
4-Methyl-2-Pentanone	ND	10.00	8.402	84	8.634	86	65-137	3	0-20	
Acetone	ND	10.00	9.629	96	9.581	96	20-180	1	0-52	
Benzene	ND	10.00	9.172	92	9.748	97	75-125	6	0-20	
Bromobenzene	ND	10.00	9.717	97	10.17	102	75-125	5	0-20	
Bromochloromethane	ND	10.00	9.293	93	9.641	96	75-128	4	0-20	
Bromodichloromethane	ND	10.00	9.480	95	9.961	100	75-125	5	0-20	
Bromoform	ND	10.00	6.207	62	6.494	65	71-137	5	0-20	
Bromomethane	ND	10.00	11.77	118	11.89	119	37-181	1	0-22	
Carbon Disulfide	ND	10.00	7.886	79	9.216	92	58-136	16	0-20	

 Tetra Tech, Inc.
 Date Received:
 04/14/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-1160

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

Project: LMC BOU Page 5 of 6

<u>Parameter</u>	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Carbon Tetrachloride	ND	10.00	7.749	77	8.430	84	69-135	8	0-20	
Chlorobenzene	ND	10.00	9.604	96	9.915	99	75-125	3	0-20	
Chloroethane	ND	10.00	9.539	95	10.42	104	20-180	9	0-20	
Chloroform	0.9824	10.00	10.10	91	10.48	95	75-128	4	0-20	
Chloromethane	ND	10.00	6.431	64	7.072	71	41-149	9	0-20	
Dibromochloromethane	ND	10.00	8.730	87	9.084	91	75-125	4	0-20	
Dibromomethane	ND	10.00	9.499	95	9.910	99	75-129	4	0-20	
Dichlorodifluoromethane	3.404	10.00	12.95	95	12.20	88	28-172	6	0-20	
Ethylbenzene	ND	10.00	9.328	93	9.803	98	75-125	5	0-20	
Isopropylbenzene	ND	10.00	9.616	96	10.11	101	75-130	5	0-20	
Methylene Chloride	ND	10.00	9.420	94	9.923	99	74-128	5	0-20	
Naphthalene	ND	10.00	8.067	81	8.528	85	75-136	6	0-20	
Styrene	ND	10.00	7.930	79	8.340	83	28-166	5	0-30	
Tetrachloroethene	4.395	10.00	13.26	89	13.42	90	58-124	1	0-20	
Toluene	ND	10.00	9.503	95	9.936	99	75-125	4	0-20	
t-1,2-Dichloroethene	ND	10.00	9.246	92	8.976	90	73-133	3	0-20	
Trichloroethene	11.95	10.00	20.93	90	21.41	95	75-125	2	0-20	
Trichlorofluoromethane	0.5224	10.00	12.28	118	11.61	111	68-134	6	0-20	
Vinyl Acetate	ND	10.00	7.555	76	7.381	74	65-137	2	0-20	
Vinyl Chloride	ND	10.00	10.55	105	11.05	110	52-142	5	0-20	
c-1,3-Dichloropropene	ND	10.00	7.737	77	8.132	81	75-128	5	0-20	
c-1,2-Dichloroethene	0.5382	10.00	9.071	85	9.445	89	75-130	4	0-20	
n-Butylbenzene	ND	10.00	9.013	90	9.434	94	75-125	5	0-20	
n-Propylbenzene	ND	10.00	9.672	97	10.02	100	75-129	3	0-20	
o-Xylene	ND	10.00	9.436	94	9.852	99	75-127	4	0-20	
p-Isopropyltoluene	ND	10.00	9.173	92	9.538	95	75-125	4	0-20	
sec-Butylbenzene	ND	10.00	9.209	92	9.687	97	75-129	5	0-20	
t-1,3-Dichloropropene	ND	10.00	7.621	76	8.074	81	75-125	6	0-20	
tert-Butylbenzene	ND	10.00	9.555	96	10.04	100	75-129	5	0-20	
p/m-Xylene	ND	20.00	18.73	94	19.63	98	75-125	5	0-20	
Methyl-t-Butyl Ether (MTBE)	ND	10.00	8.902	89	8.410	84	71-131	6	0-20	
Hexachloro-1,3-Butadiene	ND	10.00	9.932	99	9.947	99	75-129	0	0-20	

 Tetra Tech, Inc.
 Date Received:
 04/14/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-1160

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B SIM

 Project: LMC BOU
 Page 6 of 6

Quality Control Sample ID	Туре		Matrix	Ir	nstrument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
17-04-1061-4	Sample		Aqueous	s G	C/MS M	04/24/17	04/25/17	00:02	170424S012	
17-04-1061-4	Matrix Spike		Aqueous	s G	C/MS M	04/24/17	04/25/17	00:32	170424S012	
17-04-1061-4	Matrix Spike	Duplicate	Aqueous	s G	C/MS M	04/24/17	04/25/17	01:02	170424S012	
<u>Parameter</u>	Sample Conc.	<u>Spike</u> Added	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,2,3-Trichloropropane	0.6449	0.02000	0.7153	352	0.6036	0	72-132	17	0-20	3

Date Received: 04/14/17 Tetra Tech, Inc. Work Order: 17-04-1160 301 E. Vanderbilt Way, Suite 450 Preparation: EPA 3020A Total San Bernardino, CA 92408-3562

Method: EPA 6020

Project: LMC BOU Page 1 of 1

Quality Control Sample ID	Туре	N	/latrix	Instrument	Date Prepared	Date Analyzed	PDS/PDSD Batch Number
17-04-0841-2	Sample	A	Aqueous	ICP/MS 03	04/18/17 00:00	04/24/17 13:21	170418SA3
17-04-0841-2	PDS	A	Aqueous	ICP/MS 03	04/18/17 00:00	04/24/17 13:02	170418SA3
<u>Parameter</u>		Sample Conc.	Spike Added	PDS Conc	. PDS %Re	ec. <u>%Rec. (</u>	<u>Qualifiers</u>
Chromium		0.001945	0.1000	0.1014	99	75-125	

Tetra Tech, Inc.

Date Received:

04/14/17
301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-1160

Preparation:

N/A

Method:

EPA 218.6

Project: LMC BOU Page 1 of 5

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-14-567-238	LCS	Aqueous	IC 16	N/A	04/14/17 17:23	170414L01
<u>Parameter</u>		Spike Added	Conc. Recov	ered LCS %R	tec. %Rec	. CL Qualifiers
Chromium, Hexavalent		10.00	10.12	101	95-10	7

Project: LMC BOU

Quality Control - LCS

Date Received: 04/14/17 Tetra Tech, Inc. Work Order: 17-04-1160 301 E. Vanderbilt Way, Suite 450 Preparation: EPA 3020A Total San Bernardino, CA 92408-3562 Method: EPA 6020

Page 2 of 5

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
096-06-003-5531	LCS	Aqueous	ICP/MS 03	04/18/17	04/20/17 00:46	170418LA3
<u>Parameter</u>		Spike Added	Conc. Recovere	ed LCS %Re	ec. %Rec	. CL Qualifiers
Chromium		0.1000	0.1064	106	80-120	0

Date Received: 04/14/17 Tetra Tech, Inc. Work Order: 17-04-1160 301 E. Vanderbilt Way, Suite 450 Preparation: **EPA 3510C** San Bernardino, CA 92408-3562

Method: EPA 8270C (M) Isotope Dilution

Page 3 of 5 Project: LMC BOU

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-16-216-1013	LCS	Aqueous	GC/MS DDD	04/17/17	04/17/17 22:48	170417L10
<u>Parameter</u>		Spike Added	Conc. Recover	red LCS %Re	ec. %Rec	. CL Qualifiers
1,4-Dioxane		20.00	20.30	101	50-13	0

Tetra Tech, Inc. 301 E. Vanderbilt Way, Suite 450 San Bernardino, CA 92408-3562

Date Received: Work Order: Preparation: Method:

04/14/17 17-04-1160 **EPA 5030C**

EPA 8260B

Page 4 of 5

Project: LMC BOU

Quality Control Sample ID	Туре	Matrix	x Instr	ument Date	e Prepared Date Ana	alyzed LCS Bat	ch Number
099-10-025-4657	LCS	Aque	ous GC/I	MS L 04/2	26/17 04/26/17	22:53 170426L	.056
<u>Parameter</u>		Spike Added	Conc. Recov	vered LCS %Re	ec. %Rec. CL	ME CL	Qualifiers
1,1-Dichloroethene		10.00	9.900	99	77-120	70-127	
1,2-Dibromoethane		10.00	9.727	97	80-120	73-127	
1,2-Dichlorobenzene		10.00	9.557	96	80-120	73-127	
1,2-Dichloroethane		10.00	10.87	109	80-122	73-129	
Benzene		10.00	9.605	96	80-120	73-127	
Carbon Tetrachloride		10.00	8.570	86	80-129	72-137	
Chlorobenzene		10.00	10.00	100	80-120	73-127	
Ethylbenzene		10.00	9.881	99	80-120	73-127	
Toluene		10.00	9.789	98	80-120	73-127	
Trichloroethene		10.00	10.17	102	80-120	73-127	
Vinyl Chloride		10.00	10.83	108	63-135	51-147	
o-Xylene		10.00	10.00	100	80-120	73-127	
p/m-Xylene		20.00	19.84	99	80-120	73-127	
Methyl-t-Butyl Ether (MTBE)		10.00	10.49	105	75-123	67-131	

Total number of LCS compounds: 14 Total number of ME compounds: 0 Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass

Date Received: 04/14/17 Tetra Tech, Inc. Work Order: 17-04-1160 301 E. Vanderbilt Way, Suite 450 Preparation: **EPA 5030C** San Bernardino, CA 92408-3562 Method: **EPA 8260B SIM** Project: LMC BOU Page 5 of 5

Quality Control Sample ID	Туре	Matrix	Instrument	Dat	e Prepared	Date Analyzed	LCS B	atch Number
099-15-118-493	LCS	Aqueous	GC/MS M	04/2	24/17	04/24/17 22:33	170424	4L035
<u>Parameter</u>		Spike Added	Conc. Recov	ered	LCS %Re	ec. %Red	:. CL	<u>Qualifiers</u>
1,2,3-Trichloropropane		0.02000	0.02000		100	72-13	2	

Sample Analysis Summary Report

Work Order: 17-04-1160	Page 1 of 1			
<u>Method</u>	Extraction	Chemist ID	<u>Instrument</u>	Analytical Location
EPA 218.6	N/A	1065	IC 16	1
EPA 6020	EPA 3020A Total	598	ICP/MS 03	1
EPA 8260B	EPA 5030C	316	GC/MS L	2
EPA 8260B SIM	EPA 5030C	486	GC/MS M	2
EPA 8270C (M) Isotope Dilution	EPA 3510C	928	GC/MS DDD	1

Ζ

Glossary of Terms and Qualifiers

Work Order: 17-04-1160 Page 1 of 1

Qualifiers	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
CI	See case narrative.
Е	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
SG	The sample extract was subjected to Silica Gel treatment prior to analysis.
X	% Recovery and/or RPD out-of-range.

Analyte presence was not confirmed by second column or GC/MS analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

v arculorina ∤		eurofins	i
-----------------------	--	----------	---

Calscience

WORK ORDER NUMBER: 17-04- 1160

SAMPL	ER.	ECEIPT	CHECKL	JST
-------	-----	--------	--------	-----

COOLER	 OF	\mathcal{L}

	11	7 1
CLIENT:	letta	18ch

DATE: 04 / /4 / 2017

				
TEMPERATURE: (Criteria: 0.0°C 8.0°C, not frozen except segiment/tissue)	Siank □ S		<u> </u>	
CUSTODY SEAL: Cooler	Checked		<u> </u>	
Sample(s) Present and Intact Present but Not Intact Not Present N/A	Спескес	i by: <u>68</u>	7	
SAMPLE CONDITION:	Yes	No	N/A	
Chain-of-Custody (COC) document(s) received with samples	⊿ '			
COC document(s) received complete				
☐ Sampling date ☐ Sampling time ☐ Matrix ☐ Number of containers	_	_		
☐ No analysis requested ☐ Not relinquished ☐ No relinquished date ☐ No relinquished time				
Sampler's name indicated on COC	æſ			
Sample container label(s) consistent with COC		_	_	
Sample container(s) intact and in good condition	•			
Proper containers for analyses requested	(_	_	
Sufficient volume/mass for analyses requested		_	_	
Samples received within holding time		<u> </u>	<u> </u>	
Aqueous samples for certain analyses received within 15-minute holding time			_	
□ pH □ Residual Chlorine □ Dissolved Sulfide □ Dissolved Oxygen	п		Ø	
Proper preservation chemical(s) noted on COC and/or sample container			~	
Unpreserved aqueous sample(s) received for certain analyses	,		_	
☐ Volatile Organics ☐ Total Metals ☐ Dissolved Metals				
Container(s) for certain analysis free of headspace	d			
Ø Volatile Organics ☐ Dissolved Gases (RSK-175) ☐ Dissolved Oxygen (SM 4500)	ت,	L	_	
☐ Carbon Dioxide (SM 4500) ☐ Ferrous Iron (SM 3500) ☐ Hydrogen Sulfide (Hach)				
Tediar™ bag(s) free of condensation	п	п	ď	
edal bag(s) (see of condensation	[78	3.84	Philips .	
CONTAINER TYPE: (Trip Blank Lot Number	r: <u>' / '</u>	2000		
Tediar™ bag(s) free of condensation CONTAINER TYPE: Aqueous: □ VOA 22 VOAh □ VOAns₂ □ 100PJ □ 100PJns₂ □ 125AGB □ 125AGBh □ 125AGBp □ 125PB				
□ 125PBznna □ 250AGB □ 250CGB □ 250CGBs □ 250PB □ 250PBn □ 500AGB □ 500AGJ □ 500AGJs				
□ 500PB □ 1AGB □ 1AGBna₂ □ 1AGBs □ 1PB □ 1PBna □ □ □ □ □ □				
Solid: 🗆 4ozCGJ 🗀 8ozCGJ 🗀 18ozCGJ 🗀 Sieeve () 🗀 EnCores® () 🗀 TerraCores® ()				
Air: □ Tedlar™ □ Canister □ Sorbent Tube □ PUF □ Other Matrix (): □				
Conteiner: A = Amber, B = Bottle, C = Clear, E = Envelope, G = Glass, J = Jar, P = Plastic, and Z = Ziploc/Resealable Bag				
Preservative: $b = buffered$, $f = filtered$, $h = HCI$, $n = HNO_3$, $na = NaOH$, $na_2 = Na_2S_2O_3$, $p = H_3PO_4$, Labeled				
$x = H_2SO_4$, $u = ultra-pure$, $x = Na_2SO_3 + NaHSO_4$, H_2O , z nna = Zr (CH_3CO_2) z + NaOH	Reviewed	bv: 6X	J	

Calscience

WORK ORDER NUMBER: 17-04-1061

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: Tetra Tech, Inc.

Client Project Name: LMC BOU

Attention: Robert Sabater

301 E. Vanderbilt Way, Suite 450 San Bernardino, CA 92408-3562

Vikas Patel

Approved for release on 04/28/2017 by:

Vikas Patel Project Manager

ResultLink >

Email your PM >

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name: LMC BOU
Work Order Number: 17-04-1061

1	Work Order Narrative	3
2	Detections Summary	4
3	Client Sample Data. 3.1 EPA 218.6 Hexavalent Chromium Low Level (Aqueous). 3.2 EPA 6020 ICP/MS Metals (Aqueous). 3.3 1,4-Dioxane by EPA 8270C (M) Isotope Dilution (Aqueous). 3.4 EPA 8260B Volatile Organics (Aqueous). 3.5 EPA 8260B SIM Emergent Volatiles (Aqueous).	6 7 8 10 28
4	Quality Control Sample Data. 4.1 MS/MSD. 4.2 PDS/PDSD. 4.3 LCS/LCSD.	30 30 37 38
5	Sample Analysis Summary	45
6	Glossary of Terms and Qualifiers	46
7	Chain-of-Custody/Sample Receipt Form	47

Work Order Narrative

Work Order: 17-04-1061 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 04/13/17. They were assigned to Work Order 17-04-1061.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Detections Summary

Client: Tetra Tech, Inc.

Work Order:

17-04-1061

301 E. Vanderbilt Way, Suite 450 San Bernardino, CA 92408-3562 Project Name: LMC BOU Received: 04/13/17

Attn: Robert Sabater

Page 1 of 2

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	Method	Extraction
3850N-N-17Q2 (17-04-1061-1)						
Chromium, Hexavalent	9.0		0.020	ug/L	EPA 218.6	N/A
Chromium	0.0101		0.00100	mg/L	EPA 6020	EPA 3020A Total
1,1,2-Trichloro-1,2,2-Trifluoroethane	0.27	J	0.24*	ug/L	EPA 8260B	EPA 5030C
1,1,2-Trichloroethane	0.43	J	0.20*	ug/L	EPA 8260B	EPA 5030C
1,1-Dichloroethene	0.87		0.50	ug/L	EPA 8260B	EPA 5030C
1,2-Dichloroethane	0.38	J	0.20*	ug/L	EPA 8260B	EPA 5030C
1,2-Dichloropropane	0.21	J	0.20*	ug/L	EPA 8260B	EPA 5030C
Carbon Tetrachloride	1.8		0.50	ug/L	EPA 8260B	EPA 5030C
Chloroform	3.2		0.50	ug/L	EPA 8260B	EPA 5030C
Tetrachloroethene	13		0.50	ug/L	EPA 8260B	EPA 5030C
Trichloroethene	19		0.50	ug/L	EPA 8260B	EPA 5030C
c-1,2-Dichloroethene	0.26	J	0.20*	ug/L	EPA 8260B	EPA 5030C
1,2,3-Trichloropropane	0.56		0.050	ug/L	EPA 8260B SIM	EPA 5030C
3850R-N-17Q2 (17-04-1061-2)						
Chromium, Hexavalent	0.021		0.020	ug/L	EPA 218.6	N/A
Chromium	0.000850	J	0.000402*	mg/L	EPA 6020	EPA 3020A Total
Tetrachloroethene	48		1.0	ug/L	EPA 8260B	EPA 5030C
Trichloroethene	7.8		1.0	ug/L	EPA 8260B	EPA 5030C
c-1,2-Dichloroethene	0.58	J	0.40*	ug/L	EPA 8260B	EPA 5030C
1,2,3-Trichloropropane	0.0074		0.0050	ug/L	EPA 8260B SIM	EPA 5030C
LTB-20170413 (17-04-1061-3)						
Acetone	4.0	J	4.0*	ug/L	EPA 8260B	EPA 5030C
A-1-CW03R-N-17Q2 (17-04-1061-4)						
Chromium, Hexavalent	0.010	J	0.0099*	ug/L	EPA 218.6	N/A
Chromium	0.00105		0.00100	mg/L	EPA 6020	EPA 3020A Total
1,1-Dichloroethene	0.45	J	0.28*	ug/L	EPA 8260B	EPA 5030C
Carbon Tetrachloride	0.42	J	0.20*	ug/L	EPA 8260B	EPA 5030C
Chloroform	21		0.50	ug/L	EPA 8260B	EPA 5030C
Trichloroethene	22		0.50	ug/L	EPA 8260B	EPA 5030C
c-1,2-Dichloroethene	0.46	J	0.20*	ug/L	EPA 8260B	EPA 5030C
Tetrachloroethene	57		2.0	ug/L	EPA 8260B	EPA 5030C
1,2,3-Trichloropropane	0.63		0.050	ug/L	EPA 8260B SIM	EPA 5030C
B-1-CW20-N-17Q2 (17-04-1061-5)						
Chromium, Hexavalent	2.1		0.020	ug/L	EPA 218.6	N/A
Chromium	0.00346		0.00100	mg/L	EPA 6020	EPA 3020A Total
Tetrachloroethene	0.34	J	0.20*	ug/L	EPA 8260B	EPA 5030C

^{*} MDL is shown

Detections Summary

Client: Tetra Tech, Inc.

301 E. Vanderbilt Way, Suite 450

San Bernardino, CA 92408-3562

Work Order: Project Name: 17-04-1061

Received:

LMC BOU 04/13/17

Attn: Robert Sabater

Page 2 of 2

Client SampleID

Analyte Result Qualifiers RL Units Method Extraction

Subcontracted analyses, if any, are not included in this summary.

Chromium, Hexavalent

Analytical Report

 Tetra Tech, Inc.
 Date Received:
 04/13/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-1061

 San Bernardino, CA 92408-3562
 Preparation:
 N/A

 Method:
 EPA 218.6

 Units:
 ug/L

Project: LMC BOU Page 1 of 1

Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
3850N-N-17Q2		17-04-1061-1-J	04/13/17 11:24	Aqueous	IC 16	N/A	04/13/17 21:50	170413L01
Comment(s):	- Results were evaluated t	to the MDL (DL), con	centrations >= t	to the MDL (DI	L) but < RL (LO	Q), if found, are	e qualified with a	"J" flag.
Parameter		Resu	ult	RL	MDL	DF	(Qualifiers

9.0

3850R-N-17Q2	1	7-04-1061-2-K	04/13/17 13:16	Aqueous	IC 16	N/A	04/13/17 22:01	170413L01
Comment(s):	- Results were evaluated to the	ne MDL (DL), conc	entrations >=	to the MDL (DL	_) but < RL (L	OQ), if found, a	re qualified with a	a "J" flag.
<u>Parameter</u>		Resul	<u> t</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	!	<u>Qualifiers</u>
Chromium, Hexa	avalent	0.021		0.020	0.0099	1.00)	

0.020

0.0099

1.00

A-1-CW03R-N-	1702	17-04-1061-4-K	04/13/17	Aqueous	IC 16	N/A	04/13/17	170413L01
A I GIIGGIA IA			09:19	71440040			22:12	
Comment(s):	- Results were evaluate	ed to the MDL (DL) cond	entrations >=	to the MDL (DL) but < RI	(LOO) if found :	are qualified with a	a ".l" flan

<u>Parameter</u> <u>Result</u> <u>RL</u> <u>MDL</u> <u>DF</u> <u>Qualifiers</u> Chromium, Hexavalent 0.010 0.020 0.0099 1.00 J

B-1-CW20-N-17Q2 17-04-1061-5-K	04/13/17 13:05	Aqueous I	IC 16	N/A	04/13/17 22:23	170413L01
--------------------------------	-------------------	-----------	-------	-----	-------------------	-----------

Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

Parameter

Chromium, Hexavalent

2.1

0.020

0.0099

1.00

	Method Blank	099-14-567-237	N/A	Aqueous	IC 16	N/A	04/13/17 16:50	170413L01
--	--------------	----------------	-----	---------	-------	-----	-------------------	-----------

Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
Chromium, Hexavalent	ND	0.020	0.0099	1.00	

Tetra Tech, Inc.Date Received:04/13/17301 E. Vanderbilt Way, Suite 450Work Order:17-04-1061San Bernardino, CA 92408-3562Preparation:EPA 3020A Total

Method: EPA 6020 Units: mg/L

Project: LMC BOU Page 1 of 1

Client Sample N	umber	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
3850N-N-17Q2		17-04-1061-1-K	04/13/17 11:24	Aqueous	ICP/MS 03	04/24/17	04/25/17 02:41	170424LA3
Comment(s):	- Results were evaluated to	the MDL (DL), cond	centrations >= t	o the MDL (DI	L) but < RL (LO	Q), if found, are	e qualified with a	"J" flag.
Parameter		Resi	ılt	RI	MDI	DF	(Qualifiers

3850R-N-17Q2	17-04-1061-2-L	04/13/17	Aqueous	ICP/MS 03	04/24/17	04/25/17	170424LA3
Chromium	0.010)1	0.00100	0.000402	1.00		

		13.10			02.44	
Comment(s):	- Results were evaluated to the MDL (DI	_), concentrations >:	to the MDL (DL) but	ut < RL (LOQ), if fou	nd, are qualified with	n a "J" flag.
<u>Parameter</u>		Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Chromium		0.000850	0.00100	0.000402	1.00	J

A-1-CW03R-N-	17Q2	17-04-1061-4-N	04/13/17 09:19	Aqueous	ICP/MS 03	04/24/17	04/25/17 02:39	170424LA3
Comment(s):	- Results were evaluated t	o the MDL (DL), cond	centrations >	= to the MDL (DI	_) but < RL (LOC	(), if found, are	qualified with	a "J" flag.
<u>Parameter</u>		Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>		Qualifiers
Chromium		0.00	105	0.00100	0.000402	1.00		
B-1-CW20-N-17	7Q2	17-04-1061-5-L	04/13/17	Aqueous	ICP/MS 03	04/24/17	04/25/17	170424LA3

Comment(s):	- Results were evaluated to the MDL (DL	.), concentra	ations >= to the MDL	(DL) but < RL (LOQ)	, if found, are qual	ified with a "J" flag.
<u>Parameter</u>		Result	<u>RL</u>	MDL	<u>DF</u>	Qualifiers

Chromium 0.00346 0.00100 0.000402 1.00

Method Blank	096-06-003-5544	N/A	Aqueous	ICP/MS 03	04/24/17	04/25/17 20:04	170424LA3
Comment(s):	- Results were evaluated to the MDL (DL), cond	entrations >	= to the MDL (DL) but < RL (LOQ), if found, are q	ualified with a "J	" flag.
Parameter	Resu	lt	RI	MDI	DF	Qua	alifiers

Chromium ND 0.00100 0.000402 1.00

Tetra Tech, Inc.

Date Received:

04/13/17
301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-1061

301 E. Vanderbilt Way, Suite 450 Work Order: 17-04-1061 San Bernardino, CA 92408-3562 Preparation: EPA 3510C

Method: EPA 8270C (M) Isotope Dilution

Units: ug/L

Project: LMC BOU Page 1 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID		
3850N-N-17Q2	17-04-1061-1-L	04/13/17 11:24	Aqueous	GC/MS DDD	04/17/17	04/17/17 23:35	170417L10		
Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.									
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>		
1,4-Dioxane	ND		1.0	0.28	1.00				
<u>Surrogate</u>	Rec.	<u>(%)</u>	Control Limits	Qualifiers					
Nitrobenzene-d5	99		56-123						
1,4-Dioxane-d8(IDS-IS)	38		30-120						

3850R-N-17Q2		17-04-1061-2-M	04/13/17 13:16	Aqueous	GC/MS DDD	04/17/17	04/17/17 23:52	170417L10
Comment(s):	- Results were evaluated to	the MDL (DL), cond	centrations >=	to the MDL (DL) but < RL (LOC	(a), if found, are	qualified with	a "J" flag.
<u>Parameter</u>		Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
1,4-Dioxane		ND		1.0	0.28	1.00		
<u>Surrogate</u>		Rec.	<u>(%)</u>	Control Limits	Qualifiers			
Nitrobenzene-d5	5	91		56-123				
1,4-Dioxane-d8(IDS-IS)	37		30-120				

A-1-CW03R-N-1	7Q2	17-04-1061-4-R	04/13/17 09:19	Aqueous	GC/MS DDD	04/17/17	04/18/17 00:08	170417L10
Comment(s):	- Results were evaluated to	the MDL (DL), conc	entrations >=	to the MDL (DL	.) but < RL (LOQ), if found, are	qualified with	a "J" flag.
<u>Parameter</u>		Resul	<u>t</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
1,4-Dioxane		ND		1.0	0.28	1.00		
<u>Surrogate</u>		<u>Rec. (</u>	<u>(%)</u>	Control Limits	<u>Qualifiers</u>			
Nitrobenzene-d5	j	101		56-123				
1,4-Dioxane-d8(IDS-IS)	43		30-120				

B-1-CW20-N-17Q2	17-04-1061-5-M	04/13/17 13:05	Aqueous	GC/MS DDD	04/17/17	04/18/17 00:23	170417L10
Comment(s): - Results were evaluated to	the MDL (DL), conce	entrations >= to	the MDL (DL) but < RL (LOQ), if found, are	qualified with	a "J" flag.
<u>Parameter</u>	<u>Result</u>	<u> </u>	<u>L</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
1,4-Dioxane	ND	1	.0	0.28	1.00		
Surrogate	Rec. (<u>%)</u> <u>C</u>	ontrol Limits	<u>Qualifiers</u>			
Nitrobenzene-d5	93	5	6-123				
1,4-Dioxane-d8(IDS-IS)	38	3	0-120				

Page 2 of 2

Project: LMC BOU

Analytical Report

Date Received: 04/13/17 Tetra Tech, Inc. Work Order: 17-04-1061 301 E. Vanderbilt Way, Suite 450

Preparation: **EPA 3510C** San Bernardino, CA 92408-3562

Method: EPA 8270C (M) Isotope Dilution

Units: ug/L

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-16-216-1013	N/A	Aqueous	GC/MS DDD	04/17/17	04/17/17 22:32	170417L10

Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. <u>Parameter</u> Result <u>RL</u> <u>MDL</u> <u>DF</u> Qualifiers

1,4-Dioxane ND 1.0 0.28 1.00

Surrogate Rec. (%) **Control Limits** Qualifiers Nitrobenzene-d5 115 56-123 1,4-Dioxane-d8(IDS-IS) 40 30-120

Project: LMC BOU

Analytical Report

Date Received: 04/13/17 Tetra Tech, Inc. Work Order: 17-04-1061 301 E. Vanderbilt Way, Suite 450 Preparation: **EPA 5030C** San Bernardino, CA 92408-3562

Method: EPA 8260B

Units: ug/L Page 1 of 18

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
3850N-N-17Q2	17-04-1061-1-A	04/13/17 11:24	Aqueous	GC/MS T	04/25/17	04/25/17 13:44	170425L008
Comment(s): - Results were evaluated to	o the MDL (DL), cond	centrations >= t	to the MDL (DI	L) but < RL (LC	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1 1 1-Trichloroethane	ND		0.50	0.20	1 00		

55501 N-17Q2	11:24	Aqueot			13:44
Comment(s): - Results were evaluate	ed to the MDL (DL), concentration	ons >= to the MDL	(DL) but < RL (LC		ualified with a "J" flag.
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
1,1,1,2-Tetrachloroethane	ND	0.50	0.20	1.00	
1,1,1-Trichloroethane	ND	0.50	0.20	1.00	
1,1,2,2-Tetrachloroethane	ND	0.50	0.20	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	0.27	0.50	0.24	1.00	J
1,1,2-Trichloroethane	0.43	0.50	0.20	1.00	J
1,1-Dichloroethane	ND	0.50	0.20	1.00	
1,1-Dichloroethene	0.87	0.50	0.28	1.00	
1,1-Dichloropropene	ND	0.50	0.30	1.00	
1,2,3-Trichlorobenzene	ND	0.50	0.20	1.00	
1,2,3-Trichloropropane	ND	1.0	0.40	1.00	
1,2,4-Trichlorobenzene	ND	0.50	0.20	1.00	
1,2,4-Trimethylbenzene	ND	0.50	0.20	1.00	
1,2-Dibromo-3-Chloropropane	ND	5.0	2.0	1.00	
1,2-Dibromoethane	ND	0.50	0.20	1.00	
1,2-Dichlorobenzene	ND	0.50	0.20	1.00	
1,2-Dichloroethane	0.38	0.50	0.20	1.00	J
1,2-Dichloropropane	0.21	0.50	0.20	1.00	J
1,3,5-Trimethylbenzene	ND	0.50	0.20	1.00	
1,3-Dichlorobenzene	ND	0.50	0.28	1.00	
1,3-Dichloropropane	ND	1.0	0.40	1.00	
1,4-Dichlorobenzene	ND	0.50	0.20	1.00	
2,2-Dichloropropane	ND	1.0	0.40	1.00	
2-Butanone	ND	5.0	2.0	1.00	
2-Chlorotoluene	ND	0.50	0.20	1.00	
2-Hexanone	ND	10	4.0	1.00	
4-Chlorotoluene	ND	0.50	0.36	1.00	
4-Methyl-2-Pentanone	ND	5.0	2.0	1.00	
Acetone	ND	10	4.0	1.00	
Benzene	ND	0.50	0.20	1.00	
Bromobenzene	ND	0.50	0.32	1.00	
Bromochloromethane	ND	1.0	0.40	1.00	
Bromodichloromethane	ND	0.50	0.20	1.00	
Bromoform	ND	0.50	0.25	1.00	
Bromomethane	ND	1.0	0.40	1.00	

 Tetra Tech, Inc.
 Date Received:
 04/13/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-1061

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 2 of 18

				1 ago 2 01 10
<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
ND	1.0	0.40	1.00	
1.8	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.32	1.00	
3.2	0.50	0.20	1.00	
ND	0.50	0.29	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	1.0	0.40	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	1.0	0.80	1.00	
ND	1.0	0.40	1.00	
ND	0.50	0.20	1.00	
13	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
19	0.50	0.29	1.00	
ND	0.50	0.20	1.00	
ND	5.0	2.0	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
0.26	0.50	0.20	1.00	J
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.32	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	5.0	4.2	1.00	
ND	2.0	0.80	1.00	
ND	10	5.0	1.00	
Rec. (%)	Control Limits	<u>Qualifiers</u>		
99	68-120			
97	80-127			
	ND 1.8 ND 1.8 ND ND ND ND ND ND ND ND ND ND ND ND ND	ND 1.0 1.8 0.50 ND 0.50 ND 0.50 ND 0.50 3.2 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 1.0 ND 0.50 ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 0.50 ND 1.0 ND 0.50 ND	ND 1.0 0.40 1.8 0.50 0.20 ND 0.50 0.20 ND 0.50 0.32 3.2 0.50 0.20 ND 0.50 0.29 ND 0.50 0.20 ND 0.50 0.20 ND 1.0 0.40 ND 0.50 0.20 ND 1.0 0.40 ND 0.50 0.20 ND 1.0 0.40 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND <	ND 1.0 0.40 1.00 1.8 0.50 0.20 1.00 ND 0.50 0.20 1.00 ND 0.50 0.32 1.00 ND 0.50 0.32 1.00 3.2 0.50 0.20 1.00 ND 0.50 0.20 1.00 ND 0.50 0.20 1.00 ND 0.50 0.20 1.00 ND 0.50 0.20 1.00 ND 0.50 0.20 1.00 ND 0.50 0.20 1.00 ND 0.50 0.20 1.00 ND 1.0 0.40 1.00 ND 0.50 0.20 1.00 ND 0.50 0.20 1.00 ND 1.0 0.80 1.00 ND 1.0 0.40 1.00 ND 1.0 0.40 1.00 ND 1.0 0.50 0.20 1.00 ND 1.0 1.0 0.40 1.00 ND 1.0 1.0 0.40 1.00 ND 1.0 0.50 0.20 1.00 ND 0.50 0.20 1.00

Tetra Tech, Inc.	Date Received:	04/13/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-1061
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOU		Page 3 of 18

<u>Surrogate</u>	Rec. (%)	Control Limits	<u>Qualifiers</u>
1,2-Dichloroethane-d4	101	80-128	
Toluene-d8	101	80-120	

04/13/17

ug/L

Project: LMC BOU

Analytical Report

Tetra Tech, Inc.

301 E. Vanderbilt Way, Suite 450

San Bernardino, CA 92408-3562

Date Received:

Work Order:

Preparation:

Work Order: 17-04-1061
Preparation: EPA 5030C
Method: EPA 8260B

Units:

Page 4 of 18

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
3850R-N-17Q2	17-04-1061-2-A	04/13/17 13:16	Aqueous	GC/MS T	04/25/17	04/25/17 14:17	170425L008
Comment(s): - Results were evaluate	ed to the MDL (DL), con	centrations >= t	o the MDL (DI	L) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	MDL	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
1,1,1,2-Tetrachloroethane	ND		1.0	0.40	2.00		
1,1,1-Trichloroethane	ND		1.0	0.40	2.00		
1,1,2,2-Tetrachloroethane	ND		1.0	0.40	2.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		1.0	0.48	2.00		
1,1,2-Trichloroethane	ND		1.0	0.40	2.00		
1,1-Dichloroethane	ND		1.0	0.40	2.00		
1,1-Dichloroethene	ND		1.0	0.56	2.00		
1,1-Dichloropropene	ND		1.0	0.60	2.00		
1,2,3-Trichlorobenzene	ND		1.0	0.40	2.00		
1,2,3-Trichloropropane	ND		2.0	0.80	2.00		
1,2,4-Trichlorobenzene	ND		1.0	0.40	2.00		
1,2,4-Trimethylbenzene	ND		1.0	0.40	2.00		
1,2-Dibromo-3-Chloropropane	ND		10	4.0	2.00		
1,2-Dibromoethane	ND		1.0	0.40	2.00		
1,2-Dichlorobenzene	ND		1.0	0.40	2.00		
1,2-Dichloroethane	ND		1.0	0.40	2.00		
1,2-Dichloropropane	ND		1.0	0.40	2.00		
1,3,5-Trimethylbenzene	ND		1.0	0.40	2.00		
1,3-Dichlorobenzene	ND		1.0	0.55	2.00		
1,3-Dichloropropane	ND		2.0	0.80	2.00		
1,4-Dichlorobenzene	ND		1.0	0.40	2.00		
2,2-Dichloropropane	ND		2.0	0.80	2.00		
2-Butanone	ND		10	4.0	2.00		
2-Chlorotoluene	ND		1.0	0.40	2.00		
2-Hexanone	ND		20	8.0	2.00		
4-Chlorotoluene	ND		1.0	0.71	2.00		
4-Methyl-2-Pentanone	ND		10	4.0	2.00		
Acetone	ND		20	8.0	2.00		
Benzene	ND		1.0	0.40	2.00		
Bromobenzene	ND		1.0	0.64	2.00		
Bromochloromethane	ND		2.0	0.80	2.00		
Bromodichloromethane	ND		1.0	0.40	2.00		
Bromoform	ND		1.0	0.49	2.00		
Bromomethane	ND		2.0	0.80	2.00		

 Tetra Tech, Inc.
 Date Received:
 04/13/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-1061

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 5 of 18

Floject. Livio Boo					rage 3 or 10
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Carbon Disulfide	ND	2.0	0.80	2.00	
Carbon Tetrachloride	ND	1.0	0.40	2.00	
Chlorobenzene	ND	1.0	0.40	2.00	
Chloroethane	ND	1.0	0.63	2.00	
Chloroform	ND	1.0	0.40	2.00	
Chloromethane	ND	1.0	0.59	2.00	
Dibromochloromethane	ND	1.0	0.40	2.00	
Dibromomethane	ND	1.0	0.40	2.00	
Dichlorodifluoromethane	ND	2.0	0.80	2.00	
Ethylbenzene	ND	1.0	0.40	2.00	
Isopropylbenzene	ND	1.0	0.40	2.00	
Methylene Chloride	ND	2.0	1.6	2.00	
Naphthalene	ND	2.0	0.80	2.00	
Styrene	ND	1.0	0.40	2.00	
Tetrachloroethene	48	1.0	0.40	2.00	
Toluene	ND	1.0	0.40	2.00	
t-1,2-Dichloroethene	ND	1.0	0.40	2.00	
Trichloroethene	7.8	1.0	0.57	2.00	
Trichlorofluoromethane	ND	1.0	0.40	2.00	
Vinyl Acetate	ND	10	4.0	2.00	
Vinyl Chloride	ND	1.0	0.40	2.00	
c-1,3-Dichloropropene	ND	1.0	0.40	2.00	
c-1,2-Dichloroethene	0.58	1.0	0.40	2.00	J
n-Butylbenzene	ND	1.0	0.40	2.00	
n-Propylbenzene	ND	1.0	0.40	2.00	
o-Xylene	ND	1.0	0.63	2.00	
p-Isopropyltoluene	ND	1.0	0.40	2.00	
sec-Butylbenzene	ND	1.0	0.40	2.00	
t-1,3-Dichloropropene	ND	1.0	0.40	2.00	
tert-Butylbenzene	ND	1.0	0.40	2.00	
p/m-Xylene	ND	1.0	0.40	2.00	
Methyl-t-Butyl Ether (MTBE)	ND	1.0	0.40	2.00	
2-Chloroethyl Vinyl Ether	ND	10	8.4	2.00	
Hexachloro-1,3-Butadiene	ND	4.0	1.6	2.00	
Iodomethane	ND	20	10	2.00	
Surrogate	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	99	68-120			
Dibromofluoromethane	101	80-127			

Tetra Tech, Inc.	Date Received:	04/13/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-1061
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOU		Page 6 of 18

Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>
1,2-Dichloroethane-d4	101	80-128	
Toluene-d8	100	80-120	

Tetra Tech, Inc.

Date Received:

04/13/17

301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-1061

San Bernardino, CA 92408-3562

Preparation:

EPA 5030C

Method: EPA 8260B Units: ug/L

Project: LMC BOU Page 7 of 18

LTB-20170413 17-04-1061-3-A 06:30 04/13/17 06:30 Aqueous GC/MS T 04/25/17 13:11 04/25/17 13:11 17042 Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. Parameter Result RL MDL DF Qualifiers 1,1,1,2-Tetrachloroethane ND 0.50 0.20 1.00 1,1,2,2-Tetrachloroethane ND 0.50 0.20 1.00 1,1,2-Trichloro-1,2,2-Trifluoroethane ND 0.50 0.24 1.00 1,1,2-Trichloroethane ND 0.50 0.20 1.00 1,1,2-Trichloroethane ND 0.50 0.20 1.00 1,1,1-Dichloroethane ND 0.50 0.20 1.00	itch ID
Parameter Result RL MDL DF Qualifiers 1,1,1,2-Tetrachloroethane ND 0.50 0.20 1.00 1,1,1-Trichloroethane ND 0.50 0.20 1.00 1,1,2-Tetrachloroethane ND 0.50 0.20 1.00 1,1,2-Trichloro-1,2,2-Trifluoroethane ND 0.50 0.24 1.00 1,1,2-Trichloroethane ND 0.50 0.20 1.00	5L008
1,1,1,2-Tetrachloroethane ND 0.50 0.20 1.00 1,1,1-Trichloroethane ND 0.50 0.20 1.00 1,1,2,2-Tetrachloroethane ND 0.50 0.20 1.00 1,1,2-Trichloro-1,2,2-Trifluoroethane ND 0.50 0.24 1.00 1,1,2-Trichloroethane ND 0.50 0.20 1.00	
1,1,1-Trichloroethane ND 0.50 0.20 1.00 1,1,2,2-Tetrachloroethane ND 0.50 0.20 1.00 1,1,2-Trichloro-1,2,2-Trifluoroethane ND 0.50 0.24 1.00 1,1,2-Trichloroethane ND 0.50 0.20 1.00	
1,1,2,2-Tetrachloroethane ND 0.50 0.20 1.00 1,1,2-Trichloro-1,2,2-Trifluoroethane ND 0.50 0.24 1.00 1,1,2-Trichloroethane ND 0.50 0.20 1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane ND 0.50 0.24 1.00 1,1,2-Trichloroethane ND 0.50 0.20 1.00	
1,1,2-Trichloroethane ND 0.50 0.20 1.00	
1.1-Dichloroethane ND 0.50 0.20 1.00	
· · · · · · · · · · · · · · · · · · ·	
1,1-Dichloroethene ND 0.50 0.28 1.00	
1,1-Dichloropropene ND 0.50 0.30 1.00	
1,2,3-Trichlorobenzene ND 0.50 0.20 1.00	
1,2,3-Trichloropropane ND 1.0 0.40 1.00	
1,2,4-Trichlorobenzene ND 0.50 0.20 1.00	
1,2,4-Trimethylbenzene ND 0.50 0.20 1.00	
1,2-Dibromo-3-Chloropropane ND 5.0 2.0 1.00	
1,2-Dibromoethane ND 0.50 0.20 1.00	
1,2-Dichlorobenzene ND 0.50 0.20 1.00	
1,2-Dichloroethane ND 0.50 0.20 1.00	
1,2-Dichloropropane ND 0.50 0.20 1.00	
1,3,5-Trimethylbenzene ND 0.50 0.20 1.00	
1,3-Dichlorobenzene ND 0.50 0.28 1.00	
1,3-Dichloropropane ND 1.0 0.40 1.00	
1,4-Dichlorobenzene ND 0.50 0.20 1.00	
2,2-Dichloropropane ND 1.0 0.40 1.00	
2-Butanone ND 5.0 2.0 1.00	
2-Chlorotoluene ND 0.50 0.20 1.00	
2-Hexanone ND 10 4.0 1.00	
4-Chlorotoluene ND 0.50 0.36 1.00	
4-Methyl-2-Pentanone ND 5.0 2.0 1.00	
Acetone 4.0 10 4.0 1.00 J	
Benzene ND 0.50 0.20 1.00	
Bromobenzene ND 0.50 0.32 1.00	
Bromochloromethane ND 1.0 0.40 1.00	
Bromodichloromethane ND 0.50 0.20 1.00	
Bromoform ND 0.50 0.25 1.00	
Bromomethane ND 1.0 0.40 1.00	

 Tetra Tech, Inc.
 Date Received:
 04/13/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-1061

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 8 of 18

Froject. Livio Boo					rage o or ro
<u>Parameter</u>	Result	RL	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Carbon Disulfide	ND	1.0	0.40	1.00	
Carbon Tetrachloride	ND	0.50	0.20	1.00	
Chlorobenzene	ND	0.50	0.20	1.00	
Chloroethane	ND	0.50	0.32	1.00	
Chloroform	ND	0.50	0.20	1.00	
Chloromethane	ND	0.50	0.29	1.00	
Dibromochloromethane	ND	0.50	0.20	1.00	
Dibromomethane	ND	0.50	0.20	1.00	
Dichlorodifluoromethane	ND	1.0	0.40	1.00	
Ethylbenzene	ND	0.50	0.20	1.00	
Isopropylbenzene	ND	0.50	0.20	1.00	
Methylene Chloride	ND	1.0	0.80	1.00	
Naphthalene	ND	1.0	0.40	1.00	
Styrene	ND	0.50	0.20	1.00	
Tetrachloroethene	ND	0.50	0.20	1.00	
Toluene	ND	0.50	0.20	1.00	
t-1,2-Dichloroethene	ND	0.50	0.20	1.00	
Trichloroethene	ND	0.50	0.29	1.00	
Trichlorofluoromethane	ND	0.50	0.20	1.00	
Vinyl Acetate	ND	5.0	2.0	1.00	
Vinyl Chloride	ND	0.50	0.20	1.00	
c-1,3-Dichloropropene	ND	0.50	0.20	1.00	
c-1,2-Dichloroethene	ND	0.50	0.20	1.00	
n-Butylbenzene	ND	0.50	0.20	1.00	
n-Propylbenzene	ND	0.50	0.20	1.00	
o-Xylene	ND	0.50	0.32	1.00	
p-Isopropyltoluene	ND	0.50	0.20	1.00	
sec-Butylbenzene	ND	0.50	0.20	1.00	
t-1,3-Dichloropropene	ND	0.50	0.20	1.00	
tert-Butylbenzene	ND	0.50	0.20	1.00	
p/m-Xylene	ND	0.50	0.20	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	0.50	0.20	1.00	
2-Chloroethyl Vinyl Ether	ND	5.0	4.2	1.00	
Hexachloro-1,3-Butadiene	ND	2.0	0.80	1.00	
lodomethane	ND	10	5.0	1.00	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	99	68-120			
Dibromofluoromethane	99	80-127			

Tetra Tech, Inc.	Date Received:	04/13/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-1061
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOU		Page 9 of 18

Surrogate	Rec. (%)	Control Limits	Qualifiers
1,2-Dichloroethane-d4	102	80-128	
Toluene-d8	99	80-120	

Project: LMC BOU

Analytical Report

Tetra Tech, Inc.

Date Received:

04/13/17

301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-1061

San Bernardino, CA 92408-3562

Preparation:

EPA 5030C

Method: EPA 8260B

Units: ug/L Page 10 of 18

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
A-1-CW03R-N-17Q2	17-04-1061-4-A	04/13/17 09:19	Aqueous	GC/MS T	04/25/17	04/25/17 11:00	170425L008
Comment(s): - Results were evaluated to	the MDL (DL), cond	entrations >=	to the MDL (DI	L) but < RL (LO	Q), if found, are	qualified with a	ı "J" flag.
<u>Parameter</u>	<u>Resu</u>	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>(</u>	<u>Qualifiers</u>
1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,1-Trichloroethane	ND		0.50	0.20	1.00		
1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		0.50	0.24	1.00		
1,1,2-Trichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethene	0.45		0.50	0.28	1.00		J
1,1-Dichloropropene	ND		0.50	0.30	1.00		
1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,3-Trichloropropane	ND		1.0	0.40	1.00		
1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,4-Trimethylbenzene	ND		0.50	0.20	1.00		
1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00		
1,2-Dibromoethane	ND		0.50	0.20	1.00		
1,2-Dichlorobenzene	ND		0.50	0.20	1.00		
1,2-Dichloroethane	ND		0.50	0.20	1.00		
1,2-Dichloropropane	ND		0.50	0.20	1.00		
1,3,5-Trimethylbenzene	ND		0.50	0.20	1.00		
1,3-Dichlorobenzene	ND		0.50	0.28	1.00		
1,3-Dichloropropane	ND		1.0	0.40	1.00		
1,4-Dichlorobenzene	ND		0.50	0.20	1.00		
2,2-Dichloropropane	ND		1.0	0.40	1.00		
2-Butanone	ND		5.0	2.0	1.00		
2-Chlorotoluene	ND		0.50	0.20	1.00		
2-Hexanone	ND		10	4.0	1.00		
4-Chlorotoluene	ND		0.50	0.36	1.00		
4-Methyl-2-Pentanone	ND		5.0	2.0	1.00		
Acetone	ND		10	4.0	1.00		
Benzene	ND		0.50	0.20	1.00		
Bromobenzene	ND		0.50	0.32	1.00		
Bromochloromethane	ND		1.0	0.40	1.00		
Bromodichloromethane	ND		0.50	0.20	1.00		
Bromoform	ND		0.50	0.25	1.00		
Bromomethane	ND		1.0	0.40	1.00		

 Tetra Tech, Inc.
 Date Received:
 04/13/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-1061

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 11 of 18

F TOJECT. LIVIC BOO					rage 11 01 10
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Carbon Disulfide	ND	1.0	0.40	1.00	
Carbon Tetrachloride	0.42	0.50	0.20	1.00	J
Chlorobenzene	ND	0.50	0.20	1.00	
Chloroethane	ND	0.50	0.32	1.00	
Chloroform	21	0.50	0.20	1.00	
Chloromethane	ND	0.50	0.29	1.00	
Dibromochloromethane	ND	0.50	0.20	1.00	
Dibromomethane	ND	0.50	0.20	1.00	
Dichlorodifluoromethane	ND	1.0	0.40	1.00	
Ethylbenzene	ND	0.50	0.20	1.00	
Isopropylbenzene	ND	0.50	0.20	1.00	
Methylene Chloride	ND	1.0	0.80	1.00	
Naphthalene	ND	1.0	0.40	1.00	
Styrene	ND	0.50	0.20	1.00	
Toluene	ND	0.50	0.20	1.00	
t-1,2-Dichloroethene	ND	0.50	0.20	1.00	
Trichloroethene	22	0.50	0.29	1.00	
Trichlorofluoromethane	ND	0.50	0.20	1.00	
Vinyl Acetate	ND	5.0	2.0	1.00	
Vinyl Chloride	ND	0.50	0.20	1.00	
c-1,3-Dichloropropene	ND	0.50	0.20	1.00	
c-1,2-Dichloroethene	0.46	0.50	0.20	1.00	J
n-Butylbenzene	ND	0.50	0.20	1.00	
n-Propylbenzene	ND	0.50	0.20	1.00	
o-Xylene	ND	0.50	0.32	1.00	
p-Isopropyltoluene	ND	0.50	0.20	1.00	
sec-Butylbenzene	ND	0.50	0.20	1.00	
t-1,3-Dichloropropene	ND	0.50	0.20	1.00	
tert-Butylbenzene	ND	0.50	0.20	1.00	
p/m-Xylene	ND	0.50	0.20	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	0.50	0.20	1.00	
2-Chloroethyl Vinyl Ether	ND	5.0	4.2	1.00	
Hexachloro-1,3-Butadiene	ND	2.0	0.80	1.00	
lodomethane	ND	10	5.0	1.00	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	97	68-120			
Dibromofluoromethane	94	80-127			
1,2-Dichloroethane-d4	94	80-128			

 Tetra Tech, Inc.
 Date Received:
 04/13/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-1061

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

Project: LMC BOU Page 12 of 18

Surrogate Rec. (%) Control Limits Qualifiers

Toluene-d8 99 80-120


Client Sample Number	Number	Collected	Matrix	instrument	Prepared	Analyzed	QC Batch ID
A-1-CW03R-N-17Q2	17-04-1061-4-D	04/13/17 09:19	Aqueous	GC/MS T	04/25/17	04/25/17 12:39	170425L008

Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

Parameter Result RL MDL DF Qualifiers

<u>rarameter</u>	Result	IXL	IVIDE	<u>DF</u>
Tetrachloroethene	57	2.0	0.80	4.00

<u>Surrogate</u>	Rec. (%)	Control Limits	Qualifiers
1,4-Bromofluorobenzene	99	68-120	
Dibromofluoromethane	97	80-127	
1,2-Dichloroethane-d4	99	80-128	
Toluene-d8	99	80-120	

Tetra Tech, Inc. 301 E. Vanderbilt Way, Suite 450 San Bernardino, CA 92408-3562 Date Received:
Work Order:
Preparation:
Method:

17-04-1061 EPA 5030C EPA 8260B

04/13/17

Units:

ug/L

Project: LMC BOU

Page 13 of 18

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-1-CW20-N-17Q2	17-04-1061-5-A	04/13/17 13:05	Aqueous	GC/MS T	04/25/17	04/25/17 14:50	170425L008
Comment(s): - Results were evaluated	to the MDL (DL), con	centrations >=	to the MDL (DI	_) but < RL (LO	Q), if found, are	qualified with	a "J" flag.
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,1-Trichloroethane	ND		0.50	0.20	1.00		
1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		0.50	0.24	1.00		
1,1,2-Trichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethene	ND		0.50	0.28	1.00		
1,1-Dichloropropene	ND		0.50	0.30	1.00		
1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,3-Trichloropropane	ND		1.0	0.40	1.00		
1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,4-Trimethylbenzene	ND		0.50	0.20	1.00		
1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00		
1,2-Dibromoethane	ND		0.50	0.20	1.00		
1,2-Dichlorobenzene	ND		0.50	0.20	1.00		
1,2-Dichloroethane	ND		0.50	0.20	1.00		
1,2-Dichloropropane	ND		0.50	0.20	1.00		
1,3,5-Trimethylbenzene	ND		0.50	0.20	1.00		
1,3-Dichlorobenzene	ND		0.50	0.28	1.00		
1,3-Dichloropropane	ND		1.0	0.40	1.00		
1,4-Dichlorobenzene	ND		0.50	0.20	1.00		
2,2-Dichloropropane	ND		1.0	0.40	1.00		
2-Butanone	ND		5.0	2.0	1.00		
2-Chlorotoluene	ND		0.50	0.20	1.00		
2-Hexanone	ND		10	4.0	1.00		
4-Chlorotoluene	ND		0.50	0.36	1.00		
4-Methyl-2-Pentanone	ND		5.0	2.0	1.00		
Acetone	ND		10	4.0	1.00		
Benzene	ND		0.50	0.20	1.00		
Bromobenzene	ND		0.50	0.32	1.00		
Bromochloromethane	ND		1.0	0.40	1.00		
Bromodichloromethane	ND		0.50	0.20	1.00		
Bromoform	ND		0.50	0.25	1.00		
Bromomethane	ND		1.0	0.40	1.00		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

 Tetra Tech, Inc.
 Date Received:
 04/13/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-1061

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 14 of 18

1 Tojoot: Livio Boo					1 490 1101 10
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	MDL	<u>DF</u>	<u>Qualifiers</u>
Carbon Disulfide	ND	1.0	0.40	1.00	
Carbon Tetrachloride	ND	0.50	0.20	1.00	
Chlorobenzene	ND	0.50	0.20	1.00	
Chloroethane	ND	0.50	0.32	1.00	
Chloroform	ND	0.50	0.20	1.00	
Chloromethane	ND	0.50	0.29	1.00	
Dibromochloromethane	ND	0.50	0.20	1.00	
Dibromomethane	ND	0.50	0.20	1.00	
Dichlorodifluoromethane	ND	1.0	0.40	1.00	
Ethylbenzene	ND	0.50	0.20	1.00	
Isopropylbenzene	ND	0.50	0.20	1.00	
Methylene Chloride	ND	1.0	0.80	1.00	
Naphthalene	ND	1.0	0.40	1.00	
Styrene	ND	0.50	0.20	1.00	
Tetrachloroethene	0.34	0.50	0.20	1.00	J
Toluene	ND	0.50	0.20	1.00	
t-1,2-Dichloroethene	ND	0.50	0.20	1.00	
Trichloroethene	ND	0.50	0.29	1.00	
Trichlorofluoromethane	ND	0.50	0.20	1.00	
Vinyl Acetate	ND	5.0	2.0	1.00	
Vinyl Chloride	ND	0.50	0.20	1.00	
c-1,3-Dichloropropene	ND	0.50	0.20	1.00	
c-1,2-Dichloroethene	ND	0.50	0.20	1.00	
n-Butylbenzene	ND	0.50	0.20	1.00	
n-Propylbenzene	ND	0.50	0.20	1.00	
o-Xylene	ND	0.50	0.32	1.00	
p-Isopropyltoluene	ND	0.50	0.20	1.00	
sec-Butylbenzene	ND	0.50	0.20	1.00	
t-1,3-Dichloropropene	ND	0.50	0.20	1.00	
tert-Butylbenzene	ND	0.50	0.20	1.00	
p/m-Xylene	ND	0.50	0.20	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	0.50	0.20	1.00	
2-Chloroethyl Vinyl Ether	ND	5.0	4.2	1.00	
Hexachloro-1,3-Butadiene	ND	2.0	0.80	1.00	
Iodomethane	ND	10	5.0	1.00	
Surrogate	Rec. (%)	Control Limits	Qualifiers		
1,4-Bromofluorobenzene	98	68-120			
Dibromofluoromethane	98	80-127			

Tetra Tech, Inc.	Date Received:	04/13/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-1061
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOLL		Page 15 of 18

<u>Surrogate</u>	Rec. (%)	Control Limits	Qualifiers
1,2-Dichloroethane-d4	102	80-128	
Toluene-d8	98	80-120	

Project: LMC BOU

Analytical Report

Tetra Tech, Inc.

Date Received:

04/13/17

301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-1061

San Bernardino, CA 92408-3562

Preparation:

EPA 5030C

Method:

EPA 8260B

Units: ug/L Page 16 of 18

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-10-025-4647	N/A	Aqueous	GC/MS T	04/25/17	04/25/17 10:25	170425L008
Comment(s): - Results were evaluate	d to the MDL (DL), cond	entrations >=	to the MDL (DI	L) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>It</u>	<u>RL</u>	MDL	<u>DF</u>	<u>C</u>	Qualifiers
1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,1-Trichloroethane	ND		0.50	0.20	1.00		
1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		0.50	0.24	1.00		
1,1,2-Trichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethene	ND		0.50	0.28	1.00		
1,1-Dichloropropene	ND		0.50	0.30	1.00		
1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,3-Trichloropropane	ND		1.0	0.40	1.00		
1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,4-Trimethylbenzene	ND		0.50	0.20	1.00		
1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00		
1,2-Dibromoethane	ND		0.50	0.20	1.00		
1,2-Dichlorobenzene	ND		0.50	0.20	1.00		
1,2-Dichloroethane	ND		0.50	0.20	1.00		
1,2-Dichloropropane	ND		0.50	0.20	1.00		
1,3,5-Trimethylbenzene	ND		0.50	0.20	1.00		
1,3-Dichlorobenzene	ND		0.50	0.28	1.00		
1,3-Dichloropropane	ND		1.0	0.40	1.00		
1,4-Dichlorobenzene	ND		0.50	0.20	1.00		
2,2-Dichloropropane	ND		1.0	0.40	1.00		
2-Butanone	ND		5.0	2.0	1.00		
2-Chlorotoluene	ND		0.50	0.20	1.00		
2-Hexanone	ND		10	4.0	1.00		
4-Chlorotoluene	ND		0.50	0.36	1.00		
4-Methyl-2-Pentanone	ND		5.0	2.0	1.00		
Acetone	ND		10	4.0	1.00		
Benzene	ND		0.50	0.20	1.00		
Bromobenzene	ND		0.50	0.32	1.00		
Bromochloromethane	ND		1.0	0.40	1.00		
Bromodichloromethane	ND		0.50	0.20	1.00		
Bromoform	ND		0.50	0.25	1.00		
Bromomethane	ND		1.0	0.40	1.00		

 Tetra Tech, Inc.
 Date Received:
 04/13/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-1061

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 17 of 18

F Toject. Livic BOO					Fage 17 Of 10
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Carbon Disulfide	ND	1.0	0.40	1.00	
Carbon Tetrachloride	ND	0.50	0.20	1.00	
Chlorobenzene	ND	0.50	0.20	1.00	
Chloroethane	ND	0.50	0.32	1.00	
Chloroform	ND	0.50	0.20	1.00	
Chloromethane	ND	0.50	0.29	1.00	
Dibromochloromethane	ND	0.50	0.20	1.00	
Dibromomethane	ND	0.50	0.20	1.00	
Dichlorodifluoromethane	ND	1.0	0.40	1.00	
Ethylbenzene	ND	0.50	0.20	1.00	
Isopropylbenzene	ND	0.50	0.20	1.00	
Methylene Chloride	ND	1.0	0.80	1.00	
Naphthalene	ND	1.0	0.40	1.00	
Styrene	ND	0.50	0.20	1.00	
Tetrachloroethene	ND	0.50	0.20	1.00	
Toluene	ND	0.50	0.20	1.00	
t-1,2-Dichloroethene	ND	0.50	0.20	1.00	
Trichloroethene	ND	0.50	0.29	1.00	
Trichlorofluoromethane	ND	0.50	0.20	1.00	
Vinyl Acetate	ND	5.0	2.0	1.00	
Vinyl Chloride	ND	0.50	0.20	1.00	
c-1,3-Dichloropropene	ND	0.50	0.20	1.00	
c-1,2-Dichloroethene	ND	0.50	0.20	1.00	
n-Butylbenzene	ND	0.50	0.20	1.00	
n-Propylbenzene	ND	0.50	0.20	1.00	
o-Xylene	ND	0.50	0.32	1.00	
p-Isopropyltoluene	ND	0.50	0.20	1.00	
sec-Butylbenzene	ND	0.50	0.20	1.00	
t-1,3-Dichloropropene	ND	0.50	0.20	1.00	
tert-Butylbenzene	ND	0.50	0.20	1.00	
p/m-Xylene	ND	0.50	0.20	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	0.50	0.20	1.00	
2-Chloroethyl Vinyl Ether	ND	5.0	4.2	1.00	
Hexachloro-1,3-Butadiene	ND	2.0	0.80	1.00	
lodomethane	ND	10	5.0	1.00	
<u>Surrogate</u>	Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	96	68-120			
Dibromofluoromethane	94	80-127			

Tetra Tech, Inc.	Date Received:	04/13/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-1061
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOU		Page 18 of 18

Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>
1,2-Dichloroethane-d4	95	80-128	
Toluene-d8	99	80-120	

Project: LMC BOU

1,4-Dichlorobutane

Analytical Report

 Tetra Tech, Inc.
 Date Received:
 04/13/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-1061

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B SIM

 Units:
 ug/L

Page 1 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
3850N-N-17Q2	17-04-1061-1-F	04/13/17 11:24	Aqueous	GC/MS M	04/26/17	04/26/17 13:31	170426L028
Comment(s): - Results were evaluated to	the MDL (DL), cond	centrations >=	to the MDL (DL	.) but < RL (LO	Q), if found, are	qualified with a	ı "J" flag.
<u>Parameter</u>	<u>Resu</u>	<u>lt</u>	<u>RL</u>	MDL	<u>DF</u>	<u>(</u>	Qualifiers
1,2,3-Trichloropropane	0.56		0.050	0.025	10.0		
Surrogate	Rec.	(%)	Control Limits	Qualifiers			

3850R-N-17Q2	17-04-1061-2-H	04/13/17 13:16	Aqueous	GC/MS M	04/24/17	04/25/17 03:31	170424L035
--------------	----------------	-------------------	---------	---------	----------	-------------------	------------

80-120

Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

Parameter
1,2,3-Trichloropropane

- Result - Result - Result - RL (LOQ), if found, are qualified with a "J" flag.

Output

- Qualifiers
0.0074

- 0.0050

- 0.0025

- 0.0025

SurrogateRec. (%)Control LimitsQualifiers1,4-Dichlorobutane11080-120

106

LTB-20170413		04/13/17 Aque 06:30	eous GC/MS M	04/24/17	04/24/17 17:35	170424L033
Comment(s): - Results were evalua-	ated to the MDL (DL), conce	ntrations >= to the M	DL (DL) but < RL (LC	OQ), if found, are q	ualified with a "J	" flag.
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qua	<u>alifiers</u>
1,2,3-Trichloropropane	ND	0.0050	0.0025	1.00		
<u>Surrogate</u>	Rec. (%	<u>6)</u> <u>Control</u>	<u>Limits</u> <u>Qualifier</u>	<u>rs</u>		
1,4-Dichlorobutane	119	80-120				

A-1-CW03R-N-17Q2	17-04-1061-4-I	04/13/17 09:19	Aqueous	GC/MS M	04/26/17	04/26/17 14:01	170426L028
Comment(s): - Results were evaluated t	o the MDL (DL), cond	centrations >= t	to the MDL (DL	.) but < RL (LO	Q), if found, are	qualified with a	a "J" flag.
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
1,2,3-Trichloropropane	0.63		0.050	0.025	10.0		
<u>Surrogate</u>	Rec.	(%)	Control Limits	<u>Qualifiers</u>			
1,4-Dichlorobutane	107		80-120				

ug/L

Project: LMC BOU

Surrogate

Analytical Report

Tetra Tech, Inc.

Date Received:

04/13/17

301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-1061

San Bernardino, CA 92408-3562

Preparation:

EPA 5030C

Method:

EPA 8260B SIM

Units:

Control Limits

Page 2 of 2

Qualifiers

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID		
B-1-CW20-N-17Q2	17-04-1061-5-H	04/13/17 13:05	Aqueous	GC/MS M	04/24/17	04/25/17 04:01	170424L035		
Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.									

 Parameter
 Result
 RL
 MDL
 DF
 Qualifiers

 1,2,3-Trichloropropane
 ND
 0.0050
 0.0025
 1.00

1,2,3-1 richioropropane ND 0.0050 0.0025 1.00

Rec. (%)

1,4-Dichlorobutane 104 80-120

Method Blank	099-15-118-492	N/A A	queous GC/MS M	04/24/17	04/24/17 1704 12:36	24L033
Comment(s):	- Results were evaluated to the MDL (DL), cond	centrations >= to the	MDL (DL) but < RL	(LOQ), if found, are	qualified with a "J" flag	
Parameter	Resu	ilt RL	MDL	DF	Qualifiers	S

 Parameter
 Result
 RL
 MDL
 DF

 1,2,3-Trichloropropane
 ND
 0.0050
 0.0025
 1.00

Surrogate Rec. (%) Control Limits Qualifiers

1,4-Dichlorobutane 113 80-120

Method Blank	099-15-118-493	N/A	Aqueous	GC/MS M	04/24/17	04/24/17 23:32	170424L035
Comment(s):	- Results were evaluated to the MDL (DL), co	ncentrations	s >= to the MDL (DL) but < RL (LC	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Re	<u>sult</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>(</u>	<u>Qualifiers</u>

1,2,3-Trichloropropane ND 0.0050 0.0025 1.00

Surrogate Rec. (%) Control Limits Qualifiers

1,4-Dichlorobutane 101 80-120

Method Blank	099-	15-118-494	N/A	Aqueous	GC/MS M	04/26/17	04/26/17 11:32	170426L028
Comment(s):	- Results were evaluated to the M	DL (DL), conce	entrations >= to	the MDL (DL) but < RL (LOQ), if found, are o	qualified with a "J	J" flag.

<u>Parameter</u> <u>Result</u> <u>RL</u> <u>MDL</u> <u>DF</u> <u>Qualifiers</u>

1,2,3-Trichloropropane ND 0.0050 0.0025 1.00

Surrogate Rec. (%) Control Limits Qualifiers

1,4-Dichlorobutane 115 80-120

 Tetra Tech, Inc.
 Date Received:
 04/13/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-1061

 San Bernardino, CA 92408-3562
 Preparation:
 N/A

 Method:
 EPA 218.6

 Project: LMC BOU
 Page 1 of 7

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Batch Number
A-1-CW03R-N-17Q2	Sample	Aqueous	IC 16	N/A	04/13/17 22:12	170413S01
A-1-CW03R-N-17Q2	Matrix Spike	Aqueous	IC 16	N/A	04/13/17 22:34	170413S01

A-1-CW03R-N-17Q2 Matrix Spike Duplicate IC 16 N/A Aqueous 04/13/17 22:46 170413S01 Sample Conc. <u>Spike</u> <u>Added</u> MS Conc. MS %Rec. MSD Conc. MSD %Rec. <u>Parameter</u> %Rec. CL RPD RPD CL Qualifiers Chromium, Hexavalent ND10.00 9.628 96 9.648 96 85-121 0 0-25

Tetra Tech, Inc.

Date Received:

04/13/17

301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-1061

San Bernardino, CA 92408-3562

Preparation:

Method:

EPA 3020A Total

Method:

EPA 6020

Project: LMC BOU Page 2 of 7

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Bate	ch Number
A-1-CW03R-N-17Q2	Sample	Aqueous	ICP/MS 03	04/24/17	04/25/17 02:39	170424SA3	
A-1-CW03R-N-17Q2	Matrix Spike	Aqueous	ICP/MS 03	04/24/17	04/25/17 20:12	170424SA3	
A-1-CW03R-N-17Q2	Matrix Spike Duplica	te Aqueous	ICP/MS 03	04/24/17	04/25/17 20:15	170424SA3	
Parameter	Sample Spike Conc. Adde	MS Conc.	MS MSD %Rec. Conc.	MSD %Rec.	%Rec. CL RPD	RPD CL	Qualifiers
Chromium	0.001055 0.100	0 0.1032	102 0.1062	105	73-133 3	0-11	

 Tetra Tech, Inc.
 Date Received:
 04/13/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-1061

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 3510C

Method: EPA 8270C (M) Isotope Dilution

Project: LMC BOU Page 3 of 7

Quality Control Sample ID	Туре		Matrix	Inst	rument	Date Prepared	Date Anal	yzed	MS/MSD Bate	ch Number
A-1-CW03R-N-17Q2	Sample		Aqueous	GC/	MS DDD	04/17/17	04/18/17	00:08	170417S10	
A-1-CW03R-N-17Q2	Matrix Spike		Aqueous	GC/	MS DDD	04/17/17	04/17/17	23:04	170417S10	
A-1-CW03R-N-17Q2	Matrix Spike Du	uplicate	Aqueous	GC/	MS DDD	04/17/17	04/17/17	23:19	170417S10	
<u>Parameter</u>	Sample S Conc.	<u>Spike</u> Added	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,4-Dioxane	ND 2	20.00	20.47	102	20.26	101	50-130	1	0-20	

 Tetra Tech, Inc.
 Date Received:
 04/13/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-1061

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

Project: LMC BOU Page 4 of 7

Quality Control Sample ID	Туре		Matrix	Ins	strument	Date Prepared	d Date Ana	lyzed	MS/MSD Bat	tch Number
A-1-CW03R-N-17Q2	Sample		Aqueou	s G	C/MS T	04/25/17	04/25/17	11:00	170425S006	
A-1-CW03R-N-17Q2	Matrix Spike		Aqueou	s G	C/MS T	04/25/17	04/25/17	11:33	170425S006	
A-1-CW03R-N-17Q2	Matrix Spike	Duplicate	Aqueou	s G	C/MS T	04/25/17	04/25/17	12:06	170425S006	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,1-Dichloroethene	ND	10.00	10.44	104	10.45	104	66-126	0	0-20	
1,2-Dibromoethane	ND	10.00	9.643	96	9.670	97	75-126	0	0-20	
1,2-Dichlorobenzene	ND	10.00	9.377	94	9.586	96	75-125	2	0-20	
1,2-Dichloroethane	ND	10.00	9.395	94	9.590	96	75-127	2	0-20	
Benzene	ND	10.00	9.479	95	9.572	96	75-125	1	0-20	
Carbon Tetrachloride	ND	10.00	10.68	107	10.72	107	69-135	0	0-20	
Chlorobenzene	ND	10.00	9.358	94	9.419	94	75-125	1	0-20	
Ethylbenzene	ND	10.00	9.657	97	9.687	97	75-125	0	0-20	
Toluene	ND	10.00	9.657	97	9.706	97	75-125	1	0-20	
Trichloroethene	22.24	10.00	30.64	84	30.84	86	75-125	1	0-20	
Vinyl Chloride	ND	10.00	11.05	111	10.99	110	52-142	1	0-20	
o-Xylene	ND	10.00	9.640	96	9.778	98	75-127	1	0-20	
p/m-Xylene	ND	20.00	19.36	97	19.28	96	75-125	0	0-20	
Methyl-t-Butyl Ether (MTBE)	ND	10.00	9.301	93	9.692	97	71-131	4	0-20	

 Tetra Tech, Inc.
 Date Received:
 04/13/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-1061

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B SIM

 Project: LMC BOU
 Page 5 of 7

Quality Control Sample ID	Туре		Matrix	I	nstrument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
17-04-0940-6	Sample		Aqueou	s (GC/MS M	04/24/17	04/24/17	14:05	170424S011	
17-04-0940-6	Matrix Spike		Aqueou	s (GC/MS M	04/24/17	04/24/17	16:05	170424S011	
17-04-0940-6	Matrix Spike	Duplicate	Aqueou	s (GC/MS M	04/24/17	04/24/17	16:35	170424S011	
<u>Parameter</u>	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,2,3-Trichloropropane	12.62	5.000	21.12	170	18.62	120	80-120	13	0-20	3

 Tetra Tech, Inc.
 Date Received:
 04/13/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-1061

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B SIM

 Project: LMC BOU
 Page 6 of 7

Quality Control Sample ID	Туре		Matrix	In	nstrument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
A-1-CW03R-N-17Q2	Sample		Aqueous	G	C/MS M	04/24/17	04/25/17	00:02	170424S012	
A-1-CW03R-N-17Q2	Matrix Spike		Aqueous	G	C/MS M	04/24/17	04/25/17	00:32	170424S012	
A-1-CW03R-N-17Q2	Matrix Spike	Duplicate	Aqueous	G	C/MS M	04/24/17	04/25/17	01:02	170424S012	
<u>Parameter</u>	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,2,3-Trichloropropane	0.6449	0.02000	0.7153	352	0.6036	0	80-120	17	0-20	3

 Tetra Tech, Inc.
 Date Received:
 04/13/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-1061

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B SIM

 Project: LMC BOU
 Page 7 of 7

Quality Control Sample ID	Туре		Matrix	Ir	nstrument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
3850N-N-17Q2	Sample		Aqueous	s G	C/MS M	04/26/17	04/26/17	13:31	170426S009	
3850N-N-17Q2	Matrix Spike		Aqueous	s G	C/MS M	04/26/17	04/26/17	15:01	170426S009	
3850N-N-17Q2	Matrix Spike	Duplicate	Aqueous	s G	C/MS M	04/26/17	04/26/17	15:31	170426S009	
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,2,3-Trichloropropane	0.5650	0.2000	0.6540	44	0.7060	70	80-120	8	0-20	3

Quality Control - PDS

Tetra Tech, Inc.

Date Received:

04/13/17

301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-1061

San Bernardino, CA 92408-3562

Preparation:

EPA 3020A Total

Method: EPA 6020

Project: LMC BOU Page 1 of 1

Quality Control Sample ID	Туре	N	/latrix	Instrument	Date Prepared	Date Analyzed	PDS/PDSD Batch Number
A-1-CW03R-N-17Q2	Sample	A	Aqueous	ICP/MS 03	04/24/17 00:00	04/25/17 02:39	170424SA3
A-1-CW03R-N-17Q2	PDS	A	Aqueous	ICP/MS 03	04/24/17 00:00	04/25/17 02:34	170424SA3
<u>Parameter</u>		Sample Conc.	Spike Added	PDS Conc	. PDS %Re	ec. <u>%Rec. (</u>	CL Qualifiers
Chromium		0.001055	0.1000	0.1044	103	75-125	

Quality Control - LCS

 Tetra Tech, Inc.
 Date Received:
 04/13/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-1061

 San Bernardino, CA 92408-3562
 Preparation:
 N/A


 Method:
 EPA 218.6

Project: LMC BOU Page 1 of 7

Quality Control Sample ID	Type	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-14-567-237	LCS	Aqueous	IC 16	N/A	04/13/17 17:01	170413L01
<u>Parameter</u>		Spike Added	Conc. Recover	red LCS %Re	ec. %Rec	. CL Qualifiers
Chromium, Hexavalent		10.00	10.13	101	95-10	7

04/13/17

Quality Control - LCS

Date Received: Tetra Tech, Inc. Work Order: 17-04-1061 301 E. Vanderbilt Way, Suite 450 Preparation: EPA 3020A Total San Bernardino, CA 92408-3562 Method: EPA 6020

Project: LMC BOU Page 2 of 7

Quality Control Sample ID	Type	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
096-06-003-5544	LCS	Aqueous	ICP/MS 03	04/24/17	04/25/17 20:10	170424LA3
<u>Parameter</u>		Spike Added	Conc. Recovere	ed LCS %Re	ec. %Rec	. CL Qualifiers
Chromium		0.1000	0.1061	106	80-12	0

04/13/17

17-04-1061

EPA 3510C

Quality Control - LCS

Tetra Tech, Inc.

301 E. Vanderbilt Way, Suite 450

San Bernardino, CA 92408-3562

Date Received:

Work Order:

Preparation:

Method: EPA 8270C (M) Isotope Dilution

Project: LMC BOU Page 3 of 7

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-16-216-1013	LCS	Aqueous	GC/MS DDD	04/17/17	04/17/17 22:48	170417L10
<u>Parameter</u>		Spike Added	Conc. Recover	red LCS %Re	ec. %Rec	. CL Qualifiers
1,4-Dioxane		20.00	20.30	101	50-130)

Quality Control - LCS

Tetra Tech, Inc. 301 E. Vanderbilt Way, Suite 450 San Bernardino, CA 92408-3562

Project: LMC BOU

Date Received: Work Order: Preparation:

Method:

17-04-1061 EPA 5030C

EPA 8260B

04/13/17

Page 4 of 7

Quality Control Sample ID	Туре	Matrix	c Instrum	nent Date P	repared Date Ana	lyzed LCS Bat	ch Number
099-10-025-4647	LCS	Aque	ous GC/MS	T 04/25/1	17 04/25/17	09:32 170425L	.008
<u>Parameter</u>		Spike Added	Conc. Recover	ed LCS %Rec.	%Rec. CL	ME CL	<u>Qualifiers</u>
1,1-Dichloroethene		10.00	10.51	105	77-120	70-127	
1,2-Dibromoethane		10.00	10.03	100	80-120	73-127	
1,2-Dichlorobenzene		10.00	10.08	101	80-120	73-127	
1,2-Dichloroethane		10.00	9.789	98	80-122	73-129	
Benzene		10.00	10.19	102	80-120	73-127	
Carbon Tetrachloride		10.00	10.88	109	80-129	72-137	
Chlorobenzene		10.00	10.09	101	80-120	73-127	
Ethylbenzene		10.00	10.32	103	80-120	73-127	
Toluene		10.00	10.19	102	80-120	73-127	
Trichloroethene		10.00	10.33	103	80-120	73-127	
Vinyl Chloride		10.00	10.46	105	63-135	51-147	
o-Xylene		10.00	10.39	104	80-120	73-127	
p/m-Xylene		20.00	20.64	103	80-120	73-127	
Methyl-t-Butyl Ether (MTBE)		10.00	9.746	97	75-123	67-131	

Total number of LCS compounds: 14
Total number of ME compounds: 0

Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass

Quality Control - LCS/LCSD

 Tetra Tech, Inc.
 Date Received:
 04/13/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-1061

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B SIM

 Project: LMC BOU
 Page 5 of 7

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Pre	pared Date	Analyzed	LCS/LCSD Ba	atch Number
099-15-118-492	LCS	Aqı	ueous	GC/MS M	04/24/17	04/2	4/17 11:06	170424L033	
099-15-118-492	LCSD	Aqι	ueous	GC/MS M	04/24/17	04/2	4/17 11:36	170424L033	
<u>Parameter</u>	Spike Added	LCS Conc.	<u>LCS</u> %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	<u>Qualifiers</u>
1,2,3-Trichloropropane	0.02000	0.01640	82	0.01830	92	80-120	11	0-20	

Quality Control - LCS

Date Received: 04/13/17 Tetra Tech, Inc. Work Order: 17-04-1061 301 E. Vanderbilt Way, Suite 450 Preparation: **EPA 5030C** San Bernardino, CA 92408-3562 Method: **EPA 8260B SIM** Project: LMC BOU Page 6 of 7

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-15-118-493	LCS	Aqueous	GC/MS M	04/24/17	04/24/17 22:33	170424L035
<u>Parameter</u>		Spike Added	Conc. Recover	ed LCS %R	ec. %Rec	c. CL Qualifiers
1,2,3-Trichloropropane		0.02000	0.02000	100	80-12	0

Quality Control - LCS/LCSD

 Tetra Tech, Inc.
 Date Received:
 04/13/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-1061

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B SIM

 Project: LMC BOU
 Page 7 of 7

Quality Control Sample ID	Туре	Matr	ix	Instrument	Date Pre	pared Date	Analyzed	LCS/LCSD Ba	tch Number
099-15-118-494	LCS	Aqu	eous	GC/MS M	04/26/17	04/2	6/17 10:02	170426L028	
099-15-118-494	LCSD	Aqu	eous	GC/MS M	04/26/17	04/2	6/17 10:32	170426L028	
Parameter	Spike Added LC	CS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,2,3-Trichloropropane	0.02000 0.0	02040	102	0.01960	98	80-120	4	0-20	

Sample Analysis Summary Report

Work Order: 17-04-1061				Page 1 of 1
Method	Extraction	Chemist ID	<u>Instrument</u>	Analytical Location
EPA 218.6	N/A	834	IC 16	1
EPA 6020	EPA 3020A Total	598	ICP/MS 03	1
EPA 8260B	EPA 5030C	316	GC/MS T	2
EPA 8260B SIM	EPA 5030C	486	GC/MS M	2
EPA 8270C (M) Isotope Dilution	EPA 3510C	928	GC/MS DDD	1

Χ

Glossary of Terms and Qualifiers

Work Order: 17-04-1061 Page 1 of 1

Qualifiers	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
CI	See case narrative.
Е	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
SG	The sample extract was subjected to Silica Gel treatment prior to analysis.

Z Analyte presence was not confirmed by second column or GC/MS analysis.

% Recovery and/or RPD out-of-range.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

eurofins work order number:		e 48 of	
Calsciance SAMPLE RECEIPT CHECKLIST CA	OOLER	10	DE
<i>+</i> 1 1 1	re: 04 /		
CLIENT: 18tra 18Ch DAT	E: U4 /	<u>1) '</u>	2017
TEMPERATURE: (Criteria: 0.0°C = 6.0°C, not frozen except sediment/tissue) Thermometer ID: SC (CF: 0.0°C); Temperature (w/o CF): 2.0 °C; EYE	 Slopk □ S	2omnia	
i	ианк ша	sample	I
☐ Sample(s) outside temperature criteria (PM/APM contacted by:) ☐ Sample(s) outside temperature criteria but received on ice/chilled on same day of sampling			
☐ Sample(s) received at ambient temperature; placed on ice for transport by courier			~ (C)
Ambient Temperature: □ Air □ Filter	Checked	d by:	ודמ [
CUSTODY SEAL:		1	1091
Cooler □ Present and Intact □ Present but Not Intact □ Not Present □ N/A	Checked		7/2
Sample(s) ☐ Present and Intact ☐ Present but Not Intact ☐ Not Present ☐ N/A	Checker	1 by:	10 (2)
SAMPLE CONDITION:	Yes,	No	N/A
Chain-of-Custody (COC) document(s) received with samples			
COC document(s) received complete	ø		
☐ Sampling date ☐ Sampling time ☐ Matrix ☐ Number of containers			
☐ No analysis requested ☐ Not refinquished ☐ No relinquished date ☐ No relinquished time	,		
Sampler's name indicated on COC	⊿ ′		
Sample container label(s) consistent with COC			
Sample container(s) Intact and in good condition	. z ,		
Proper containers for analyses requested	. ,2 5		
Sufficient volume/mass for analyses requested			
Samples received within holding time	<u>, p</u>		
Aqueous samples for certain analyses received within 15-minute holding time	_	_	~
□ pH □ Residual Chlorine □ Dissolved Sulfide □ Dissolved Oxygen	_		<u> </u>
Proper preservation chemical(s) noted on COC and/or sample container	<i>M</i>		
Unpreserved aqueous sample(s) received for certain analyses			
☐ Volatile Organica ☐ Total Metals ☐ Dissolved Metals	od .		
Container(s) for certain analysis free of headspace Z/Volatile Organics Dissolved Gases (RSK-175) Dissolved Oxygen (SM 4500)	_	•	_
☐ Carbon Dioxide (SM 4500) ☐ Ferrous Iron (SM 3500) ☐ Hydrogen Sulfide (Hach)			
Tedlar™ beg(s) free of condensation	. 🗆		Z)
		_	- γ— 1
CONTAINER TYPE: (Trip Blank Lot Number Aqueous: UVOA pa VOAh UVOAne, U100PJ U100PJna, U125AGB U125AGBh U125A		25PB	
Aqueous: UVOA ja VOAn UVOAne, U 100P3 U 100P3 II 100P3 II 125AGG U	J 🗆 500A	GJs	

Container: A = Amber, B = Bottle, C = Clear, E = Envelope, G = Glass, J = Jar, P = Plastic, and Z = Ziploc/Resealable Bag

 $a=H_2SO_4,\ \mu=ultra-pure,\ x=Na_2SO_3+NaHSO_4+H_2O,\ znna=Zn\ (CH_2CO_2)_2+NaOH$

Air: □ Tedlar™ □ Canister □ Sorbent Tube □ PUF □ _____ Other Matrix (_

Preservative: b = buffered, f = filtered, h = HCI, $n = HNO_3$, ne = NeOH, $na_2 = Na_2S_2O_3$, $p = H_3PO_4$,

Labeled/Checked by: _

Reviewed by: II/C

Calscience

WORK ORDER NUMBER: 17-04-0940

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: Tetra Tech, Inc.

Client Project Name: LMC BOU

Attention: Robert Sabater

301 E. Vanderbilt Way, Suite 450 San Bernardino, CA 92408-3562

Vikas Patel

Approved for release on 04/28/2017 by:

Vikas Patel Project Manager

ResultLink)

Email your PM >

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name: LMC BOU
Work Order Number: 17-04-0940

1	Work Order Narrative	3
2	Detections Summary	4
3	Client Sample Data. 3.1 EPA 218.6 Hexavalent Chromium Low Level (Aqueous). 3.2 EPA 6020 ICP/MS Metals (Aqueous). 3.3 1,4-Dioxane by EPA 8270C (M) Isotope Dilution (Aqueous). 3.4 EPA 8260B Volatile Organics (Aqueous). 3.5 EPA 8260B SIM Emergent Volatiles (Aqueous).	6 8 10 12 39
4	Quality Control Sample Data. 4.1 MS/MSD. 4.2 PDS/PDSD. 4.3 LCS/LCSD.	42 42 49 50
5	Sample Analysis Summary	57
6	Glossary of Terms and Qualifiers	58
7	Chain-of-Custody/Sample Receipt Form	59

Work Order Narrative

Work Order: 17-04-0940 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 04/12/17. They were assigned to Work Order 17-04-0940.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Detections Summary

Client: Tetra Tech, Inc.

301 E. Vanderbilt Way, Suite 450 San Bernardino, CA 92408-3562 Work Order: 17-04-0940

Project Name: LMC BOU Received: 04/12/17

Attn: Robert Sabater Page 1 of 2

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	Method	Extraction
C-1-CW08-N-17Q2 (17-04-0940-1)						
Chromium, Hexavalent	1.1		0.020	ug/L	EPA 218.6	N/A
Chromium	0.00757		0.00100	mg/L	EPA 6020	EPA 3020A Total
1,1-Dichloroethene	0.48	J	0.28*	ug/L	EPA 8260B	EPA 5030C
Carbon Tetrachloride	0.52		0.50	ug/L	EPA 8260B	EPA 5030C
Chloroform	0.33	J	0.20*	ug/L	EPA 8260B	EPA 5030C
Dichlorodifluoromethane	0.99	J	0.40*	ug/L	EPA 8260B	EPA 5030C
Tetrachloroethene	1.5		0.50	ug/L	EPA 8260B	EPA 5030C
Trichloroethene	0.36	J	0.29*	ug/L	EPA 8260B	EPA 5030C
C-1-CW07-N-17Q2 (17-04-0940-2)						
Chromium	0.0829		0.00100	mg/L	EPA 6020	EPA 3020A Total
1,1-Dichloroethene	0.44	J	0.28*	ug/L	EPA 8260B	EPA 5030C
Carbon Tetrachloride	0.37	J	0.20*	ug/L	EPA 8260B	EPA 5030C
Chloroform	0.29	J	0.20*	ug/L	EPA 8260B	EPA 5030C
Dichlorodifluoromethane	0.94	J	0.40*	ug/L	EPA 8260B	EPA 5030C
Tetrachloroethene	3.2		0.50	ug/L	EPA 8260B	EPA 5030C
Trichloroethene	0.72		0.50	ug/L	EPA 8260B	EPA 5030C
1,4-Dioxane	2.8		1.0	ug/L	EPA 8270C (M) Isotope Dilution	EPA 3510C
B-1-CW28-N-17Q2 (17-04-0940-4)						
Chromium	0.000983	J	0.000402*	mg/L	EPA 6020	EPA 3020A Total
Chloroform	0.35	J	0.20*	ug/L	EPA 8260B	EPA 5030C
Tetrachloroethene	13		0.50	ug/L	EPA 8260B	EPA 5030C
Trichloroethene	3.2		0.50	ug/L	EPA 8260B	EPA 5030C
B-1-CW28-FD-17Q2 (17-04-0940-5)						
Chromium	0.000895	J	0.000402*	mg/L	EPA 6020	EPA 3020A Total
Chloroform	0.33	J	0.20*	ug/L	EPA 8260B	EPA 5030C
Tetrachloroethene	12		0.50	ug/L	EPA 8260B	EPA 5030C
Trichloroethene	3.0		0.50	ug/L	EPA 8260B	EPA 5030C

^{*} MDL is shown

Detections Summary

Client: Tetra Tech, Inc.

Work Order: 17-04-0940

301 E. Vanderbilt Way, Suite 450 San Bernardino, CA 92408-3562 Project Name: LMC BOU Received: 04/12/17

Attn: Robert Sabater Page 2 of 2

Client SampleID						
Analyte	Result	Qualifiers	<u>RL</u>	<u>Units</u>	Method	Extraction
D 4 00440 N 4700 (47 04 0040 0)						
B-1-CW13-N-17Q2 (17-04-0940-6)	0.0		0.000	/1	EDA 040 0	N1/A
Chromium, Hexavalent	2.0		0.020	ug/L	EPA 218.6	N/A
Chromium	0.00276		0.00100	mg/L	EPA 6020	EPA 50000
1,1,2-Trichloro-1,2,2-Trifluoroethane	5.1		2.0	ug/L	EPA 8260B	EPA 5030C
1,1-Dichloroethene	7.9		2.0	ug/L	EPA 8260B	EPA 5030C
1,2,3-Trichloropropane	10		4.0	ug/L	EPA 8260B	EPA 5030C
Carbon Tetrachloride	3.1		2.0	ug/L	EPA 8260B	EPA 5030C
Chloroform	15		2.0	ug/L	EPA 8260B	EPA 5030C
Tetrachloroethene	100		2.0	ug/L	EPA 8260B	EPA 5030C
Trichloroethene	240		5.0	ug/L	EPA 8260B	EPA 5030C
1,2,3-Trichloropropane	13		1.2	ug/L	EPA 8260B SIM	EPA 5030C
1,4-Dioxane	2.0		1.0	ug/L	EPA 8270C (M) Isotope Dilution	EPA 3510C
3852F-N-17Q2 (17-04-0940-7)						
Chromium, Hexavalent	2.7		0.020	ug/L	EPA 218.6	N/A
Chromium	0.00315		0.00100	mg/L	EPA 6020	EPA 3020A Total
Bromodichloromethane	0.20	J	0.20*	ug/L	EPA 8260B	EPA 5030C
Carbon Tetrachloride	0.44	J	0.20*	ug/L	EPA 8260B	EPA 5030C
Chloroform	0.51		0.50	ug/L	EPA 8260B	EPA 5030C
Dichlorodifluoromethane	1.1		1.0	ug/L	EPA 8260B	EPA 5030C
Tetrachloroethene	1.0		0.50	ug/L	EPA 8260B	EPA 5030C
Trichloroethene	0.58		0.50	ug/L	EPA 8260B	EPA 5030C
1,2,3-Trichloropropane	0.027		0.0050	ug/L	EPA 8260B SIM	EPA 5030C
1,4-Dioxane	1.5		1.0	ug/L	EPA 8270C (M) Isotope Dilution	EPA 3510C
3852H-N-17Q2 (17-04-0940-8)						
Chromium, Hexavalent	1.1		0.020	ug/L	EPA 218.6	N/A
Chromium	0.00232		0.00100	mg/L	EPA 6020	EPA 3020A Total
1,1,2-Trichloroethane	0.29	J	0.20*	ug/L	EPA 8260B	EPA 5030C
1,2-Dichloroethane	2.1		0.50	ug/L	EPA 8260B	EPA 5030C
Carbon Tetrachloride	1.6		0.50	ug/L	EPA 8260B	EPA 5030C
Chloroform	6.9		0.50	ug/L	EPA 8260B	EPA 5030C
Dichlorodifluoromethane	0.91	J	0.40*	ug/L	EPA 8260B	EPA 5030C
Tetrachloroethene	1.5		0.50	ug/L	EPA 8260B	EPA 5030C
Trichloroethene	7.2		0.50	ug/L	EPA 8260B	EPA 5030C
1,2,3-Trichloropropane	0.29		0.025	ug/L	EPA 8260B SIM	EPA 5030C

Subcontracted analyses, if any, are not included in this summary.

^{*} MDL is shown

04/12/17 22:51

170412L01

3852F-N-17Q2

Comment(s):

Chromium, Hexavalent

Parameter

Analytical Report

Date Received: 04/12/17 Tetra Tech, Inc. Work Order: 17-04-0940 301 E. Vanderbilt Way, Suite 450 Preparation: N/A San Bernardino, CA 92408-3562 Method: EPA 218.6 Units: ug/L Project: LMC BOU Page 1 of 2 Client Sample Number Lab Sample Date/Time Matrix Instrument Date Date/Time QC Batch ID Number Collected Prepared Analyzed C-1-CW08-N-17Q2 17-04-0940-1-K 04/12/17 04/12/17 Aqueous IC 16 N/A 170412L01 16:05 21:55 - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. Comment(s): <u>Parameter</u> Result MDL <u>DF</u> <u>RL</u> Chromium, Hexavalent 1.1 0.020 0.0099 1.00 C-1-CW07-N-17Q2 04/12/17 IC 16 N/A 04/12/17 17-04-0940-2-K Aqueous 170412L01 15:00 22:06 - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. Comment(s): Qualifiers Parameter Result RL MDL DF Chromium, Hexavalent ND 0.020 0.0099 1.00 B-1-CW28-N-17Q2 17-04-0940-4-K 04/12/17 Aqueous IC 16 N/A 04/12/17 170412L01 - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. Comment(s): <u>Parameter</u> RL MDL <u>DF</u> Qualifiers Result ND 0.020 0.0099 1.00 Chromium. Hexavalent B-1-CW28-FD-17Q2 17-04-0940-5-K 04/12/17 Aqueous IC 16 N/A 04/12/17 170412L01 09:00 22:28 - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. Comment(s): MDL DF Parameter Result <u>RL</u> Qualifiers Chromium, Hexavalent ND 0.020 0.0099 1.00 04/12/17 22:40 04/12/17 B-1-CW13-N-17Q2 17-04-0940-6-K Aqueous IC 16 N/A 170412L01 - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. Comment(s): <u>DF</u> Qualifiers <u>Parameter</u> Result <u>RL</u> **MDL** Chromium. Hexavalent 0.020 0.0099 1.00 20

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

17-04-0940-7-K

04/12/17 15:29

Result

2.7

IC 16

MDL 0.0099

Aqueous

- Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

0.020

N/A

<u>DF</u>

1.00

Date Received: 04/12/17 Tetra Tech, Inc. Work Order: 17-04-0940 301 E. Vanderbilt Way, Suite 450 Preparation: N/A San Bernardino, CA 92408-3562 Method: EPA 218.6 Units: ug/L

Page 2 of 2 Project: LMC BOU

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
3852H-N-17Q2	17-04-0940-8-K	04/12/17 16:35	Aqueous	IC 16	N/A	04/12/17 23:02	170412L01

Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. <u>Parameter</u> Result <u>RL</u> <u>MDL</u> Qualifiers 1.00 Chromium, Hexavalent 1.1 0.020 0.0099

Method Blank	099-14	I-567-235 N/A	Aqueous	IC 16	N/A	04/12/17 17:45	170412L01
Comment(s):	- Results were evaluated to the MD	L (DL), concentration	ons >= to the MDL (DI	L) but < RL (LOC	Q), if found, are	qualified with a	a "J" flag.
<u>Parameter</u>		Result	<u>RL</u>	MDL	<u>DF</u>	9	<u>Qualifiers</u>
Chromium, Hexa	avalent	ND	0.020	0.0099	1.00		

Parameter

Chromium

Analytical Report

Date Received: 04/12/17 Tetra Tech, Inc. Work Order: 17-04-0940 301 E. Vanderbilt Way, Suite 450 Preparation: EPA 3020A Total San Bernardino, CA 92408-3562 Method: EPA 6020 Units: mg/L Project: LMC BOU Page 1 of 2 Client Sample Number Lab Sample Date/Time Matrix Instrument Date Date/Time QC Batch ID Number Collected Prepared Analyzed C-1-CW08-N-17Q2 17-04-0940-1-L 04/12/17 Aqueous ICP/MS 03 04/19/17 04/21/17 170419LA2 16:05 17:02 - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. Comment(s): <u>Parameter</u> <u>DF</u> Result <u>RL</u> **MDL** Qualifiers Chromium 0.00757 0.00100 0.000402 1.00 C-1-CW07-N-17Q2 17-04-0940-2-L 04/12/17 04/21/17 Aqueous ICP/MS 03 04/19/17 170419LA2 15:00 17:04 - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. Comment(s): Qualifiers Parameter Result MDL DF Chromium 0.0829 0.00100 0.000402 1.00 B-1-CW28-N-17Q2 17-04-0940-4-L 04/12/17 Aqueous ICP/MS 03 04/19/17 04/21/17 170419LA2 - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. Comment(s): <u>Parameter</u> MDL <u>DF</u> Qualifiers Result <u>RL</u> Chromium 0.000983 0.00100 0.000402 1.00 B-1-CW28-FD-17Q2 17-04-0940-5-L 04/12/17 Aqueous ICP/MS 03 04/19/17 04/21/17 170419LA2 09:00 17:09 Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. MDL DF Parameter Result Qualifiers Chromium 0.000895 0.00100 0.000402 1.00 B-1-CW13-N-17Q2 04/12/17 17-04-0940-6-L Aqueous ICP/MS 03 04/19/17 04/21/17 170419LA2 - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. Comment(s): <u>Parameter</u> <u>DF</u> Qualifiers Result <u>RL</u> **MDL** Chromium 0.00276 0.00100 0.000402 1.00 04/12/17 15:29 04/21/17 17:14 3852F-N-17Q2 17-04-0940-7-L ICP/MS 03 04/19/17 170419LA2 Aqueous - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. Comment(s):

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Result

0.00315

0.00100

<u>DF</u>

1.00

MDL

0.000402

Date Received: 04/12/17 Tetra Tech, Inc. Work Order: 17-04-0940 301 E. Vanderbilt Way, Suite 450 Preparation: EPA 3020A Total San Bernardino, CA 92408-3562

> Method: EPA 6020 Units: mg/L

Project: LMC BOU Page 2 of 2

Client Sample Number Lab Sample Date/Time Matrix Instrument Date Date/Time QC Batch ID Prepared Number Collected Analyzed 04/12/17 3852H-N-17Q2 17-04-0940-8-L 04/19/17 04/21/17 **Aqueous** ICP/MS 03 170419LA2 16:35 17:17

Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. <u>Parameter</u> Result <u>RL</u> <u>MDL</u> <u>DF</u> Qualifiers Chromium 0.00232 0.00100 0.000402 1.00

Method Blank 096-06-003-5540 N/A 04/19/17 04/24/17 170419LA2 Aqueous ICP/MS 05 15:41 - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. Comment(s): <u>Parameter</u> **MDL** <u>DF</u> Qualifiers Result RL Chromium ND 0.00100 0.000402 1.00

Analytical Report

Date Received: 04/12/17 Tetra Tech, Inc.

Work Order: 17-04-0940 301 E. Vanderbilt Way, Suite 450 Preparation: **EPA 3510C** San Bernardino, CA 92408-3562

> Method: EPA 8270C (M) Isotope Dilution

Units: ug/L Project: LMC BOU Page 1 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
C-1-CW08-N-17Q2	17-04-0940-1-M	04/12/17 16:05	Aqueous	GC/MS DDD	04/13/17	04/14/17 13:18	170413L06
Comment(s): - Results were evaluated t	o the MDL (DL), cond	centrations >= t	to the MDL (DL	.) but < RL (LOC	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>(ualifiers</u>
1,4-Dioxane	ND		1.0	0.28	1.00		
Surrogate	Rec.	(%)	Control Limits	Qualifiers			
Nitrobenzene-d5	96		56-123				
1,4-Dioxane-d8(IDS-IS)	39	;	30-120				

C-1-CW07-N-17Q2	17-04-0940-2-M	04/12/17 15:00	Aqueous	GC/MS DDD	04/13/17	04/14/17 13:33	170413L06
Comment(s): - Results were evaluated to	the MDL (DL), cond	entrations >= to	the MDL (DL) but < RL (LOC	Q), if found, are	qualified with a "	J" flag.
<u>Parameter</u>	Resul	<u>t </u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Q</u> ı	<u>alifiers</u>
1,4-Dioxane	2.8	,	1.0	0.28	1.00		
<u>Surrogate</u>	Rec.	<u>(%)</u>	Control Limits	Qualifiers			
Nitrobenzene-d5	105	Ę	56-123				
1,4-Dioxane-d8(IDS-IS)	39	3	30-120				

B-1-CW28-N-17Q2	17-04-0940-4-M	04/12/17 09:00	Aqueous	GC/MS DDD	04/13/17	04/14/17 13:49	170413L06
Comment(s): - Results were evaluated to	the MDL (DL), conce	entrations >= t	to the MDL (DL)	but < RL (LOQ), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Result	<u>t</u> !	<u>RL</u>	<u>MDL</u>	<u>DF</u>	9	<u>Qualifiers</u>
1,4-Dioxane	ND		1.0	0.28	1.00		
Surrogate	Rec. (<u>%)</u>	Control Limits	<u>Qualifiers</u>			
Nitrobenzene-d5	101	;	56-123				
1,4-Dioxane-d8(IDS-IS)	39	;	30-120				

B-1-CW28-FD-17Q2	17-04-0940-5-M	04/12/17 09:00	Aqueous	GC/MS DDD	04/13/17	04/14/17 14:05	170413L06
Comment(s): - Results were evaluated to	the MDL (DL), conc	entrations >= t	to the MDL (DL) but < RL (LOC	(a), if found, are	qualified with	a "J" flag.
<u>Parameter</u>	Resul	<u>t</u> .	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
1,4-Dioxane	ND		1.0	0.28	1.00		
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>			
Nitrobenzene-d5	99		56-123				
1,4-Dioxane-d8(IDS-IS)	38	;	30-120				

Tetra Tech, Inc.

Date Received: 04/12/17
301 E. Vanderbilt Way, Suite 450

Work Order: 17-04-0940

San Bernardino, CA 92408-3562

Preparation:

EPA 3510C

Method:

EPA 8270C (M) Isotope Dilution

Units: ug/L

Project: LMC BOU Page 2 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-1-CW13-N-17Q2	17-04-0940-6-M	04/12/17 10:18	Aqueous	GC/MS DDD	04/13/17	04/14/17 14:20	170413L06
Comment(s): - Results were evaluated	to the MDL (DL), con	centrations >=	to the MDL (DL	_) but < RL (LOC	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
1,4-Dioxane	2.0		1.0	0.28	1.00		
Surrogate	Rec.	(%)	Control Limits	Qualifiers			
Nitrobenzene-d5	107		56-123				
1,4-Dioxane-d8(IDS-IS)	40		30-120				

3852F-N-17Q2		17-04-0940-7-M	04/12/17 15:29	Aqueous	GC/MS DDD	04/13/17	04/14/17 14:36	170413L06
Comment(s):	- Results were evaluated to	the MDL (DL), conc	entrations >=	to the MDL (DL	.) but < RL (LOC	(a), if found, are	qualified with a	"J" flag.
<u>Parameter</u>		Resul	<u>t</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	9	<u>Qualifiers</u>
1,4-Dioxane		1.5		1.0	0.28	1.00		
		_						
<u>Surrogate</u>		Rec. (<u>(%)</u>	Control Limits	<u>Qualifiers</u>			
Nitrobenzene-d5		105		56-123				
1,4-Dioxane-d8(I	IDS-IS)	37		30-120				

3852H-N-17Q2		17-04-0940-8-M	04/12/17 16:35	Aqueous	GC/MS DDD	04/13/17	04/14/17 14:52	170413L06
Comment(s):	- Results were evaluated to t	the MDL (DL), conc	entrations >=	to the MDL (DL	but < RL (LOC	(a), if found, are	qualified with a	"J" flag.
<u>Parameter</u>		<u>Resul</u>	<u> t</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	9	<u>Qualifiers</u>
1,4-Dioxane		ND		1.0	0.28	1.00		
Surrogata		Poo	(0/.)	Control Limits	Qualifiers			
Surrogate Nitrobenzene-d5		<u>Rec. (</u> 101	(70)	56-123	Qualifiers			
1,4-Dioxane-d8(IDS-IS)	37		30-120				

Method Blank	099-16-216-1	009 N/	/A	Aqueous	GC/MS DDD	04/13/17	04/13/17 23:05	170413L06
Comment(s): - F	Results were evaluated to the MDL (DL),	concentr	rations >= to t	he MDL (DL)) but < RL (LOQ), if found, are	qualified with a	a "J" flag.
<u>Parameter</u>		<u>Result</u>	<u>RL</u>		<u>MDL</u>	<u>DF</u>	<u>(</u>	<u>Qualifiers</u>
1,4-Dioxane		ND	1.0)	0.28	1.00		
Surrogate		Rec. (%)	Co	ntrol Limits	<u>Qualifiers</u>			
Nitrobenzene-d5		89	56-	-123				
1,4-Dioxane-d8(IDS	S-IS)	44	30-	-120				

Project: LMC BOU

Analytical Report

 Tetra Tech, Inc.
 Date Received:
 04/12/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0940

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

Method: EPA 8260B Units: ug/L

Page 1 of 27

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID		
C-1-CW08-N-17Q2	17-04-0940-1-A	04/12/17 16:05	Aqueous	GC/MS L	04/22/17	04/23/17 06:19	170422L026		
Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.									
<u>Parameter</u>	Resu	<u>It</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>(ualifiers</u>		
1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00				
1,1,1-Trichloroethane	ND		0.50	0.20	1.00				
1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00				
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		0.50	0.24	1.00				
1,1,2-Trichloroethane	ND		0.50	0.20	1.00				
1,1-Dichloroethane	ND		0.50	0.20	1.00				
1,1-Dichloroethene	0.48		0.50	0.28	1.00	J			
1,1-Dichloropropene	ND		0.50	0.30	1.00				
1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00				
1,2,3-Trichloropropane	ND		1.0	0.40	1.00				
1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00				
1,2,4-Trimethylbenzene	ND		0.50	0.20	1.00				
1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00				
1,2-Dibromoethane	ND		0.50	0.20	1.00				
1,2-Dichlorobenzene	ND		0.50	0.20	1.00				
1,2-Dichloroethane	ND		0.50	0.20	1.00				
1,2-Dichloropropane	ND		0.50	0.20	1.00				
1,3,5-Trimethylbenzene	ND		0.50	0.20	1.00				
1,3-Dichlorobenzene	ND		0.50	0.28	1.00				
1,3-Dichloropropane	ND		1.0	0.40	1.00				
1,4-Dichlorobenzene	ND		0.50	0.20	1.00				
2,2-Dichloropropane	ND		1.0	0.40	1.00				
2-Butanone	ND		5.0	2.0	1.00				
2-Chlorotoluene	ND		0.50	0.20	1.00				
2-Hexanone	ND		10	4.0	1.00				
4-Chlorotoluene	ND		0.50	0.36	1.00				
4-Methyl-2-Pentanone	ND		5.0	2.0	1.00				
Acetone	ND		10	4.0	1.00				
Benzene	ND		0.50	0.20	1.00				
Bromobenzene	ND		0.50	0.32	1.00				
Bromochloromethane	ND		1.0	0.40	1.00				
Bromodichloromethane	ND		0.50	0.20	1.00				
Bromoform	ND		0.50	0.25	1.00				
Bromomethane	ND		1.0	0.40	1.00				

 Tetra Tech, Inc.
 Date Received:
 04/12/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0940

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 2 of 27

					<u> </u>
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Carbon Disulfide	ND	1.0	0.40	1.00	
Carbon Tetrachloride	0.52	0.50	0.20	1.00	
Chlorobenzene	ND	0.50	0.20	1.00	
Chloroethane	ND	0.50	0.32	1.00	
Chloroform	0.33	0.50	0.20	1.00	J
Chloromethane	ND	0.50	0.29	1.00	
Dibromochloromethane	ND	0.50	0.20	1.00	
Dibromomethane	ND	0.50	0.20	1.00	
Dichlorodifluoromethane	0.99	1.0	0.40	1.00	J
Ethylbenzene	ND	0.50	0.20	1.00	
Isopropylbenzene	ND	0.50	0.20	1.00	
Methylene Chloride	ND	1.0	0.80	1.00	
Naphthalene	ND	1.0	0.40	1.00	
Styrene	ND	0.50	0.20	1.00	
Tetrachloroethene	1.5	0.50	0.20	1.00	
Toluene	ND	0.50	0.20	1.00	
t-1,2-Dichloroethene	ND	0.50	0.20	1.00	
Trichloroethene	0.36	0.50	0.29	1.00	J
Trichlorofluoromethane	ND	0.50	0.20	1.00	
Vinyl Acetate	ND	5.0	2.0	1.00	
Vinyl Chloride	ND	0.50	0.20	1.00	
c-1,3-Dichloropropene	ND	0.50	0.20	1.00	
c-1,2-Dichloroethene	ND	0.50	0.20	1.00	
n-Butylbenzene	ND	0.50	0.20	1.00	
n-Propylbenzene	ND	0.50	0.20	1.00	
o-Xylene	ND	0.50	0.32	1.00	
p-Isopropyltoluene	ND	0.50	0.20	1.00	
sec-Butylbenzene	ND	0.50	0.20	1.00	
t-1,3-Dichloropropene	ND	0.50	0.20	1.00	
tert-Butylbenzene	ND	0.50	0.20	1.00	
p/m-Xylene	ND	0.50	0.20	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	0.50	0.20	1.00	
2-Chloroethyl Vinyl Ether	ND	5.0	4.2	1.00	
Hexachloro-1,3-Butadiene	ND	2.0	0.80	1.00	
lodomethane	ND	10	5.0	1.00	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	93	68-120			
Dibromofluoromethane	99	80-127			

Tetra Tech, Inc.	Date Received:	04/12/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0940
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOLL		Page 3 of 27

Surrogate	Rec. (%)	Control Limits	Qualifiers
1,2-Dichloroethane-d4	106	80-128	
Toluene-d8	99	80-120	

Project: LMC BOU

Analytical Report

Tetra Tech, Inc.

Date Received:

04/12/17

301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-0940

San Bernardino, CA 92408-3562

Preparation:

EPA 5030C

Method: EPA 8260B Units: ug/L

Page 4 of 27

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
C-1-CW07-N-17Q2	17-04-0940-2-A	04/12/17 15:00	Aqueous	GC/MS L	04/22/17	04/23/17 06:50	170422L026	
Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.								
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	MDL	<u>DF</u>	Q	ualifiers	
1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00			
1,1,1-Trichloroethane	ND		0.50	0.20	1.00			
1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00			
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		0.50	0.24	1.00			
1,1,2-Trichloroethane	ND		0.50	0.20	1.00			
1,1-Dichloroethane	ND		0.50	0.20	1.00			
1,1-Dichloroethene	0.44		0.50	0.28	1.00	J		
1,1-Dichloropropene	ND		0.50	0.30	1.00			
1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00			
1,2,3-Trichloropropane	ND		1.0	0.40	1.00			
1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00			
1,2,4-Trimethylbenzene	ND		0.50	0.20	1.00			
1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00			
1,2-Dibromoethane	ND		0.50	0.20	1.00			
1,2-Dichlorobenzene	ND		0.50	0.20	1.00			
1,2-Dichloroethane	ND		0.50	0.20	1.00			
1,2-Dichloropropane	ND		0.50	0.20	1.00			
1,3,5-Trimethylbenzene	ND		0.50	0.20	1.00			
1,3-Dichlorobenzene	ND		0.50	0.28	1.00			
1,3-Dichloropropane	ND		1.0	0.40	1.00			
1,4-Dichlorobenzene	ND		0.50	0.20	1.00			
2,2-Dichloropropane	ND		1.0	0.40	1.00			
2-Butanone	ND		5.0	2.0	1.00			
2-Chlorotoluene	ND		0.50	0.20	1.00			
2-Hexanone	ND		10	4.0	1.00			
4-Chlorotoluene	ND		0.50	0.36	1.00			
4-Methyl-2-Pentanone	ND		5.0	2.0	1.00			
Acetone	ND		10	4.0	1.00			
Benzene	ND		0.50	0.20	1.00			
Bromobenzene	ND		0.50	0.32	1.00			
Bromochloromethane	ND		1.0	0.40	1.00			
Bromodichloromethane	ND		0.50	0.20	1.00			
Bromoform	ND		0.50	0.25	1.00			
Bromomethane	ND		1.0	0.40	1.00			

 Tetra Tech, Inc.
 Date Received:
 04/12/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0940

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 5 of 27

1 Tojoot: EMO BOO					1 ago 0 01 21
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
Carbon Disulfide	ND	1.0	0.40	1.00	
Carbon Tetrachloride	0.37	0.50	0.20	1.00	J
Chlorobenzene	ND	0.50	0.20	1.00	
Chloroethane	ND	0.50	0.32	1.00	
Chloroform	0.29	0.50	0.20	1.00	J
Chloromethane	ND	0.50	0.29	1.00	
Dibromochloromethane	ND	0.50	0.20	1.00	
Dibromomethane	ND	0.50	0.20	1.00	
Dichlorodifluoromethane	0.94	1.0	0.40	1.00	J
Ethylbenzene	ND	0.50	0.20	1.00	
Isopropylbenzene	ND	0.50	0.20	1.00	
Methylene Chloride	ND	1.0	0.80	1.00	
Naphthalene	ND	1.0	0.40	1.00	
Styrene	ND	0.50	0.20	1.00	
Tetrachloroethene	3.2	0.50	0.20	1.00	
Toluene	ND	0.50	0.20	1.00	
t-1,2-Dichloroethene	ND	0.50	0.20	1.00	
Trichloroethene	0.72	0.50	0.29	1.00	
Trichlorofluoromethane	ND	0.50	0.20	1.00	
Vinyl Acetate	ND	5.0	2.0	1.00	
Vinyl Chloride	ND	0.50	0.20	1.00	
c-1,3-Dichloropropene	ND	0.50	0.20	1.00	
c-1,2-Dichloroethene	ND	0.50	0.20	1.00	
n-Butylbenzene	ND	0.50	0.20	1.00	
n-Propylbenzene	ND	0.50	0.20	1.00	
o-Xylene	ND	0.50	0.32	1.00	
p-Isopropyltoluene	ND	0.50	0.20	1.00	
sec-Butylbenzene	ND	0.50	0.20	1.00	
t-1,3-Dichloropropene	ND	0.50	0.20	1.00	
tert-Butylbenzene	ND	0.50	0.20	1.00	
p/m-Xylene	ND	0.50	0.20	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	0.50	0.20	1.00	
2-Chloroethyl Vinyl Ether	ND	5.0	4.2	1.00	
Hexachloro-1,3-Butadiene	ND	2.0	0.80	1.00	
Iodomethane	ND	10	5.0	1.00	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	92	68-120			
Dibromofluoromethane	100	80-127			

Tetra Tech, Inc.	Date Received:	04/12/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0940
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOU		Page 6 of 27

Surrogate	Rec. (%)	Control Limits	Qualifiers
1,2-Dichloroethane-d4	103	80-128	
Toluene-d8	100	80-120	

Tetra Tech, Inc. 301 E. Vanderbilt Way, Suite 450 San Bernardino, CA 92408-3562 Date Received:
Work Order:
Preparation:
Method:

Units:

17-04-0940 EPA 5030C EPA 8260B

04/12/17

ug/L

Project: LMC BOU

Page 7 of 27

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
LTB-20170412	17-04-0940-3-A	04/12/17 06:00	Aqueous	GC/MS L	04/22/17	04/23/17 05:48	170422L026	
Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.								
<u>Parameter</u>	Resu	<u>llt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	9	<u>Qualifiers</u>	
1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00			
1,1,1-Trichloroethane	ND		0.50	0.20	1.00			
1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00			
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		0.50	0.24	1.00			
1,1,2-Trichloroethane	ND		0.50	0.20	1.00			
1,1-Dichloroethane	ND		0.50	0.20	1.00			
1,1-Dichloroethene	ND		0.50	0.28	1.00			
1,1-Dichloropropene	ND		0.50	0.30	1.00			
1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00			
1,2,3-Trichloropropane	ND		1.0	0.40	1.00			
1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00			
1,2,4-Trimethylbenzene	ND		0.50	0.20	1.00			
1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00			
1,2-Dibromoethane	ND		0.50	0.20	1.00			
1,2-Dichlorobenzene	ND		0.50	0.20	1.00			
1,2-Dichloroethane	ND		0.50	0.20	1.00			
1,2-Dichloropropane	ND		0.50	0.20	1.00			
1,3,5-Trimethylbenzene	ND		0.50	0.20	1.00			
1,3-Dichlorobenzene	ND		0.50	0.28	1.00			
1,3-Dichloropropane	ND		1.0	0.40	1.00			
1,4-Dichlorobenzene	ND		0.50	0.20	1.00			
2,2-Dichloropropane	ND		1.0	0.40	1.00			
2-Butanone	ND		5.0	2.0	1.00			
2-Chlorotoluene	ND		0.50	0.20	1.00			
2-Hexanone	ND		10	4.0	1.00			
4-Chlorotoluene	ND		0.50	0.36	1.00			
4-Methyl-2-Pentanone	ND		5.0	2.0	1.00			
Acetone	ND		10	4.0	1.00			
Benzene	ND		0.50	0.20	1.00			
Bromobenzene	ND		0.50	0.32	1.00			
Bromochloromethane	ND		1.0	0.40	1.00			
Bromodichloromethane	ND		0.50	0.20	1.00			
Bromoform	ND		0.50	0.25	1.00			
Bromomethane	ND		1.0	0.40	1.00			

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

 Tetra Tech, Inc.
 Date Received:
 04/12/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0940

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 8 of 27

FTOJECI. LIVIO BOO					rage o or 27
<u>Parameter</u>	<u>Result</u>	RL	<u>MDL</u>	<u>DF</u>	Qualifiers
Carbon Disulfide	ND	1.0	0.40	1.00	
Carbon Tetrachloride	ND	0.50	0.20	1.00	
Chlorobenzene	ND	0.50	0.20	1.00	
Chloroethane	ND	0.50	0.32	1.00	
Chloroform	ND	0.50	0.20	1.00	
Chloromethane	ND	0.50	0.29	1.00	
Dibromochloromethane	ND	0.50	0.20	1.00	
Dibromomethane	ND	0.50	0.20	1.00	
Dichlorodifluoromethane	ND	1.0	0.40	1.00	
Ethylbenzene	ND	0.50	0.20	1.00	
Isopropylbenzene	ND	0.50	0.20	1.00	
Methylene Chloride	ND	1.0	0.80	1.00	
Naphthalene	ND	1.0	0.40	1.00	
Styrene	ND	0.50	0.20	1.00	
Tetrachloroethene	ND	0.50	0.20	1.00	
Toluene	ND	0.50	0.20	1.00	
t-1,2-Dichloroethene	ND	0.50	0.20	1.00	
Trichloroethene	ND	0.50	0.29	1.00	
Trichlorofluoromethane	ND	0.50	0.20	1.00	
Vinyl Acetate	ND	5.0	2.0	1.00	
Vinyl Chloride	ND	0.50	0.20	1.00	
c-1,3-Dichloropropene	ND	0.50	0.20	1.00	
c-1,2-Dichloroethene	ND	0.50	0.20	1.00	
n-Butylbenzene	ND	0.50	0.20	1.00	
n-Propylbenzene	ND	0.50	0.20	1.00	
o-Xylene	ND	0.50	0.32	1.00	
p-Isopropyltoluene	ND	0.50	0.20	1.00	
sec-Butylbenzene	ND	0.50	0.20	1.00	
t-1,3-Dichloropropene	ND	0.50	0.20	1.00	
tert-Butylbenzene	ND	0.50	0.20	1.00	
p/m-Xylene	ND	0.50	0.20	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	0.50	0.20	1.00	
2-Chloroethyl Vinyl Ether	ND	5.0	4.2	1.00	
Hexachloro-1,3-Butadiene	ND	2.0	0.80	1.00	
lodomethane	ND	10	5.0	1.00	
<u>Surrogate</u>	Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	93	68-120			
Dibromofluoromethane	95	80-127			

Tetra Tech, Inc.	Date Received:	04/12/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0940
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOU		Page 9 of 27

SurrogateRec. (%)Control LimitsQualifiers1,2-Dichloroethane-d410080-128Toluene-d89880-120

Project: LMC BOU

Analytical Report

 Tetra Tech, Inc.
 Date Received:
 04/12/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0940

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

Method: EPA 8260B Units: ug/L

Page 10 of 27

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-1-CW28-N-17Q2	17-04-0940-4-A	04/12/17 09:00	Aqueous	GC/MS L	04/22/17	04/23/17 07:20	170422L026
Comment(s): - Results were evaluated	to the MDL (DL), cond	centrations >= 1	to the MDL (DI	L) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,1-Trichloroethane	ND		0.50	0.20	1.00		
1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		0.50	0.24	1.00		
1,1,2-Trichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethene	ND		0.50	0.28	1.00		
1,1-Dichloropropene	ND		0.50	0.30	1.00		
1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,3-Trichloropropane	ND		1.0	0.40	1.00		
1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,4-Trimethylbenzene	ND		0.50	0.20	1.00		
1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00		
1,2-Dibromoethane	ND		0.50	0.20	1.00		
1,2-Dichlorobenzene	ND		0.50	0.20	1.00		
1,2-Dichloroethane	ND		0.50	0.20	1.00		
1,2-Dichloropropane	ND		0.50	0.20	1.00		
1,3,5-Trimethylbenzene	ND		0.50	0.20	1.00		
1,3-Dichlorobenzene	ND		0.50	0.28	1.00		
1,3-Dichloropropane	ND		1.0	0.40	1.00		
1,4-Dichlorobenzene	ND		0.50	0.20	1.00		
2,2-Dichloropropane	ND		1.0	0.40	1.00		
2-Butanone	ND		5.0	2.0	1.00		
2-Chlorotoluene	ND		0.50	0.20	1.00		
2-Hexanone	ND		10	4.0	1.00		
4-Chlorotoluene	ND		0.50	0.36	1.00		
4-Methyl-2-Pentanone	ND		5.0	2.0	1.00		
Acetone	ND		10	4.0	1.00		
Benzene	ND		0.50	0.20	1.00		
Bromobenzene	ND		0.50	0.32	1.00		
Bromochloromethane	ND		1.0	0.40	1.00		
Bromodichloromethane	ND		0.50	0.20	1.00		
Bromoform	ND		0.50	0.25	1.00		
Bromomethane	ND		1.0	0.40	1.00		

 Tetra Tech, Inc.
 Date Received:
 04/12/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0940

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

Project: LMC BOU Page 11 of 27

Project: LIMC BOU					Page 11 of 21
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Carbon Disulfide	ND	1.0	0.40	1.00	
Carbon Tetrachloride	ND	0.50	0.20	1.00	
Chlorobenzene	ND	0.50	0.20	1.00	
Chloroethane	ND	0.50	0.32	1.00	
Chloroform	0.35	0.50	0.20	1.00	J
Chloromethane	ND	0.50	0.29	1.00	
Dibromochloromethane	ND	0.50	0.20	1.00	
Dibromomethane	ND	0.50	0.20	1.00	
Dichlorodifluoromethane	ND	1.0	0.40	1.00	
Ethylbenzene	ND	0.50	0.20	1.00	
Isopropylbenzene	ND	0.50	0.20	1.00	
Methylene Chloride	ND	1.0	0.80	1.00	
Naphthalene	ND	1.0	0.40	1.00	
Styrene	ND	0.50	0.20	1.00	
Tetrachloroethene	13	0.50	0.20	1.00	
Toluene	ND	0.50	0.20	1.00	
t-1,2-Dichloroethene	ND	0.50	0.20	1.00	
Trichloroethene	3.2	0.50	0.29	1.00	
Trichlorofluoromethane	ND	0.50	0.20	1.00	
Vinyl Acetate	ND	5.0	2.0	1.00	
Vinyl Chloride	ND	0.50	0.20	1.00	
c-1,3-Dichloropropene	ND	0.50	0.20	1.00	
c-1,2-Dichloroethene	ND	0.50	0.20	1.00	
n-Butylbenzene	ND	0.50	0.20	1.00	
n-Propylbenzene	ND	0.50	0.20	1.00	
o-Xylene	ND	0.50	0.32	1.00	
p-Isopropyltoluene	ND	0.50	0.20	1.00	
sec-Butylbenzene	ND	0.50	0.20	1.00	
t-1,3-Dichloropropene	ND	0.50	0.20	1.00	
tert-Butylbenzene	ND	0.50	0.20	1.00	
p/m-Xylene	ND	0.50	0.20	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	0.50	0.20	1.00	
2-Chloroethyl Vinyl Ether	ND	5.0	4.2	1.00	
Hexachloro-1,3-Butadiene	ND	2.0	0.80	1.00	
Iodomethane	ND	10	5.0	1.00	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	92	68-120			
Dibromofluoromethane	99	80-127			

Tetra Tech, Inc.	Date Received:	04/12/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0940
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOU		Page 12 of 27

SurrogateRec. (%)Control LimitsQualifiers1,2-Dichloroethane-d410480-128Toluene-d89880-120

Project: LMC BOU

Analytical Report

Tetra Tech, Inc.

Date Received:

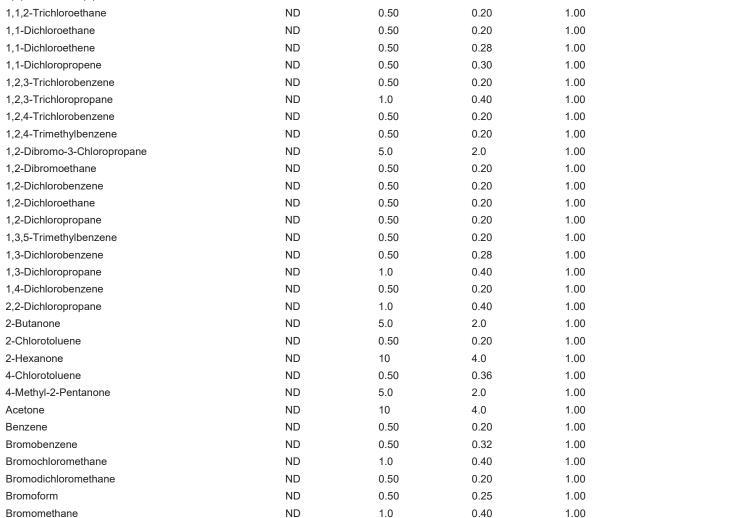
04/12/17

301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-0940

San Bernardino, CA 92408-3562


Preparation:

EPA 5030C

Method: EPA 8260B Units: ug/L

Page 13 of 27

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID		
B-1-CW28-FD-17Q2	17-04-0940-5-A	04/12/17 09:00	Aqueous	GC/MS L	04/22/17	04/23/17 07:51	170422L026		
Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.									
<u>Parameter</u>	<u>Resu</u>	<u>It</u> <u>B</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>		
1,1,1,2-Tetrachloroethane	ND	0	.50	0.20	1.00				
1,1,1-Trichloroethane	ND	0	.50	0.20	1.00				
1,1,2,2-Tetrachloroethane	ND	0	.50	0.20	1.00				
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0	.50	0.24	1.00				
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	ND ND	0	.50 .50	0.20 0.20	1.00 1.00				

 Tetra Tech, Inc.
 Date Received:
 04/12/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0940

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

Project: LMC BOU Page 14 of 27

Floject. Livio Boo					rage 14 01 21
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Carbon Disulfide	ND	1.0	0.40	1.00	
Carbon Tetrachloride	ND	0.50	0.20	1.00	
Chlorobenzene	ND	0.50	0.20	1.00	
Chloroethane	ND	0.50	0.32	1.00	
Chloroform	0.33	0.50	0.20	1.00	J
Chloromethane	ND	0.50	0.29	1.00	
Dibromochloromethane	ND	0.50	0.20	1.00	
Dibromomethane	ND	0.50	0.20	1.00	
Dichlorodifluoromethane	ND	1.0	0.40	1.00	
Ethylbenzene	ND	0.50	0.20	1.00	
Isopropylbenzene	ND	0.50	0.20	1.00	
Methylene Chloride	ND	1.0	0.80	1.00	
Naphthalene	ND	1.0	0.40	1.00	
Styrene	ND	0.50	0.20	1.00	
Tetrachloroethene	12	0.50	0.20	1.00	
Toluene	ND	0.50	0.20	1.00	
t-1,2-Dichloroethene	ND	0.50	0.20	1.00	
Trichloroethene	3.0	0.50	0.29	1.00	
Trichlorofluoromethane	ND	0.50	0.20	1.00	
Vinyl Acetate	ND	5.0	2.0	1.00	
Vinyl Chloride	ND	0.50	0.20	1.00	
c-1,3-Dichloropropene	ND	0.50	0.20	1.00	
c-1,2-Dichloroethene	ND	0.50	0.20	1.00	
n-Butylbenzene	ND	0.50	0.20	1.00	
n-Propylbenzene	ND	0.50	0.20	1.00	
o-Xylene	ND	0.50	0.32	1.00	
p-Isopropyltoluene	ND	0.50	0.20	1.00	
sec-Butylbenzene	ND	0.50	0.20	1.00	
t-1,3-Dichloropropene	ND	0.50	0.20	1.00	
tert-Butylbenzene	ND	0.50	0.20	1.00	
p/m-Xylene	ND	0.50	0.20	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	0.50	0.20	1.00	
2-Chloroethyl Vinyl Ether	ND	5.0	4.2	1.00	
Hexachloro-1,3-Butadiene	ND	2.0	0.80	1.00	
Iodomethane	ND	10	5.0	1.00	
Surrogate	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	95	68-120			
Dibromofluoromethane	99	80-127			

Tetra Tech, Inc.	Date Received:	04/12/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0940
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOU		Page 15 of 27

<u>Surrogate</u>	Rec. (%)	Control Limits	<u>Qualifiers</u>
1,2-Dichloroethane-d4	105	80-128	
Toluene-d8	100	80-120	

Tetra Tech, Inc.

Date Received:

04/12/17

301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-0940

San Bernardino, CA 92408-3562

Preparation:

EPA 5030C

Method: EPA 8260B Units: ug/L

Project: LMC BOU Page 16 of 27

17-04-0940-6-A 17-04-0940-6-A 04/12/17 04/12/1	Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Parameter Result RL MDL DE Qualifiers 1,1,1,2-Tertachloroethane ND 2,0 0,80 4,00 1,1,1,2-Trichloroethane ND 2,0 0,80 4,00 1,1,2-Trichloroethane ND 2,0 0,80 4,00 1,1,2-Trichloroethane ND 2,0 0,80 4,00 1,1-Dichloroethane ND 2,0 1,1 4,00 1,2-Dichloroethane ND 2,0 0,80 4,00 1,2-S-Trichlorobenzene ND 2,0 0,80 4,00 1,2-Dichloroethane ND 2,0 0,80 4,00 1,2-Dichloroethane ND 2,0 0,80 4,00 1,2-Dichloroethane ND 2,0 0,80 4,00 1,2-Dichloroethane	B-1-CW13-N-17Q2	17-04-0940-6-A		Aqueous	GC/MS L	04/22/17		170422L026
1,1,1,2-Tetrachloroethane ND 2,0 0.80 4,00 1,1,1-Trichioroethane ND 2,0 0.80 4,00 1,1,2-Trichioroethane ND 2,0 0.80 4,00 1,1,2-Trichioroethane ND 2,0 0.80 4,00 1,1-Dichioroethane ND 2,0 0.80 4,00 1,1-Dichioroethane 7,9 2,0 1,1 4,00 1,1-Dichioropopene ND 2,0 1,2 4,00 1,1-Dichioropopene ND 2,0 1,2 4,00 1,2,3-Trichiorobenzene ND 2,0 0.80 4,00 1,2,3-Trichioropopane 10 4,0 1,6 4,00 1,2,3-Trichioropopane ND 2,0 0.80 4,00 1,2,2-Trichioropopane ND 2,0 0.80 4,00 1,2-Dichioropopane ND 2,0 0.80 4,00 1,2-Dichioropopane ND 2,0 0.80 4,00 1,2-Dichioropopane ND 2,0 0.80 4,00 1,3-S-Trimethylbenzene N	Comment(s): - Results were evaluated	to the MDL (DL), cond	centrations >= to	the MDL (D	L) but < RL (LO	Q), if found, are	qualified with a	a "J" flag.
1,1,1-Trichloroethane ND 2.0 0.80 4.00 1,1,2,2-Tertachloroethane ND 2.0 0.80 4.00 1,1,2-Trichloro-1,2,2-Trifluorethane ND 2.0 0.96 4.00 1,1-Dichloroethane ND 2.0 0.80 4.00 1,1-Dichloroethane ND 2.0 1.1 4.00 1,1-Dichloropropene ND 2.0 1.1 4.00 1,2,3-Trichlorobenzene ND 2.0 1.2 4.00 1,2,3-Trichlorobenzene 10 4.0 1.6 4.00 1,2,4-Trichlorobenzene ND 2.0 0.80 4.00 1,2,4-Trichlorobenzene ND 2.0 0.80 4.00 1,2-Dichloroethazene ND 2.0 0.80 4.00 1,3-Dichloroet	<u>Parameter</u>	Resu	<u>ılt</u> <u>F</u>	<u> </u>	<u>MDL</u>	<u>DF</u>	<u>(</u>	<u>Qualifiers</u>
1,1,2,2-Tetrachloroethane ND 2.0 0.80 4.00 1,1,2-Trichloro-1,2,2-Trifluoroethane 5.1 2.0 0.96 4.00 1,1,2-Trichloroethane ND 2.0 0.80 4.00 1,1-Dichloroethane ND 2.0 0.80 4.00 1,1-Dichloropropene ND 2.0 1.1 4.00 1,1-Dichloropropene ND 2.0 1.2 4.00 1,1-Dichloropropene ND 2.0 1.2 4.00 1,2,3-Trichloroperopane 10 4.0 1.6 4.00 1,2,4-Trichloroperopane ND 2.0 0.80 4.00 1,2-4-Trimethylbenzene ND 2.0 0.80 4.00 1,2-Dichrome-3-Chloropropane ND 2.0 0.80 4.00 1,2-Dichlorobenzene ND 2.0 0.80 4.00 1,2-Dichloropropane ND 2.0 0.80 4.00 1,3-Dichloropropane ND 2.0 0.80 4.00 1,3-Dic	1,1,1,2-Tetrachloroethane	ND	2	2.0	0.80	4.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane 5.1 2.0 0.96 4.00 1,1,2-Trichloroethane ND 2.0 0.80 4.00 1,1-Dichloroethane ND 2.0 0.80 4.00 1,1-Dichloropthene 7.9 2.0 1.1 4.00 1,1,2-Trichlorobenzene ND 2.0 0.80 4.00 1,2,3-Trichlorobenzene ND 2.0 0.80 4.00 1,2,4-Trichlorobenzene ND 2.0 0.80 4.00 1,2,4-Trichlorobenzene ND 2.0 0.80 4.00 1,2,4-Trichlorobenzene ND 2.0 0.80 4.00 1,2-Dichlorobenzene ND 2.0 0.80 4.00 1,2-Dichlorobenzene ND 2.0 0.80 4.00 1,2-Dichlorobenzene ND 2.0 0.80 4.00 1,2-Dichloropropane ND 2.0 0.80 4.00 1,3-Dichlorobenzene ND 2.0 0.80 4.00 1,3-Dichloropro	1,1,1-Trichloroethane	ND	2	2.0	0.80	4.00		
1,1,2-Trichloroethane ND 2.0 0.80 4.00 1,1-Dichloroethane ND 2.0 0.80 4.00 1,1-Dichloroethene 7.9 2.0 1.1 4.00 1,1-Dichloroptopopene ND 2.0 0.80 4.00 1,2,3-Trichlorobenzene ND 2.0 0.80 4.00 1,2,3-Trichloropropane 10 4.0 1.6 4.00 1,2,4-Trichlorobenzene ND 2.0 0.80 4.00 1,2,4-Trichlorobenzene ND 2.0 0.80 4.00 1,2-Dibromoe-3-Chloropropane ND 2.0 0.80 4.00 1,2-Dichlorobenzene ND 2.0 0.80 4.00 1,2-Dichlorobenzene ND 2.0 0.80 4.00 1,3-Dichlorobenzene ND 2.0 0.80 4.00 1,3-Dichloropropane ND 2.0 0.80 4.00 1,4-Dichloropropane ND 4.0 1.6 4.00 2-Butanone	1,1,2,2-Tetrachloroethane	ND	2	2.0	0.80	4.00		
1,1-Dichloroethane ND 2.0 0.80 4.00 1,1-Dichloroethene 7.9 2.0 1,1 4.00 1,1-Dichloroephene ND 2.0 1,2 4.00 1,2,3-Trichloropenzene ND 2.0 0.80 4.00 1,2,3-Trichloropenzene ND 2.0 0.80 4.00 1,2,4-Trichlorobenzene ND 2.0 0.80 4.00 1,2,2-Trichlorobenzene ND 2.0 0.80 4.00 1,2-Dichlorobenzene ND 2.0 0.80 4.00 1,2-Dichloropropane ND 2.0 0.80 4.00 1,2-Dichloropropane ND 2.0 0.80 4.00 1,2-Dichloropropane ND 2.0 0.80 4.00 1,3-Dichloropropane ND 2.0 0.80 4.00 1,3-Dichloropropane ND 2.0 1.1 4.00 1,4-Dichlorobenzene ND 2.0 8.0 4.00 2-Butanone ND	1,1,2-Trichloro-1,2,2-Trifluoroethane	5.1	2	2.0	0.96	4.00		
1,1-Dichloroethene 7.9 2.0 1.1 4.00 1,1-Dichloropropene ND 2.0 1.2 4.00 1,2,3-Trichlorobenzene ND 2.0 0.80 4.00 1,2,3-Trichlorobenzene ND 2.0 0.80 4.00 1,2,4-Trichlorobenzene ND 2.0 0.80 4.00 1,2-Dichloropropane ND 2.0 0.80 4.00 1,2-Dichloropropane ND 2.0 0.80 4.00 1,2-Dichlorobenzene ND 2.0 0.80 4.00 1,2-Dichlorobenzene ND 2.0 0.80 4.00 1,2-Dichlorobenzene ND 2.0 0.80 4.00 1,2-Dichloropropane ND 2.0 0.80 4.00 1,3-Dichlorobenzene ND 2.0 0.80 4.00 1,3-Dichlorobenzene ND 2.0 0.80 4.00 1,4-Dichlorobenzene ND 4.0 1.6 4.00 2-Butanone ND	1,1,2-Trichloroethane	ND	2	2.0	0.80	4.00		
1,1-Dichloropropene ND 2.0 1.2 4.00 1,2,3-Trichlorobenzene ND 2.0 0.80 4.00 1,2,3-Trichloropropane 10 4.0 1.6 4.00 1,2,4-Trichlorobenzene ND 2.0 0.80 4.00 1,2,4-Trinethylbenzene ND 2.0 0.80 4.00 1,2-Dibromo-3-Chloropropane ND 2.0 0.80 4.00 1,2-Dichlorobenzene ND 2.0 0.80 4.00 1,2-Dichlorobenzene ND 2.0 0.80 4.00 1,2-Dichloroptopane ND 2.0 0.80 4.00 1,2-Dichloroptopane ND 2.0 0.80 4.00 1,3-Dichlorobenzene ND 2.0 0.80 4.00 1,3-Dichloroptopane ND 2.0 0.80 4.00 1,3-Dichloroptopane ND 4.0 1.6 4.00 2,2-Dichloroptopane ND 4.0 1.6 4.00 2-Eutanone ND 2.0 8.0 4.00 2-Hexanone ND	1,1-Dichloroethane	ND	2	2.0	0.80	4.00		
1,2,3-Trichlorobenzene ND 2,0 0.80 4.00 1,2,3-Trichloropropane 10 4.0 1.6 4.00 1,2,4-Trichlorobenzene ND 2.0 0.80 4.00 1,2,4-Trimethylbenzene ND 2.0 0.80 4.00 1,2-Dibromo-3-Chloropropane ND 2.0 0.80 4.00 1,2-Dibromoethane ND 2.0 0.80 4.00 1,2-Dichlorobenzene ND 2.0 0.80 4.00 1,2-Dichlorobenzene ND 2.0 0.80 4.00 1,2-Dichloropropane ND 2.0 0.80 4.00 1,3-Dichloropropane ND 2.0 0.80 4.00 1,3-Dichloropropane ND 2.0 0.80 4.00 1,3-Dichloropropane ND 2.0 0.80 4.00 1,4-Dichloropropane ND 2.0 0.80 4.00 2-Dichloropropane ND 4.0 1.6 4.00 2-Dichloropropane	1,1-Dichloroethene	7.9	2	2.0	1.1	4.00		
1,2,3-Trichloropropane 10 4.0 1.6 4.00 1,2,4-Trichlorobenzene ND 2.0 0.80 4.00 1,2,4-Trimethylbenzene ND 2.0 0.80 4.00 1,2-Dibromo-3-Chloropropane ND 2.0 0.80 4.00 1,2-Dibrimoethane ND 2.0 0.80 4.00 1,2-Dichlorobenzene ND 2.0 0.80 4.00 1,2-Dichloropropane ND 2.0 0.80 4.00 1,2-Dichloropropane ND 2.0 0.80 4.00 1,2-Dichloropropane ND 2.0 0.80 4.00 1,3-Frimethylbenzene ND 2.0 0.80 4.00 1,3-Frimethylbenzene ND 2.0 0.80 4.00 1,3-Dichloropropane ND 2.0 0.80 4.00 1,4-Dichloropropane ND 2.0 0.80 4.00 2,2-Dichloropropane ND 2.0 0.80 4.00 2-Butanone ND 2.0 0.80 4.00 2-Hexanone ND <td< td=""><td>1,1-Dichloropropene</td><td>ND</td><td>2</td><td>2.0</td><td>1.2</td><td>4.00</td><td></td><td></td></td<>	1,1-Dichloropropene	ND	2	2.0	1.2	4.00		
1,2,4-Trichlorobenzene ND 2.0 0.80 4.00 1,2,4-Trimethylbenzene ND 2.0 0.80 4.00 1,2-Dibromo-3-Chloropropane ND 20 8.0 4.00 1,2-Dibromoethane ND 2.0 0.80 4.00 1,2-Dichlorobenzene ND 2.0 0.80 4.00 1,2-Dichloropropane ND 2.0 0.80 4.00 1,2-Dichloropropane ND 2.0 0.80 4.00 1,3-Dichloropropane ND 2.0 0.80 4.00 1,3-Dichloropropane ND 2.0 0.80 4.00 1,3-Dichloropropane ND 4.0 1.6 4.00 1,4-Dichlorobenzene ND 4.0 1.6 4.00 1,4-Dichloropropane ND 4.0 1.6 4.00 2,2-Dichloropropane ND 2.0 0.80 4.00 2,2-Dichloropropane ND 2.0 0.80 4.00 2-Hexanone ND 2.0 0.80 4.00 2-Hexanone ND 2.0	1,2,3-Trichlorobenzene	ND	2	2.0	0.80	4.00		
1,2,4-Trimethylbenzene ND 2.0 8.0 4.00 1,2-Dibromo-3-Chloropropane ND 20 8.0 4.00 1,2-Dibromoethane ND 2.0 0.80 4.00 1,2-Dichlorobenzene ND 2.0 0.80 4.00 1,2-Dichloropropane ND 2.0 0.80 4.00 1,2-Dichloropropane ND 2.0 0.80 4.00 1,3-5-Trimethylbenzene ND 2.0 0.80 4.00 1,3-Dichlorobenzene ND 2.0 0.80 4.00 1,3-Dichlorobenzene ND 4.0 1.6 4.00 1,4-Dichlorobenzene ND 4.0 1.6 4.00 1,4-Dichloropropane ND 4.0 1.6 4.00 2,2-Dichloropropane ND 4.0 1.6 4.00 2,2-Dichloropropane ND 2.0 8.0 4.00 2-Butanone ND 2.0 8.0 4.00 2-Hexanone ND 2.0 8.0 4.00 4-Hexanone ND 2.0 8.0	1,2,3-Trichloropropane	10	2	1.0	1.6	4.00		
1,2-Dibromo-3-Chloropropane ND 20 8.0 4.00 1,2-Dibromoethane ND 2.0 0.80 4.00 1,2-Dichlorobenzene ND 2.0 0.80 4.00 1,2-Dichloropropane ND 2.0 0.80 4.00 1,2-Dichloropropane ND 2.0 0.80 4.00 1,3,5-Trimethylbenzene ND 2.0 0.80 4.00 1,3-Dichlorobenzene ND 2.0 1.1 4.00 1,3-Dichloropropane ND 4.0 1.6 4.00 1,4-Dichloroptopane ND 2.0 0.80 4.00 2,2-Dichloropropane ND 4.0 1.6 4.00 2,2-Dichloropropane ND 4.0 1.6 4.00 2-Butanone ND 2.0 8.0 4.00 2-Butanone ND 2.0 8.0 4.00 2-Hexanone ND 4.0 1.6 4.00 4-Khilyi-2-Pentanone ND 2.0 8.0 4.00 4-Methyl-2-Pentanone ND 4.0 1.6<	1,2,4-Trichlorobenzene	ND	2	2.0	0.80	4.00		
1,2-Dibromoethane ND 2.0 0.80 4.00 1,2-Dichlorobenzene ND 2.0 0.80 4.00 1,2-Dichloroethane ND 2.0 0.80 4.00 1,2-Dichloropropane ND 2.0 0.80 4.00 1,3-5-Trimethylbenzene ND 2.0 0.80 4.00 1,3-Dichlorobenzene ND 2.0 1.1 4.00 1,3-Dichloropropane ND 4.0 1.6 4.00 1,4-Dichlorobenzene ND 2.0 0.80 4.00 2,2-Dichloropropane ND 4.0 1.6 4.00 2,2-Dichloropropane ND 4.0 1.6 4.00 2-Butanone ND 2.0 8.0 4.00 2-Butanone ND 2.0 8.0 4.00 2-Hexanone ND 2.0 8.0 4.00 2-Hexanone ND 2.0 8.0 4.00 4-Methyl-2-Pentanone ND 2.0 8.0 4.00 4-Methyl-2-Pentanone ND 2.0 8.0 4.	1,2,4-Trimethylbenzene	ND	2	2.0	0.80	4.00		
1,2-Dichlorobenzene ND 2.0 0.80 4.00 1,2-Dichloroethane ND 2.0 0.80 4.00 1,2-Dichloropropane ND 2.0 0.80 4.00 1,3-Frimethylbenzene ND 2.0 0.80 4.00 1,3-Dichlorobenzene ND 2.0 1.1 4.00 1,3-Dichloropropane ND 4.0 1.6 4.00 1,4-Dichlorobenzene ND 2.0 0.80 4.00 2,2-Dichloropropane ND 4.0 1.6 4.00 2-Butanone ND 2.0 8.0 4.00 2-Butanone ND 2.0 8.0 4.00 2-Chlorotoluene ND 2.0 8.0 4.00 2-Hexanone ND 2.0 1.4 4.00 4-Methyl-2-Pentanone ND 2.0 8.0 4.00 Acetone ND 40 16 4.00 Benzene ND 2.0 0.80 4.00 Bromobenzene ND 2.0 0.80 4.00	1,2-Dibromo-3-Chloropropane	ND	2	20	8.0	4.00		
1,2-Dichloroethane ND 2.0 0.80 4.00 1,2-Dichloropropane ND 2.0 0.80 4.00 1,3,5-Trimethylbenzene ND 2.0 0.80 4.00 1,3-Dichlorobenzene ND 2.0 1.1 4.00 1,3-Dichloropropane ND 4.0 1.6 4.00 1,4-Dichlorobenzene ND 2.0 0.80 4.00 2,2-Dichloropropane ND 4.0 1.6 4.00 2-Butanone ND 2.0 8.0 4.00 2-Chlorotoluene ND 2.0 8.0 4.00 2-Hexanone ND 4.0 1.4 4.00 4-Methyl-2-Pentanone ND 2.0 8.0 4.00 4-Methyl-2-Pentanone ND 40 16 4.00 Benzene ND 2.0 8.0 4.00 Benzene ND 2.0 0.80 4.00 Bromobenzene ND 2.0 1.3 4.00 Bromobenzene ND 4.0 1.6 4.00 <tr< td=""><td>1,2-Dibromoethane</td><td>ND</td><td>2</td><td>2.0</td><td>0.80</td><td>4.00</td><td></td><td></td></tr<>	1,2-Dibromoethane	ND	2	2.0	0.80	4.00		
1,2-Dichloroethane ND 2.0 0.80 4.00 1,2-Dichloropropane ND 2.0 0.80 4.00 1,3,5-Trimethylbenzene ND 2.0 0.80 4.00 1,3-Dichlorobenzene ND 2.0 1.1 4.00 1,3-Dichloropropane ND 4.0 1.6 4.00 1,4-Dichlorobenzene ND 2.0 0.80 4.00 2,2-Dichloropropane ND 4.0 1.6 4.00 2-Butanone ND 2.0 8.0 4.00 2-Chlorotoluene ND 2.0 8.0 4.00 2-Hexanone ND 4.0 1.4 4.00 4-Methyl-2-Pentanone ND 2.0 8.0 4.00 4-Methyl-2-Pentanone ND 40 16 4.00 Benzene ND 2.0 8.0 4.00 Benzene ND 2.0 0.80 4.00 Bromobenzene ND 2.0 1.3 4.00 Bromobenzene ND 4.0 1.6 4.00 <tr< td=""><td>1,2-Dichlorobenzene</td><td>ND</td><td>2</td><td>2.0</td><td>0.80</td><td>4.00</td><td></td><td></td></tr<>	1,2-Dichlorobenzene	ND	2	2.0	0.80	4.00		
1,3,5-Trimethylbenzene ND 2.0 0.80 4.00 1,3-Dichlorobenzene ND 2.0 1.1 4.00 1,3-Dichloropropane ND 4.0 1.6 4.00 1,4-Dichlorobenzene ND 2.0 0.80 4.00 2,2-Dichloropropane ND 4.0 1.6 4.00 2-Butanone ND 20 8.0 4.00 2-Chlorotoluene ND 2.0 0.80 4.00 2-Hexanone ND 40 16 4.00 4-Chlorotoluene ND 2.0 1.4 4.00 4-Methyl-2-Pentanone ND 20 8.0 4.00 4-Methyl-2-Pentanone ND 40 16 4.00 Benzene ND 2.0 8.0 4.00 Benzene ND 2.0 0.80 4.00 Bromobloromethane ND 2.0 1.3 4.00 Bromodichloromethane ND 4.0 1.6 4.00 Bromodichloromethane ND 2.0 0.80 4.00	1,2-Dichloroethane	ND	2	2.0	0.80			
1,3-Dichlorobenzene ND 2.0 1.1 4.00 1,3-Dichloropropane ND 4.0 1.6 4.00 1,4-Dichlorobenzene ND 2.0 0.80 4.00 2,2-Dichloropropane ND 4.0 1.6 4.00 2-Butanone ND 20 8.0 4.00 2-Chlorotoluene ND 2.0 0.80 4.00 2-Hexanone ND 40 16 4.00 4-Chlorotoluene ND 2.0 1.4 4.00 4-Methyl-2-Pentanone ND 20 8.0 4.00 Acetone ND 40 16 4.00 Benzene ND 2.0 0.80 4.00 Bromobenzene ND 2.0 1.3 4.00 Bromochloromethane ND 4.0 1.6 4.00 Bromoform ND 2.0 0.80 4.00 Bromoform ND 2.0 0.80 4.00	1,2-Dichloropropane	ND	2	2.0	0.80	4.00		
1,3-Dichloropropane ND 4.0 1.6 4.00 1,4-Dichlorobenzene ND 2.0 0.80 4.00 2,2-Dichloropropane ND 4.0 1.6 4.00 2-Butanone ND 20 8.0 4.00 2-Chlorotoluene ND 2.0 0.80 4.00 2-Hexanone ND 40 16 4.00 4-Chlorotoluene ND 2.0 1.4 4.00 4-Methyl-2-Pentanone ND 20 8.0 4.00 Acetone ND 40 16 4.00 Benzene ND 2.0 0.80 4.00 Bromobenzene ND 2.0 1.3 4.00 Bromochloromethane ND 4.0 1.6 4.00 Bromoform ND 2.0 0.80 4.00	1,3,5-Trimethylbenzene	ND	2	2.0	0.80	4.00		
1,4-Dichlorobenzene ND 2.0 0.80 4.00 2,2-Dichloropropane ND 4.0 1.6 4.00 2-Butanone ND 20 8.0 4.00 2-Chlorotoluene ND 2.0 0.80 4.00 2-Hexanone ND 40 16 4.00 4-Chlorotoluene ND 2.0 1.4 4.00 4-Methyl-2-Pentanone ND 20 8.0 4.00 Acetone ND 40 16 4.00 Benzene ND 2.0 0.80 4.00 Bromobenzene ND 2.0 1.3 4.00 Bromochloromethane ND 4.0 1.6 4.00 Bromodichloromethane ND 2.0 0.80 4.00 Bromoform ND 2.0 0.80 4.00	1,3-Dichlorobenzene	ND	2	2.0	1.1	4.00		
2,2-Dichloropropane ND 4.0 1.6 4.00 2-Butanone ND 20 8.0 4.00 2-Chlorotoluene ND 2.0 0.80 4.00 2-Hexanone ND 40 16 4.00 4-Chlorotoluene ND 2.0 1.4 4.00 4-Methyl-2-Pentanone ND 20 8.0 4.00 Acetone ND 40 16 4.00 Benzene ND 2.0 0.80 4.00 Bromobenzene ND 2.0 1.3 4.00 Bromochloromethane ND 4.0 1.6 4.00 Bromodichloromethane ND 2.0 0.80 4.00 Bromoform ND 2.0 0.80 4.00	1,3-Dichloropropane	ND	2	1.0	1.6	4.00		
2-Butanone ND 20 8.0 4.00 2-Chlorotoluene ND 2.0 0.80 4.00 2-Hexanone ND 40 16 4.00 4-Chlorotoluene ND 2.0 1.4 4.00 4-Methyl-2-Pentanone ND 20 8.0 4.00 Acetone ND 40 16 4.00 Benzene ND 2.0 0.80 4.00 Bromobenzene ND 2.0 1.3 4.00 Bromochloromethane ND 4.0 1.6 4.00 Bromodichloromethane ND 2.0 0.80 4.00 Bromoform ND 2.0 0.99 4.00	1,4-Dichlorobenzene	ND	2	2.0	0.80	4.00		
2-Chlorotoluene ND 2.0 0.80 4.00 2-Hexanone ND 40 16 4.00 4-Chlorotoluene ND 2.0 1.4 4.00 4-Methyl-2-Pentanone ND 20 8.0 4.00 Acetone ND 40 16 4.00 Benzene ND 2.0 0.80 4.00 Bromobenzene ND 4.0 1.6 4.00 Bromodichloromethane ND 2.0 0.80 4.00 Bromoform ND 2.0 0.80 4.00	2,2-Dichloropropane	ND	2	1.0	1.6	4.00		
2-Hexanone ND 40 16 4.00 4-Chlorotoluene ND 2.0 1.4 4.00 4-Methyl-2-Pentanone ND 20 8.0 4.00 Acetone ND 40 16 4.00 Benzene ND 2.0 0.80 4.00 Bromobenzene ND 4.0 1.6 4.00 Bromochloromethane ND 4.0 1.6 4.00 Bromodichloromethane ND 2.0 0.80 4.00 Bromoform ND 2.0 0.80 4.00	2-Butanone	ND	2	20	8.0	4.00		
4-Chlorotoluene ND 2.0 1.4 4.00 4-Methyl-2-Pentanone ND 20 8.0 4.00 Acetone ND 40 16 4.00 Benzene ND 2.0 0.80 4.00 Bromobenzene ND 2.0 1.3 4.00 Bromochloromethane ND 4.0 1.6 4.00 Bromodichloromethane ND 2.0 0.80 4.00 Bromoform ND 2.0 0.99 4.00	2-Chlorotoluene	ND	2	2.0	0.80	4.00		
4-Methyl-2-Pentanone ND 20 8.0 4.00 Acetone ND 40 16 4.00 Benzene ND 2.0 0.80 4.00 Bromobenzene ND 2.0 1.3 4.00 Bromochloromethane ND 4.0 1.6 4.00 Bromodichloromethane ND 2.0 0.80 4.00 Bromoform ND 2.0 0.99 4.00	2-Hexanone	ND	2	10	16	4.00		
Acetone ND 40 16 4.00 Benzene ND 2.0 0.80 4.00 Bromobenzene ND 2.0 1.3 4.00 Bromochloromethane ND 4.0 1.6 4.00 Bromodichloromethane ND 2.0 0.80 4.00 Bromoform ND 2.0 0.99 4.00	4-Chlorotoluene	ND	2	2.0	1.4	4.00		
Benzene ND 2.0 0.80 4.00 Bromobenzene ND 2.0 1.3 4.00 Bromochloromethane ND 4.0 1.6 4.00 Bromodichloromethane ND 2.0 0.80 4.00 Bromoform ND 2.0 0.99 4.00	4-Methyl-2-Pentanone	ND	2	20	8.0	4.00		
Bromobenzene ND 2.0 1.3 4.00 Bromochloromethane ND 4.0 1.6 4.00 Bromodichloromethane ND 2.0 0.80 4.00 Bromoform ND 2.0 0.99 4.00	Acetone	ND	2	10	16	4.00		
Bromobenzene ND 2.0 1.3 4.00 Bromochloromethane ND 4.0 1.6 4.00 Bromodichloromethane ND 2.0 0.80 4.00 Bromoform ND 2.0 0.99 4.00	Benzene	ND	2	2.0	0.80	4.00		
Bromochloromethane ND 4.0 1.6 4.00 Bromodichloromethane ND 2.0 0.80 4.00 Bromoform ND 2.0 0.99 4.00	Bromobenzene	ND		2.0	1.3			
Bromodichloromethane ND 2.0 0.80 4.00 Bromoform ND 2.0 0.99 4.00	Bromochloromethane	ND	4	1.0		4.00		
Bromoform ND 2.0 0.99 4.00	Bromodichloromethane							
	Bromomethane							

 Tetra Tech, Inc.
 Date Received:
 04/12/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0940

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 17 of 27

Parameter Result <u>RL</u> **MDL** <u>DF</u> Qualifiers Carbon Disulfide ND 4.0 1.6 4.00 Carbon Tetrachloride 2.0 0.80 4.00 3.1 Chlorobenzene 2.0 0.80 4.00 ND Chloroethane ND 2.0 1.3 4.00 Chloroform 15 2.0 0.80 4.00 Chloromethane ND 2.0 1.2 4.00 Dibromochloromethane ND 2.0 0.80 4.00 Dibromomethane ND 2.0 0.80 4.00 Dichlorodifluoromethane ND 4.0 1.6 4.00 ND 2.0 0.80 4.00 Ethylbenzene Isopropylbenzene ND 2.0 0.80 4.00 Methylene Chloride ND 4.0 3.2 4.00 Naphthalene ND 4.0 4.00 1.6 Styrene ND 2.0 0.80 4.00 Tetrachloroethene 100 2.0 0.80 4.00 Toluene ND 2.0 0.80 4.00 t-1,2-Dichloroethene ND 0.80 4.00 2.0 Trichlorofluoromethane ND 2.0 0.80 4.00 Vinyl Acetate ND 20 8.0 4.00 Vinyl Chloride ND 2.0 0.80 4.00 ND 2.0 0.80 4.00 c-1,3-Dichloropropene c-1,2-Dichloroethene ND 0.80 4.00 2.0 0.80 n-Butylbenzene ND 2.0 4.00 n-Propylbenzene ND 2.0 0.80 4.00 o-Xylene ND 2.0 1.3 4.00 ND 0.80 p-Isopropyltoluene 2.0 4.00 sec-Butylbenzene ND 2.0 0.80 4.00 t-1,3-Dichloropropene ND 2.0 0.80 4.00 tert-Butylbenzene ND 2.0 0.80 4.00 ND 0.80 p/m-Xylene 2.0 4.00 Methyl-t-Butyl Ether (MTBE) ND 2.0 0.80 4.00 17 2-Chloroethyl Vinyl Ether ND 20 4.00 Hexachloro-1,3-Butadiene ND 8.0 3.2 4.00 Iodomethane ND 40 20 4.00 Surrogate Rec. (%) **Control Limits** Qualifiers 1,4-Bromofluorobenzene 92 68-120 Dibromofluoromethane 99 80-127 80-128 1,2-Dichloroethane-d4 103

Date Received: 04/12/17 Tetra Tech, Inc. Work Order: 17-04-0940 301 E. Vanderbilt Way, Suite 450 Preparation: **EPA 5030C** San Bernardino, CA 92408-3562 Method: **EPA 8260B** Units: ug/L

Page 18 of 27 Project: LMC BOU

Surrogate Rec. (%) **Control Limits** Qualifiers

Toluene-d8 100 80-120

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-1-CW13-N-17Q2	17-04-0940-6-B	04/12/17 10:18	Aqueous	GC/MS L	04/24/17	04/24/17 13:50	170424L004

Comment(s):	 Results were evaluated to the MDL (DL 	.), concentrations >:	= to the MDL (DL) bu	ut < RL (LOQ), if fou	nd, are qualified with	n a "J" flag.
<u>Parameter</u>		Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
Trichloroethene		240	5.0	2.9	10.0	

Surrogate 1,4-Bromofluorobenzene	Rec. (%)	Control Limits 68-120	Qualifiers
Dibromofluoromethane	97	80-127	
1,2-Dichloroethane-d4 Toluene-d8	101 99	80-128 80-120	

Project: LMC BOU

Analytical Report

 Tetra Tech, Inc.
 Date Received:
 04/12/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0940

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

Method: EPA 8260B Units: ug/L

Units: u Page 19 of 27

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
3852F-N-17Q2	17-04-0940-7-A	04/12/17 15:29	Aqueous	GC/MS L	04/22/17	04/23/17 08:52	170422L026
Comment(s): - Results were evaluate	ed to the MDL (DL), cond	centrations >= 1	to the MDL (DI	L) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	MDL	<u>DF</u>	<u>C</u>	Qualifiers
1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,1-Trichloroethane	ND		0.50	0.20	1.00		
1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		0.50	0.24	1.00		
1,1,2-Trichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethene	ND		0.50	0.28	1.00		
1,1-Dichloropropene	ND		0.50	0.30	1.00		
1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,3-Trichloropropane	ND		1.0	0.40	1.00		
1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,4-Trimethylbenzene	ND		0.50	0.20	1.00		
1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00		
1,2-Dibromoethane	ND		0.50	0.20	1.00		
1,2-Dichlorobenzene	ND		0.50	0.20	1.00		
1,2-Dichloroethane	ND		0.50	0.20	1.00		
1,2-Dichloropropane	ND		0.50	0.20	1.00		
1,3,5-Trimethylbenzene	ND		0.50	0.20	1.00		
1,3-Dichlorobenzene	ND		0.50	0.28	1.00		
1,3-Dichloropropane	ND		1.0	0.40	1.00		
1,4-Dichlorobenzene	ND		0.50	0.20	1.00		
2,2-Dichloropropane	ND		1.0	0.40	1.00		
2-Butanone	ND		5.0	2.0	1.00		
2-Chlorotoluene	ND		0.50	0.20	1.00		
2-Hexanone	ND		10	4.0	1.00		
4-Chlorotoluene	ND		0.50	0.36	1.00		
4-Methyl-2-Pentanone	ND		5.0	2.0	1.00		
Acetone	ND		10	4.0	1.00		
Benzene	ND		0.50	0.20	1.00		
Bromobenzene	ND		0.50	0.32	1.00		
Bromochloromethane	ND		1.0	0.40	1.00		
Bromodichloromethane	0.20		0.50	0.20	1.00	J	I
Bromoform	ND		0.50	0.25	1.00		
Bromomethane	ND		1.0	0.40	1.00		

 Tetra Tech, Inc.
 Date Received:
 04/12/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0940

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 20 of 27

Froject. Livic Boo					Fage 20 01 21
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Carbon Disulfide	ND	1.0	0.40	1.00	
Carbon Tetrachloride	0.44	0.50	0.20	1.00	J
Chlorobenzene	ND	0.50	0.20	1.00	
Chloroethane	ND	0.50	0.32	1.00	
Chloroform	0.51	0.50	0.20	1.00	
Chloromethane	ND	0.50	0.29	1.00	
Dibromochloromethane	ND	0.50	0.20	1.00	
Dibromomethane	ND	0.50	0.20	1.00	
Dichlorodifluoromethane	1.1	1.0	0.40	1.00	
Ethylbenzene	ND	0.50	0.20	1.00	
Isopropylbenzene	ND	0.50	0.20	1.00	
Methylene Chloride	ND	1.0	0.80	1.00	
Naphthalene	ND	1.0	0.40	1.00	
Styrene	ND	0.50	0.20	1.00	
Tetrachloroethene	1.0	0.50	0.20	1.00	
Toluene	ND	0.50	0.20	1.00	
t-1,2-Dichloroethene	ND	0.50	0.20	1.00	
Trichloroethene	0.58	0.50	0.29	1.00	
Trichlorofluoromethane	ND	0.50	0.20	1.00	
Vinyl Acetate	ND	5.0	2.0	1.00	
Vinyl Chloride	ND	0.50	0.20	1.00	
c-1,3-Dichloropropene	ND	0.50	0.20	1.00	
c-1,2-Dichloroethene	ND	0.50	0.20	1.00	
n-Butylbenzene	ND	0.50	0.20	1.00	
n-Propylbenzene	ND	0.50	0.20	1.00	
o-Xylene	ND	0.50	0.32	1.00	
p-Isopropyltoluene	ND	0.50	0.20	1.00	
sec-Butylbenzene	ND	0.50	0.20	1.00	
t-1,3-Dichloropropene	ND	0.50	0.20	1.00	
tert-Butylbenzene	ND	0.50	0.20	1.00	
p/m-Xylene	ND	0.50	0.20	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	0.50	0.20	1.00	
2-Chloroethyl Vinyl Ether	ND	5.0	4.2	1.00	
Hexachloro-1,3-Butadiene	ND	2.0	0.80	1.00	
Iodomethane	ND	10	5.0	1.00	
<u>Surrogate</u>	Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	92	68-120			
Dibromofluoromethane	97	80-127			

Tetra Tech, Inc.	Date Received:	04/12/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0940
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOU		Page 21 of 27

<u>Surrogate</u>	Rec. (%)	Control Limits	<u>Qualifiers</u>
1,2-Dichloroethane-d4	103	80-128	
Toluene-d8	100	80-120	

 Tetra Tech, Inc.
 Date Received:
 04/12/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0940

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

Method: EPA 8260B Units: ug/L

Project: LMC BOU Page 22 of 27

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID		
3852H-N-17Q2	17-04-0940-8-A	04/12/17 16:35	Aqueous	GC/MS L	04/22/17	04/23/17 09:22	170422L026		
Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.									
<u>Parameter</u>	Resu	ı <u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>		
1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00				
1,1,1-Trichloroethane	ND		0.50	0.20	1.00				
1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00				
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		0.50	0.24	1.00				
1,1,2-Trichloroethane	0.29		0.50	0.20	1.00	J			
1,1-Dichloroethane	ND		0.50	0.20	1.00				
1,1-Dichloroethene	ND		0.50	0.28	1.00				
1,1-Dichloropropene	ND		0.50	0.30	1.00				
1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00				
1,2,3-Trichloropropane	ND		1.0	0.40	1.00				
1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00				
1,2,4-Trimethylbenzene	ND		0.50	0.20	1.00				
1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00				
1,2-Dibromoethane	ND		0.50	0.20	1.00				
1,2-Dichlorobenzene	ND		0.50	0.20	1.00				
1,2-Dichloroethane	2.1		0.50	0.20	1.00				
1,2-Dichloropropane	ND		0.50	0.20	1.00				
1,3,5-Trimethylbenzene	ND		0.50	0.20	1.00				
1,3-Dichlorobenzene	ND		0.50	0.28	1.00				
1,3-Dichloropropane	ND		1.0	0.40	1.00				
1,4-Dichlorobenzene	ND		0.50	0.20	1.00				
2,2-Dichloropropane	ND		1.0	0.40	1.00				
2-Butanone	ND		5.0	2.0	1.00				
2-Chlorotoluene	ND		0.50	0.20	1.00				
2-Hexanone	ND		10	4.0	1.00				
4-Chlorotoluene	ND		0.50	0.36	1.00				
4-Methyl-2-Pentanone	ND		5.0	2.0	1.00				
Acetone	ND		10	4.0	1.00				
Benzene	ND		0.50	0.20	1.00				
Bromobenzene	ND		0.50	0.32	1.00				
Bromochloromethane	ND		1.0	0.40	1.00				
Bromodichloromethane	ND		0.50	0.20	1.00				
Bromoform	ND		0.50	0.25	1.00				
Bromomethane	ND		1.0	0.40	1.00				

 Tetra Tech, Inc.
 Date Received:
 04/12/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0940

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 23 of 27

FTOJECI. LIVIC BOO					Fage 23 01 21
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Carbon Disulfide	ND	1.0	0.40	1.00	
Carbon Tetrachloride	1.6	0.50	0.20	1.00	
Chlorobenzene	ND	0.50	0.20	1.00	
Chloroethane	ND	0.50	0.32	1.00	
Chloroform	6.9	0.50	0.20	1.00	
Chloromethane	ND	0.50	0.29	1.00	
Dibromochloromethane	ND	0.50	0.20	1.00	
Dibromomethane	ND	0.50	0.20	1.00	
Dichlorodifluoromethane	0.91	1.0	0.40	1.00	J
Ethylbenzene	ND	0.50	0.20	1.00	
Isopropylbenzene	ND	0.50	0.20	1.00	
Methylene Chloride	ND	1.0	0.80	1.00	
Naphthalene	ND	1.0	0.40	1.00	
Styrene	ND	0.50	0.20	1.00	
Tetrachloroethene	1.5	0.50	0.20	1.00	
Toluene	ND	0.50	0.20	1.00	
t-1,2-Dichloroethene	ND	0.50	0.20	1.00	
Trichloroethene	7.2	0.50	0.29	1.00	
Trichlorofluoromethane	ND	0.50	0.20	1.00	
Vinyl Acetate	ND	5.0	2.0	1.00	
Vinyl Chloride	ND	0.50	0.20	1.00	
c-1,3-Dichloropropene	ND	0.50	0.20	1.00	
c-1,2-Dichloroethene	ND	0.50	0.20	1.00	
n-Butylbenzene	ND	0.50	0.20	1.00	
n-Propylbenzene	ND	0.50	0.20	1.00	
o-Xylene	ND	0.50	0.32	1.00	
p-Isopropyltoluene	ND	0.50	0.20	1.00	
sec-Butylbenzene	ND	0.50	0.20	1.00	
t-1,3-Dichloropropene	ND	0.50	0.20	1.00	
tert-Butylbenzene	ND	0.50	0.20	1.00	
p/m-Xylene	ND	0.50	0.20	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	0.50	0.20	1.00	
2-Chloroethyl Vinyl Ether	ND	5.0	4.2	1.00	
Hexachloro-1,3-Butadiene	ND	2.0	0.80	1.00	
lodomethane	ND	10	5.0	1.00	
<u>Surrogate</u>	Rec. (%)	Control Limits	Qualifiers		
1,4-Bromofluorobenzene	92	68-120			
Dibromofluoromethane	100	80-127			

Tetra Tech, Inc.	Date Received:	04/12/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0940
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOLL		Page 24 of 27

Surrogate	Rec. (%)	Control Limits	Qualifiers
1,2-Dichloroethane-d4	103	80-128	
Toluene-d8	99	80-120	

Tetra Tech, Inc.

Date Received:

04/12/17

301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-0940

San Bernardino, CA 92408-3562

Preparation:

EPA 5030C

Method:

EPA 8260B

Method: EPA 8260B Units: ug/L

Project: LMC BOU Page 25 of 27

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-10-025-4644	N/A	Aqueous	GC/MS L	04/22/17	04/22/17 23:12	170422L026
Comment(s): - Results were evaluated to	the MDL (DL), cond	entrations >=	to the MDL (DI	L) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	<u>Resu</u>	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,1-Trichloroethane	ND		0.50	0.20	1.00		
1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		0.50	0.24	1.00		
1,1,2-Trichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethene	ND		0.50	0.28	1.00		
1,1-Dichloropropene	ND		0.50	0.30	1.00		
1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,3-Trichloropropane	ND		1.0	0.40	1.00		
1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,4-Trimethylbenzene	ND		0.50	0.20	1.00		
1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00		
1,2-Dibromoethane	ND		0.50	0.20	1.00		
1,2-Dichlorobenzene	ND		0.50	0.20	1.00		
1,2-Dichloroethane	ND		0.50	0.20	1.00		
1,2-Dichloropropane	ND		0.50	0.20	1.00		
1,3,5-Trimethylbenzene	ND		0.50	0.20	1.00		
1,3-Dichlorobenzene	ND		0.50	0.28	1.00		
1,3-Dichloropropane	ND		1.0	0.40	1.00		
1,4-Dichlorobenzene	ND		0.50	0.20	1.00		
2,2-Dichloropropane	ND		1.0	0.40	1.00		
2-Butanone	ND		5.0	2.0	1.00		
2-Chlorotoluene	ND		0.50	0.20	1.00		
2-Hexanone	ND		10	4.0	1.00		
4-Chlorotoluene	ND		0.50	0.36	1.00		
4-Methyl-2-Pentanone	ND		5.0	2.0	1.00		
Acetone	ND		10	4.0	1.00		
Benzene	ND		0.50	0.20	1.00		
Bromobenzene	ND		0.50	0.32	1.00		
Bromochloromethane	ND		1.0	0.40	1.00		
Bromodichloromethane	ND		0.50	0.20	1.00		
Bromoform	ND		0.50	0.25	1.00		
Bromomethane	ND		1.0	0.40	1.00		

 Tetra Tech, Inc.
 Date Received:
 04/12/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0940

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 26 of 27

Parameter Result <u>RL</u> **MDL** <u>DF</u> Qualifiers Carbon Disulfide ND 1.0 0.40 1.00 Carbon Tetrachloride ND 0.50 0.20 1.00 Chlorobenzene ND 0.50 0.20 1.00 Chloroethane ND 0.50 0.32 1.00 Chloroform ND 0.50 0.20 1.00 Chloromethane ND 0.50 0.29 1.00 Dibromochloromethane ND 0.50 0.20 1.00 Dibromomethane ND 0.50 0.20 1.00 Dichlorodifluoromethane ND 1.0 0.40 1.00 ND 0.20 1.00 Ethylbenzene 0.50 0.20 Isopropylbenzene ND 0.50 1.00 Methylene Chloride ND 1.0 0.80 1.00 Naphthalene ND 0.40 1.00 1.0 Styrene ND 0.50 0.20 1.00 Tetrachloroethene ND 0.50 0.20 1.00 Toluene ND 0.20 0.50 1.00 t-1,2-Dichloroethene ND 0.20 0.50 1.00 Trichloroethene ND 0.50 0.29 1.00 Trichlorofluoromethane ND 0.50 0.20 1.00 Vinyl Acetate ND 2.0 1.00 5.0 Vinyl Chloride ND 0.50 0.20 1.00 c-1,3-Dichloropropene ND 0.20 0.50 1.00 0.20 c-1,2-Dichloroethene ND 0.50 1.00 n-Butylbenzene ND 0.50 0.20 1.00 n-Propylbenzene ND 0.50 0.20 1.00 o-Xylene ND 0.50 0.32 1.00 ND 0.20 1.00 p-Isopropyltoluene 0.50 sec-Butylbenzene ND 0.50 0.20 1.00 t-1,3-Dichloropropene ND 0.50 0.20 1.00 ND 0.20 tert-Butylbenzene 0.50 1.00 p/m-Xylene ND 0.50 0.20 1.00 0.20 Methyl-t-Butyl Ether (MTBE) ND 0.50 1.00 2-Chloroethyl Vinyl Ether ND 5.0 4.2 1.00 Hexachloro-1,3-Butadiene ND 2.0 0.80 1.00 Iodomethane ND 10 5.0 1.00 Rec. (%) Surrogate **Control Limits Qualifiers** 1,4-Bromofluorobenzene 94 68-120 80-127 Dibromofluoromethane 99

1.00

Analytical Report

Date Received: 04/12/17 Tetra Tech, Inc. Work Order: 17-04-0940 301 E. Vanderbilt Way, Suite 450 Preparation: **EPA 5030C** San Bernardino, CA 92408-3562 Method: **EPA 8260B** Units: ug/L

Project: LMC BOU Page 27 of 27

Surrogate Rec. (%) **Control Limits** Qualifiers 1,2-Dichloroethane-d4 104 80-128 Toluene-d8 80-120 99

Client Sample Number Lab Sample Date/Time Date/Time QC Batch ID Matrix Instrument Date Number Collected Prepared Analyzed

Method Blar	k 099-10-02	5-4643 N/A	Aqueous	GC/MS L	04/24/17	04/24/17 10:13	170424L004	
Comment(s):	- Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.							

<u>Parameter</u> Result <u>RL</u> <u>MDL</u> <u>DF</u> Qualifiers

Trichloroethene	ND	0.50	0.29	
Surrogate	Rec. (%)	Control Limits	Qualifiers	
1,4-Bromofluorobenzene	91	68-120		
Dibromofluoromethane	94	80-127		
1,2-Dichloroethane-d4	96	80-128		
Toluene-d8	99	80-120		

Analytical Report

Date Received: 04/12/17 Tetra Tech, Inc. Work Order: 17-04-0940 301 E. Vanderbilt Way, Suite 450 Preparation: **EPA 5030C** San Bernardino, CA 92408-3562 Method: **EPA 8260B SIM**

> Units: ug/L

Page 1 of 3 Project: LMC BOU

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
C-1-CW08-N-17Q2	17-04-0940-1-H	04/12/17 16:05	Aqueous	GC/MS M	04/21/17	04/22/17 06:25	170421L050
Comment(s): - Results were evaluated	to the MDL (DL), con	centrations >=	to the MDL (DI	_) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
1,2,3-Trichloropropane	ND		0.0050	0.0025	1.00		
Surrogate	Rec.	<u>(%)</u>	Control Limits	Qualifiers			

80-120

1,4-Dichlorobutane 120

C-1-CW07-N-17Q2	17-04-0940-2-G	04/12/17 15:00	Aqueous	GC/MS M	04/24/17	04/24/17 13:06	170424L033
Comment(s): - Results were evaluated	to the MDL (DL), cond	centrations >	= to the MDL (DL) but < RL (LC	Q), if found, are	qualified with a	a "J" flag.
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	9	<u>Qualifiers</u>
1,2,3-Trichloropropane	ND		0.0050	0.0025	1.00		

Surrogate Rec. (%) **Control Limits** Qualifiers

1,4-Dichlorobutane 102 80-120

LTB-20170412		//12/17 Aqueous 5:00	GC/MS M		04/22/17 170421L050 05:55
Comment(s): - Results were evaluated to	the MDL (DL), concentr	rations >= to the MDL (I	DL) but < RL (LOC	Q), if found, are qu	ualified with a "J" flag.
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
1,2,3-Trichloropropane	ND	0.0050	0.0025	1.00	
<u>Surrogate</u> 1,4-Dichlorobutane	Rec. (%) 125	Control Limit 80-120	Qualifiers 2,7		

B-1-CW28-N-17Q2	17-04-0940-4-D	04/12/17 09:00	Aqueous	GC/MS M	04/21/17	04/22/17 08:54	170421L050
Comment(s): - Results were evaluated	d to the MDL (DL), cond	entrations >=	to the MDL (DL) but < RL (LO	Q), if found, are	qualified with a "	J" flag.
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qu</u>	<u>alifiers</u>
1,2,3-Trichloropropane	ND		0.0050	0.0025	1.00		
<u>Surrogate</u>	Rec.	<u>(%)</u>	Control Limits	<u>Qualifiers</u>			
1,4-Dichlorobutane	120		80-120				

Comment(s):

1,2,3-Trichloropropane

Surrogate

Analytical Report

 Tetra Tech, Inc.
 Date Received:
 04/12/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0940

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B SIM

 Units:
 ug/L

Project: LMC BOU Page 2 of 3

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-1-CW28-FD-17Q2	17-04-0940-5-D	04/12/17 09:00	Aqueous	GC/MS M	04/21/17	04/22/17 09:24	170421L050

- Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

ParameterResultRLMDLDFQualifiers1,2,3-TrichloropropaneND0.00500.00251.00

<u>Surrogate</u> <u>Rec. (%)</u> <u>Control Limits</u> <u>Qualifiers</u>

1,4-Dichlorobutane 109 80-120

B-1-CW13-N-17Q2	17-04-0940-6-G	04/12/17 10:18	Aqueous	GC/MS M	04/24/17	04/24/17 14:05	170424L033	
Comment(s): - Results were evaluated	to the MDL (DL), cond	centrations >=	to the MDL (DI	_) but < RL (LC	Q), if found, are	e qualified with	a "J" flag.	
Parameter	Resu	lt	RI	MDI	DF		Qualifiers	

1,2,3-Trichloropropane 13 1.2 0.62 250

<u>Surrogate</u> <u>Rec. (%)</u> <u>Control Limits</u> <u>Qualifiers</u>

1,4-Dichlorobutane 108 80-120

3852F-N-17Q2	17-04-0940-7-G	04/12/17 15:29	Aqueous GC/MS N	M 04/24/17	04/24/17 170424L033 13:36
Comment(s): - Results were ev	aluated to the MDL (DL), cond	centrations >= to the	ne MDL (DL) but < RL	(LOQ), if found, are	qualified with a "J" flag.
<u>Parameter</u>	Resu	<u>lt RL</u>	MDL	<u>DF</u>	<u>Qualifiers</u>
1,2,3-Trichloropropane	0.027	0.0	050 0.002	25 1.00	
Surrogate	Rec.	(%) Coi	ntrol Limits Qual	ifiers	

Surrogate Nec. (70) Control Limits Quanties

1,4-Dichlorobutane 111 80-120

3852H-N-170	2 17-04-0940-8-G	04/12/17 16:35	Aqueous	GC/MS M	04/24/17	04/24/17 14:35	170424L033
Comment(s):	- Results were evaluated to the MDL (DL), co	ncentrations >=	to the MDL (DL	but < RL (LC	Q), if found, are	qualified with a "	J" flag.
<u>Parameter</u>	Re	<u>sult</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qı</u>	<u>ualifiers</u>

0.025

Control Limits

0.012

Qualifiers

5.00

0.29

Rec. (%)

1,4-Dichlorobutane 116 80-120

Date Received: 04/12/17 Tetra Tech, Inc. Work Order: 17-04-0940 301 E. Vanderbilt Way, Suite 450 Preparation: **EPA 5030C** San Bernardino, CA 92408-3562

> Method: **EPA 8260B SIM**

Units: ug/L

Page 3 of 3 Project: LMC BOU

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-15-118-491	N/A	Aqueous	GC/MS M	04/21/17	04/22/17 05:26	170421L050

Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. <u>Parameter</u> Result <u>MDL</u> <u>DF</u> Qualifiers

<u>RL</u> 1,2,3-Trichloropropane ND 0.0050 0.0025 1.00

Surrogate Rec. (%) **Control Limits** Qualifiers

1,4-Dichlorobutane 117 80-120

Method Blank	099-15-118-492	N/A Aq	ueous GC/MS M	04/24/17	04/24/17 17 12:36	0424L033
Comment(s): - Results were evaluated to	the MDL (DL), conce	entrations >= to the I	MDL (DL) but < RL (L	OQ), if found, are o	qualified with a "J" fl	ag.
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifi</u>	ers
1,2,3-Trichloropropane	ND	0.0050	0.0025	1.00		

Surrogate Rec. (%) **Control Limits** Qualifiers

1,4-Dichlorobutane 113 80-120

 Tetra Tech, Inc.
 Date Received:
 04/12/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0940

 San Bernardino, CA 92408-3562
 Preparation:
 N/A

 Method:
 EPA 218.6

Project: LMC BOU Page 1 of 7

Quality Control Sample ID	Туре	Mat	trix Inst	trument	Date Prepared	Date Anal	yzed	MS/MSD Bate	ch Number
3852H-N-17Q2	Sample	Aqu	ueous IC	16	N/A	04/12/17 2	23:02	170412S01	
3852H-N-17Q2	Matrix Spike	Aqu	ueous IC	16	N/A	04/12/17 2	23:13	170412S01	
3852H-N-17Q2	Matrix Spike Dup	olicate Aqu	ueous IC	16	N/A	04/12/17 2	23:24	170412S01	
Parameter		<u>pike</u> <u>MS</u> dded Cond	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Chromium, Hexavalent	1.122 10	0.00 11.77	7 107	11.91	108	85-121	1	0-25	

Tetra Tech, Inc.

Date Received:

04/12/17
301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-0940

San Bernardino, CA 92408-3562

Preparation:

Method:

EPA 3020A Total

Method:

EPA 6020

Project: LMC BOU Page 2 of 7

Quality Control Sample ID	Туре		Matrix	Ins	trument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
17-04-1235-2	Sample		Aqueous	s ICF	P/MS 05	04/19/17	04/19/17	23:32	170419SA2	
17-04-1235-2	Matrix Spike		Aqueous	s ICF	P/MS 05	04/19/17	04/19/17	23:18	170419SA2	
17-04-1235-2	Matrix Spike	Duplicate	Aqueous	s ICF	P/MS 05	04/19/17	04/19/17	23:21	170419SA2	
Parameter	<u>Sample</u> <u>Conc.</u>	Spike Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Chromium	ND	0.1000	0.1077	108	0.1089	109	73-133	1	0-11	

 Tetra Tech, Inc.
 Date Received:
 04/12/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0940

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 3510C

Method: EPA 8270C (M) Isotope Dilution

Project: LMC BOU Page 3 of 7

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Batch Number
17-04-0840-1	Sample	Aqueous	GC/MS DDD	04/13/17	04/14/17 00:09	170413S06
17-04-0840-1	Matrix Spike	Aqueous	GC/MS DDD	04/13/17	04/13/17 23:37	170413S06
17-04-0840-1	Matrix Spike Duplicate	e Aqueous	GC/MS DDD	04/13/17	04/13/17 23:53	170413S06
Parameter	<u>Sample</u> <u>Spike</u> <u>Conc.</u> <u>Added</u>	MS M Conc. %	IS MSD Conc.	MSD %Rec.	%Rec. CL RPD	RPD CL Qualifiers
1,4-Dioxane	3.735 20.00	24.31 10	03 23.79	100	50-130 2	0-20

Tetra Tech, Inc.

Date Received:

04/12/17

301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-0940

San Bernardino, CA 92408-3562

Preparation:

EPA 5030C

Method:

EPA 8260B

Project: LMC BOU Page 4 of 7

Quality Control Sample ID	Туре		Matrix	In	strument	Date Prepare	d Date Ana	lyzed	MS/MSD Bat	ch Number
17-04-1162-29	Sample		Aqueous	s G	C/MS L	04/22/17	04/22/17	23:42	1704228012	
17-04-1162-29	Matrix Spike		Aqueous	s G	C/MS L	04/22/17	04/23/17	00:43	170422S012	
17-04-1162-29	Matrix Spike	Duplicate	Aqueous	s G	C/MS L	04/22/17	04/23/17	01:14	170422S012	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	<u>RPD</u>	RPD CL	Qualifiers
1,1-Dichloroethene	ND	10.00	9.853	99	9.906	99	66-126	1	0-20	
1,2-Dibromoethane	ND	10.00	9.932	99	9.724	97	75-126	2	0-20	
1,2-Dichlorobenzene	ND	10.00	10.28	103	9.697	97	75-125	6	0-20	
1,2-Dichloroethane	ND	10.00	10.65	106	10.22	102	75-127	4	0-20	
Benzene	ND	10.00	10.45	105	9.748	97	75-125	7	0-20	
Carbon Tetrachloride	ND	10.00	9.141	91	8.642	86	69-135	6	0-20	
Chlorobenzene	ND	10.00	10.49	105	9.988	100	75-125	5	0-20	
Ethylbenzene	ND	10.00	10.64	106	10.04	100	75-125	6	0-20	
Toluene	ND	10.00	10.77	108	10.03	100	75-125	7	0-20	
Trichloroethene	0.5708	10.00	11.39	108	10.51	99	75-125	8	0-20	
Vinyl Chloride	ND	10.00	11.34	113	11.38	114	52-142	0	0-20	
o-Xylene	ND	10.00	10.54	105	9.970	100	75-127	6	0-20	
p/m-Xylene	ND	20.00	21.25	106	19.91	100	75-125	7	0-20	
Methyl-t-Butyl Ether (MTBE)	ND	10.00	10.02	100	8.920	89	71-131	12	0-20	

Tetra Tech, Inc.

Date Received:

04/12/17

301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-0940

San Bernardino, CA 92408-3562

Preparation:

EPA 5030C

Method:

EPA 8260B

Project: LMC BOU Page 5 of 7

Quality Control Sample ID	Туре		Matrix	I	Instrument	Date Prepare	d Date Ana	lyzed	MS/MSD Ba	tch Number
17-04-1319-4	Sample		Aqueou	ıs (GC/MS L	04/24/17	04/24/17	11:17	1704248003	
17-04-1319-4	Matrix Spike		Aqueou	ıs (GC/MS L	04/24/17	04/24/17	12:49	1704248003	}
17-04-1319-4	Matrix Spike	Duplicate	Aqueou	ıs (GC/MS L	04/24/17	04/24/17	13:20	1704248003	}
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Red	MSD Conc.	MSD %Rec.	%Rec. CL	<u>RPD</u>	RPD CL	Qualifiers
Trichloroethene	7.182	10.00	17.30	101	16.40	92	75-125	5	0-20	
Benzene	2.602	10.00	12.05	94	11.77	92	75-125	2	0-20	
Carbon Tetrachloride	ND	10.00	8.558	86	8.404	84	69-135	2	0-20	
Chlorobenzene	77.78	10.00	88.42	106	84.06	63	75-125	5	0-20	3
1,2-Dibromoethane	ND	10.00	9.489	95	9.309	93	75-126	2	0-20	
1,2-Dichlorobenzene	ND	10.00	10.15	101	9.651	97	75-125	5	0-20	
1,2-Dichloroethane	124.5	10.00	140.0	155	127.8	33	75-127	9	0-20	3
1,1-Dichloroethene	45.01	10.00	55.37	104	52.75	77	66-126	5	0-20	
Ethylbenzene	ND	10.00	10.00	100	9.644	96	75-125	4	0-20	
Toluene	ND	10.00	10.23	102	9.847	98	75-125	4	0-20	
Vinyl Chloride	25.26	10.00	34.95	97	34.10	88	52-142	2	0-20	
p/m-Xylene	ND	20.00	20.09	100	19.47	97	75-125	3	0-20	
o-Xylene	ND	10.00	9.982	100	9.581	96	75-127	4	0-20	
Methyl-t-Butyl Ether (MTBE)	7.136	10.00	15.37	82	16.34	92	71-131	6	0-20	

 Tetra Tech, Inc.
 Date Received:
 04/12/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0940

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B SIM

 Project: LMC BOU
 Page 6 of 7

Quality Control Sample ID	Туре		Matrix	Ins	trument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
C-1-CW08-N-17Q2	Sample		Aqueous	GC GC	MS M	04/21/17	04/22/17	06:25	170421S027	
C-1-CW08-N-17Q2	Matrix Spike		Aqueous	GC GC	MS M	04/21/17	04/22/17	06:55	170421S027	
C-1-CW08-N-17Q2	Matrix Spike	Duplicate	Aqueous	GC GC	MS M	04/21/17	04/22/17	07:25	170421S027	
<u>Parameter</u>	Sample Conc.	<u>Spike</u> Added	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	<u>Qualifiers</u>
1,2,3-Trichloropropane	ND	0.02000	0.01960	98	0.02380	119	80-120	19	0-20	

Tetra Tech, Inc.

Date Received:

04/12/17

301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-0940

Preparation:

EPA 5030C

Method:

EPA 8260B SIM

Project: LMC BOU	Page 7 of 7

Quality Control Sample ID	Туре		Matrix	Ins	strument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
B-1-CW13-N-17Q2	Sample		Aqueous	s G	C/MS M	04/24/17	04/24/17	14:05	170424S011	
B-1-CW13-N-17Q2	Matrix Spike		Aqueous	s G	C/MS M	04/24/17	04/24/17	16:05	170424S011	
B-1-CW13-N-17Q2	Matrix Spike D	Duplicate	Aqueous	s G	C/MS M	04/24/17	04/24/17	16:35	170424S011	
<u>Parameter</u>	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,2,3-Trichloropropane	12.62	5.000	21.12	170	18.62	120	80-120	13	0-20	3

EPA 6020

Quality Control - PDS

Date Received: 04/12/17 Tetra Tech, Inc. Work Order: 17-04-0940 301 E. Vanderbilt Way, Suite 450 Preparation: EPA 3020A Total San Bernardino, CA 92408-3562

Method:

Project: LMC BOU Page 1 of 1

Quality Control Sample ID Matrix Instrument Date Prepared Date Analyzed PDS/PDSD Batch Туре Number 17-04-1235-2 Sample Aqueous ICP/MS 05 04/19/17 00:00 04/19/17 23:32 170419SA2 17-04-1235-2 PDS Aqueous ICP/MS 05 04/19/17 00:00 04/19/17 23:25 170419SA2 Sample Conc. %Rec. CL <u>Parameter</u> Spike Added PDS Conc. PDS %Rec. Chromium ND 0.1000 0.1041 104 75-125

Quality Control - LCS

Date Received: 04/12/17 Tetra Tech, Inc. Work Order: 17-04-0940 301 E. Vanderbilt Way, Suite 450 Preparation: N/A San Bernardino, CA 92408-3562 Method: EPA 218.6

Project: LMC BOU Page 1 of 7

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-14-567-235	LCS	Aqueous	IC 16	N/A	04/12/17 17:57	170412L01
<u>Parameter</u>		Spike Added	Conc. Recov	ered LCS %R	tec. %Rec	. CL Qualifiers
Chromium, Hexavalent		10.00	10.11	101	95-10	7

04/12/17

17-04-0940

EPA 6020

EPA 3020A Total

Quality Control - LCS

Date Received: Tetra Tech, Inc. Work Order: 301 E. Vanderbilt Way, Suite 450 Preparation: San Bernardino, CA 92408-3562 Method:

Project: LMC BOU Page 2 of 7

Quality Control Sample ID	Type	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
096-06-003-5540	LCS	Aqueous	ICP/MS 05	04/19/17	04/19/17 23:14	170419LA2
<u>Parameter</u>		Spike Added	Conc. Recovere	ed LCS %Re	ec. %Rec	. CL Qualifiers
Chromium		0.1000	0.1033	103	80-12	0

04/12/17

17-04-0940

Quality Control - LCS

Tetra Tech, Inc. 301 E. Vanderbilt Way, Suite 450 San Bernardino, CA 92408-3562

Project: LMC BOU

Date Received: Work Order: Preparation:

EPA 3510C

Method: EPA 8270C (M) Isotope Dilution Page 3 of 7

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-16-216-1009	LCS	Aqueous	GC/MS DDD	04/13/17	04/13/17 23:21	170413L06
<u>Parameter</u>		Spike Added	Conc. Recovere	ed LCS %Re	ec. %Rec	. CL Qualifiers
1,4-Dioxane		20.00	19.24	96	50-13	0

Quality Control - LCS

Tetra Tech, Inc. 301 E. Vanderbilt Way, Suite 450 San Bernardino, CA 92408-3562

Date Received: Work Order: Preparation: Method:

04/12/17 17-04-0940 **EPA 5030C**

EPA 8260B

Project: LMC BOU Page 4 of 7

Quality Control Sample ID	Туре	Matrix	Instrumen	t Date Prep	ared Date Anal	yzed LCS Batch	Number
099-10-025-4644	LCS	Aqueo	ous GC/MS L	04/22/17	04/22/17	22:41 170422L02	6
<u>Parameter</u>		Spike Added	Conc. Recovered	LCS %Rec.	%Rec. CL	ME CL	<u>Qualifiers</u>
1,1-Dichloroethene		10.00	9.594	96	77-120	70-127	
1,2-Dibromoethane		10.00	9.702	97	80-120	73-127	
1,2-Dichlorobenzene		10.00	9.578	96	80-120	73-127	
1,2-Dichloroethane		10.00	10.14	101	80-122	73-129	
Benzene		10.00	9.628	96	80-120	73-127	
Carbon Tetrachloride		10.00	8.285	83	80-129	72-137	
Chlorobenzene		10.00	9.958	100	80-120	73-127	
Ethylbenzene		10.00	9.856	99	80-120	73-127	
Toluene		10.00	9.771	98	80-120	73-127	
Trichloroethene		10.00	10.08	101	80-120	73-127	
Vinyl Chloride		10.00	10.34	103	63-135	51-147	
o-Xylene		10.00	9.978	100	80-120	73-127	
p/m-Xylene		20.00	19.82	99	80-120	73-127	
Methyl-t-Butyl Ether (MTBE)		10.00	8.656	87	75-123	67-131	

Total number of LCS compounds: 14 Total number of ME compounds: 0

Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass

RPD: Relative Percent Difference. CL: Control Limits

Quality Control - LCS

Tetra Tech, Inc. 301 E. Vanderbilt Way, Suite 450 San Bernardino, CA 92408-3562

Date Received: Work Order: Preparation: Method:

04/12/17 17-04-0940 **EPA 5030C** EPA 8260B

Project: LMC BOU Page 5 of 7

Quality Control Sample ID	Туре	Matrix	Instrumer	t Date Prep	ared Date Anal	lyzed LCS Bato	h Number
099-10-025-4643	LCS	Aque	ous GC/MS L	04/24/17	04/24/17	09:29 170424L0	004
<u>Parameter</u>	·	Spike Added	Conc. Recovered	LCS %Rec.	%Rec. CL	ME CL	<u>Qualifiers</u>
Trichloroethene		10.00	10.25	103	80-120	73-127	
Benzene		10.00	9.619	96	80-120	73-127	
Carbon Tetrachloride		10.00	8.789	88	80-129	72-137	
Chlorobenzene		10.00	10.09	101	80-120	73-127	
1,2-Dibromoethane		10.00	9.750	97	80-120	73-127	
1,2-Dichlorobenzene		10.00	9.657	97	80-120	73-127	
1,2-Dichloroethane		10.00	10.12	101	80-122	73-129	
1,1-Dichloroethene		10.00	9.441	94	77-120	70-127	
Ethylbenzene		10.00	9.999	100	80-120	73-127	
Toluene		10.00	9.877	99	80-120	73-127	
Vinyl Chloride		10.00	9.853	99	63-135	51-147	
p/m-Xylene		20.00	20.15	101	80-120	73-127	
o-Xylene		10.00	10.10	101	80-120	73-127	
Methyl-t-Butyl Ether (MTBE)		10.00	9.370	94	75-123	67-131	

Total number of LCS compounds: 14 Total number of ME compounds: 0

Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass

RPD: Relative Percent Difference. CL: Control Limits

Quality Control - LCS/LCSD

Tetra Tech, Inc.

Date Received:

04/12/17

301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-0940

San Bernardino, CA 92408-3562

Preparation:

EPA 5030C

Method:

EPA 8260B SIM

Project: LMC BOU Page 6 of 7

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Pre	pared Date	Analyzed	LCS/LCSD Ba	atch Number
099-15-118-491	LCS	Aqu	ieous	GC/MS M	04/21/17	04/2	2/17 03:56	170421L050	
099-15-118-491	LCSD	Aqu	ieous	GC/MS M	04/21/17	04/2	2/17 04:26	170421L050	
<u>Parameter</u>	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,2,3-Trichloropropane	0.02000	0.01880	94	0.01770	88	80-120	6	0-20	

Quality Control - LCS/LCSD

 Tetra Tech, Inc.
 Date Received:
 04/12/17

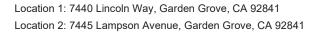
 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0940

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B SIM

Project: LMC BOU Page 7 of 7

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Pre	pared Date	e Analyzed	LCS/LCSD Ba	atch Number
099-15-118-492	LCS	Aqı	ieous	GC/MS M	04/24/17	04/2	4/17 11:06	170424L033	
099-15-118-492	LCSD	Aqι	ieous	GC/MS M	04/24/17	04/2	4/17 11:36	170424L033	
<u>Parameter</u>	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,2,3-Trichloropropane	0.02000	0.01640	82	0.01830	92	80-120	11	0-20	



Sample Analysis Summary Report

Work Order: 17-04-0940	Page 1 of 1			
Method	Extraction	Chemist ID	<u>Instrument</u>	Analytical Location
EPA 218.6	N/A	1065	IC 16	1
EPA 6020	EPA 3020A Total	598	ICP/MS 03	1
EPA 8260B	EPA 5030C	316	GC/MS L	2
EPA 8260B SIM	EPA 5030C	486	GC/MS M	2
EPA 8270C (M) Isotope Dilution	EPA 3510C	928	GC/MS DDD	1

Glossary of Terms and Qualifiers

Work Order: 17-04-0940 Page 1 of 1

Qualifiers	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
CI	See case narrative.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
SG	The sample extract was subjected to Silica Gel treatment prior to analysis.

- % Recovery and/or RPD out-of-range.
- Χ
- Ζ Analyte presence was not confirmed by second column or GC/MS analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

2016-04-01-Revision

WORK ORDER NUMBER: 17-04-

SAMPL	FRE	-CFIPT	CHECK	LIST

COOLER	1	OF	1

	:	Calsciance
	Tolon	Tool
CLIENT:	1411a	Itur

DATE: 04 / /2 / 2017

SCIENT. 10110 1 C.O.	115,071	<u> </u>	2011		
TEMPERATURE: (Criteria: 0.0°C – 6.0°C, not frozen except sediment/tissue) Thermometer ID: SC (CF: 0.0°C); Temperature (w/o CF): 2.0 °C (w/ CF): 2.0 °C; Erelank ID Sample D Sample(s) outside temperature criteria (PM/APM contacted by:)					
© Sample(s) outside temperature criteria but received on ice/chilled on same day of sampling					
☐ Sample(s) received at ambient temperature; placed on ice for transport by courier	Checke	10	191		
Ambient Temperature: Air Filter	Checke	d by: (
CUSTODY SEAL:			- 0		
Cooler ☐ Present and Intact ☐ Present but Not Intact ☐ Not Present ☐ N/A	Checke	d by: 🏒	091		
Sample(s) Present and Intact Present but Not Intact Not Present DINA	Checke		- N		
Compretely District and these and these are the services and the services are services and the services and the services are services and the services and the services and the services are services and the services and the services are services and the services are services and the services are services and the services are services and the services are services and the services are services and the services are services and the services are services are services and the services are services and the services are services and the services are services are services and the services are services are services and the services are services are services are services and the services are services are services are services are services are services ar		<u> </u>			
SAMPLE CONDITION:	Yes	No	N/A		
Chain-of-Custody (COC) document(s) received with samples	. ø				
COC document(a) received complete					
☐ Sampling date ☐ Sampling time ☐ Matrix ☐ Number of containers					
☐ No analysis requested: ☐ Not relinquished: ☐ No relinquished date: ☐ No relinquished time					
Sampler's name indicated on COC	,				
Sample container label(s) consistent with COC		Ø			
Sample container(s) intact and in good condition					
Proper containers for analyses requested					
Sufficient volume/mass for analyses requested					
Samples received within holding time					
Aqueous samples for certain analyses received within 15-minute holding time					
□ pH □ Residual Chlorine □ Dissolved Sulfide □ Dissolved Oxygen	🗂		⊿⁄		
Proper preservation chemical(s) noted on COC and/or sample container			_		
Unpreserved aqueous sample(s) received for certain analyses					
□ Volatile Organics □ Total Metals □ Dissolved Metals					
•	D/	_			
Container(s) for certain analysis free of headspace					
☐ Carbon Dioxide (SM 4500) ☐ Ferrous Iron (SM 3500) ☐ Hydrogen Sulfide (Hach)					
Tedlar™ bag(s) free of condensation	m		54		

CONTAINER TYPE: (Trip Blank Lot Number: 170326A-)					
Aqueous: UVOA VOAh VOAha, 100PJ 100PJna, 125AGB 125AGBh 125AGBp 125PB					
□ 125PBznna □ 250AGB □ 250CGB □ 250CGBs Þ 250PB Þ 250PBn □ 500AGB □ 500AGJ □ 500AGJs					
□ 500PB □ 1AGB □ 1AGBna₂ □ 1AGBs □ 1PB □ 1PBna □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □					
Solid: ☐ 4ozCGJ ☐ 8ozCGJ ☐ 16ozCGJ ☐ Sleeve () ☐ ErrCores® () ☐ TerraCores® () ☐					
Air: □ Tedlar™ □ Canister □ Sorbent Tube □ PUF □ Other Matrix (): □ □					
Container: A = Amber, B = Bottle, C = Clear, E = Envelope, G = Glass, J = Jar, P = Plastic, and Z = Ziploc/Resealable Bag					
Preservative: $b = buffered$, $f = filtered$, $h = HCl$, $n = HNO_3$, $na = NaOH$, $na_2 = Na_2S_2O_3$, $p = H_3PO_4$. Labeled/Checked by:					
$s = H_2SO_4$, $u = uitra-pure$, $x = Na_2SO_3+NaHSO_4,H_2O$, znna = Zn (CH ₂ CO ₂) ₂ + NaOH Reviewed by: (A)					

Calscience

SAMPLE ANOMALY REPORT

DATE: 04 / 12- / 2017

SAMPLES, CONTAINERS, AND LABELS:	Comments
☐ Sample(s) NOT RECEIVED but listed on COC	
☐ Sample(a) received but NOT LISTED on COC	
☐ Holding time expired (list dient or ECI sample tD and analysis)	
☐ Insufficient sample amount for requested analysis (list analysis)	
☐ Improper container(s) used (list analysis)	
☐ Improper preservative used (list analysis)	
☐ No preservative noted on COC or label (list analysis and notify lab)	
☐ Sample container(s) not labeled	
☐ Client sample label(s) illegible (list container type and analysis)	
Z Client sample label(s) do not match COC (comment)	
☐ Project information	
☐ Client sample ID	
☐ Sampling date and/or time	(-4)(-5) received 9 containers instead
☑ Number of container(s)	of 13
☐ Requested analysis	(received Evials Instead of 10)
CI Sample container(s) compromised (comment)	
□ Broken	
☐ Water present in sample container	
☐ Air sample container(s) compromised (comment)	
CI Flat	
☐ Very low In volume	
☐ Leaking (not transferred; duplicate bag submitted)	
☐ Leaking (transferred into ECl Tedlar™ begs*)	
□ Leaking (transferred into client's Tadlar™ bags*)	
* Transferred at client's request.	
MISCELLANEOUS: (Describe)	Comments
HEADSPACE:	
(Containers with bubble > 6 mm or ¼ buth for votable organic or dissolved gas analysis)	(Contelhers with bubble for other enelysis)
ECI ECI Total Sample ID Container ID Number* Sample ID Container ID Sample ID	EGI EGI Totel Sample ID Caritahnar 20 Number** Requestoy Analysis
Sautotish Challendarp Lanunga Sambara Cosearra to Natural	Sample Contains at Poster Property Action
Comments	
Comments:	Reported by: 1//)
19 Carried for label pumper of containing Eq. (title as full and to the effect of containing	Reported by: 1160
"* Record fine lotal number of containers (i.e., vials or bottles) for the affected sample.	Navionau Dy. a di

Calscience

WORK ORDER NUMBER: 17-04-0840

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: Tetra Tech, Inc.

Client Project Name: LMC BOU

Attention: Robert Sabater

301 E. Vanderbilt Way, Suite 450 San Bernardino, CA 92408-3562

Vikas Patel

Approved for release on 04/27/2017 by:

Vikas Patel Project Manager

ResultLink >

Email your PM >

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name: LMC BOU
Work Order Number: 17-04-0840

1	Work Order Narrative	3
2	Detections Summary	4
3	Client Sample Data. 3.1 EPA 218.6 Hexavalent Chromium Low Level (Aqueous). 3.2 EPA 6020 ICP/MS Metals (Aqueous). 3.3 1,4-Dioxane by EPA 8270C (M) Isotope Dilution (Aqueous). 3.4 EPA 8260B Volatile Organics (Aqueous). 3.5 EPA 8260B SIM Emergent Volatiles (Aqueous).	6 6 7 8 10 34
4	Quality Control Sample Data. 4.1 MS/MSD. 4.2 PDS/PDSD. 4.3 LCS/LCSD.	36 36 43 44
5	Sample Analysis Summary	51
6	Glossary of Terms and Qualifiers	52
7	Chain-of-Custody/Sample Receipt Form	53

Work Order Narrative

Work Order: 17-04-0840 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 04/11/17. They were assigned to Work Order 17-04-0840.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Detections Summary

Client: Tetra Tech, Inc.

Work Order: Project Name:

17-04-0840 LMC BOU

301 E. Vanderbilt Way, Suite 450 San Bernardino, CA 92408-3562

Received: 04/11/17

Attn: Robert Sabater

Page 1 of 2

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
A-1-CW09-N-17Q2 (17-04-0840-1)						
Chromium, Hexavalent	1.4		0.020	ug/L	EPA 218.6	N/A
Chromium	0.00224		0.00100	mg/L	EPA 6020	EPA 3020A Total
1,1,2-Trichloro-1,2,2-Trifluoroethane	1.9		0.50	ug/L	EPA 8260B	EPA 5030C
1,1,2-Trichloroethane	7.5		0.50	ug/L	EPA 8260B	EPA 5030C
1,1-Dichloroethene	0.74		0.50	ug/L	EPA 8260B	EPA 5030C
1,2,3-Trichloropropane	10		1.0	ug/L	EPA 8260B	EPA 5030C
1,2-Dichloroethane	0.38	J	0.20*	ug/L	EPA 8260B	EPA 5030C
1,2-Dichloropropane	0.52		0.50	ug/L	EPA 8260B	EPA 5030C
Carbon Tetrachloride	1.1		0.50	ug/L	EPA 8260B	EPA 5030C
Chloroform	3.8		0.50	ug/L	EPA 8260B	EPA 5030C
Tetrachloroethene	5.9		0.50	ug/L	EPA 8260B	EPA 5030C
Trichloroethene	5.9		0.50	ug/L	EPA 8260B	EPA 5030C
Methyl-t-Butyl Ether (MTBE)	0.44	J	0.20*	ug/L	EPA 8260B	EPA 5030C
1,2,3-Trichloropropane	15		1.2	ug/L	EPA 8260B SIM	EPA 5030C
1,4-Dioxane	3.7		1.0	ug/L	EPA 8270C (M) Isotope Dilution	EPA 3510C
C-1-CW02-N-17Q2 (17-04-0840-2)						
Chromium	0.000600	J	0.000402*	mg/L	EPA 6020	EPA 3020A Total
Dichlorodifluoromethane	0.86	J	0.40*	ug/L	EPA 8260B	EPA 5030C
_TB-20170411 (17-04-0840-3)						
Acetone	4.6	J	4.0*	ug/L	EPA 8260B	EPA 5030C
A-1-CW02-N-17Q2 (17-04-0840-4)						
Chromium	0.00365		0.00100	mg/L	EPA 6020	EPA 3020A Total
1,1,2-Trichloro-1,2,2-Trifluoroethane	0.41	J	0.24*	ug/L	EPA 8260B	EPA 5030C
Chloroform	0.29	J	0.20*	ug/L	EPA 8260B	EPA 5030C
Tetrachloroethene	21		0.50	ug/L	EPA 8260B	EPA 5030C
Trichloroethene	4.2		0.50	ug/L	EPA 8260B	EPA 5030C
B-6-CW08-N-17Q2 (17-04-0840-5)						
Chromium, Hexavalent	0.028		0.020	ug/L	EPA 218.6	N/A
Chromium	0.000834	J	0.000402*	mg/L	EPA 6020	EPA 3020A Total
1,1,2-Trichloro-1,2,2-Trifluoroethane	0.43	J	0.24*	ug/L	EPA 8260B	EPA 5030C
Chloroform	0.27	J	0.20*	ug/L	EPA 8260B	EPA 5030C
Tetrachloroethene	12		0.50	ug/L	EPA 8260B	EPA 5030C
Trichloroethene	3.2		0.50	ug/L	EPA 8260B	EPA 5030C
Methyl-t-Butyl Ether (MTBE)	0.24	J	0.20*	ug/L	EPA 8260B	EPA 5030C

^{*} MDL is shown

Detections Summary

Client: Tetra Tech, Inc.

301 E. Vanderbilt Way, Suite 450 San Bernardino, CA 92408-3562 Work Order:

17-04-0840

Project Name: Received: LMC BOU 04/11/17

Attn: Robert Sabater

Page 2 of 2

<u>Client SampleID</u>										
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	Method	Extraction				
B-6-CW05-N-17Q2 (17-04-0840-6)										
Chromium, Hexavalent	0.10		0.020	ug/L	EPA 218.6	N/A				
Chromium	0.00172		0.00100	mg/L	EPA 6020	EPA 3020A Total				
Chloroform	0.27	J	0.20*	ug/L	EPA 8260B	EPA 5030C				
Tetrachloroethene	0.20	J	0.20*	ug/L	EPA 8260B	EPA 5030C				
Methyl-t-Butyl Ether (MTBE)	0.24	J	0.20*	ug/L	EPA 8260B	EPA 5030C				

Subcontracted analyses, if any, are not included in this summary.

04/11/17 22:43

170411L01

Qualifiers

B-6-CW05-N-17Q2

Chromium. Hexavalent

Comment(s):

<u>Parameter</u>

Analytical Report

Date Received: 04/11/17 Tetra Tech, Inc. Work Order: 17-04-0840 301 E. Vanderbilt Way, Suite 450 Preparation: N/A San Bernardino, CA 92408-3562 Method: EPA 218.6 Units: ug/L Project: LMC BOU Page 1 of 1 Client Sample Number Lab Sample Date/Time Matrix Instrument Date Date/Time QC Batch ID Number Collected Prepared Analyzed A-1-CW09-N-17Q2 17-04-0840-1-L 04/11/17 Aqueous IC 16 N/A 04/11/17 170411L01 16:13 21:59 - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. Comment(s): <u>Parameter</u> MDL <u>DF</u> Result <u>RL</u> Chromium, Hexavalent 1.4 0.020 0.0099 1.00 C-1-CW02-N-17Q2 04/11/17 IC 16 N/A 04/11/17 170411L01 17-04-0840-2-L Aqueous 12:43 22:09 - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. Comment(s): Qualifiers Parameter Result RL MDL DF Chromium, Hexavalent ND 0.020 0.0099 1.00 A-1-CW02-N-17Q2 17-04-0840-4-L 04/11/17 Aqueous IC 16 N/A 04/11/17 170411L01 - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. Comment(s): <u>Parameter</u> RL MDL <u>DF</u> Qualifiers Result ND 0.020 0.0099 1.00 Chromium. Hexavalent B-6-CW08-N-17Q2 17-04-0840-5-L 04/11/17 Aqueous IC 16 N/A 04/11/17 170411L01 22:32 13:57 - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. Comment(s): MDL DF Parameter Result <u>RL</u> Qualifiers Chromium, Hexavalent 0.028 0.020 0.0099 1.00

04/11/17 16:37 **Method Blank** 099-14-567-236 N/A IC 16 N/A 170411L01 Aqueous - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. Comment(s):

Aqueous

- Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

<u>RL</u>

0.020

IC 16

MDL

0.0099

N/A

<u>DF</u>

1.00

<u>DF</u> **Parameter** Result **MDL**

04/11/17

0.0099 ND 0.020 1.00 Chromium, Hexavalent

Result

0.10

17-04-0840-6-L

Comment(s): Parameter

Chromium

Analytical Report

Date Received: 04/11/17 Tetra Tech, Inc. Work Order: 17-04-0840 301 E. Vanderbilt Way, Suite 450 Preparation: EPA 3020A Total San Bernardino, CA 92408-3562 Method: EPA 6020 Units: mg/L Project: LMC BOU Page 1 of 1 Client Sample Number Lab Sample Date/Time Matrix Instrument Date Date/Time QC Batch ID Number Collected Prepared Analyzed 17-04-0840-1-K 04/11/17 04/17/17 04/20/17 A-1-CW09-N-17Q2 Aqueous ICP/MS 03 170417LA3 16:13 19:26 - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. Comment(s): <u>Parameter</u> Result <u>DF</u> <u>RL</u> **MDL** Qualifiers Chromium 0.00224 0.00100 0.000402 1.00 C-1-CW02-N-17Q2 17-04-0840-2-K 04/11/17 04/20/17 Aqueous ICP/MS 03 04/17/17 170417LA3 12:43 19:29 - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. Comment(s): Parameter Result MDL DF Qualifiers Chromium 0.000600 0.00100 0.000402 1.00 A-1-CW02-N-17Q2 17-04-0840-4-K 04/11/17 Aqueous ICP/MS 03 04/17/17 04/20/17 170417LA3 - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. Comment(s): <u>Parameter</u> MDL <u>DF</u> Qualifiers Result <u>RL</u> Chromium 0.00365 0.00100 0.000402 1.00 B-6-CW08-N-17Q2 17-04-0840-5-K 04/11/17 Aqueous ICP/MS 03 04/17/17 04/20/17 170417LA3 20:10 13:57 Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. MDL DF Parameter Result Qualifiers Chromium 0.000834 0.00100 0.000402 1.00 B-6-CW05-N-17Q2 17-04-0840-6-K 04/11/17 Aqueous ICP/MS 03 04/17/17 04/20/17 170417LA3 - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. Comment(s): <u>Parameter</u> <u>DF</u> Qualifiers Result <u>RL</u> **MDL** Chromium 0.00172 0.00100 0.000402 1.00 04/19/17 01:58 **Method Blank** 096-06-003-5537 N/A ICP/MS 03 04/17/17 170417LA3 Aqueous

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Result

ND

- Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

0.00100

MDL

0.000402

<u>DF</u>

1.00

Page 1 of 2

Project: LMC BOU

Analytical Report

Tetra Tech, Inc.

Date Received: 04/11/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0840

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 3510C

Method: EPA 8270C (M) Isotope Dilution

Units: ug/L

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
A-1-CW09-N-17Q2	17-04-0840-1-M	04/11/17 16:13	Aqueous	GC/MS DDD	04/13/17	04/14/17 00:09	170413L06	
Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.								
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	Qualifiers	
1,4-Dioxane	3.7		1.0	0.28	1.00			
<u>Surrogate</u>	Rec.	(%)	Control Limits	Qualifiers				
Nitrobenzene-d5	85		56-123					
1,4-Dioxane-d8(IDS-IS)	42		30-120					

C-1-CW02-N-17Q2	17-04-0840-2-M	04/11/17 12:43	Aqueous	GC/MS DDD	04/13/17	04/14/17 00:25	170413L06
Comment(s): - Results were evaluated	to the MDL (DL), cond	entrations >=	to the MDL (DL) but < RL (LOC	(a), if found, are	qualified with	a "J" flag.
<u>Parameter</u>	Resul	<u>It</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
1,4-Dioxane	ND		1.0	0.28	1.00		
<u>Surrogate</u>	Rec.	<u>(%)</u>	Control Limits	<u>Qualifiers</u>			
Nitrobenzene-d5	90		56-123				
1,4-Dioxane-d8(IDS-IS)	43		30-120				

A-1-CW02-N-17	'Q2	17-04-0840-4-M	04/11/17 10:21	Aqueous	GC/MS DDD	04/13/17	04/14/17 00:42	170413L06
Comment(s):	- Results were evaluated to	the MDL (DL), conc	entrations >=	to the MDL (DL) but < RL (LOC), if found, are	qualified with	a "J" flag.
<u>Parameter</u>		Resul	<u>t</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
1,4-Dioxane		ND		1.0	0.28	1.00		
<u>Surrogate</u>		<u>Rec. (</u>	(%)	Control Limits	<u>Qualifiers</u>			
Nitrobenzene-d5	5	84		56-123				
1,4-Dioxane-d8(IDS-IS)	40		30-120				

B-6-CW08-N-17Q2	17-04-0840-5-M	04/11/17 13:57	Aqueous	GC/MS DDD	04/13/17	04/14/17 00:58	170413L06
Comment(s): - Results were evaluated to	the MDL (DL), conc	entrations >=	to the MDL (DL	.) but < RL (LOC	Q), if found, are	qualified with	a "J" flag.
<u>Parameter</u>	Resul	<u>t</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
1,4-Dioxane	ND		1.0	0.28	1.00		
Surrogate	Rec.	(%)	Control Limits	Qualifiers			
Nitrobenzene-d5	89		56-123				
1,4-Dioxane-d8(IDS-IS)	39		30-120				

Date Received: 04/11/17 Tetra Tech, Inc.

Work Order: 17-04-0840 301 E. Vanderbilt Way, Suite 450 Preparation: **EPA 3510C** San Bernardino, CA 92408-3562

> Method: EPA 8270C (M) Isotope Dilution

Units: ug/L

Project: LMC BOU Page 2 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID		
B-6-CW05-N-17Q2	17-04-0840-6-M	04/11/17 15:20	Aqueous	GC/MS DDD	04/13/17	04/14/17 01:14	170413L06		
Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.									
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>(</u>	Qualifiers		
1,4-Dioxane	ND		1.0	0.28	1.00				
Surrogate	Rec.	(%)	Control Limits	Qualifiers					
Nitrobenzene-d5	83		56-123						
1,4-Dioxane-d8(IDS-IS)	44		30-120						

Method Blank	099-16-216	-1009 ľ	N/A	Aqueous	GC/MS DDD	04/13/17	04/13/17 23:05	170413L06
Comment(s):	- Results were evaluated to the MDL (DI	_), concer	ntrations >=	to the MDL (DL)	but < RL (LOC), if found, are	qualified with a	a "J" flag.
<u>Parameter</u>		Result		<u>RL</u>	<u>MDL</u>	<u>DF</u>	2	<u>Qualifiers</u>
1,4-Dioxane		ND		1.0	0.28	1.00		
		- (0)						
<u>Surrogate</u>		Rec. (%	<u>o)</u>	Control Limits	<u>Qualifiers</u>			
Nitrobenzene-d5	5	89		56-123				
1,4-Dioxane-d8(IDS-IS)	44		30-120				

Tetra Tech, Inc.

Date Received:

04/11/17

301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-0840

San Bernardino, CA 92408-3562

Preparation:

EPA 5030C

Method: EPA 8260B Units: ug/L

Project: LMC BOU Page 1 of 24

Comment(s): - Results were evaluated to the MDL (DL) - to-concentrations > □ to the MDL (DL) if Sourch, are qualified with a "J" flag. Comment(s): - Results were evaluated to the MDL (DL) but > □ to the MDL (DL) if Sourch, are qualified with a "J" flag. Comment(s): - Results were evaluated to the MDL (DL) with sourch are qualified with a "J" flag. Comment(s): - Results were evaluated to the MDL (DL) with sourch are qualified with a "J" flag. Comment(s): - Results were evaluated to the MDL (DL) with sourch are qualified with a "J" flag. Comment(s): - Results were evaluated to the MDL (DL) with sourch are qualified with a "J" flag. Comment(s): - Results were evaluated to the MDL (DL) with sourch are qualified with a "J" flag. Comment(s): - Results were evaluated to the MDL (DL) with sourch are qualified with a "J" flag. Comment(s): - Results were evaluated to the MDL (DL) with sourch are qualified with a "J" flag. Comment(s): - Results were evaluated to the MDL (DL) with sourch are qualified with a "J" flag. Comment(s): - Results were evaluated to the MDL (DL) with sourch are qualified with a "J" flag. Comment(s): - Results were evaluated to the MDL (DL) with sourch are qualified with a "J" flag. Comment(s): - Results were evaluated to the MDL (DL) with sourch are qualified with a "J" flag. Comment(s): - Results were evaluated to the MDL (DL) with sourch are qualified with a "J" flag. Comment(s): - Results were evaluated to the MDL (DL) with sourch are qualified with a "J" flag. Comment(s): - Results were evaluated to the MDL (DL) with sourch are qualified with a "J" flag. Comment(s): - Results were evaluated to the MDL (DL) with sourch are qualified with a "J" flag. Comment(s): - Results were evaluated to the MDL (DL) with sourch are qualified with a "J" flag. Comment(s): - Results were evaluated to the MDL (DL) with sourch are qualified with a "J" flag. Comment(s): - Results were evaluated to the MDL (DL) with sourch are qualified with a "J" flag. Comment(s): - Results were evaluated to the MDL (DL) with sou	Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Parameter Result RL MDL DF Qualifiers 1,1,1,2-Fetrachloroethane ND 0.50 0.20 1.00 1.10 1,1,2-Fetrachloroethane ND 0.50 0.20 1.00 1.10 1,1,2-Fetrachloroethane ND 0.50 0.20 1.00 1.10 1,1,2-Fetrachloroethane 1,9 0.50 0.20 1.00 1.10 1,1-Dichloroethane ND 0.50 0.20 1.00 1.10 1,1-Dichloroethane ND 0.50 0.20 1.00 1.10 1,1-Dichloroptopene ND 0.50 0.20 1.00 1.10 1,1-Dichloroptopane ND 0.50 0.20 1.00 1.00 1,2-Ja-Tinchloroptopane	A-1-CW09-N-17Q2	17-04-0840-1-A		Aqueous	GC/MS L	04/21/17		170421L006
.1.1.2-Tetrachloroethane .ND 0.50 0.20 1.00 .1.1.1-Tichloroethane .ND 0.50 0.20 1.00 .1.1.2.2-Tichloroethane .ND 0.50 0.20 1.00 .1.1.2.Tichloroethane .ND 0.50 0.20 1.00 .1.1.2-Tichloroethane .ND 0.50 0.20 1.00 .1.2.3-Tichloroptopene .ND 0.50 0.20 1.00 .1.2.3-Tichloroptopane .ND 0.50 0.20 1.00 .1.2.4-Tichlorobenzene .ND 0.50 0.20 1.00 .1.2.4-Tichlorobenzene .ND 0.50 0.20 1.00 .1.2.4-Tichlorobenzene .ND 0.50 0.20 1.00 .1.2.2-Dibromoetha	Comment(s): - Results were evaluated	to the MDL (DL), cond	centrations >=	to the MDL (D	L) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
1,1-Trichloroethane	<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>0</u>	Qualifiers
1,1,2,2-Tetrachloroethane	1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00		
.1.2-Trichloro-1,2.2-Trifluoroethane	1,1,1-Trichloroethane	ND		0.50	0.20	1.00		
1,12-Trichloroethane 7.5 0.50 0.20 1.00 1,1-Dichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethane 0.74 0.50 0.28 1.00 1,1-Dichloropropene ND 0.50 0.30 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,3-Trichloropropane 10 1.0 0.40 1.00 1,2,4-Trinchlythenzene ND 0.50 0.20 1.00 1,2-Dibromoethane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloropropane 0.52 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichlorobenzene	1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1-Dichloroethane ND	1,1,2-Trichloro-1,2,2-Trifluoroethane	1.9		0.50	0.24	1.00		
1-Dichloroethene 0.74 0.50 0.28 1.00	1,1,2-Trichloroethane	7.5		0.50	0.20	1.00		
1-Dichloropropene ND	1,1-Dichloroethane	ND		0.50	0.20	1.00		
2,3-Trichlorobenzene ND 0.50 0.20 1.00 2,3-Trichloropropane 10 1.0 0.40 1.00 2,4-Trichlorobenzene ND 0.50 0.20 1.00 2,4-Trichlorobenzene ND 0.50 0.20 1.00 2,4-Trinethylbenzene ND 0.50 0.20 1.00 2,2-Dibromos-3-Chloropropane ND 0.50 0.20 1.00 2,2-Dibromoethane ND 0.50 0.20 1.00 2,2-Dibromoethane ND 0.50 0.20 1.00 2,2-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane 0.52 0.50 0.20 1.00 3,3-Dichloropropane ND 0.50 0.20 1.00 3,3-Dichloropropane ND 0.50 0.20 1.00 3,3-Dichloropropane ND 0.50 0.28 1.00 3,3-Dichloropropane ND 1.0 0.40 1.00 4,4-Dichloropropane ND 1.0 0.40 1.00 4,4-Dichloropropane ND 1.0 0.40 1.00 4,5-Dichloropropane ND 1.0 0.40 1.00 4,6-Dichloropropane ND 1.0 0.50 0.20 1.00 4,6-Dichloropropane ND 1.0 0.50 0.20 1.00 4,6-Dichloropropane ND 0.50 0.20 1.00 4,6-Dichloropropane ND 0.50 0.20 1.00 4,6-Dichloropropane ND 0.50 0.20 1.00 4,6-Dichloropropane ND 0.50 0.20 1.00 4,6-Dichloropropane ND 0.50 0.20 1.00 4,6-Dichloropropane ND 0.50 0.20 1.00 4,6-Dichloropropane ND 0.50 0.20 1.00 4,6-Dichloropropane ND 0.50 0.20 1.00 4,6-Dichloropropane ND 0.50 0.20 1.00 4,6-Dichloropropane ND 0.50 0.20 1.00 4,6-Dichloropropane ND 0.50 0.20 1.00 4,6-Dichloropropane ND 0.50 0.20 1.00 4,6-Dichloropropane ND 0.50 0.20 1.00 4,6-Dichloropropane ND 0.50 0.20 1.00 4,6-Dichloropropane 0.50 0.2	1,1-Dichloroethene	0.74		0.50	0.28	1.00		
1,2,3-Trichloropropane 10 1.0 0.40 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 2,4-Trimethylbenzene ND 0.50 0.20 1.00 2,2-Dibrono-3-Chloropropane ND 5.0 2.0 1.00 2,-Dibrlorobenzene ND 0.50 0.20 1.00 2,-Dichlorobenzene ND 0.50 0.20 1.00 2,-Dichlorobenzene ND 0.50 0.20 1.00 2,-Dichloroptopane 0.52 0.50 0.20 1.00 3,2-Dichloroptopane ND 0.50 0.20 1.00 3,3-Trimethylbenzene ND 0.50 0.28 1.00 3,3-Dichloroptopane ND 0.50 0.28 1.00 3,3-Dichloroptopane ND 0.50 0.20 1.00 4,4-Dichlorobenzene ND 0.50 0.20 1.00 4,2-Dichloroptopane ND 0.50 0.20 1.00 4-Dichlorobenzene ND 0.50 0.20 1.00 4-Dichlorobenzene	1,1-Dichloropropene	ND		0.50	0.30	1.00		
1,2,3-Trichloropropane 10 1.0 0.40 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 2,4-Trimethylbenzene ND 0.50 0.20 1.00 2,2-Dibrono-3-Chloropropane ND 5.0 2.0 1.00 2,-Dibrlorobenzene ND 0.50 0.20 1.00 2,-Dichlorobenzene ND 0.50 0.20 1.00 2,-Dichlorobenzene ND 0.50 0.20 1.00 2,-Dichloroptopane 0.52 0.50 0.20 1.00 3,2-Dichloroptopane ND 0.50 0.20 1.00 3,3-Trimethylbenzene ND 0.50 0.28 1.00 3,3-Dichloroptopane ND 0.50 0.28 1.00 3,3-Dichloroptopane ND 0.50 0.20 1.00 4,4-Dichlorobenzene ND 0.50 0.20 1.00 4,2-Dichloroptopane ND 0.50 0.20 1.00 4-Dichlorobenzene ND 0.50 0.20 1.00 4-Dichlorobenzene	1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 2.0 1.00 1,2-Dibromoethane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloroptopane 0.52 0.50 0.20 1.00 1,3-E-Trimethylbenzene ND 0.50 0.20 1.00 1,3-E-Trimethylbenzene ND 0.50 0.20 1.00 1,3-E-Trimethylbenzene ND 0.50 0.28 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 1.0 0.40 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 2,2-Dichloropropane ND 0.50 0.20 1.00 2,2-Dichloropropane	1,2,3-Trichloropropane	10		1.0	0.40	1.00		
ND 5.0 2.0 1.00	1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00		
ND 0.50 0.20 1.00 1.	1,2,4-Trimethylbenzene	ND		0.50	0.20	1.00		
	1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00		
1,2-Dichloroethane 0.38 0.50 0.20 1.00 J 1,2-Dichloropropane 0.52 0.50 0.20 1.00 1,3,5-Trimethylbenzene ND 0.50 0.28 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2,2-Dichloropropane ND 0.50 0.20 1.00 2-Butanone ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.36 1.00 2-Hexanone ND 0.50 0.36 1.00 3-Heathyl-2-Pentanone ND 5.0 2.0 1.00 4-Methyl-2-Pentanone ND	1,2-Dibromoethane	ND		0.50	0.20	1.00		
1,2-Dichloropropane 0.52 0.50 0.20 1.00 1,3,5-Trimethylbenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2,2-Dichloropropane ND 5.0 2.0 1.00 2,-Dichloropropane ND 0.50 0.20 1.00 2,-Dichloropropane ND 0.50 0.20 1.00 2,-Dichloropropane ND 0.50 0.20 1.00 2,-Dichloropropane ND 0.50 0.36 1.00 2,-Dichloropropane ND 0.50 0.36 1.00 2,-Dichloropropane ND 0.50 0.20 1.00 2,-Dichloropropane ND 0.50 0.20 1.00 3,-Dichloropropane ND 0.50 0.32 1.00 4,-Dichloropropane ND	1,2-Dichlorobenzene	ND		0.50	0.20	1.00		
1,3,5-Trimethylbenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichloropropane ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2,2-Dichloropropane ND 5.0 2.0 1.00 2-Butanone ND 0.50 0.20 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.36 1.00 1-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Acetone ND 0.50 0.20 1.00 Benzene ND 0.50 0.32 1.00 Bromochloromethane ND 0.50 0.20 1.00 Bromochloromethane ND 0.50 0.20 1.00 Bromochloromethane ND 0.50 0.25 1.00 <td>1,2-Dichloroethane</td> <td>0.38</td> <td></td> <td>0.50</td> <td>0.20</td> <td>1.00</td> <td>J</td> <td>I</td>	1,2-Dichloroethane	0.38		0.50	0.20	1.00	J	I
3-Dichlorobenzene ND 0.50 0.28 1.00 3-Dichloropropane ND 1.0 0.40 1.00 4-Dichloropropane ND 0.50 0.20 1.00 2-Dichloropropane ND 1.0 0.40 1.00 2-Dichloropropane ND 1.0 0.40 1.00 2-Dichloropropane ND 1.0 0.40 1.00 3-Dichloropropane ND 0.50 0.20 1.00 3-Dichloropropane ND 0.50 0.20 1.00 3-Dichloropropane ND 0.50 0.20 1.00 3-Dichloropropane ND 0.50 0.36 1.00 3-Dichloropropane ND 0.50 0.36 1.00 3-Dichloropropane ND 0.50 0.20 1.00 3-Dichloropropane ND 0.50 0.20 1.00 3-Dichloropropane ND 0.50 0.32 1.00 3-Dichloropropane ND 0.50 0.32 1.00 3-Dichloropropane ND 0.50 0.20 1.00 3-Dichloropropane ND 0.50 0.20 1.00 3-Dichloropropane ND 0.50 0.20 1.00 3-Dichloropropane ND 0.50 0.20 0.20 1.00 3-Dichloropropane ND 0.50 0.20 0.20 1.00 3-Dichloropropane ND 0.50 0.20 0.20 1.00 3-Dichloropropane ND 0.50 0.20 0.20 1.00 3-Dichloropropane ND 0.50 0.20 0.20 1.00 3-Dichloropropane ND 0.50 0.20 0.20 1.00 3-Dichloropropane ND 0.50 0.20 0.20 1.00 3-Dichloropropane ND 0.50 0.20 0.20 1.00 3-Dichloropropane ND 0.50 0.20 0.20 1.00 3-Dichloropropane ND 0.50 0.20 0.20 1.00 3-Dichloropropane ND 0.50 0.20 0.20 1.00 3-Dichloropropane ND 0.50 0.20 0.20 1.00 3-Dichloropropane ND 0.50 0.20 0.20 1.00 3-Dichloropropane ND 0.50 0.20 0.20 0.20 3-Dichloropropane ND 0.50 0.20 0.20 0.20 3-Dichloropropane ND 0.50 0.20 0.20 0.20 3-Dichloropropane ND 0.50 0.20 0.20 3-Dichloropropane ND 0.50 0.20 0.20 3-Dichloropropane ND 0.50 0.20 0.20 3-Dichloropropane ND 0.50 0.20 0.20 3-Dichloropropane ND 0.50 0.20 0.20 3-Dichloropropane ND 0.50 0.20 0.20 3-Dichloropropan	1,2-Dichloropropane	0.52		0.50	0.20	1.00		
3-Dichloropropane ND 1.0 0.40 1.00 4-Dichlorobenzene ND 0.50 0.20 1.00 2-Dichloropropane ND 1.0 0.40 1.00 3-Dichloropropane ND 1.0 0.40 1.00 3-Dichloropropane ND 1.0 0.40 1.00 3-Dichloropropane ND 0.50 0.20 1.00 3-Dichloropropane ND 0.50 0.20 1.00 3-Dichloropropane ND 0.50 0.36 1.00 3-Dichloropropane ND 0.50 0.36 1.00 3-Dichloropropane ND 0.50 0.36 1.00 3-Dichloropropane ND 0.50 0.36 1.00 3-Dichloropropane ND 0.50 0.20 1.00 3-Dichloropropane ND 0.50 0.32 1.00 3-Dichloropropane ND 0.50 0.32 1.00 3-Dichloropropane ND 0.50 0.20 1.00 3-Dichloropropane ND 0.50	1,3,5-Trimethylbenzene	ND		0.50	0.20	1.00		
A-Dichlorobenzene	1,3-Dichlorobenzene	ND		0.50	0.28	1.00		
2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 2-Hexanone ND 0.50 0.36 1.00 2-Hexanone ND 0.50 0.36 1.00 3-Cetone ND 10 4.0 1.00 3-Cetone ND 10 4.0 1.00 3-Cetone ND 10 4.0 1.00 3-Cetone ND 10 4.0 1.00 3-Cetone ND 10 4.0 1.00 3-Cetone ND 0.50 0.20 1.00 3-Cetone ND 0.50 0.32 1.00 3-Cetone ND 0.50 0.32 1.00 3-Cetone ND 0.50 0.20 1.00 3-Cetone ND 0.50 0.20 1.00 3-Cetone ND 0.50 0.20 1.00 3-Cetone ND 0.50 0.20 1.00 3-Cetone ND 0.50 0.20 1.00 3-Cetone ND 0.50 0.20 1.00 3-Cetone ND 0.50 0.20 1.00 3-Cetone ND 0.50 0.20 1.00 3-Cetone ND 0.50 0.20 1.00 3-Cetone ND 0.50 0.20 1.00 3-Cetone ND 0.50 0.20 1.00 3-Cetone ND 0.50 0.20 1.00 3-Cetone ND 0.50 0.20 1.00	1,3-Dichloropropane	ND		1.0	0.40	1.00		
P-Butanone ND 5.0 2.0 1.00 P-Chlorotoluene ND 0.50 0.20 1.00 P-Hexanone ND 10 4.0 1.00 P-Chlorotoluene ND 0.50 0.36 1.00 P-Chlorotoluene ND 0.50 0.36 1.00 P-Chlorotoluene ND 10 4.0 1.00 P-Chlorotoluene ND 0.50 0.36 1.00 P-Chlorotoluene ND 0.50 0.36 1.00 P-Chlorotoluene ND 0.50 0.36 1.00 P-Chlorotoluene ND 0.50 0.36 1.00 P-Chlorotoluene ND 0.50 0.20 1.00 P-Chlorotoluene ND 0.50 0.32 1.00 P-Chlorotoluene ND 0.50 0.20 1.00 P-Chlorotoluene ND 0.50 0.20 1.00 P-Chlorotoluene ND 0.50 0.20 1.00 P-Chlorotoluene ND 0.50 0.20 1.00 P-Chlorotoluene ND 0.50 0.20 1.00 P-Chlorotoluene ND 0.50 0.20 1.00 P-Chlorotoluene ND 0.50 0.20 1.00 P-Chlorotoluene ND 0.50 0.25 1.00	1,4-Dichlorobenzene	ND		0.50	0.20	1.00		
2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 0.50 0.20 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	2,2-Dichloropropane	ND		1.0	0.40	1.00		
P-Hexanone ND 10 4.0 1.00 P-Chlorotoluene ND 0.50 0.36 1.00 P-Methyl-2-Pentanone ND 5.0 2.0 1.00 P-Acetone ND 10 4.0 1.00 P-Acetone ND 0.50 0.20 1.00 P-Methyl-2-Pentanone ND 0.50 0.20 1.00 P-Methyl-2-Pentanone ND 0.50 0.20 1.00 P-Methyl-2-Pentanone ND 0.50 0.32 1.00 P-Methyl-2-Pentanone ND 0.50 0.20 1.00 P-Methyl-2-Pentanone ND 0.50 0.20 1.00 P-Methyl-2-Pentanone ND 0.50 0.20 1.00 P-Methyl-2-Pentanone ND 0.50 0.20 1.00 P-Methyl-2-Pentanone ND 0.50 0.25 1.00	2-Butanone	ND		5.0	2.0	1.00		
H-Chlorotoluene ND 0.50 0.36 1.00 H-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.20 1.00 Bromoform ND 0.50 0.20 1.00	2-Chlorotoluene	ND		0.50	0.20	1.00		
H-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.20 1.00	2-Hexanone	ND		10	4.0	1.00		
Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	4-Chlorotoluene	ND		0.50	0.36	1.00		
Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	4-Methyl-2-Pentanone	ND		5.0	2.0	1.00		
Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	Acetone	ND		10	4.0	1.00		
Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	Benzene	ND		0.50	0.20	1.00		
Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	Bromobenzene	ND		0.50	0.32	1.00		
Bromoform ND 0.50 0.25 1.00	Bromochloromethane	ND		1.0	0.40	1.00		
	Bromodichloromethane	ND		0.50	0.20	1.00		
	Bromoform	ND		0.50	0.25	1.00		
	Bromomethane			1.0	0.40	1.00		

 Tetra Tech, Inc.
 Date Received:
 04/11/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0840

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 2 of 24

				Fage 2 01 24
Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
ND	1.0	0.40	1.00	
1.1	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.32	1.00	
3.8	0.50	0.20	1.00	
ND	0.50	0.29	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	1.0	0.40	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	1.0	0.80	1.00	
ND	1.0	0.40	1.00	
ND	0.50	0.20	1.00	
5.9	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
5.9	0.50	0.29	1.00	
ND	0.50	0.20	1.00	
ND	5.0	2.0	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.32	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
0.44	0.50	0.20	1.00	J
ND	5.0	4.2	1.00	
ND	2.0	0.80	1.00	
ND	10	5.0	1.00	
<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>		
94	68-120			
100	80-127			
	ND 1.1 ND ND 3.8 ND ND ND ND ND ND ND ND ND ND ND ND ND	ND 1.0 1.1 0.50 ND 0.50 ND 0.50 3.8 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 1.0 ND 0.50 ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 0.50 ND 1.0 ND 0.50 ND	ND 1.0 0.40 1.1 0.50 0.20 ND 0.50 0.20 ND 0.50 0.32 3.8 0.50 0.20 ND 0.50 0.29 ND 0.50 0.29 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 1.0 0.50 0.20 ND 1.0 0.80 ND 1.0 0.80 ND 1.0 0.50 0.20 ND 1.0 0.50 0.20 ND 1.0 0.50 0.20 ND 0.50 0.20 ND 1.0 0.50 0.20 ND 0.50 0.20	ND 1.0 0.40 1.00 1.00 1.1 1.00 1.1 1 0.50 0.20 1.00 1.00 ND 0.50 0.20 1.00 ND 0.50 0

Tetra Tech, Inc.	Date Received:	04/11/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0840
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOU		Page 3 of 24

Surrogate	Rec. (%)	Control Limits	Qualifiers
1,2-Dichloroethane-d4	106	80-128	
Toluene-d8	100	80-120	

Tetra Tech, Inc. 301 E. Vanderbilt Way, Suite 450 San Bernardino, CA 92408-3562 Date Received:
Work Order:
Preparation:
Method:

Units:

17-04-0840 EPA 5030C EPA 8260B

04/11/17

ug/L

Project: LMC BOU

Page 4 of 24

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
C-1-CW02-N-17Q2	17-04-0840-2-B	04/11/17 12:43	Aqueous	GC/MS L	04/22/17	04/22/17 13:32	170422L005
Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.							
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	DF	9	<u>Qualifiers</u>
1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,1-Trichloroethane	ND		0.50	0.20	1.00		
1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		0.50	0.24	1.00		
1,1,2-Trichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethene	ND		0.50	0.28	1.00		
1,1-Dichloropropene	ND		0.50	0.30	1.00		
1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,3-Trichloropropane	ND		1.0	0.40	1.00		
1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,4-Trimethylbenzene	ND		0.50	0.20	1.00		
1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00		
1,2-Dibromoethane	ND		0.50	0.20	1.00		
1,2-Dichlorobenzene	ND		0.50	0.20	1.00		
1,2-Dichloroethane	ND		0.50	0.20	1.00		
1,2-Dichloropropane	ND		0.50	0.20	1.00		
1,3,5-Trimethylbenzene	ND		0.50	0.20	1.00		
1,3-Dichlorobenzene	ND		0.50	0.28	1.00		
1,3-Dichloropropane	ND		1.0	0.40	1.00		
1,4-Dichlorobenzene	ND		0.50	0.20	1.00		
2,2-Dichloropropane	ND		1.0	0.40	1.00		
2-Butanone	ND		5.0	2.0	1.00		
2-Chlorotoluene	ND		0.50	0.20	1.00		
2-Hexanone	ND		10	4.0	1.00		
4-Chlorotoluene	ND		0.50	0.36	1.00		
4-Methyl-2-Pentanone	ND		5.0	2.0	1.00		
Acetone	ND		10	4.0	1.00		
Benzene	ND		0.50	0.20	1.00		
Bromobenzene	ND		0.50	0.32	1.00		
Bromochloromethane	ND		1.0	0.40	1.00		
Bromodichloromethane	ND		0.50	0.20	1.00		
Bromoform	ND		0.50	0.25	1.00		
Bromomethane	ND		1.0	0.40	1.00		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

 Tetra Tech, Inc.
 Date Received:
 04/11/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0840

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 5 of 24

F TOJECI. LIVIC BOO					Fage 3 01 24
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
Carbon Disulfide	ND	1.0	0.40	1.00	
Carbon Tetrachloride	ND	0.50	0.20	1.00	
Chlorobenzene	ND	0.50	0.20	1.00	
Chloroethane	ND	0.50	0.32	1.00	
Chloroform	ND	0.50	0.20	1.00	
Chloromethane	ND	0.50	0.29	1.00	
Dibromochloromethane	ND	0.50	0.20	1.00	
Dibromomethane	ND	0.50	0.20	1.00	
Dichlorodifluoromethane	0.86	1.0	0.40	1.00	J
Ethylbenzene	ND	0.50	0.20	1.00	
Isopropylbenzene	ND	0.50	0.20	1.00	
Methylene Chloride	ND	1.0	0.80	1.00	
Naphthalene	ND	1.0	0.40	1.00	
Styrene	ND	0.50	0.20	1.00	
Tetrachloroethene	ND	0.50	0.20	1.00	
Toluene	ND	0.50	0.20	1.00	
t-1,2-Dichloroethene	ND	0.50	0.20	1.00	
Trichloroethene	ND	0.50	0.29	1.00	
Trichlorofluoromethane	ND	0.50	0.20	1.00	
Vinyl Acetate	ND	5.0	2.0	1.00	
Vinyl Chloride	ND	0.50	0.20	1.00	
c-1,3-Dichloropropene	ND	0.50	0.20	1.00	
c-1,2-Dichloroethene	ND	0.50	0.20	1.00	
n-Butylbenzene	ND	0.50	0.20	1.00	
n-Propylbenzene	ND	0.50	0.20	1.00	
o-Xylene	ND	0.50	0.32	1.00	
p-Isopropyltoluene	ND	0.50	0.20	1.00	
sec-Butylbenzene	ND	0.50	0.20	1.00	
t-1,3-Dichloropropene	ND	0.50	0.20	1.00	
tert-Butylbenzene	ND	0.50	0.20	1.00	
p/m-Xylene	ND	0.50	0.20	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	0.50	0.20	1.00	
2-Chloroethyl Vinyl Ether	ND	5.0	4.2	1.00	
Hexachloro-1,3-Butadiene	ND	2.0	0.80	1.00	
Iodomethane	ND	10	5.0	1.00	
Surrogate	Rec. (%)	Control Limits	Qualifiers		
1,4-Bromofluorobenzene	94	68-120			
Dibromofluoromethane	99	80-127			

Tetra Tech, Inc.	Date Received:	04/11/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0840
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOU		Page 6 of 24

SurrogateRec. (%)Control LimitsQualifiers1,2-Dichloroethane-d410380-128Toluene-d89880-120

ug/L

Analytical Report

Tetra Tech, Inc.

Date Received:

04/11/17

301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-0840

San Bernardino, CA 92408-3562

Preparation:

EPA 5030C

Method:

EPA 8260B

Units:

Project: LMC BOU Page 7 of 24

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
LTB-20170411	17-04-0840-3-A	04/11/17 07:00	Aqueous	GC/MS L	04/21/17	04/21/17 21:35	170421L006
Comment(s): - Results were evaluated to	the MDL (DL), cond	centrations >= 1	to the MDL (D	L) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,1-Trichloroethane	ND		0.50	0.20	1.00		
1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		0.50	0.24	1.00		
1,1,2-Trichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethene	ND		0.50	0.28	1.00		
1,1-Dichloropropene	ND		0.50	0.30	1.00		
1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,3-Trichloropropane	ND		1.0	0.40	1.00		
1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,4-Trimethylbenzene	ND		0.50	0.20	1.00		
1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00		
1,2-Dibromoethane	ND		0.50	0.20	1.00		
1,2-Dichlorobenzene	ND		0.50	0.20	1.00		
1,2-Dichloroethane	ND		0.50	0.20	1.00		
1,2-Dichloropropane	ND		0.50	0.20	1.00		
1,3,5-Trimethylbenzene	ND		0.50	0.20	1.00		
1,3-Dichlorobenzene	ND		0.50	0.28	1.00		
1,3-Dichloropropane	ND		1.0	0.40	1.00		
1,4-Dichlorobenzene	ND		0.50	0.20	1.00		
2,2-Dichloropropane	ND		1.0	0.40	1.00		
2-Butanone	ND		5.0	2.0	1.00		
2-Chlorotoluene	ND		0.50	0.20	1.00		
2-Hexanone	ND		10	4.0	1.00		
4-Chlorotoluene	ND		0.50	0.36	1.00		
4-Methyl-2-Pentanone	ND		5.0	2.0	1.00		
Acetone	4.6		10	4.0	1.00	J	
Benzene	ND		0.50	0.20	1.00		
Bromobenzene	ND		0.50	0.32	1.00		
Bromochloromethane	ND		1.0	0.40	1.00		
Bromodichloromethane							
	ND		0.50	0.20	1.00		
Bromoform			0.50 0.50	0.20 0.25	1.00 1.00		

 Tetra Tech, Inc.
 Date Received:
 04/11/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0840

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 8 of 24

Froject. Livio Boo					rage o or 24
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
Carbon Disulfide	ND	1.0	0.40	1.00	
Carbon Tetrachloride	ND	0.50	0.20	1.00	
Chlorobenzene	ND	0.50	0.20	1.00	
Chloroethane	ND	0.50	0.32	1.00	
Chloroform	ND	0.50	0.20	1.00	
Chloromethane	ND	0.50	0.29	1.00	
Dibromochloromethane	ND	0.50	0.20	1.00	
Dibromomethane	ND	0.50	0.20	1.00	
Dichlorodifluoromethane	ND	1.0	0.40	1.00	
Ethylbenzene	ND	0.50	0.20	1.00	
Isopropylbenzene	ND	0.50	0.20	1.00	
Methylene Chloride	ND	1.0	0.80	1.00	
Naphthalene	ND	1.0	0.40	1.00	
Styrene	ND	0.50	0.20	1.00	
Tetrachloroethene	ND	0.50	0.20	1.00	
Toluene	ND	0.50	0.20	1.00	
t-1,2-Dichloroethene	ND	0.50	0.20	1.00	
Trichloroethene	ND	0.50	0.29	1.00	
Trichlorofluoromethane	ND	0.50	0.20	1.00	
Vinyl Acetate	ND	5.0	2.0	1.00	
Vinyl Chloride	ND	0.50	0.20	1.00	
c-1,3-Dichloropropene	ND	0.50	0.20	1.00	
c-1,2-Dichloroethene	ND	0.50	0.20	1.00	
n-Butylbenzene	ND	0.50	0.20	1.00	
n-Propylbenzene	ND	0.50	0.20	1.00	
o-Xylene	ND	0.50	0.32	1.00	
p-Isopropyltoluene	ND	0.50	0.20	1.00	
sec-Butylbenzene	ND	0.50	0.20	1.00	
t-1,3-Dichloropropene	ND	0.50	0.20	1.00	
tert-Butylbenzene	ND	0.50	0.20	1.00	
p/m-Xylene	ND	0.50	0.20	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	0.50	0.20	1.00	
2-Chloroethyl Vinyl Ether	ND	5.0	4.2	1.00	
Hexachloro-1,3-Butadiene	ND	2.0	0.80	1.00	
Iodomethane	ND	10	5.0	1.00	
Surrogate	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	94	68-120			
Dibromofluoromethane	99	80-127			

Tetra Tech, Inc.	Date Received:	04/11/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0840
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOU		Page 9 of 24

Surrogate	Rec. (%)	Control Limits	Qualifiers
1,2-Dichloroethane-d4	104	80-128	
Toluene-d8	99	80-120	

 Tetra Tech, Inc.
 Date Received:
 04/11/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0840

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

Method: EPA 8260B

Units: ug/L

Project: LMC BOU Page 10 of 24

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
A-1-CW02-N-17Q2	17-04-0840-4-B	04/11/17 10:21	Aqueous	GC/MS L	04/22/17	04/22/17 14:02	170422L005
Comment(s): - Results were evaluated to	to the MDL (DL), cond	entrations >=	to the MDL (DI	_) but < RL (LO	Q), if found, are	qualified with a	a "J" flag.
<u>Parameter</u>	Resul	<u>t</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>(</u>	<u>Qualifiers</u>
1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,1-Trichloroethane	ND		0.50	0.20	1.00		
1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane	0.41		0.50	0.24	1.00		J
1,1,2-Trichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethene	ND		0.50	0.28	1.00		
1,1-Dichloropropene	ND		0.50	0.30	1.00		
1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,3-Trichloropropane	ND		1.0	0.40	1.00		
1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,4-Trimethylbenzene	ND		0.50	0.20	1.00		
1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00		
1,2-Dibromoethane	ND		0.50	0.20	1.00		
1,2-Dichlorobenzene	ND		0.50	0.20	1.00		
1,2-Dichloroethane	ND		0.50	0.20	1.00		
1,2-Dichloropropane	ND		0.50	0.20	1.00		
1,3,5-Trimethylbenzene	ND		0.50	0.20	1.00		
1,3-Dichlorobenzene	ND		0.50	0.28	1.00		
1,3-Dichloropropane	ND		1.0	0.40	1.00		
1,4-Dichlorobenzene	ND		0.50	0.20	1.00		
2,2-Dichloropropane	ND		1.0	0.40	1.00		
2-Butanone	ND		5.0	2.0	1.00		
2-Chlorotoluene	ND		0.50	0.20	1.00		
2-Hexanone	ND		10	4.0	1.00		
4-Chlorotoluene	ND		0.50	0.36	1.00		
4-Methyl-2-Pentanone	ND		5.0	2.0	1.00		
Acetone	ND		10	4.0	1.00		
Benzene	ND		0.50	0.20	1.00		
Bromobenzene	ND		0.50	0.32	1.00		
Bromochloromethane	ND		1.0	0.40	1.00		
Bromodichloromethane	ND		0.50	0.20	1.00		
Bromoform	ND		0.50	0.25	1.00		
Bromomethane	ND		1.0	0.40	1.00		

 Tetra Tech, Inc.
 Date Received:
 04/11/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0840

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 11 of 24

Parameter Result <u>RL</u> **MDL** <u>DF</u> Qualifiers Carbon Disulfide ND 1.0 0.40 1.00 Carbon Tetrachloride ND 0.50 0.20 1.00 Chlorobenzene ND 0.50 0.20 1.00 Chloroethane ND 0.50 0.32 1.00 Chloroform 0.29 0.50 0.20 1.00 J Chloromethane ND 0.50 0.29 1.00 Dibromochloromethane ND 0.50 0.20 1.00 Dibromomethane ND 0.50 0.20 1.00 Dichlorodifluoromethane ND 1.0 0.40 1.00 0.20 Ethylbenzene ND 0.50 1.00 0.20 Isopropylbenzene ND 0.50 1.00 Methylene Chloride ND 1.0 0.80 1.00 Naphthalene ND 0.40 1.00 1.0 Styrene ND 0.50 0.20 1.00 Tetrachloroethene 21 0.50 0.20 1.00 Toluene ND 0.20 0.50 1.00 t-1,2-Dichloroethene ND 0.20 0.50 1.00 Trichloroethene 4.2 0.50 0.29 1.00 Trichlorofluoromethane ND 0.50 0.20 1.00 Vinyl Acetate ND 2.0 1.00 5.0 Vinyl Chloride ND 0.50 0.20 1.00 c-1,3-Dichloropropene ND 0.20 0.50 1.00 0.20 c-1,2-Dichloroethene ND 0.50 1.00 n-Butylbenzene ND 0.50 0.20 1.00 n-Propylbenzene ND 0.50 0.20 1.00 o-Xylene ND 0.50 0.32 1.00 ND 0.20 1.00 p-Isopropyltoluene 0.50 sec-Butylbenzene ND 0.50 0.20 1.00 t-1,3-Dichloropropene ND 0.50 0.20 1.00 ND 0.20 tert-Butylbenzene 0.50 1.00 p/m-Xylene ND 0.50 0.20 1.00 0.20 Methyl-t-Butyl Ether (MTBE) ND 0.50 1.00 2-Chloroethyl Vinyl Ether ND 5.0 4.2 1.00 Hexachloro-1,3-Butadiene ND 2.0 0.80 1.00 Iodomethane ND 10 5.0 1.00 Rec. (%) Surrogate **Control Limits Qualifiers** 1,4-Bromofluorobenzene 93 68-120 80-127 Dibromofluoromethane 100

Tetra Tech, Inc.	Date Received:	04/11/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0840
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOU		Page 12 of 24

Surrogate	Rec. (%)	Control Limits	Qualifiers
1,2-Dichloroethane-d4	106	80-128	
Toluene-d8	99	80-120	

Tetra Tech, Inc.Date Received:04/11/17301 E. Vanderbilt Way, Suite 450Work Order:17-04-0840San Bernardino, CA 92408-3562Preparation:EPA 5030C

Method: EPA 8260B Units: ug/L

Project: LMC BOU Page 13 of 24

17-04-0840-5-A 17-	Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID		
Parameter Result BL MDL DE Qualifiers 1,1,1,2—Tertachloroethane ND 0.50 0.20 1,00 1,10 1,1,1,2—Trichloroethane ND 0.50 0.20 1,00 1,10 1,1,2—Trichloro-1,2,2—Triflucorethane 0.43 0.50 0.24 1,00 J 1,1,2—Trichloro-1,2,2—Triflucorethane ND 0.50 0.20 1,00 1,00 1,1-Dichloroethane ND 0.50 0.20 1,00 1,00 1,1-Dichloroethane ND 0.50 0.20 1,00 1,1-Dichloroethane ND 0.50 0.20 1,00 1,2,3—Trichloroptopane ND 0.50 0.20 1,00 1,2,3—Trichloroptopane ND 0.50 0.20 1,00 1,2,4—Trimethybenzene ND 0.50 0.20 1,00 1,2-Dichlorobenzene ND 0.50 0.20 1,00 1,2-Dichlorobenzene ND 0.50 0.20 1,00 <td< th=""><th>B-6-CW08-N-17Q2</th><th>17-04-0840-5-A</th><th></th><th>Aqueous</th><th>GC/MS L</th><th>04/22/17</th><th></th><th>170422L005</th></td<>	B-6-CW08-N-17Q2	17-04-0840-5-A		Aqueous	GC/MS L	04/22/17		170422L005		
1,1,1,2-Tetrachloroethane ND 0,50 0,20 1,00 1,1,1-Trichloroethane ND 0,50 0,20 1,00 1,1,2-Trichloroethane ND 0,50 0,20 1,00 1,1,2-Trichloroethane ND 0,50 0,20 1,00 1,1,1-Trichloroethane ND 0,50 0,20 1,00 1,1-Dichloroethane ND 0,50 0,20 1,00 1,1-Dichloroethane ND 0,50 0,20 1,00 1,1-Dichloropropene ND 0,50 0,20 1,00 1,1-Dichloropropane ND 0,50 0,20 1,00 1,2-3-Trichlorobenzene ND 0,50 0,20 1,00 1,2-3-Trichlorobenzene ND 0,50 0,20 1,00 1,2-4-Trimethylbenzene ND 0,50 0,20 1,00 1,2-Dichlorobenzene ND 0,50 0,20 1,00 1,2-Dichlorobenzene ND 0,50 0,20 1,00 1,2-Dichlorobenzene ND 0,50 0,20 1,00 1,3-5-Trimethy	Comment(s): - Results were evaluated	Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.								
1,1,1-Trichloroethane ND 0.50 0.20 1.00 1,1,2,2-Tertachloroethane ND 0.50 0.20 1.00 1,1,2,2-Trichloro-1,2,2-Triflucroethane ND 0.50 0.24 1.00 1,1,2-Trichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethane ND 0.50 0.28 1.00 1,1-Dichloropropene ND 0.50 0.28 1.00 1,2-Brichloropropane ND 0.50 0.30 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,3-Trichloropropane ND 0.50 0.20 1.00 1,2,2-Trichlorobrozene ND 0.50 0.20 1.00 1,2,2-Trichloropropane ND 0.50 0.20 1.00 1,2-Libromo-3-Chloropropane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 <t< td=""><td><u>Parameter</u></td><td>Resu</td><td><u>lt</u></td><td><u>RL</u></td><td><u>MDL</u></td><td><u>DF</u></td><td><u>C</u></td><td>Qualifiers</td></t<>	<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	Qualifiers		
1,1,2,2-Tetrachloroethane ND 0.50 0.20 1.00 1,1,2-Trichloro-1,2,2-Trifluoroethane 0.43 0.50 0.24 1.00 J 1,1,2-Trichloroethane ND 0.50 0.20 1.00 1.10 1,1-Dichloroethane ND 0.50 0.28 1.00 1.10 1,1-Dichloropropene ND 0.50 0.28 1.00 1.10 1,1-Dichloropropene ND 0.50 0.20 1.00 1.12,3-Trichlorobenzene ND 0.50 0.20 1.00 1.23,3-Trichloropopane ND 1.0 0.40 1.00 1.24,3-Trichloropopane ND 0.50 0.20 1.00 1.24-Trimethylbenzene ND 0.50 0.20 1.00 1.24-Trimethylbenzene ND 0.50 0.20 1.00 1.24-Trimethylbenzene ND 0.50 0.20 1.00 1.24-Trimethylbenzene ND 0.50 0.20 1.00 1.24-Trimethylbenzene ND 0.50 0.20 1.00 1.24-Trimethylbenzene ND 0.50	1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00				
1,1,2-Trichloro-1,2,2-Trifluoroethane ND 0.50 0.24 1.00 1,1,2-Trichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethane ND 0.50 0.28 1.00 1,1-Dichloroethene ND 0.50 0.28 1.00 1,1-Dichloropropene ND 0.50 0.30 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,3-Trichloropenzene ND 0.50 0.20 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trinethylbenzene ND 0.50 0.20 1.00 1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichloroebazene ND 0.50 0.20 1.00 1,2-Dichloroebratene ND 0.50 0.20 1.00 1,3-Dichloroepropane ND 0.50 0.20 1.00 1,3-Dichloroepropane ND 0.50 0.20 1.00 <td< td=""><td>1,1,1-Trichloroethane</td><td>ND</td><td></td><td>0.50</td><td>0.20</td><td>1.00</td><td></td><td></td></td<>	1,1,1-Trichloroethane	ND		0.50	0.20	1.00				
1,1,2-Trichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethane ND 0.50 0.28 1.00 1,1-Dichloroptopene ND 0.50 0.30 1.00 1,2,3-Trichloroptopane ND 0.50 0.20 1.00 1,2,3-Trichloroptopane ND 0.50 0.20 1.00 1,2,4-Trichloroptopane ND 0.50 0.20 1.00 1,2,4-Trichloroptopane ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 0.50 0.20 1.00 1,2-Dichloroptopane ND 0.50 0.20 1.00 1,2-Dichloroptopane ND 0.50 0.20 1.00 1,3-Dichloroptopane ND 0.50 0.20 1.00 1,3-Dichloroptopane ND 0.50 0.20 1.00 1,4-Dichloroptopane ND 1.0 0.40 1.00 2-Butanone	1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00				
1,1-Dichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethene ND 0.50 0.28 1.00 1,1-Dichloropropene ND 0.50 0.30 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,2-Trichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.28 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2-Eutanone <td< td=""><td>1,1,2-Trichloro-1,2,2-Trifluoroethane</td><td>0.43</td><td></td><td>0.50</td><td>0.24</td><td>1.00</td><td>J</td><td>l</td></td<>	1,1,2-Trichloro-1,2,2-Trifluoroethane	0.43		0.50	0.24	1.00	J	l		
1,1-Dichloroethene ND 0.50 0.28 1.00 1,1-Dichloropropene ND 0.50 0.30 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,3-Trichloropropane ND 1.0 0.40 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichlorobenzene ND 0.50 0.20 1.00 2-Butanone <	1,1,2-Trichloroethane	ND		0.50	0.20	1.00				
1,1-Dichloropropene ND 0.50 0.30 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,3-Trichloropropane ND 1.0 0.40 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloroperpane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichloropropane ND 1.0 0.40 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2,2-Dichloropropane ND 5.0 2.0 1.00 2-Hexanone	1,1-Dichloroethane	ND		0.50	0.20	1.00				
1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,3-Trichloropropane ND 1.0 0.40 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 2.0 1.00 1,2-Dibromo-4-Chloropropane ND 0.50 0.20 1.00 1,2-Dibromoethane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.28 1.00 1,3-Dichloropropane ND 0.50 0.28 1.00 1,4-Dichlorobrenzene ND 0.50 0.20 1.00 2-Dichloropropane ND 0.50 0.20 1.00 2-Dichloropro	1,1-Dichloroethene	ND		0.50	0.28	1.00				
1,2,3-Trichloropropane ND 1.0 0.40 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 0.50 0.20 1.00 1,2-Dibrimoethane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.20 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 0.50 0.20 1.00 2-Butanone ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.36 1.00 4-Hexthyl-2-Pentanone ND	1,1-Dichloropropene	ND		0.50	0.30	1.00				
1,2,3-Trichloropropane ND 1.0 0.40 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 0.50 0.20 1.00 1,2-Dibrimoethane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.20 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 0.50 0.20 1.00 2-Butanone ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.36 1.00 4-Hexthyl-2-Pentanone ND	1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00				
1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 2.0 1.00 1,2-Dibromoethane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.28 1.00 1,3-Dichloropropane ND 0.50 0.28 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2,2-Dichloropropane ND 5.0 0.20 1.00 2-Butanone ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.20 1.00 4-Methyl-2-Pentanone ND 0.50 0.20 1.00 Acetone ND 0.50 </td <td>1,2,3-Trichloropropane</td> <td>ND</td> <td></td> <td>1.0</td> <td>0.40</td> <td>1.00</td> <td></td> <td></td>	1,2,3-Trichloropropane	ND		1.0	0.40	1.00				
1,2-Dibromo-3-Chloropropane ND 5.0 2.0 1.00 1,2-Dibromoethane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloroptopane ND 0.50 0.20 1.00 1,2-Dichloroptopane ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.20 1.00 1,3-Dichloroptopane ND 0.50 0.28 1.00 1,3-Dichloroptopane ND 0.50 0.28 1.00 1,4-Dichloroptopane ND 0.50 0.20 1.00 2,2-Dichloroptopane ND 0.50 0.20 1.00 2,2-Dichloroptopane ND 0.50 0.20 1.00 2-Butanone ND 0.50 0.20 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 0.50 0.20 1.00 4-Methyl-2-Pentanone ND <t< td=""><td>1,2,4-Trichlorobenzene</td><td>ND</td><td></td><td>0.50</td><td>0.20</td><td>1.00</td><td></td><td></td></t<>	1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00				
1,2-Dibromoethane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloroethane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-5-Trimethylbenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 1.0 0.40 1.00 2-Hexanone ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 0.50 0.30 1.00 4-Methyl-2-Pentanone ND 0.50	1,2,4-Trimethylbenzene	ND		0.50	0.20	1.00				
1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloroethane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-Trimethylbenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 5.0 2.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromobenzene ND 0.50 0.20 1.00	1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00				
1,2-Dichloroethane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3,5-Trimethylbenzene ND 0.50 0.28 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Buanone ND 5.0 0.20 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.36 1.00 4-Chlorotoluene ND 5.0 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 0.50 0.20 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromobiloromethane ND 0.50 0.20 1.00	1,2-Dibromoethane	ND		0.50	0.20	1.00				
1,2-Dichloropropane ND 0.50 0.20 1.00 1,3,5-Trimethylbenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Hexanone ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.20 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 0.50 0.20 1.00 Benzene ND 0.50 0.20 1.00 Bromobloromethane ND 0.50 0.32 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromodichloromethane ND 0.50 0.20 <td< td=""><td>1,2-Dichlorobenzene</td><td>ND</td><td></td><td>0.50</td><td>0.20</td><td>1.00</td><td></td><td></td></td<>	1,2-Dichlorobenzene	ND		0.50	0.20	1.00				
1,3,5-Trimethylbenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 0.50 0.32 1.00 Bromoform ND 0.50 0.20 1.00	1,2-Dichloroethane	ND		0.50	0.20	1.00				
1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.20 1.00	1,2-Dichloropropane	ND		0.50	0.20	1.00				
1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.36 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 0.50 0.32 1.00 Bromoform ND 0.50 0.20 1.00	1,3,5-Trimethylbenzene	ND		0.50	0.20	1.00				
1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.20 1.00	1,3-Dichlorobenzene	ND		0.50	0.28	1.00				
2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 0.50 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.20 1.00	1,3-Dichloropropane	ND		1.0	0.40	1.00				
2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromodichloromethane ND 1.0 0.40 1.00 Bromodorm ND 0.50 0.20 1.00	1,4-Dichlorobenzene	ND		0.50	0.20	1.00				
2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.20 1.00	2,2-Dichloropropane	ND		1.0	0.40	1.00				
2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	2-Butanone	ND		5.0	2.0	1.00				
4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	2-Chlorotoluene	ND		0.50	0.20	1.00				
4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	2-Hexanone	ND		10	4.0	1.00				
Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	4-Chlorotoluene	ND		0.50	0.36	1.00				
Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	4-Methyl-2-Pentanone	ND		5.0	2.0	1.00				
Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	Acetone	ND		10	4.0	1.00				
Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	Benzene	ND		0.50	0.20	1.00				
Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	Bromobenzene	ND		0.50	0.32	1.00				
Bromoform ND 0.50 0.25 1.00	Bromochloromethane	ND		1.0	0.40	1.00				
	Bromodichloromethane	ND		0.50	0.20	1.00				
Bromomethane ND 1.0 0.40 1.00	Bromoform	ND		0.50	0.25	1.00				
	Bromomethane			1.0	0.40	1.00				

 Tetra Tech, Inc.
 Date Received:
 04/11/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0840

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 14 of 24

				1 490 11 01 21
<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
ND	1.0	0.40	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.32	1.00	
0.27	0.50	0.20	1.00	J
ND	0.50	0.29	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	1.0	0.40	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	1.0	0.80	1.00	
ND	1.0	0.40	1.00	
ND	0.50	0.20	1.00	
12	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
3.2	0.50	0.29	1.00	
ND	0.50	0.20	1.00	
ND	5.0	2.0	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.32	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
0.24	0.50	0.20	1.00	J
ND	5.0	4.2	1.00	
ND	2.0	0.80	1.00	
ND	10	5.0	1.00	
Rec. (%)	Control Limits	<u>Qualifiers</u>		
94	68-120			
97	80-127			
	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND 1.0 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 1.0 ND 0.50 ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 0.50 ND 1.0 ND 0.50 ND 1.0 ND 0.5	ND 1.0 0.40 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.32 0.27 0.50 0.29 ND 0.50 0.29 ND 0.50 0.20 ND 0.50 0.20 ND 1.0 0.40 ND 0.50 0.20 ND 1.0 0.40 ND 0.50 0.20 ND 1.0 0.40 ND 0.50 0.20 ND 1.0 0.40 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND <t< td=""><td>ND 1.0 0.40 1.00 ND 0.50 0.20 1.00 ND 0.50 0.20 1.00 ND 0.50 0.32 1.00 0.27 0.50 0.20 1.00 ND 0.50 0.20 1.00 ND 0.50 0.20 1.00 ND 0.50 0.29 1.00 ND 0.50 0.20 1.00 ND 0.50 0.20 1.00 ND 0.50 0.20 1.00 ND 0.50 0.20 1.00 ND 1.0 0.40 1.00 ND 0.50 0.20 1.00 ND 0.50 0.20 1.00 ND 1.0 0.80 1.00 ND 1.0 0.80 1.00 ND 1.0 0.80 1.00 ND 1.0 0.40 1.00 ND 1.0 0.50 0.20 1.00 ND 1.0 0.50 1.00 ND 1.0 0.50 1.00 ND 1.0 0.50 1.00 ND 1.0 0.50 1.00 ND 0.50 0.20 1.00</td></t<>	ND 1.0 0.40 1.00 ND 0.50 0.20 1.00 ND 0.50 0.20 1.00 ND 0.50 0.32 1.00 0.27 0.50 0.20 1.00 ND 0.50 0.20 1.00 ND 0.50 0.20 1.00 ND 0.50 0.29 1.00 ND 0.50 0.20 1.00 ND 0.50 0.20 1.00 ND 0.50 0.20 1.00 ND 0.50 0.20 1.00 ND 1.0 0.40 1.00 ND 0.50 0.20 1.00 ND 0.50 0.20 1.00 ND 1.0 0.80 1.00 ND 1.0 0.80 1.00 ND 1.0 0.80 1.00 ND 1.0 0.40 1.00 ND 1.0 0.50 0.20 1.00 ND 1.0 0.50 1.00 ND 1.0 0.50 1.00 ND 1.0 0.50 1.00 ND 1.0 0.50 1.00 ND 0.50 0.20 1.00

Tetra Tech, Inc.	Date Received:	04/11/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0840
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOU		Page 15 of 24

<u>Surrogate</u>	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>
1,2-Dichloroethane-d4	104	80-128	
Toluene-d8	100	80-120	

04/11/17

17-04-0840

EPA 5030C

Analytical Report

Tetra Tech, Inc.

301 E. Vanderbilt Way, Suite 450

San Bernardino, CA 92408-3562

Date Received:

Work Order:

Preparation:

Method: EPA 8260B Units: ug/L

Project: LMC BOU Page 16 of 24

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID		
B-6-CW05-N-17Q2	17-04-0840-6-A	04/11/17 15:20	Aqueous	GC/MS L	04/22/17	04/22/17 15:03	170422L005		
Comment(s): - Results were evaluated	Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.								
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>(</u>	Qualifiers		
1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00				
1,1,1-Trichloroethane	ND		0.50	0.20	1.00				
1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00				
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		0.50	0.24	1.00				
1,1,2-Trichloroethane	ND		0.50	0.20	1.00				
1,1-Dichloroethane	ND		0.50	0.20	1.00				
1,1-Dichloroethene	ND		0.50	0.28	1.00				
1,1-Dichloropropene	ND		0.50	0.30	1.00				
1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00				
1,2,3-Trichloropropane	ND		1.0	0.40	1.00				
1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00				
1,2,4-Trimethylbenzene	ND		0.50	0.20	1.00				
1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00				
1,2-Dibromoethane	ND		0.50	0.20	1.00				
1,2-Dichlorobenzene	ND		0.50	0.20	1.00				
1,2-Dichloroethane	ND		0.50	0.20	1.00				
1,2-Dichloropropane	ND		0.50	0.20	1.00				
1,3,5-Trimethylbenzene	ND		0.50	0.20	1.00				
1,3-Dichlorobenzene	ND		0.50	0.28	1.00				
1,3-Dichloropropane	ND		1.0	0.40	1.00				
1,4-Dichlorobenzene	ND		0.50	0.20	1.00				
2,2-Dichloropropane	ND		1.0	0.40	1.00				
2-Butanone	ND		5.0	2.0	1.00				
2-Chlorotoluene	ND		0.50	0.20	1.00				
2-Hexanone	ND		10	4.0	1.00				
4-Chlorotoluene	ND		0.50	0.36	1.00				
4-Methyl-2-Pentanone	ND		5.0	2.0	1.00				
Acetone	ND		10	4.0	1.00				
Benzene	ND		0.50	0.20	1.00				
Bromobenzene	ND		0.50	0.32	1.00				
Bromochloromethane	ND		1.0	0.40	1.00				
Bromodichloromethane	ND		0.50	0.20	1.00				
Bromoform	ND		0.50	0.25	1.00				
Bromomethane	ND		1.0	0.40	1.00				

 Tetra Tech, Inc.
 Date Received:
 04/11/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0840

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 17 of 24

1 Tojout: Livio Boo					1 490 17 01 21
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Carbon Disulfide	ND	1.0	0.40	1.00	
Carbon Tetrachloride	ND	0.50	0.20	1.00	
Chlorobenzene	ND	0.50	0.20	1.00	
Chloroethane	ND	0.50	0.32	1.00	
Chloroform	0.27	0.50	0.20	1.00	J
Chloromethane	ND	0.50	0.29	1.00	
Dibromochloromethane	ND	0.50	0.20	1.00	
Dibromomethane	ND	0.50	0.20	1.00	
Dichlorodifluoromethane	ND	1.0	0.40	1.00	
Ethylbenzene	ND	0.50	0.20	1.00	
Isopropylbenzene	ND	0.50	0.20	1.00	
Methylene Chloride	ND	1.0	0.80	1.00	
Naphthalene	ND	1.0	0.40	1.00	
Styrene	ND	0.50	0.20	1.00	
Tetrachloroethene	0.20	0.50	0.20	1.00	J
Toluene	ND	0.50	0.20	1.00	
t-1,2-Dichloroethene	ND	0.50	0.20	1.00	
Trichloroethene	ND	0.50	0.29	1.00	
Trichlorofluoromethane	ND	0.50	0.20	1.00	
Vinyl Acetate	ND	5.0	2.0	1.00	
Vinyl Chloride	ND	0.50	0.20	1.00	
c-1,3-Dichloropropene	ND	0.50	0.20	1.00	
c-1,2-Dichloroethene	ND	0.50	0.20	1.00	
n-Butylbenzene	ND	0.50	0.20	1.00	
n-Propylbenzene	ND	0.50	0.20	1.00	
o-Xylene	ND	0.50	0.32	1.00	
p-Isopropyltoluene	ND	0.50	0.20	1.00	
sec-Butylbenzene	ND	0.50	0.20	1.00	
t-1,3-Dichloropropene	ND	0.50	0.20	1.00	
tert-Butylbenzene	ND	0.50	0.20	1.00	
p/m-Xylene	ND	0.50	0.20	1.00	
Methyl-t-Butyl Ether (MTBE)	0.24	0.50	0.20	1.00	J
2-Chloroethyl Vinyl Ether	ND	5.0	4.2	1.00	
Hexachloro-1,3-Butadiene	ND	2.0	0.80	1.00	
Iodomethane	ND	10	5.0	1.00	
Surrogate	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	93	68-120			
Dibromofluoromethane	98	80-127			

Tetra Tech, Inc.	Date Received:	04/11/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0840
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOU		Page 18 of 24

<u>Surrogate</u> Rec. (%) Control Limits Qualifiers 1,2-Dichloroethane-d4 106 80-128 Toluene-d8 80-120 98

Tetra Tech, Inc.Date Received:04/11/17301 E. Vanderbilt Way, Suite 450Work Order:17-04-0840San Bernardino, CA 92408-3562Preparation:EPA 5030C

Method: EPA 8260B Units: ug/L

Project: LMC BOU Page 19 of 24

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
Method Blank	099-10-025-4633	N/A	Aqueous	GC/MS L	04/21/17	04/21/17 11:52	170421L006	
Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.								
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	MDL	<u>DF</u>	<u>(</u>	Qualifiers	
1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00			
1,1,1-Trichloroethane	ND		0.50	0.20	1.00			
1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00			
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		0.50	0.24	1.00			
1,1,2-Trichloroethane	ND		0.50	0.20	1.00			
1,1-Dichloroethane	ND		0.50	0.20	1.00			
1,1-Dichloroethene	ND		0.50	0.28	1.00			
1,1-Dichloropropene	ND		0.50	0.30	1.00			
1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00			
1,2,3-Trichloropropane	ND		1.0	0.40	1.00			
1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00			
1,2,4-Trimethylbenzene	ND		0.50	0.20	1.00			
1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00			
1,2-Dibromoethane	ND		0.50	0.20	1.00			
1,2-Dichlorobenzene	ND		0.50	0.20	1.00			
1,2-Dichloroethane	ND		0.50	0.20	1.00			
1,2-Dichloropropane	ND		0.50	0.20	1.00			
1,3,5-Trimethylbenzene	ND		0.50	0.20	1.00			
1,3-Dichlorobenzene	ND		0.50	0.28	1.00			
1,3-Dichloropropane	ND		1.0	0.40	1.00			
1,4-Dichlorobenzene	ND		0.50	0.20	1.00			
2,2-Dichloropropane	ND		1.0	0.40	1.00			
2-Butanone	ND		5.0	2.0	1.00			
2-Chlorotoluene	ND		0.50	0.20	1.00			
2-Hexanone	ND		10	4.0	1.00			
4-Chlorotoluene	ND		0.50	0.36	1.00			
4-Methyl-2-Pentanone	ND		5.0	2.0	1.00			
Acetone	ND		10	4.0	1.00			
Benzene	ND		0.50	0.20	1.00			
Bromobenzene	ND		0.50	0.32	1.00			
Bromochloromethane	ND		1.0	0.40	1.00			
Bromodichloromethane	ND		0.50	0.20	1.00			
Bromoform	ND		0.50	0.25	1.00			
Bromomethane	ND		1.0	0.40	1.00			

 Tetra Tech, Inc.
 Date Received:
 04/11/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0840

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 20 of 24

FTOJECI. LIVIC BOO					Fage 20 01 24
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Carbon Disulfide	ND	1.0	0.40	1.00	
Carbon Tetrachloride	ND	0.50	0.20	1.00	
Chlorobenzene	ND	0.50	0.20	1.00	
Chloroethane	ND	0.50	0.32	1.00	
Chloroform	ND	0.50	0.20	1.00	
Chloromethane	ND	0.50	0.29	1.00	
Dibromochloromethane	ND	0.50	0.20	1.00	
Dibromomethane	ND	0.50	0.20	1.00	
Dichlorodifluoromethane	ND	1.0	0.40	1.00	
Ethylbenzene	ND	0.50	0.20	1.00	
Isopropylbenzene	ND	0.50	0.20	1.00	
Methylene Chloride	ND	1.0	0.80	1.00	
Naphthalene	ND	1.0	0.40	1.00	
Styrene	ND	0.50	0.20	1.00	
Tetrachloroethene	ND	0.50	0.20	1.00	
Toluene	ND	0.50	0.20	1.00	
t-1,2-Dichloroethene	ND	0.50	0.20	1.00	
Trichloroethene	ND	0.50	0.29	1.00	
Trichlorofluoromethane	ND	0.50	0.20	1.00	
Vinyl Acetate	ND	5.0	2.0	1.00	
Vinyl Chloride	ND	0.50	0.20	1.00	
c-1,3-Dichloropropene	ND	0.50	0.20	1.00	
c-1,2-Dichloroethene	ND	0.50	0.20	1.00	
n-Butylbenzene	ND	0.50	0.20	1.00	
n-Propylbenzene	ND	0.50	0.20	1.00	
o-Xylene	ND	0.50	0.32	1.00	
p-Isopropyltoluene	ND	0.50	0.20	1.00	
sec-Butylbenzene	ND	0.50	0.20	1.00	
t-1,3-Dichloropropene	ND	0.50	0.20	1.00	
tert-Butylbenzene	ND	0.50	0.20	1.00	
p/m-Xylene	ND	0.50	0.20	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	0.50	0.20	1.00	
2-Chloroethyl Vinyl Ether	ND	5.0	4.2	1.00	
Hexachloro-1,3-Butadiene	ND	2.0	0.80	1.00	
lodomethane	ND	10	5.0	1.00	
<u>Surrogate</u>	Rec. (%)	Control Limits	Qualifiers		
1,4-Bromofluorobenzene	96	68-120			
Dibromofluoromethane	94	80-127			

Tetra Tech, Inc.	Date Received:	04/11/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0840
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOLL		Page 21 of 24

Surrogate	Rec. (%)	Control Limits	Qualifiers
1,2-Dichloroethane-d4	96	80-128	
Toluene-d8	98	80-120	

Tetra Tech, Inc.

Date Received:

04/11/17
301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-0840

Preparation:

EPA 5030C

Method: EPA 8260B Units: ug/L

Project: LMC BOU Page 22 of 24

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID		
Method Blank	099-10-025-4639	N/A	Aqueous	GC/MS L	04/22/17	04/22/17 10:53	170422L005		
Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.									
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>(</u>	Qualifiers		
1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00				
1,1,1-Trichloroethane	ND		0.50	0.20	1.00				
1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00				
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		0.50	0.24	1.00				
1,1,2-Trichloroethane	ND		0.50	0.20	1.00				
1,1-Dichloroethane	ND		0.50	0.20	1.00				
1,1-Dichloroethene	ND		0.50	0.28	1.00				
1,1-Dichloropropene	ND		0.50	0.30	1.00				
1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00				
1,2,3-Trichloropropane	ND		1.0	0.40	1.00				
1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00				
1,2,4-Trimethylbenzene	ND		0.50	0.20	1.00				
1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00				
1,2-Dibromoethane	ND		0.50	0.20	1.00				
1,2-Dichlorobenzene	ND		0.50	0.20	1.00				
1,2-Dichloroethane	ND		0.50	0.20	1.00				
1,2-Dichloropropane	ND		0.50	0.20	1.00				
1,3,5-Trimethylbenzene	ND		0.50	0.20	1.00				
1,3-Dichlorobenzene	ND		0.50	0.28	1.00				
1,3-Dichloropropane	ND		1.0	0.40	1.00				
1,4-Dichlorobenzene	ND		0.50	0.20	1.00				
2,2-Dichloropropane	ND		1.0	0.40	1.00				
2-Butanone	ND		5.0	2.0	1.00				
2-Chlorotoluene	ND		0.50	0.20	1.00				
2-Hexanone	ND		10	4.0	1.00				
4-Chlorotoluene	ND		0.50	0.36	1.00				
4-Methyl-2-Pentanone	ND		5.0	2.0	1.00				
Acetone	ND		10	4.0	1.00				
Benzene	ND		0.50	0.20	1.00				
Bromobenzene	ND		0.50	0.32	1.00				
Bromochloromethane	ND		1.0	0.40	1.00				
Bromodichloromethane	ND		0.50	0.20	1.00				
Bromoform	ND		0.50	0.25	1.00				
Bromomethane	ND		1.0	0.40	1.00				

 Tetra Tech, Inc.
 Date Received:
 04/11/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0840

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 23 of 24

FTOJECI. LIVIC BOO					Fage 23 01 24
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Carbon Disulfide	ND	1.0	0.40	1.00	
Carbon Tetrachloride	ND	0.50	0.20	1.00	
Chlorobenzene	ND	0.50	0.20	1.00	
Chloroethane	ND	0.50	0.32	1.00	
Chloroform	ND	0.50	0.20	1.00	
Chloromethane	ND	0.50	0.29	1.00	
Dibromochloromethane	ND	0.50	0.20	1.00	
Dibromomethane	ND	0.50	0.20	1.00	
Dichlorodifluoromethane	ND	1.0	0.40	1.00	
Ethylbenzene	ND	0.50	0.20	1.00	
Isopropylbenzene	ND	0.50	0.20	1.00	
Methylene Chloride	ND	1.0	0.80	1.00	
Naphthalene	ND	1.0	0.40	1.00	
Styrene	ND	0.50	0.20	1.00	
Tetrachloroethene	ND	0.50	0.20	1.00	
Toluene	ND	0.50	0.20	1.00	
t-1,2-Dichloroethene	ND	0.50	0.20	1.00	
Trichloroethene	ND	0.50	0.29	1.00	
Trichlorofluoromethane	ND	0.50	0.20	1.00	
Vinyl Acetate	ND	5.0	2.0	1.00	
Vinyl Chloride	ND	0.50	0.20	1.00	
c-1,3-Dichloropropene	ND	0.50	0.20	1.00	
c-1,2-Dichloroethene	ND	0.50	0.20	1.00	
n-Butylbenzene	ND	0.50	0.20	1.00	
n-Propylbenzene	ND	0.50	0.20	1.00	
o-Xylene	ND	0.50	0.32	1.00	
p-Isopropyltoluene	ND	0.50	0.20	1.00	
sec-Butylbenzene	ND	0.50	0.20	1.00	
t-1,3-Dichloropropene	ND	0.50	0.20	1.00	
tert-Butylbenzene	ND	0.50	0.20	1.00	
p/m-Xylene	ND	0.50	0.20	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	0.50	0.20	1.00	
2-Chloroethyl Vinyl Ether	ND	5.0	4.2	1.00	
Hexachloro-1,3-Butadiene	ND	2.0	0.80	1.00	
lodomethane	ND	10	5.0	1.00	
<u>Surrogate</u>	Rec. (%)	Control Limits	Qualifiers		
1,4-Bromofluorobenzene	93	68-120			
Dibromofluoromethane	100	80-127			

Tetra Tech, Inc.	Date Received:	04/11/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0840
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOU		Page 24 of 24

<u>Surrogate</u> Rec. (%) Control Limits Qualifiers 1,2-Dichloroethane-d4 107 80-128 Toluene-d8 80-120 94

 Tetra Tech, Inc.
 Date Received:
 04/11/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0840

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B SIM

 Units:
 ug/L

Project: LMC BOU Page 1 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
A-1-CW09-N-17Q2	17-04-0840-1-G	04/11/17 16:13	Aqueous	GC/MS M	04/17/17	04/17/17 14:34	170417L018
Comment(s): - Results were evaluated to	o the MDL (DL), cond	centrations >= to	the MDL (DI	L) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>ilt </u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>(ualifiers</u>
1,2,3-Trichloropropane	15	,	1.2	0.62	250		

<u>Surrogate</u> <u>Rec. (%)</u> <u>Control Limits</u> <u>Qualifiers</u>

1,4-Dichlorobutane 111 80-120

C-1-CW02-N-1	7Q2 17-04-	0840-2-G	04/11/17 12:43	Aqueous	GC/MS M	04/17/17	04/17/17 16:33	170417L018
Comment(s):	- Results were evaluated to the MD	L (DL), cond	entrations >=	to the MDL (DI) but < RL (LC	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>		Resu	<u>lt</u>	<u>RL</u>	MDL	<u>DF</u>	<u>(</u>	<u>Qualifiers</u>

1,2,3-Trichloropropane ND 0.0050 0.0025 1.00

<u>Surrogate</u> <u>Rec. (%)</u> <u>Control Limits</u> <u>Qualifiers</u>

1,4-Dichlorobutane 118 80-120

LTB-20170411	17-04-08	40-3-C	04/11/17 07:00	Aqueous	GC/MS M	04/13/17	04/13/17 17:00	170413L029
Comment(s): -	Results were evaluated to the MDL	(DL), conc	entrations >=	to the MDL (DL) but < RL (LO	Q), if found, are	qualified with	a "J" flag.
<u>Parameter</u>		Resul	<u>t</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
1,2,3-Trichloroprop	pane	ND		0.0050	0.0025	1.00		
Surrogate 1,4-Dichlorobutane	e	<u>Rec. (</u>	(%)	Control Limits 80-120	Qualifiers	<u>:</u>		

A-1-CW02-N-17Q2		04/11/17 Aqueo 10:21	us GC/MS M	04/17/17	04/17/17 17:03	170417L018
Comment(s): - Results were evaluated to	the MDL (DL), conce	ntrations >= to the MDI	(DL) but < RL (LC	DQ), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Q</u>	<u>ualifiers</u>
1,2,3-Trichloropropane	ND	0.0050	0.0025	1.00		
Surrogate	Rec. (%	<u>(6)</u> Control Li	mits Qualifier	<u>s</u>		
1,4-Dichlorobutane	106	80-120				

 Tetra Tech, Inc.
 Date Received:
 04/11/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0840

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B SIM

Units: ug/L

Project: LMC BOU Page 2 of 2

Client Sample N	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-6-CW08-N-1	7Q2	17-04-0840-5-G	04/11/17 13:57	Aqueous	GC/MS M	04/17/17	04/17/17 17:33	170417L018
Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.							"J" flag.	

Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

Parameter Result RE MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

Qualifiers

1,2,3-Trichloropropane ND 0.0050 0.0025 1.00

<u>Surrogate</u> <u>Rec. (%)</u> <u>Control Limits</u> <u>Qualifiers</u>

1,4-Dichlorobutane 109 80-120

B-6-CW05-N-17	Q2	17-04-0840-6-G	04/11/17 15:20	Aqueous	GC/MS M	04/17/17	04/17/17 18:04	170417L018
Comment(s):	- Results were evaluated to	o the MDL (DL) cond	centrations >= to	the MDL (DI) hut < RL (LOC) if found	are qualified with a ".l	l" flan

Comment(s). - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), it found, are qualified with a 3 mag.

 Parameter
 Result
 RL
 MDL
 DF
 Qualifiers

 1,2,3-Trichloropropane
 ND
 0.0050
 0.0025
 1.00

Surrogate Rec. (%) Control Limits Qualifiers

1,4-Dichlorobutane 108 80-120

Method Blank		099-15-118-484	N/A	Aqueous	GC/MS M	04/13/17	04/13/17 12:32	170413L029
Comment(s):	- Results were evaluated to	the MDL (DL), cond	entrations >=	to the MDL (DL) but < RL (LO	Q), if found, are	qualified with a	a "J" flag.
<u>Parameter</u>		Resu	<u>It</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	!	<u>Qualifiers</u>
1,2,3-Trichloropr	ropane	ND		0.0050	0.0025	1.00		

Surrogate Rec. (%) Control Limits Qualifiers

1,4-Dichlorobutane 90 80-120

Method Blank	099-15-118-487	N/A	Aqueous	GC/MS M	04/17/17	04/17/17 11:34	170417L018
Comment(s):	- Results were evaluated to the MDL (DL), co	oncentrations	>= to the MDL (DL	but < RL (LC	Q), if found, are	qualified with a '	'J" flag.
<u>Parameter</u>	Re	esult .	<u>RL</u>	MDL	<u>DF</u>	Q	ualifiers

1,2,3-Trichloropropane ND 0.0050 0.0025 1.00

Surrogate Rec. (%) Control Limits Qualifiers

1,4-Dichlorobutane 106 80-120

 Tetra Tech, Inc.
 Date Received:
 04/11/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0840

 San Bernardino, CA 92408-3562
 Preparation:
 N/A

 Method:
 EPA 218.6

Project: Livic BOU	Page 1 of 7

Quality Control Sample ID	Type	Matrix	Instrument	Date Prepared	Date Analyze	d MS/MSD Batcl	h Number
B-6-CW05-N-17Q2	Sample	Aqueous	IC 16	N/A	04/11/17 22:4	3 170411S01	
B-6-CW05-N-17Q2	Matrix Spike	Aqueous	IC 16	N/A	04/11/17 22:5	4 170411S01	
B-6-CW05-N-17Q2	Matrix Spike Duplica	ate Aqueous	IC 16	N/A	04/11/17 23:0	6 170411S01	
<u>Parameter</u>	Sample Spike Conc. Adde	<u>MS</u> d <u>Conc.</u>	MS MSD %Rec. Conc.	MSD %Rec.	%Rec. CL RF	D RPD CL (<u>Qualifiers</u>
Chromium, Hexavalent	0.1050 10.00	10.51	104 10.78	107	85-121 3	0-25	

Tetra Tech, Inc.

Date Received:

04/11/17
301 E. Vanderbilt Way, Suite 450

San Bernardino, CA 92408-3562

Preparation:

Method:

Date Received:

04/11/17

17-04-0840

EPA 3020A Total

Method:

EPA 6020

Project: LMC BOU Page 2 of 7

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Bato	ch Number
17-04-1153-8	Sample	Aqueous	ICP/MS 03	04/17/17	04/19/17 02:08	170417SA3	
17-04-1153-8	Matrix Spike	Aqueous	ICP/MS 03	04/17/17	04/19/17 02:03	170417SA3	
17-04-1153-8	Matrix Spike Duplic	ate Aqueous	ICP/MS 03	04/17/17	04/19/17 02:06	170417SA3	
<u>Parameter</u>	Sample Spik Conc. Add		MS MSD %Rec. Conc.	MSD %Rec.	%Rec. CL RPD	RPD CL	Qualifiers
Chromium	ND 0.10	0.09347	93 0.09325	93	73-133 0	0-11	

Tetra Tech, Inc.

Date Received:

04/11/17

301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-0840

San Bernardino, CA 92408-3562

Preparation:

EPA 3510C

Method: EPA 8270C (M) Isotope Dilution

Project: LMC BOU Page 3 of 7

Quality Control Sample ID	Туре		Matrix	Ins	trument	Date Prepared	Date Anal	yzed	MS/MSD Bat	ch Number
A-1-CW09-N-17Q2	Sample		Aqueous	GC	MS DDD	04/13/17	04/14/17	00:09	170413S06	
A-1-CW09-N-17Q2	Matrix Spike		Aqueous	GC	MS DDD	04/13/17	04/13/17	23:37	170413S06	
A-1-CW09-N-17Q2	Matrix Spike Du	plicate	Aqueous	GC	MS DDD	04/13/17	04/13/17	23:53	170413S06	
Parameter	Sample S Conc. A	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,4-Dioxane	3.735 2	20.00	24.31	103	23.79	100	50-130	2	0-20	

 Tetra Tech, Inc.
 Date Received:
 04/11/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0840

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

Project: LMC BOU Page 4 of 7

Quality Control Sample ID	Туре		Matrix	lı	nstrument	Date Prepare	d Date Ana	lyzed	MS/MSD Bat	ch Number
17-04-0729-1	Sample		Aqueou	is C	GC/MS L	04/21/17	04/21/17	13:26	170421S007	
17-04-0729-1	Matrix Spike		Aqueou	ıs C	GC/MS L	04/21/17	04/21/17	13:57	170421S007	
17-04-0729-1	Matrix Spike	Duplicate	Aqueou	ıs G	GC/MS L	04/21/17	04/21/17	14:27	170421S007	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,1-Dichloroethene	2.492	10.00	12.11	96	12.82	103	66-126	6	0-20	
1,2-Dibromoethane	ND	10.00	9.127	91	9.658	97	75-126	6	0-20	
1,2-Dichlorobenzene	ND	10.00	9.015	90	9.756	98	75-125	8	0-20	
1,2-Dichloroethane	ND	10.00	9.624	96	10.23	102	75-127	6	0-20	
Benzene	ND	10.00	9.052	91	9.375	94	75-125	4	0-20	
Carbon Tetrachloride	1.099	10.00	8.964	79	9.474	84	69-135	6	0-20	
Chlorobenzene	ND	10.00	9.259	93	9.760	98	75-125	5	0-20	
Ethylbenzene	ND	10.00	9.191	92	9.849	98	75-125	7	0-20	
Toluene	ND	10.00	9.315	93	9.762	98	75-125	5	0-20	
Trichloroethene	20.58	10.00	29.62	90	29.91	93	75-125	1	0-20	
Vinyl Chloride	ND	10.00	11.72	117	11.77	118	52-142	0	0-20	
o-Xylene	ND	10.00	9.303	93	9.796	98	75-127	5	0-20	
p/m-Xylene	ND	20.00	18.32	92	19.62	98	75-125	7	0-20	
Methyl-t-Butyl Ether (MTBE)	ND	10.00	9.580	96	8.964	90	71-131	7	0-20	

Tetra Tech, Inc.

Date Received:

04/11/17

301 E. Vanderbilt Way, Suite 450

San Bernardino, CA 92408-3562

Preparation:

Method:

Date Received:

04/11/17

17-04-0840

EPA 5030C

EPA 8260B

Project: LMC BOU Page 5 of 7

Quality Control Sample ID	Туре		Matrix	In	strument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
17-04-1162-18	Sample		Aqueous	G G	C/MS L	04/22/17	04/22/17	11:30	170422S001	
17-04-1162-18	Matrix Spike		Aqueous	s G	C/MS L	04/22/17	04/22/17	12:00	170422S001	
17-04-1162-18	Matrix Spike	Duplicate	Aqueous	s G	C/MS L	04/22/17	04/22/17	12:31	170422S001	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,1-Dichloroethene	1.521	10.00	12.82	113	12.11	106	66-126	6	0-20	
1,2-Dibromoethane	ND	10.00	9.703	97	9.547	95	75-126	2	0-20	
1,2-Dichlorobenzene	ND	10.00	10.30	103	9.847	98	75-125	5	0-20	
1,2-Dichloroethane	0.7651	10.00	11.26	105	10.79	100	75-127	4	0-20	
Benzene	ND	10.00	10.40	104	9.936	99	75-125	5	0-20	
Carbon Tetrachloride	ND	10.00	9.648	96	9.337	93	69-135	3	0-20	
Chlorobenzene	ND	10.00	10.79	108	10.27	103	75-125	5	0-20	
Ethylbenzene	ND	10.00	10.90	109	10.15	102	75-125	7	0-20	
Toluene	ND	10.00	10.63	106	10.21	102	75-125	4	0-20	
Trichloroethene	20.58	10.00	32.14	116	30.98	104	75-125	4	0-20	
Vinyl Chloride	ND	10.00	11.63	116	11.50	115	52-142	1	0-20	
o-Xylene	ND	10.00	10.65	106	10.11	101	75-127	5	0-20	
p/m-Xylene	ND	20.00	21.69	108	20.39	102	75-125	6	0-20	
Methyl-t-Butyl Ether (MTBE)	ND	10.00	8.662	87	9.239	92	71-131	6	0-20	

Tetra Tech, Inc.

Date Received:

04/11/17

301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-0840

Preparation:

EPA 5030C

Method:

EPA 8260B SIM

Project: LMC BOU	Page 6 of 7

Quality Control Sample ID	Туре		Matrix	Inst	trument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
17-04-0944-2	Sample		Aqueous	s GC	/MS M	04/13/17	04/13/17	13:39	170413S014	
17-04-0944-2	Matrix Spike		Aqueous	s GC	/MS M	04/13/17	04/13/17	15:00	170413S014	
17-04-0944-2	Matrix Spike	Duplicate	Aqueous	GC GC	/MS M	04/13/17	04/13/17	15:31	170413S014	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,2,3-Trichloropropane	ND	0.02000	0.01800	90	0.01560	78	80-120	14	0-20	3

 Tetra Tech, Inc.
 Date Received:
 04/11/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0840

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B SIM

Project: LMC BOU	Page / of /

Quality Control Sample ID	Туре	Ма	atrix I	Instrument	Date Prepared	Date Anal	yzed	MS/MSD Bato	ch Number
17-04-0598-8	Sample	Aq	queous	GC/MS M	04/17/17	04/17/17 1	12:34	170417S008	
17-04-0598-8	Matrix Spike	Aq	queous (GC/MS M	04/17/17	04/17/17 1	15:03	170417S008	
17-04-0598-8	Matrix Spike Dup	olicate Aq	queous (GC/MS M	04/17/17	04/17/17 1	15:34	170417S008	
Parameter		<u>pike</u> <u>MS</u> dded <u>Con</u>	nc. <u>MS</u> %Red	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,2,3-Trichloropropane	0.005600 0.0	.02000 0.02	2790 112	0.02590	102	80-120	7	0-20	

Project: LMC BOU

Quality Control - PDS

Date Received: 04/11/17 Tetra Tech, Inc. Work Order: 17-04-0840 301 E. Vanderbilt Way, Suite 450 Preparation: EPA 3020A Total San Bernardino, CA 92408-3562 Method: EPA 6020

Page 1 of 1

Quality Control Sample ID	Туре	N	Matrix	Instrument	Date Prepared	Date Analyzed	PDS/PDSD Batch Number
17-04-1153-8	Sample	A	Aqueous	ICP/MS 03	04/17/17 00:00	04/19/17 02:08	170417SA3
17-04-1153-8	PDS	A	Aqueous	ICP/MS 03	04/17/17 00:00	04/24/17 11:42	170417SA3
Parameter		Sample Conc.	Spike Added	PDS Conc.	PDS %Re	<u>%Rec. C</u>	<u>CL</u> <u>Qualifiers</u>
Chromium		ND	0.1000	0.1000	100	75-125	

RPD: Relative Percent Difference. CL: Control Limits

Date Received: 04/11/17 Tetra Tech, Inc. Work Order: 17-04-0840 301 E. Vanderbilt Way, Suite 450 Preparation: N/A San Bernardino, CA 92408-3562 Method: EPA 218.6

Project: LMC BOU Page 1 of 7

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-14-567-236	LCS	Aqueous	IC 16	N/A	04/11/17 16:48	170411L01
<u>Parameter</u>		Spike Added	Conc. Recov	ered LCS %R	Rec. %Rec	. CL Qualifiers
Chromium, Hexavalent		10.00	10.10	101	95-10	7

04/11/17

17-04-0840

EPA 3020A Total

Project: LMC BOU

Quality Control - LCS

Date Received: Tetra Tech, Inc. Work Order: 301 E. Vanderbilt Way, Suite 450 Preparation: San Bernardino, CA 92408-3562 Method:

EPA 6020 Page 2 of 7

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
096-06-003-5537	LCS	Aqueous	ICP/MS 03	04/17/17	04/19/17 02:01	170417LA3
<u>Parameter</u>		Spike Added	Conc. Recovere	ed LCS %Re	ec. %Rec	. CL Qualifiers
Chromium		0.1000	0.1031	103	80-120)

Project: LMC BOU

Quality Control - LCS

Tetra Tech, Inc. 301 E. Vanderbilt Way, Suite 450 San Bernardino, CA 92408-3562 Date Received: Work Order: Preparation:

Method:

17-04-0840 EPA 3510C

04/11/17

EPA 8270C (M) Isotope Dilution

Page 3 of 7

Quality Control Sample ID	Type	Matrix	Instrument D	Date Prepared	Date Analyzed	LCS Batch Number
099-16-216-1009	LCS	Aqueous	GC/MS DDD 04	4/13/17	04/13/17 23:21	170413L06
<u>Parameter</u>		Spike Added	Conc. Recovered	d LCS %Red	<u>%Rec.</u>	. CL Qualifiers
1,4-Dioxane		20.00	19.24	96	50-130)

Tetra Tech, Inc. 301 E. Vanderbilt Way, Suite 450 San Bernardino, CA 92408-3562

Project: LMC BOU

Date Received: Work Order: Preparation: Method:

04/11/17 17-04-0840 **EPA 5030C EPA 8260B**

Page 4 of 7

Quality Control Sample ID	Туре	Matrix	x Instr	ument Date	Prepared Date Ana	lyzed LCS Bat	tch Number
099-10-025-4633	LCS	Aque	ous GC/	MS L 04/2	1/17 04/21/17	11:06 1704211	_006
<u>Parameter</u>		Spike Added	Conc. Reco	vered LCS %Re	c. %Rec. CL	ME CL	<u>Qualifiers</u>
1,1-Dichloroethene		10.00	10.03	100	77-120	70-127	
1,2-Dibromoethane		10.00	10.32	103	80-120	73-127	
1,2-Dichlorobenzene		10.00	10.20	102	80-120	73-127	
1,2-Dichloroethane		10.00	10.40	104	80-122	73-129	
Benzene		10.00	9.936	99	80-120	73-127	
Carbon Tetrachloride		10.00	8.834	88	80-129	72-137	
Chlorobenzene		10.00	10.34	103	80-120	73-127	
Ethylbenzene		10.00	10.33	103	80-120	73-127	
Toluene		10.00	10.32	103	80-120	73-127	
Trichloroethene		10.00	10.32	103	80-120	73-127	
Vinyl Chloride		10.00	10.39	104	63-135	51-147	
o-Xylene		10.00	10.39	104	80-120	73-127	
p/m-Xylene		20.00	20.84	104	80-120	73-127	
Methyl-t-Butyl Ether (MTBE)		10.00	10.23	102	75-123	67-131	

Total number of LCS compounds: 14 Total number of ME compounds: 0

Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass

RPD: Relative Percent Difference. CL: Control Limits

Tetra Tech, Inc. 301 E. Vanderbilt Way, Suite 450 San Bernardino, CA 92408-3562

Project: LMC BOU

Date Received: Work Order: Preparation: Method: 04/11/17 17-04-0840 EPA 5030C

EPA 8260B

Page 5 of 7

Quality Control Sample ID	Туре	Matrix	Instrumen	t Date Prepa	red Date Analyz	ed LCS Batch No	umber
099-10-025-4639	LCS	Aqueou	s GC/MS L	04/22/17	04/22/17 10	:14 170422L005	
<u>Parameter</u>	:	Spike Added	Conc. Recovered	LCS %Rec.	%Rec. CL	ME CL	Qualifiers
1,1-Dichloroethene		10.00	9.840	98	77-120	70-127	
1,2-Dibromoethane		10.00	9.850	99	80-120	73-127	
1,2-Dichlorobenzene		10.00	10.07	101	80-120	73-127	
1,2-Dichloroethane		10.00	10.36	104	80-122	73-129	
Benzene		10.00	9.888	99	80-120	73-127	
Carbon Tetrachloride		10.00	8.893	89	80-129	72-137	
Chlorobenzene		10.00	10.12	101	80-120	73-127	
Ethylbenzene		10.00	10.13	101	80-120	73-127	
Toluene		10.00	10.14	101	80-120	73-127	
Trichloroethene		10.00	10.18	102	80-120	73-127	
Vinyl Chloride		10.00	10.02	100	63-135	51-147	
o-Xylene		10.00	10.08	101	80-120	73-127	
p/m-Xylene	:	20.00	20.13	101	80-120	73-127	
Methyl-t-Butyl Ether (MTBE)		10.00	8.522	85	75-123	67-131	

Total number of ME compounds: 14
Total number of ME compounds: 0
Total number of ME compounds allow

Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass

Date Received: 04/11/17 Tetra Tech, Inc. Work Order: 17-04-0840 301 E. Vanderbilt Way, Suite 450 Preparation: **EPA 5030C** San Bernardino, CA 92408-3562 Method: **EPA 8260B SIM** Project: LMC BOU Page 6 of 7

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-15-118-484	LCS	Aqueous	GC/MS M	04/13/17	04/13/17 11:28	170413L029
<u>Parameter</u>		Spike Added	Conc. Recover	ed LCS %R	ec. %Rec	c. CL Qualifiers
1,2,3-Trichloropropane		0.02000	0.01880	94	80-12	0

 Tetra Tech, Inc.
 Date Received:
 04/11/17

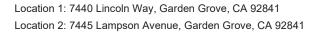
 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0840

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B SIM

Project: LMC BOU Page 7 of 7

Quality Control Sample ID	Type	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-15-118-487	LCS	Aqueous	GC/MS M	04/17/17	04/17/17 10:34	170417L018
<u>Parameter</u>		Spike Added	Conc. Recover	ed LCS %R	ec. %Rec	:. CL Qualifiers
1,2,3-Trichloropropane		0.02000	0.01960	98	80-12	0



Sample Analysis Summary Report

Work Order: 17-04-0840				Page 1 of 1
<u>Method</u>	<u>Extraction</u>	Chemist ID	Instrument	Analytical Location
EPA 218.6	N/A	1065	IC 16	1
EPA 6020	EPA 3020A Total	598	ICP/MS 03	1
EPA 8260B	EPA 5030C	316	GC/MS L	2
EPA 8260B SIM	EPA 5030C	486	GC/MS M	2
EPA 8270C (M) Isotope Dilution	EPA 3510C	928	GC/MS DDD	1

Glossary of Terms and Qualifiers

Work Order: 17-04-0840 Page 1 of 1

Qualifiers	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
CI	See case narrative.
Е	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
SG	The sample extract was subjected to Silica Gel treatment prior to analysis.
V	% Pagevory and/or PPD out of range

- Χ % Recovery and/or RPD out-of-range.
- Ζ Analyte presence was not confirmed by second column or GC/MS analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

2019-04-01-Revision

💸 eurofins		WORK ORDER	NUMBER: 1	Page 54 of 55/40
Calsole	ence SAMPLE RECEIPT		coc	OLER <u>/</u> OF <u>~</u>
CLIENT: CTA 1	ech		DATE	: 04 / <u>//</u> / 2017
Thermometer ID: SC (CF: 0.0° ☐ Sample(s) outside temps	o"C = 6.0°C, not frozen except sedi C); Temperature (w/o CF): 2.6 reture criteria (PM/APM contacted rature criteria but received on lock	oc (w/ cF): 2-0 by:		nk □ Sample
☐ Sample(s) received at ambit Ambient Temperature: ☐ Air	ent temperature; placed on ice for t	ransport by courier		Chacked by: 1991
CUSTODY SEAL: Cooler	ntact	☑ Not Present	□ N/A (Chacked by: 109

☐ Sample(s)		perature; placed on ice for tra	•		Checke	ed by: 10	P1/_
CUSTODY S Cooler Sample(s)	SEAL: ☐ Present and Intact ☐ Present and Intact	☐ Present but Not Intact☐ Present but Not Intact☐	☑ Not Present ☑ Not Present	□ N/A □ N/A		ed by: <u>//</u> ad by: <u>//</u>	
SAMPLE CO	NDITION:	•			Yes	No	N/A
Chain-of-Cus	stody (COC) document(s)	received with samples			2		
					-		
□ Sampli	ing date 🏻 Sampling time	e □ Matrix □ Number of c	ontainers				
🖸 No ana	lysis requested 🛮 Not re	dsiupniler oM 🗆 bedsiupnile	ed date 🛚 No relir	nquished time	,		
Sampler's na	ame indicated on COC				Ø		
Sample cont	alner label(s) consistent w	rith COC			Ø		
Sample cont	ainer(a) intact and in good	condition			Ø		
Proper conta	iners for analyses reques	ted			Ø		
Sufficient vol	lume/mass for analyses re	quested			Ø		
Samples rec	eived within holding time			,	Ø		
Aqueous	samples for certain analys	ses received within 15-minut	a holding time				
] 🗅 pH 🗖	Residual Chlorine 🗈 Dis	salved Sulfide 🗆 Dissolved	Oxygen		ر		a
Proper prese	ervation chemical(s) noted	on COC and/or sample conf	iainer		Ø		
Unpresen	ved aqueous sample(s) re	ceived for certain analyses					
□ Volatile	e Organics 🖾 Total Metal	s 🛘 Dissolved Metals			,		
Container(s)	for certain analysis free o	f headspace			Ø		
E Volatile	Organics Dissolved	Gases (RSK-175) 🖽 Dissol	ved Oxygen (SM 45	500)			
☐ Carbor	n Diaxide (SM 4500) 🗆 F	errous Iran (8M 3500) 🗆 H	ydrogen Sulfide (Ha	ach)			_
Tedlar™ bag	g(s) free of condensation	,,					Ø
CONTAINER	R TYPE:		(Trip Blan	ık Lat Numbe	r: <u>170</u>	328A	
		a, □ 100PJ □ 100PJna ₂ D					
□ 125PBznn	a 🗆 250AGB 🗀 250CGE	3 □ 250CGBs 2 250PB 🕱	250PBn 12 500AG	3B □ 500AGJ	□ 500.	AGJs	
		AGBa □1PB □1PBna □					
		CGJ 🗆 Sleeve () 🗇 E					
Air: 🗆 Tedlar	r™ □ Canister □ Sorber	tTube 🗆 PUF 🗆	Other Matrix (l	_ □_	
		ar, E = Envelope, G = Glass, J =					
Preservative:	b = buffered, f = filtered, h =	HCl, n = HNO ₃ , na = NaOH, na	$a = Na_2S_2O_3$, $p = H_2P$	'O ₆ , Labeled	d/Check	ed by: 🏄	7>3
1	s = H₂SO₄, u = ultra-pura, x :	= Na ₂ SO ₃ ÷NeHSO₄.H ₂ O, ≥nna :	= Zπ (CH₃CO₂)₂ + Na	ЮН	Review	ed by:i	159

eu	rof	ins	ļ
			•

Page 55 of 55 WORK ORDER NUMBER: 17-04-

	COOLER		
CLIENT: 18tra 18ch	ATE: 04	<u> </u>	2017
TEMPERATURE: (Criteria: 0.0°C ~ 6.0°C, not frozen except sediment/tissue) Thermometer ID: SC (CF: 0.0°C); Temperature (w/o CF):°C (w/ CF):°C; Z ID: Sample(s) outside temperature criteria (PMAPM contacted by:) ID: Sample(s) outside temperature criteria but received on ice/chilled on same day of sampling ID: Sample(s) received at ambient temperature; placed on ice for transport by courier			٠. م
Ambient Temperature: □ Air □ Filter	Checke	ed by: 🗸	
CUSTODY SEAL: Cooler		ed by: <u>//</u>	
SAMPLE CONDITION:	Yes	No	N/A
Chain-of-Custody (COC) document(s) received with samples	a		
COC document(s) received complete	ø	⊡	
☐ Sampling date ☐ Sampling time ☐ Matrix ☐ Number of containers			
☐ No analysis requested ☐ Not relinquished ☐ No relinquished date ☐ No relinquished tire	ne		
Sampler's name indicated on COC	ø	□	
Sample container label(s) consistent with COC	🗹		
Sample container(s) intact and in good condition			
Proper containers for analyses requested			
Sufficient volume/mass for analyses requested	🗹		
Samples received within holding time			
Aqueous samples for certain analyses received within 15-minute holding time			
☐ pH ☐ Residual Chlorine ☐ Dissolved Sulfide ☐ Dissolved Oxygen	🗖		ø
Proper preservation chemical(s) noted on COC and/or sample container			
Unpreserved aqueous sample(s) received for certain analyses			
□ Volatile Organics □ Total Metais □ Dissolved Metais			
Container(s) for certain analysis free of headspace	a		
☑ Volatile Organics ☐ Dissolved Gases (RSK-175) ☐ Dissolved Oxygen (SM 4500)			
☐ Carbon Dioxide (SM 4500) ☐ Ferrous Iron (SM 3500) ☐ Hydrogen Sulfide (Hach)			
Tedlar™ bag(s) free of condensation	🗆		
CONTAINER TYPE: (Trip Blank Lot Num	ber:		1
Aqueous: UVOA IZ VOAh UVOAna, U 100PJ U 100PJna, U 125AGB U 125AGBh U 125		125PB	
□ 125PBznna □ 250AGB □ 250CGB □ 250CGBs ☑ 250PB ☑ 250PBn ☑ 500AGB □ 500A			
□ 500PB □ 1AGB □ 1AGBna₂ □ 1AGBs □ 1PB □ 1PBna □ □ □			
Salid: ☐ 4ozCGJ ☐ 8ozCGJ ☐ 16ozCGJ ☐ Sleeve () ☐ EnCores* () ☐ TerraCores			
Air: □ Tedlar™ □ Cantater □ Sorbent Tube □ PUF □ Other Matrix ():			
Container: $A = Amber$, $B = Bottle$, $C = Clear$, $E = Envelope$, $G = Glass$, $J = Jar$, $P = Plastic$, and $Z = Ziploc/R$			
Preservative: $b = buffered$, $f = filtered$, $h = HCl$, $n = HNO_3$, $na = NaOH$, $na_2 = Na_2S_2O_3$, $p = H_3PO_4$, Labe		_	253
$s = H_2SO_4$, $v = ultra-pure$, $x = Na_2SO_3+NaHSO_4,H_2O$, z.nna = Zn (CH ₂ CO ₂) ₂ + NaOH	Reviewe		619

Calscience

WORK ORDER NUMBER: 17-04-0729

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: Tetra Tech, Inc.

Client Project Name: LMC BOU

Attention: Robert Sabater

301 E. Vanderbilt Way, Suite 450 San Bernardino, CA 92408-3562

Est Och for

Approved for release on 04/25/2017 by: Vikas Patel Project Manager

ResultLink >

Email your PM >

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name: LMC BOU
Work Order Number: 17-04-0729

1	Work Order Narrative	3
2	Detections Summary	4
3	Client Sample Data. 3.1 EPA 218.6 Hexavalent Chromium Low Level (Aqueous). 3.2 EPA 6020 ICP/MS Metals (Aqueous). 3.3 1,4-Dioxane by EPA 8270C (M) Isotope Dilution (Aqueous). 3.4 EPA 8260B Volatile Organics (Aqueous). 3.5 EPA 8260B SIM Emergent Volatiles (Aqueous).	7 7 9 11 14 44
4	Quality Control Sample Data. 4.1 MS/MSD. 4.2 PDS/PDSD. 4.3 LCS/LCSD.	47 47 54 55
5	Sample Analysis Summary	62
6	Glossary of Terms and Qualifiers	63
7	Chain-of-Custody/Sample Receipt Form	64

Work Order Narrative

Work Order: 17-04-0729 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 04/10/17. They were assigned to Work Order 17-04-0729.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Detections Summary

Client: Tetra Tech, Inc.

Work Order: Project Name: 17-04-0729

301 E. Vanderbilt Way, Suite 450 San Bernardino, CA 92408-3562 Project Name: LMC BOU Received: 04/10/17

Attn: Robert Sabater

Page 1 of 3

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	Method	<u>Extraction</u>
MW-04-N-17Q2 (17-04-0729-1)						
Chromium, Hexavalent	2.2		0.020	ug/L	EPA 218.6	N/A
Chromium	0.00249		0.00100	mg/L	EPA 6020	EPA 3020A Total
1,1,2-Trichloro-1,2,2-Trifluoroethane	1.3		0.50	ug/L	EPA 8260B	EPA 5030C
1,1-Dichloroethene	2.5		0.50	ug/L	EPA 8260B	EPA 5030C
1,2,3-Trichloropropane	0.58	J	0.40*	ug/L	EPA 8260B	EPA 5030C
1,2-Dichloroethane	0.22	J	0.20*	ug/L	EPA 8260B	EPA 5030C
Acetone	11		10	ug/L	EPA 8260B	EPA 5030C
Carbon Tetrachloride	1.1		0.50	ug/L	EPA 8260B	EPA 5030C
Chloroform	1.5		0.50	ug/L	EPA 8260B	EPA 5030C
Naphthalene	0.82	J	0.40*	ug/L	EPA 8260B	EPA 5030C
Tetrachloroethene	29		0.50	ug/L	EPA 8260B	EPA 5030C
Trichloroethene	21		0.50	ug/L	EPA 8260B	EPA 5030C
Trichlorofluoromethane	0.34	J	0.20*	ug/L	EPA 8260B	EPA 5030C
1,2,3-Trichloropropane	0.96		0.050	ug/L	EPA 8260B SIM	EPA 5030C
SW-5-N-17Q2 (17-04-0729-2)						
Chromium, Hexavalent	4.7		0.020	ug/L	EPA 218.6	N/A
Chromium	0.0570		0.00100	mg/L	EPA 6020	EPA 3020A Total
1,1,2-Trichloro-1,2,2-Trifluoroethane	3.1		1.0	ug/L	EPA 8260B	EPA 5030C
1,1-Dichloroethane	0.60	J	0.40*	ug/L	EPA 8260B	EPA 5030C
1,1-Dichloroethene	3.8		1.0	ug/L	EPA 8260B	EPA 5030C
Acetone	11	J	8.0*	ug/L	EPA 8260B	EPA 5030C
Carbon Tetrachloride	0.67	J	0.40*	ug/L	EPA 8260B	EPA 5030C
Chloroform	0.94	J	0.40*	ug/L	EPA 8260B	EPA 5030C
Tetrachloroethene	51		1.0	ug/L	EPA 8260B	EPA 5030C
Trichloroethene	32		1.0	ug/L	EPA 8260B	EPA 5030C
3-5-CW02-N-17Q2 (17-04-0729-3)						
Chromium	0.000679	J	0.000402*	mg/L	EPA 6020	EPA 3020A Total
Dichlorodifluoromethane	0.91	J	0.40*	ug/L	EPA 8260B	EPA 5030C
Tetrachloroethene	0.70		0.50	ug/L	EPA 8260B	EPA 5030C
3-1-CW27-N-17Q2 (17-04-0729-5)						
Chromium, Hexavalent	5.2		0.020	ug/L	EPA 218.6	N/A
Chromium	0.00611		0.00100	mg/L	EPA 6020	EPA 3020A Total
Chloroform	0.32	J	0.20*	ug/L	EPA 8260B	EPA 5030C
Tetrachloroethene	4.0		0.50	ug/L	EPA 8260B	EPA 5030C
Trichloroethene	2.3		0.50	ug/L	EPA 8260B	EPA 5030C

^{*} MDL is shown

Detections Summary

Client: Tetra Tech, Inc.

Work Order: Project Name: 17-04-0729

301 E. Vanderbilt Way, Suite 450 San Bernardino, CA 92408-3562 Project Name: LMC BOU Received: 04/10/17

Attn: Robert Sabater

Page 2 of 3

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
A-1-CW05-N-17Q2 (17-04-0729-6)						
Chromium	0.000622	J	0.000402*	ma/l	EPA 6020	EPA 3020A Total
Dichlorodifluoromethane	0.000622	J	0.000402	mg/L	EPA 8020 EPA 8260B	EPA 5030C
Tetrachloroethene	4.0	J		ug/L		
			0.50	ug/L	EPA 8260B	EPA 5030C
Trichloroethene	0.44	J	0.29*	ug/L	EPA 8260B	EPA 5030C
1,4-Dioxane	2.3		1.0	ug/L	EPA 8270C (M) Isotope Dilution	EPA 3510C
A-1-CW05-FD-17Q2 (17-04-0729-7)						
Chromium	0.000512	J	0.000402*	mg/L	EPA 6020	EPA 3020A Total
Acetone	4.4	J	4.0*	ug/L	EPA 8260B	EPA 5030C
Dichlorodifluoromethane	0.85	J	0.40*	ug/L	EPA 8260B	EPA 5030C
Tetrachloroethene	4.3		0.50	ug/L	EPA 8260B	EPA 5030C
Trichloroethene	0.50		0.50	ug/L	EPA 8260B	EPA 5030C
1,4-Dioxane	2.7		1.0	ug/L	EPA 8270C (M) Isotope Dilution	EPA 3510C
A-1-CW04-N-17Q2 (17-04-0729-8)						
Chromium, Hexavalent	0.88		0.020	ug/L	EPA 218.6	N/A
Chromium	0.00164		0.00100	mg/L	EPA 6020	EPA 3020A Total
1,1,2-Trichloro-1,2,2-Trifluoroethane	1.3		0.50	ug/L	EPA 8260B	EPA 5030C
1,1,2-Trichloroethane	7.4		0.50	ug/L	EPA 8260B	EPA 5030C
1,1-Dichloroethene	0.76		0.50	ug/L	EPA 8260B	EPA 5030C
1,2,3-Trichloropropane	17		1.0	ug/L	EPA 8260B	EPA 5030C
1,2-Dichloroethane	0.42	J	0.20*	ug/L	EPA 8260B	EPA 5030C
1,2-Dichloropropane	0.50		0.50	ug/L	EPA 8260B	EPA 5030C
Acetone	4.7	J	4.0*	ug/L	EPA 8260B	EPA 5030C
Carbon Tetrachloride	0.91		0.50	ug/L	EPA 8260B	EPA 5030C
Chloroform	3.6		0.50	ug/L	EPA 8260B	EPA 5030C
Dichlorodifluoromethane	0.88	J	0.40*	ug/L	EPA 8260B	EPA 5030C
Tetrachloroethene	5.2		0.50	ug/L	EPA 8260B	EPA 5030C
Trichloroethene	4.8		0.50	ug/L	EPA 8260B	EPA 5030C
1,2,3-Trichloropropane	25		2.5	ug/L	EPA 8260B SIM	EPA 5030C
1,4-Dioxane	2.0		1.0	ug/L	EPA 8270C (M) Isotope Dilution	EPA 3510C

^{*} MDL is shown

Detections Summary

Client: Tetra Tech, Inc.

301 E. Vanderbilt Way, Suite 450 San Bernardino, CA 92408-3562 Work Order:

17-04-0729

Project Name: Received:

LMC BOU 04/10/17

Attn: Robert Sabater

Page 3 of 3

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	<u>Extraction</u>
3862E-N-17Q2 (17-04-0729-9)						
Chromium, Hexavalent	1.0		0.020	ug/L	EPA 218.6	N/A
Chromium	0.00166		0.00100	mg/L	EPA 6020	EPA 3020A Total
1,1-Dichloroethene	0.58		0.50	ug/L	EPA 8260B	EPA 5030C
Carbon Tetrachloride	0.40	J	0.20*	ug/L	EPA 8260B	EPA 5030C
Chloroform	0.29	J	0.20*	ug/L	EPA 8260B	EPA 5030C
Dichlorodifluoromethane	0.87	J	0.40*	ug/L	EPA 8260B	EPA 5030C
Tetrachloroethene	15		0.50	ug/L	EPA 8260B	EPA 5030C
Trichloroethene	32		0.50	ug/L	EPA 8260B	EPA 5030C
c-1,2-Dichloroethene	0.21	J	0.20*	ug/L	EPA 8260B	EPA 5030C
1,2,3-Trichloropropane	0.013		0.0050	ug/L	EPA 8260B SIM	EPA 5030C

Subcontracted analyses, if any, are not included in this summary.

Comment(s):

Chromium, Hexavalent

Parameter

Analytical Report

Date Received: 04/10/17 Tetra Tech, Inc. Work Order: 17-04-0729 301 E. Vanderbilt Way, Suite 450 Preparation: N/A San Bernardino, CA 92408-3562 Method: EPA 218.6 Units: ug/L Project: LMC BOU Page 1 of 2 Client Sample Number Lab Sample Date/Time Matrix Instrument Date Date/Time QC Batch ID Number Collected Prepared Analyzed MW-04-N-17Q2 17-04-0729-1-K 04/10/17 04/10/17 Aqueous IC 16 N/A 170410L01 08:58 21:21 - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. Comment(s): <u>Parameter</u> Result MDL <u>DF</u> <u>RL</u> Chromium, Hexavalent 2.2 0.020 0.0099 1.00 SW-5-N-17Q2 17-04-0729-2-K 04/10/17 IC 16 N/A 04/10/17 Aqueous 170410L01 13:20 21:32 - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. Comment(s): Qualifiers Parameter Result RL MDL DF Chromium, Hexavalent 4.7 0.020 0.0099 1.00 B-5-CW02-N-17Q2 17-04-0729-3-K 04/10/17 Aqueous IC 16 N/A 04/10/17 170410L01 - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. Comment(s): <u>Parameter</u> RL MDL <u>DF</u> Qualifiers Result ND 0.020 0.0099 1.00 Chromium. Hexavalent B-1-CW27-N-17Q2 17-04-0729-5-K 04/10/17 Aqueous IC 16 N/A 04/10/17 170410L01 21:54 09:11 - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. Comment(s): MDL DF Parameter Result <u>RL</u> Qualifiers Chromium, Hexavalent 5.2 0.020 0.0099 1.00 04/10/17 22:06 04/10/17 A-1-CW05-N-17Q2 17-04-0729-6-G Aqueous IC 16 N/A 170410L01 - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. Comment(s): <u>DF</u> Qualifiers <u>Parameter</u> Result <u>RL</u> **MDL** ND 0.020 0.0099 1.00 Chromium. Hexavalent 04/10/17 11:36 04/10/17 22:17 A-1-CW05-FD-17Q2 17-04-0729-7-G IC 16 N/A 170410L01 Aqueous

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Result

ND

- Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

0.020

<u>DF</u>

1.00

MDL 0.0099

Chromium. Hexavalent

Analytical Report

Date Received: 04/10/17 Tetra Tech, Inc. Work Order: 17-04-0729 301 E. Vanderbilt Way, Suite 450 Preparation: San Bernardino, CA 92408-3562 N/A Method: EPA 218.6 Units: ug/L

Project: LMC BOU Page 2 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
A-1-CW04-N-17Q2	17-04-0729-8-G	04/10/17 13:26	Aqueous	IC 16	N/A	04/10/17 22:28	170410L01

Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. <u>Parameter</u> Result <u>MDL</u> <u>DF</u> Qualifiers <u>RL</u> Chromium, Hexavalent 0.88 0.020 0.0099 1.00

3862E-N-17Q2 17-04-0729-9-G 04/10/17 IC 16 N/A 04/10/17 170410L01 Aqueous 15:22 22:39

- Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. Comment(s): <u>Parameter</u> Result <u>RL</u> **MDL** <u>DF</u> Qualifiers Chromium, Hexavalent 1.0 0.020 0.0099 1.00

Method Blank	0)99-14-567-234	N/A	Aqueous	IC 16	N/A	04/10/17 16:29	170410L01
Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.								
<u>Parameter</u>		Result	<u>RI</u>	_	<u>MDL</u>	<u>DF</u>	<u>Q</u> ı	<u>ualifiers</u>

0.020

0.0099

1.00

ND

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Comment(s): Parameter

Chromium

Analytical Report

Date Received: 04/10/17 Tetra Tech, Inc. Work Order: 17-04-0729 301 E. Vanderbilt Way, Suite 450 Preparation: EPA 3020A Total San Bernardino, CA 92408-3562 Method: EPA 6020 Units: mg/L Project: LMC BOU Page 1 of 2 Client Sample Number Lab Sample Date/Time Matrix Instrument Date Date/Time QC Batch ID Number Collected Prepared Analyzed 17-04-0729-1-L 04/10/17 04/17/17 04/20/17 MW-04-N-17Q2 Aqueous ICP/MS 03 170417LA3 08:58 19:06 - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. Comment(s): <u>Parameter</u> Result <u>DF</u> <u>RL</u> **MDL** Qualifiers Chromium 0.00249 0.00100 0.000402 1.00 SW-5-N-17Q2 17-04-0729-2-L 04/10/17 04/20/17 Aqueous ICP/MS 03 04/17/17 170417LA3 13:20 19:09 - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. Comment(s): Parameter Result MDL DF Qualifiers Chromium 0.0570 0.00100 0.000402 1.00 B-5-CW02-N-17Q2 17-04-0729-3-L 04/10/17 Aqueous ICP/MS 03 04/17/17 04/20/17 170417LA3 - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. Comment(s): <u>Parameter</u> MDL <u>DF</u> Qualifiers Result <u>RL</u> Chromium 0.000679 0.00100 0.000402 1.00 B-1-CW27-N-17Q2 17-04-0729-5-L 04/10/17 Aqueous ICP/MS 03 04/17/17 04/21/17 170417LA3 11:09 09:11 - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. Comment(s): MDL DF Parameter Result Qualifiers Chromium 0.00611 0.00100 0.000402 1.00 A-1-CW05-N-17Q2 04/10/17 17-04-0729-6-L Aqueous ICP/MS 03 04/17/17 04/20/17 170417LA3 - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. Comment(s): <u>Parameter</u> <u>DF</u> Qualifiers Result <u>RL</u> **MDL** Chromium 0.000622 0.00100 0.000402 1.00 J 04/10/17 11:36 04/20/17 19:19 A-1-CW05-FD-17Q2 17-04-0729-7-L ICP/MS 03 04/17/17 170417LA3 Aqueous

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Result

0.000512

- Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

0.00100

MDL

0.000402

<u>DF</u>

1.00

Date Received: 04/10/17 Tetra Tech, Inc. Work Order: 17-04-0729 301 E. Vanderbilt Way, Suite 450

Preparation: EPA 3020A Total San Bernardino, CA 92408-3562 Method: EPA 6020

> Units: mg/L

Project: LMC BOU Page 2 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
A-1-CW04-N-17Q2	17-04-0729-8-L	04/10/17 13:26	Aqueous	ICP/MS 03	04/17/17	04/20/17 19:21	170417LA3

Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. <u>Parameter</u> Result <u>MDL</u> <u>DF</u> Qualifiers <u>RL</u> Chromium 0.00164 0.00100 0.000402 1.00

3862E-N-17Q2 17-04-0729-9-L 04/10/17 ICP/MS 03 04/17/17 04/20/17 170417LA3 Aqueous 15:22 19:24

- Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. Comment(s): <u>Parameter</u> Result **MDL** <u>DF</u> Qualifiers <u>RL</u> Chromium 0.00166 0.00100 0.000402 1.00

Method Blank	096-06-003-5537	N/A	Aqueous	ICP/MS 03	04/17/17	04/19/17 17 01:58	70417LA3
Comment(s):	- Results were evaluated to the MDL (DL), cond	centrations >= to t	he MDL (DL)	but < RL (LOQ), if found, are q	ualified with a "J" fl	lag.
<u>Parameter</u>	Resu	<u>ılt</u> RL	:	<u>MDL</u>	<u>DF</u>	Qualif	<u>iers</u>

<u>Parameter</u> Result <u>MDL</u> <u>DF</u> <u>RL</u> Chromium ND 0.00100 0.000402 1.00

Tetra Tech, Inc.

Date Received: 04/10/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0729

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 3510C

Method: EPA 8270C (M) Isotope Dilution

Units: ug/L

Project: LMC BOU Page 1 of 3

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID		
MW-04-N-17Q2	17-04-0729-1-M	04/10/17 08:58	Aqueous	GC/MS DDD	04/12/17	04/12/17 18:25	170412L07		
Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.									
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>		
1,4-Dioxane	ND		1.0	0.28	1.00				
Surrogate	Rec.	(%)	Control Limits	Qualifiers					
Nitrobenzene-d5	102		56-123						
1.4-Dioxane-d8(IDS-IS)	40		30-120						

SW-5-N-17Q2		17-04-0729-2-M	04/10/17 13:20	Aqueous	GC/MS DDD	04/12/17	04/12/17 18:40	170412L07
Comment(s):	- Results were evaluated to	the MDL (DL), conc	entrations >=	to the MDL (DL	.) but < RL (LOC	(a), if found, are	qualified with	a "J" flag.
<u>Parameter</u>		Resul	<u>t</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
1,4-Dioxane		ND		1.0	0.28	1.00		
<u>Surrogate</u>		Rec.	<u>(%)</u>	Control Limits	<u>Qualifiers</u>			
Nitrobenzene-d	5	99		56-123				
1,4-Dioxane-d8	(IDS-IS)	42		30-120				

B-5-CW02-N-17Q2	17-04-0729-3-M	04/10/17 Aqu 15:56	eous GC/MS DDD		04/12/17 170412L07 18:56
Comment(s): - Results	were evaluated to the MDL (DL), conc	centrations >= to the M	DL (DL) but < RL (LO	Q), if found, are qu	ualified with a "J" flag.
<u>Parameter</u>	Resul	<u>llt</u> <u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
1,4-Dioxane	ND	1.0	0.28	1.00	
<u>Surrogate</u>	Rec.	(%) Control	<u>Limits</u> <u>Qualifiers</u>	<u>i</u>	
Nitrobenzene-d5	99	56-123			
1,4-Dioxane-d8(IDS-IS)	41	30-120			

B-1-CW27-N-17Q2		4/10/17 Aqueous 9:11	GC/MS DDD	04/12/17	04/12/17 19:12	170412L07
Comment(s): - Results were evaluated to	the MDL (DL), concen	trations >= to the MDL (I	DL) but < RL (LOQ), if found, are	qualified with a '	J" flag.
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qı	<u>ualifiers</u>
1,4-Dioxane	ND	1.0	0.28	1.00		
Surrogate	Rec. (%	Control Limit	ds Qualifiers			
Nitrobenzene-d5	102	56-123				
1,4-Dioxane-d8(IDS-IS)	39	30-120				

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Analytical Report

Date Received: 04/10/17 Tetra Tech, Inc.

Work Order: 17-04-0729 301 E. Vanderbilt Way, Suite 450 Preparation: **EPA 3510C** San Bernardino, CA 92408-3562

> Method: EPA 8270C (M) Isotope Dilution

Units: ug/L

Project: LMC BOU Page 2 of 3

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
A-1-CW05-N-17Q2	17-04-0729-6-I	04/10/17 11:36	Aqueous	GC/MS DDD	04/12/17	04/12/17 19:28	170412L07
Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.							
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
1,4-Dioxane	2.3		1.0	0.28	1.00		
<u>Surrogate</u>	Rec.	(%)	Control Limits	Qualifiers			
Nitrobenzene-d5	103		56-123				
1,4-Dioxane-d8(IDS-IS)	40		30-120				

A-1-CW05-FD-17Q2	17-04-0729-7-I	04/10/17 11:36	Aqueous	GC/MS DDD	04/12/17	04/12/17 19:43	170412L07
Comment(s): - Results were evaluated t	o the MDL (DL), con	centrations >=	to the MDL (DL) but < RL (LOC	Q), if found, are	qualified with a "	J" flag.
<u>Parameter</u>	<u>Resu</u>	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qı	<u>ualifiers</u>
1,4-Dioxane	2.7		1.0	0.28	1.00		
<u>Surrogate</u>	Rec.	(%)	Control Limits	Qualifiers			
Nitrobenzene-d5	100		56-123				
1,4-Dioxane-d8(IDS-IS)	42		30-120				

A-1-CW04-N-17	7Q2	17-04-0729-8-M	04/10/17 13:26	Aqueous	GC/MS DDD	04/12/17	04/12/17 19:59	170412L07
Comment(s):	- Results were evaluated to	the MDL (DL), cond	entrations >=	to the MDL (DL	.) but < RL (LOC	(), if found, are	qualified with a	"J" flag.
<u>Parameter</u>		Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>(</u>	<u>Qualifiers</u>
1,4-Dioxane		2.0		1.0	0.28	1.00		
<u>Surrogate</u>		Rec.	<u>(%)</u>	Control Limits	Qualifiers			
Nitrobenzene-d	5	97		56-123				
1,4-Dioxane-d8((IDS-IS)	40		30-120				

3862E-N-17Q2	17	-04-0729-9-M	04/10/17 15:22	Aqueous	GC/MS DDD	04/12/17	04/12/17 20:15	170412L07
Comment(s): - F	Results were evaluated to the	MDL (DL), conce	entrations >=	to the MDL (DL) but < RL (LOC)), if found, are	qualified with a	ı "J" flag.
<u>Parameter</u>		Result		<u>RL</u>	<u>MDL</u>	<u>DF</u>	9	<u>Qualifiers</u>
1,4-Dioxane		ND		1.0	0.28	1.00		
Surrogate		<u>Rec. (</u>	<u>%)</u>	Control Limits	<u>Qualifiers</u>			
Nitrobenzene-d5		100		56-123				
1,4-Dioxane-d8(IDS	S-IS)	41		30-120				

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Date Received: 04/10/17 Tetra Tech, Inc.

Work Order: 17-04-0729 301 E. Vanderbilt Way, Suite 450 Preparation: **EPA 3510C** San Bernardino, CA 92408-3562

> Method: EPA 8270C (M) Isotope Dilution

> Units: ug/L

Project: LMC BOU Page 3 of 3

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-16-216-1005	N/A	Aqueous	GC/MS DDD	04/12/17	04/12/17 15:00	170412L07
Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.							
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
1,4-Dioxane	ND		1.0	0.28	1.00		
Surrogate	Rec.	(%)	Control Limits	Qualifiers			
Nitrobenzene-d5	106		56-123				
1,4-Dioxane-d8(IDS-IS)	43		30-120				

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Tetra Tech, Inc.

Date Received:

04/10/17

301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-0729

San Bernardino, CA 92408-3562

Preparation:

EPA 5030C

Method:

EPA 8260B

Method: EPA 8260B Units: ug/L

Project: LMC BOU Page 1 of 30

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-04-N-17Q2	17-04-0729-1-B	04/10/17 08:58	Aqueous	GC/MS L	04/21/17	04/21/17 13:26	170421L006
Comment(s): - Results were evaluated to	the MDL (DL), cond	centrations >=	to the MDL (DI	L) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,1-Trichloroethane	ND		0.50	0.20	1.00		
1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane	1.3		0.50	0.24	1.00		
1,1,2-Trichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethene	2.5		0.50	0.28	1.00		
1,1-Dichloropropene	ND		0.50	0.30	1.00		
1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,3-Trichloropropane	0.58		1.0	0.40	1.00	J	
1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,4-Trimethylbenzene	ND		0.50	0.20	1.00		
1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00		
1,2-Dibromoethane	ND		0.50	0.20	1.00		
1,2-Dichlorobenzene	ND		0.50	0.20	1.00		
1,2-Dichloroethane	0.22		0.50	0.20	1.00	J	
1,2-Dichloropropane	ND		0.50	0.20	1.00		
1,3,5-Trimethylbenzene	ND		0.50	0.20	1.00		
1,3-Dichlorobenzene	ND		0.50	0.28	1.00		
1,3-Dichloropropane	ND		1.0	0.40	1.00		
1,4-Dichlorobenzene	ND		0.50	0.20	1.00		
2,2-Dichloropropane	ND		1.0	0.40	1.00		
2-Butanone	ND		5.0	2.0	1.00		
2-Chlorotoluene	ND		0.50	0.20	1.00		
2-Hexanone	ND		10	4.0	1.00		
4-Chlorotoluene	ND		0.50	0.36	1.00		
4-Methyl-2-Pentanone	ND		5.0	2.0	1.00		
Acetone	11		10	4.0	1.00		
Benzene	ND		0.50	0.20	1.00		
Bromobenzene	ND		0.50	0.32	1.00		
Bromochloromethane	ND		1.0	0.40	1.00		
Bromodichloromethane	ND		0.50	0.20	1.00		
Bromoform	ND		0.50	0.25	1.00		
Bromomethane	ND		1.0	0.40	1.00		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

 Tetra Tech, Inc.
 Date Received:
 04/10/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0729

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 2 of 30

				1 ago 2 01 00
<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
ND	1.0	0.40	1.00	
1.1	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.32	1.00	
1.5	0.50	0.20	1.00	
ND	0.50	0.29	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	1.0	0.40	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	1.0	0.80	1.00	
0.82	1.0	0.40	1.00	J
ND	0.50	0.20	1.00	
29	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
21	0.50	0.29	1.00	
0.34	0.50	0.20	1.00	J
ND	5.0	2.0	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.32	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	5.0	4.2	1.00	
ND	2.0	0.80	1.00	
ND	10	5.0	1.00	
<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>		
95	68-120			
97	80-127			
	ND 1.1 ND ND 1.5 ND ND ND ND ND ND ND ND ND ND ND ND ND	ND 1.0 1.1 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 1.0 ND 0.50 ND 1.0 ND 0.50 ND 1.0 0.82 1.0 ND 0.50 29 0.50 ND 0.50	ND 1.0 0.40 1.1 0.50 0.20 ND 0.50 0.20 ND 0.50 0.32 1.5 0.50 0.20 ND 0.50 0.29 ND 0.50 0.29 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 1.0 0.50 0.20 ND 1.0 0.80 0.82 1.0 0.40 ND 0.50 0.20	ND 1.0 0.40 1.00 1.1 0.50 0.20 1.00 ND 0.50 0.20 1.00 ND 0.50 0.32 1.00 1.5 0.50 0.20 1.00 ND 0.50 0.20 1.00 ND 0.50 0.20 1.00 ND 0.50 0.29 1.00 ND 0.50 0.29 1.00 ND 0.50 0.20 1.00 ND 0.50 0.20 1.00 ND 0.50 0.20 1.00 ND 1.0 0.40 1.00 ND 0.50 0.20 1.00 ND 0.50 0.20 1.00 ND 0.50 0.20 1.00 ND 0.50 0.20 1.00 ND 1.0 0.80 1.00 ND 1.0 0.80 1.00 ND 0.50 0.20 1.00

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Tetra Tech, Inc.	Date Received:	04/10/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0729
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOU		Page 3 of 30

<u>Surrogate</u>	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>
1,2-Dichloroethane-d4	102	80-128	
Toluene-d8	100	80-120	

Project: LMC BOU

Analytical Report

 Tetra Tech, Inc.
 Date Received:
 04/10/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0729

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

Method: EPA 8260B

Units: ug/L Page 4 of 30

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SW-5-N-17Q2	17-04-0729-2-B	04/10/17 13:20	Aqueous	GC/MS L	04/21/17	04/21/17 14:58	170421L006
Comment(s): - Results were evaluated	to the MDL (DL), cond	entrations >= t	o the MDL (DI	L) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>lt</u> <u>!</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
1,1,1,2-Tetrachloroethane	ND		1.0	0.40	2.00		
1,1,1-Trichloroethane	ND		1.0	0.40	2.00		
1,1,2,2-Tetrachloroethane	ND		1.0	0.40	2.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane	3.1		1.0	0.48	2.00		
1,1,2-Trichloroethane	ND		1.0	0.40	2.00		
1,1-Dichloroethane	0.60		1.0	0.40	2.00	J	l
1,1-Dichloroethene	3.8		1.0	0.56	2.00		
1,1-Dichloropropene	ND		1.0	0.60	2.00		
1,2,3-Trichlorobenzene	ND		1.0	0.40	2.00		
1,2,3-Trichloropropane	ND	2	2.0	0.80	2.00		
1,2,4-Trichlorobenzene	ND		1.0	0.40	2.00		
1,2,4-Trimethylbenzene	ND		1.0	0.40	2.00		
1,2-Dibromo-3-Chloropropane	ND		10	4.0	2.00		
1,2-Dibromoethane	ND		1.0	0.40	2.00		
1,2-Dichlorobenzene	ND		1.0	0.40	2.00		
1,2-Dichloroethane	ND		1.0	0.40	2.00		
1,2-Dichloropropane	ND		1.0	0.40	2.00		
1,3,5-Trimethylbenzene	ND		1.0	0.40	2.00		
1,3-Dichlorobenzene	ND		1.0	0.55	2.00		
1,3-Dichloropropane	ND	2	2.0	0.80	2.00		
1,4-Dichlorobenzene	ND		1.0	0.40	2.00		
2,2-Dichloropropane	ND	2	2.0	0.80	2.00		
2-Butanone	ND		10	4.0	2.00		
2-Chlorotoluene	ND		1.0	0.40	2.00		
2-Hexanone	ND	:	20	8.0	2.00		
4-Chlorotoluene	ND		1.0	0.71	2.00		
4-Methyl-2-Pentanone	ND		10	4.0	2.00		
Acetone	11	:	20	8.0	2.00	J	l
Benzene	ND		1.0	0.40	2.00		
Bromobenzene	ND		1.0	0.64	2.00		
Bromochloromethane	ND	:	2.0	0.80	2.00		
Bromodichloromethane	ND		1.0	0.40	2.00		
Bromoform	ND		1.0	0.49	2.00		
Bromomethane	ND	:	2.0	0.80	2.00		

 Tetra Tech, Inc.
 Date Received:
 04/10/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0729

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 5 of 30

<u> </u>					
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Carbon Disulfide	ND	2.0	0.80	2.00	
Carbon Tetrachloride	0.67	1.0	0.40	2.00	J
Chlorobenzene	ND	1.0	0.40	2.00	
Chloroethane	ND	1.0	0.63	2.00	
Chloroform	0.94	1.0	0.40	2.00	J
Chloromethane	ND	1.0	0.59	2.00	
Dibromochloromethane	ND	1.0	0.40	2.00	
Dibromomethane	ND	1.0	0.40	2.00	
Dichlorodifluoromethane	ND	2.0	0.80	2.00	
Ethylbenzene	ND	1.0	0.40	2.00	
Isopropylbenzene	ND	1.0	0.40	2.00	
Methylene Chloride	ND	2.0	1.6	2.00	
Naphthalene	ND	2.0	0.80	2.00	
Styrene	ND	1.0	0.40	2.00	
Tetrachloroethene	51	1.0	0.40	2.00	
Toluene	ND	1.0	0.40	2.00	
t-1,2-Dichloroethene	ND	1.0	0.40	2.00	
Trichloroethene	32	1.0	0.57	2.00	
Trichlorofluoromethane	ND	1.0	0.40	2.00	
Vinyl Acetate	ND	10	4.0	2.00	
Vinyl Chloride	ND	1.0	0.40	2.00	
c-1,3-Dichloropropene	ND	1.0	0.40	2.00	
c-1,2-Dichloroethene	ND	1.0	0.40	2.00	
n-Butylbenzene	ND	1.0	0.40	2.00	
n-Propylbenzene	ND	1.0	0.40	2.00	
o-Xylene	ND	1.0	0.63	2.00	
p-Isopropyltoluene	ND	1.0	0.40	2.00	
sec-Butylbenzene	ND	1.0	0.40	2.00	
t-1,3-Dichloropropene	ND	1.0	0.40	2.00	
tert-Butylbenzene	ND	1.0	0.40	2.00	
p/m-Xylene	ND	1.0	0.40	2.00	
Methyl-t-Butyl Ether (MTBE)	ND	1.0	0.40	2.00	
2-Chloroethyl Vinyl Ether	ND	10	8.4	2.00	
Hexachloro-1,3-Butadiene	ND	4.0	1.6	2.00	
lodomethane	ND	20	10	2.00	
Surrogate	Rec. (%)	Control Limits	Qualifiers		
1,4-Bromofluorobenzene	94	68-120			
Dibromofluoromethane	97	80-127			

Tetra Tech, Inc.	Date Received:	04/10/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0729
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOU		Page 6 of 30

<u>Surrogate</u>	Rec. (%)	Control Limits	Qualifiers
1,2-Dichloroethane-d4	103	80-128	
Toluene-d8	98	80-120	

Project: LMC BOU

Analytical Report

 Tetra Tech, Inc.
 Date Received:
 04/10/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0729

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

Method: EPA 8260B

Units: ug/L Page 7 of 30

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-5-CW02-N-17Q2	17-04-0729-3-D	04/10/17 15:56	Aqueous	GC/MS L	04/21/17	04/21/17 15:28	170421L006
Comment(s): - Results were evaluated to	o the MDL (DL), cond	centrations >=	to the MDL (DI	_) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>(</u>	Qualifiers
1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,1-Trichloroethane	ND		0.50	0.20	1.00		
1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		0.50	0.24	1.00		
1,1,2-Trichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethene	ND		0.50	0.28	1.00		
1,1-Dichloropropene	ND		0.50	0.30	1.00		
1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,3-Trichloropropane	ND		1.0	0.40	1.00		
1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,4-Trimethylbenzene	ND		0.50	0.20	1.00		
1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00		
1,2-Dibromoethane	ND		0.50	0.20	1.00		
1,2-Dichlorobenzene	ND		0.50	0.20	1.00		
1,2-Dichloroethane	ND		0.50	0.20	1.00		
1,2-Dichloropropane	ND		0.50	0.20	1.00		
1,3,5-Trimethylbenzene	ND		0.50	0.20	1.00		
1,3-Dichlorobenzene	ND		0.50	0.28	1.00		
1,3-Dichloropropane	ND		1.0	0.40	1.00		
1,4-Dichlorobenzene	ND		0.50	0.20	1.00		
2,2-Dichloropropane	ND		1.0	0.40	1.00		
2-Butanone	ND		5.0	2.0	1.00		
2-Chlorotoluene	ND		0.50	0.20	1.00		
2-Hexanone	ND		10	4.0	1.00		
4-Chlorotoluene	ND		0.50	0.36	1.00		
4-Methyl-2-Pentanone	ND		5.0	2.0	1.00		
Acetone	ND		10	4.0	1.00		
Benzene	ND		0.50	0.20	1.00		
Bromobenzene	ND		0.50	0.32	1.00		
Bromochloromethane	ND		1.0	0.40	1.00		
Bromodichloromethane	ND		0.50	0.20	1.00		
Bromoform	ND		0.50	0.25	1.00		
Bromomethane	ND		1.0	0.40	1.00		

 Tetra Tech, Inc.
 Date Received:
 04/10/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0729

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 8 of 30

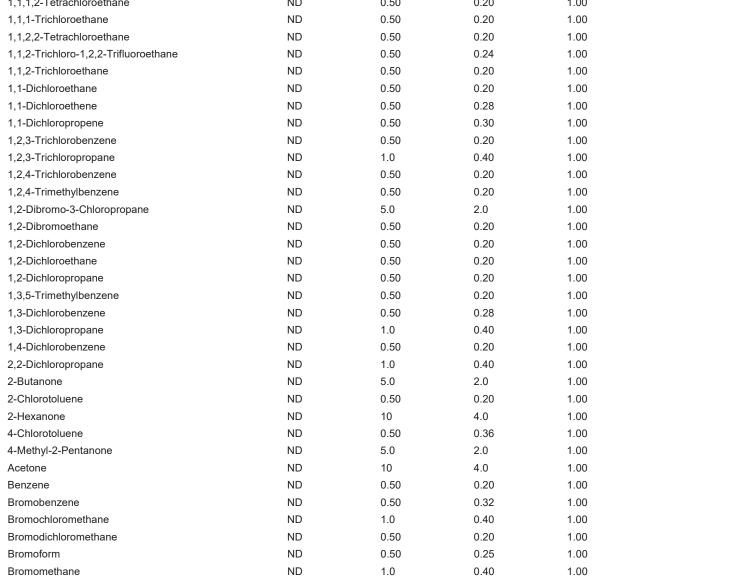
1 Tojoot: EMO DOO					1 ago o o 1 oo
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	MDL	<u>DF</u>	Qualifiers
Carbon Disulfide	ND	1.0	0.40	1.00	
Carbon Tetrachloride	ND	0.50	0.20	1.00	
Chlorobenzene	ND	0.50	0.20	1.00	
Chloroethane	ND	0.50	0.32	1.00	
Chloroform	ND	0.50	0.20	1.00	
Chloromethane	ND	0.50	0.29	1.00	
Dibromochloromethane	ND	0.50	0.20	1.00	
Dibromomethane	ND	0.50	0.20	1.00	
Dichlorodifluoromethane	0.91	1.0	0.40	1.00	J
Ethylbenzene	ND	0.50	0.20	1.00	
Isopropylbenzene	ND	0.50	0.20	1.00	
Methylene Chloride	ND	1.0	0.80	1.00	
Naphthalene	ND	1.0	0.40	1.00	
Styrene	ND	0.50	0.20	1.00	
Tetrachloroethene	0.70	0.50	0.20	1.00	
Toluene	ND	0.50	0.20	1.00	
t-1,2-Dichloroethene	ND	0.50	0.20	1.00	
Trichloroethene	ND	0.50	0.29	1.00	
Trichlorofluoromethane	ND	0.50	0.20	1.00	
Vinyl Acetate	ND	5.0	2.0	1.00	
Vinyl Chloride	ND	0.50	0.20	1.00	
c-1,3-Dichloropropene	ND	0.50	0.20	1.00	
c-1,2-Dichloroethene	ND	0.50	0.20	1.00	
n-Butylbenzene	ND	0.50	0.20	1.00	
n-Propylbenzene	ND	0.50	0.20	1.00	
o-Xylene	ND	0.50	0.32	1.00	
p-Isopropyltoluene	ND	0.50	0.20	1.00	
sec-Butylbenzene	ND	0.50	0.20	1.00	
t-1,3-Dichloropropene	ND	0.50	0.20	1.00	
tert-Butylbenzene	ND	0.50	0.20	1.00	
p/m-Xylene	ND	0.50	0.20	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	0.50	0.20	1.00	
2-Chloroethyl Vinyl Ether	ND	5.0	4.2	1.00	
Hexachloro-1,3-Butadiene	ND	2.0	0.80	1.00	
lodomethane	ND	10	5.0	1.00	
<u>Surrogate</u>	Rec. (%)	Control Limits	Qualifiers		
1,4-Bromofluorobenzene	92	68-120			
Dibromofluoromethane	98	80-127			

Tetra Tech, Inc.	Date Received:	04/10/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0729
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOU		Page 9 of 30

Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>
1,2-Dichloroethane-d4	102	80-128	
Toluene-d8	98	80-120	

San Bernardino, CA 92408-3562

Project: LMC BOU


Analytical Report

Date Received: 04/10/17 Tetra Tech, Inc. Work Order: 17-04-0729 301 E. Vanderbilt Way, Suite 450 Preparation: **EPA 5030C**

Method: **EPA 8260B**

Units: ug/L Page 10 of 30

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
LTB-20170410	17-04-0729-4-B	04/10/17 06:30	Aqueous	GC/MS L	04/21/17	04/21/17 12:56	170421L006
Comment(s): - Results were evalua-	ated to the MDL (DL), con-	centrations >= t	o the MDL (DI	L) but < RL (LO	Q), if found, are	qualified with a	ı "J" flag.
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>(</u>	Qualifiers
1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,1-Trichloroethane	ND		0.50	0.20	1.00		
1 1 2 2-Tetrachloroethane	ND		0.50	0.20	1.00		

 Tetra Tech, Inc.
 Date Received:
 04/10/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0729

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 11 of 30

FTOJECI. LIVIC BOO					Fage 11 01 30
<u>Parameter</u>	<u>Result</u>	RL	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Carbon Disulfide	ND	1.0	0.40	1.00	
Carbon Tetrachloride	ND	0.50	0.20	1.00	
Chlorobenzene	ND	0.50	0.20	1.00	
Chloroethane	ND	0.50	0.32	1.00	
Chloroform	ND	0.50	0.20	1.00	
Chloromethane	ND	0.50	0.29	1.00	
Dibromochloromethane	ND	0.50	0.20	1.00	
Dibromomethane	ND	0.50	0.20	1.00	
Dichlorodifluoromethane	ND	1.0	0.40	1.00	
Ethylbenzene	ND	0.50	0.20	1.00	
Isopropylbenzene	ND	0.50	0.20	1.00	
Methylene Chloride	ND	1.0	0.80	1.00	
Naphthalene	ND	1.0	0.40	1.00	
Styrene	ND	0.50	0.20	1.00	
Tetrachloroethene	ND	0.50	0.20	1.00	
Toluene	ND	0.50	0.20	1.00	
t-1,2-Dichloroethene	ND	0.50	0.20	1.00	
Trichloroethene	ND	0.50	0.29	1.00	
Trichlorofluoromethane	ND	0.50	0.20	1.00	
Vinyl Acetate	ND	5.0	2.0	1.00	
Vinyl Chloride	ND	0.50	0.20	1.00	
c-1,3-Dichloropropene	ND	0.50	0.20	1.00	
c-1,2-Dichloroethene	ND	0.50	0.20	1.00	
n-Butylbenzene	ND	0.50	0.20	1.00	
n-Propylbenzene	ND	0.50	0.20	1.00	
o-Xylene	ND	0.50	0.32	1.00	
p-Isopropyltoluene	ND	0.50	0.20	1.00	
sec-Butylbenzene	ND	0.50	0.20	1.00	
t-1,3-Dichloropropene	ND	0.50	0.20	1.00	
tert-Butylbenzene	ND	0.50	0.20	1.00	
p/m-Xylene	ND	0.50	0.20	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	0.50	0.20	1.00	
2-Chloroethyl Vinyl Ether	ND	5.0	4.2	1.00	
Hexachloro-1,3-Butadiene	ND	2.0	0.80	1.00	
lodomethane	ND	10	5.0	1.00	
<u>Surrogate</u>	Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	93	68-120			
Dibromofluoromethane	95	80-127			

Tetra Tech, Inc.	Date Received:	04/10/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0729
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOLL		Page 12 of 30

Surrogate	Rec. (%)	Control Limits	Qualifiers
1,2-Dichloroethane-d4	101	80-128	
Toluene-d8	99	80-120	

 Tetra Tech, Inc.
 Date Received:
 04/10/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0729

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

Method: EPA 8260B Units: ug/L

Project: LMC BOU Page 13 of 30

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-1-CW27-N-17Q2	17-04-0729-5-B	04/10/17 09:11	Aqueous	GC/MS L	04/21/17	04/21/17 15:59	170421L006
Comment(s): - Results were evaluated to	the MDL (DL), cond	centrations >=	to the MDL (DI	L) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,1-Trichloroethane	ND		0.50	0.20	1.00		
1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		0.50	0.24	1.00		
1,1,2-Trichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethene	ND		0.50	0.28	1.00		
1,1-Dichloropropene	ND		0.50	0.30	1.00		
1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,3-Trichloropropane	ND		1.0	0.40	1.00		
1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,4-Trimethylbenzene	ND		0.50	0.20	1.00		
1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00		
1,2-Dibromoethane	ND		0.50	0.20	1.00		
1,2-Dichlorobenzene	ND		0.50	0.20	1.00		
1,2-Dichloroethane	ND		0.50	0.20	1.00		
1,2-Dichloropropane	ND		0.50	0.20	1.00		
1,3,5-Trimethylbenzene	ND		0.50	0.20	1.00		
1,3-Dichlorobenzene	ND		0.50	0.28	1.00		
1,3-Dichloropropane	ND		1.0	0.40	1.00		
1,4-Dichlorobenzene	ND		0.50	0.20	1.00		
2,2-Dichloropropane	ND		1.0	0.40	1.00		
2-Butanone	ND		5.0	2.0	1.00		
2-Chlorotoluene	ND		0.50	0.20	1.00		
2-Hexanone	ND		10	4.0	1.00		
4-Chlorotoluene	ND		0.50	0.36	1.00		
4-Methyl-2-Pentanone	ND		5.0	2.0	1.00		
Acetone	ND		10	4.0	1.00		
Benzene	ND		0.50	0.20	1.00		
Bromobenzene	ND		0.50	0.32	1.00		
Bromochloromethane	ND		1.0	0.40	1.00		
Bromodichloromethane	ND		0.50	0.20	1.00		
Bromoform	ND		0.50	0.25	1.00		
Bromomethane	ND		1.0	0.40	1.00		

 Tetra Tech, Inc.
 Date Received:
 04/10/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0729

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 14 of 30

Froject. Livio Boo					Fage 14 01 30
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Carbon Disulfide	ND	1.0	0.40	1.00	
Carbon Tetrachloride	ND	0.50	0.20	1.00	
Chlorobenzene	ND	0.50	0.20	1.00	
Chloroethane	ND	0.50	0.32	1.00	
Chloroform	0.32	0.50	0.20	1.00	J
Chloromethane	ND	0.50	0.29	1.00	
Dibromochloromethane	ND	0.50	0.20	1.00	
Dibromomethane	ND	0.50	0.20	1.00	
Dichlorodifluoromethane	ND	1.0	0.40	1.00	
Ethylbenzene	ND	0.50	0.20	1.00	
Isopropylbenzene	ND	0.50	0.20	1.00	
Methylene Chloride	ND	1.0	0.80	1.00	
Naphthalene	ND	1.0	0.40	1.00	
Styrene	ND	0.50	0.20	1.00	
Tetrachloroethene	4.0	0.50	0.20	1.00	
Toluene	ND	0.50	0.20	1.00	
t-1,2-Dichloroethene	ND	0.50	0.20	1.00	
Trichloroethene	2.3	0.50	0.29	1.00	
Trichlorofluoromethane	ND	0.50	0.20	1.00	
Vinyl Acetate	ND	5.0	2.0	1.00	
Vinyl Chloride	ND	0.50	0.20	1.00	
c-1,3-Dichloropropene	ND	0.50	0.20	1.00	
c-1,2-Dichloroethene	ND	0.50	0.20	1.00	
n-Butylbenzene	ND	0.50	0.20	1.00	
n-Propylbenzene	ND	0.50	0.20	1.00	
o-Xylene	ND	0.50	0.32	1.00	
p-Isopropyltoluene	ND	0.50	0.20	1.00	
sec-Butylbenzene	ND	0.50	0.20	1.00	
t-1,3-Dichloropropene	ND	0.50	0.20	1.00	
tert-Butylbenzene	ND	0.50	0.20	1.00	
p/m-Xylene	ND	0.50	0.20	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	0.50	0.20	1.00	
2-Chloroethyl Vinyl Ether	ND	5.0	4.2	1.00	
Hexachloro-1,3-Butadiene	ND	2.0	0.80	1.00	
Iodomethane	ND	10	5.0	1.00	
<u>Surrogate</u>	Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	94	68-120			
Dibromofluoromethane	96	80-127			

Tetra Tech, Inc.	Date Received:	04/10/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0729
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOU		Page 15 of 30

Surrogate	Rec. (%)	Control Limits	Qualifiers
1,2-Dichloroethane-d4	102	80-128	
Toluene-d8	99	80-120	

 Tetra Tech, Inc.
 Date Received:
 04/10/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0729

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

Preparation: EPA 5030C Method: EPA 8260B

Units: ug/L

Project: LMC BOU Page 16 of 30

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
A-1-CW05-N-17Q2	17-04-0729-6-B	04/10/17 11:36	Aqueous	GC/MS L	04/21/17	04/21/17 16:30	170421L006
Comment(s): - Results were evaluated to	the MDL (DL), con	centrations >= t	to the MDL (D	L) but < RL (LO	Q), if found, are	qualified with a	a "J" flag.
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	9	<u>Qualifiers</u>
1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,1-Trichloroethane	ND		0.50	0.20	1.00		
1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		0.50	0.24	1.00		
1,1,2-Trichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethene	ND		0.50	0.28	1.00		
1,1-Dichloropropene	ND		0.50	0.30	1.00		
1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,3-Trichloropropane	ND		1.0	0.40	1.00		
1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,4-Trimethylbenzene	ND		0.50	0.20	1.00		
1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00		
1,2-Dibromoethane	ND		0.50	0.20	1.00		
1,2-Dichlorobenzene	ND		0.50	0.20	1.00		
1,2-Dichloroethane	ND		0.50	0.20	1.00		
1,2-Dichloropropane	ND		0.50	0.20	1.00		
1,3,5-Trimethylbenzene	ND		0.50	0.20	1.00		
1,3-Dichlorobenzene	ND		0.50	0.28	1.00		
1,3-Dichloropropane	ND		1.0	0.40	1.00		
1,4-Dichlorobenzene	ND		0.50	0.20	1.00		
2,2-Dichloropropane	ND		1.0	0.40	1.00		
2-Butanone	ND		5.0	2.0	1.00		
2-Chlorotoluene	ND		0.50	0.20	1.00		
2-Hexanone	ND		10	4.0	1.00		
4-Chlorotoluene	ND		0.50	0.36	1.00		
4-Methyl-2-Pentanone	ND		5.0	2.0	1.00		
Acetone	ND		10	4.0	1.00		
Benzene	ND		0.50	0.20	1.00		
Bromobenzene	ND		0.50	0.32	1.00		
Bromochloromethane	ND		1.0	0.40	1.00		
Bromodichloromethane	ND		0.50	0.20	1.00		
Bromoform	ND		0.50	0.25	1.00		
	·-			-			

 Tetra Tech, Inc.
 Date Received:
 04/10/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0729

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 17 of 30

Project: LMC BOU					Page 17 of 30
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Carbon Disulfide	ND	1.0	0.40	1.00	
Carbon Tetrachloride	ND	0.50	0.20	1.00	
Chlorobenzene	ND	0.50	0.20	1.00	
Chloroethane	ND	0.50	0.32	1.00	
Chloroform	ND	0.50	0.20	1.00	
Chloromethane	ND	0.50	0.29	1.00	
Dibromochloromethane	ND	0.50	0.20	1.00	
Dibromomethane	ND	0.50	0.20	1.00	
Dichlorodifluoromethane	0.84	1.0	0.40	1.00	J
Ethylbenzene	ND	0.50	0.20	1.00	
Isopropylbenzene	ND	0.50	0.20	1.00	
Methylene Chloride	ND	1.0	0.80	1.00	
Naphthalene	ND	1.0	0.40	1.00	
Styrene	ND	0.50	0.20	1.00	
Tetrachloroethene	4.0	0.50	0.20	1.00	
Toluene	ND	0.50	0.20	1.00	
t-1,2-Dichloroethene	ND	0.50	0.20	1.00	
Trichloroethene	0.44	0.50	0.29	1.00	J
Trichlorofluoromethane	ND	0.50	0.20	1.00	
Vinyl Acetate	ND	5.0	2.0	1.00	
Vinyl Chloride	ND	0.50	0.20	1.00	
c-1,3-Dichloropropene	ND	0.50	0.20	1.00	
c-1,2-Dichloroethene	ND	0.50	0.20	1.00	
n-Butylbenzene	ND	0.50	0.20	1.00	
n-Propylbenzene	ND	0.50	0.20	1.00	
o-Xylene	ND	0.50	0.32	1.00	
p-Isopropyltoluene	ND	0.50	0.20	1.00	
sec-Butylbenzene	ND	0.50	0.20	1.00	
t-1,3-Dichloropropene	ND	0.50	0.20	1.00	
tert-Butylbenzene	ND	0.50	0.20	1.00	
p/m-Xylene	ND	0.50	0.20	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	0.50	0.20	1.00	
2-Chloroethyl Vinyl Ether	ND	5.0	4.2	1.00	
Hexachloro-1,3-Butadiene	ND	2.0	0.80	1.00	
lodomethane	ND	10	5.0	1.00	
<u>Surrogate</u>	Rec. (%)	Control Limits	Qualifiers		
1,4-Bromofluorobenzene	95	68-120			
Dibromofluoromethane	96	80-127			

Tetra Tech, Inc.	Date Received:	04/10/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0729
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOU		Page 18 of 30

Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>
1,2-Dichloroethane-d4	101	80-128	
Toluene-d8	98	80-120	

Project: LMC BOU

Analytical Report

 Tetra Tech, Inc.
 Date Received:
 04/10/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0729

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

Method: EPA 8260B

Units: ug/L Page 19 of 30

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
A-1-CW05-FD-17Q2	17-04-0729-7-B	04/10/17 11:36	Aqueous	GC/MS L	04/21/17	04/21/17 17:00	170421L006
Comment(s): - Results were evaluated	to the MDL (DL), con	centrations >=	to the MDL (DI) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,1-Trichloroethane	ND		0.50	0.20	1.00		
1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		0.50	0.24	1.00		
1,1,2-Trichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethene	ND		0.50	0.28	1.00		
1,1-Dichloropropene	ND		0.50	0.30	1.00		
1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,3-Trichloropropane	ND		1.0	0.40	1.00		
1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,4-Trimethylbenzene	ND		0.50	0.20	1.00		
1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00		
1,2-Dibromoethane	ND		0.50	0.20	1.00		
1,2-Dichlorobenzene	ND		0.50	0.20	1.00		
1,2-Dichloroethane	ND		0.50	0.20	1.00		
1,2-Dichloropropane	ND		0.50	0.20	1.00		
1,3,5-Trimethylbenzene	ND		0.50	0.20	1.00		
1,3-Dichlorobenzene	ND		0.50	0.28	1.00		
1,3-Dichloropropane	ND		1.0	0.40	1.00		
1,4-Dichlorobenzene	ND		0.50	0.20	1.00		
2,2-Dichloropropane	ND		1.0	0.40	1.00		
2-Butanone	ND		5.0	2.0	1.00		
2-Chlorotoluene	ND		0.50	0.20	1.00		
2-Hexanone	ND		10	4.0	1.00		
4-Chlorotoluene	ND		0.50	0.36	1.00		
4-Methyl-2-Pentanone	ND		5.0	2.0	1.00		
Acetone	4.4		10	4.0	1.00	J	
Benzene	ND		0.50	0.20	1.00		
Bromobenzene	ND		0.50	0.32	1.00		
Bromochloromethane	ND		1.0	0.40	1.00		
Bromodichloromethane	ND		0.50	0.20	1.00		
Bromoform	ND		0.50	0.25	1.00		
Bromomethane	ND		1.0	0.40	1.00		

 Tetra Tech, Inc.
 Date Received:
 04/10/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0729

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 20 of 30

1 Tojoot: EMO BOO					1 ago 20 01 00
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	MDL	<u>DF</u>	<u>Qualifiers</u>
Carbon Disulfide	ND	1.0	0.40	1.00	
Carbon Tetrachloride	ND	0.50	0.20	1.00	
Chlorobenzene	ND	0.50	0.20	1.00	
Chloroethane	ND	0.50	0.32	1.00	
Chloroform	ND	0.50	0.20	1.00	
Chloromethane	ND	0.50	0.29	1.00	
Dibromochloromethane	ND	0.50	0.20	1.00	
Dibromomethane	ND	0.50	0.20	1.00	
Dichlorodifluoromethane	0.85	1.0	0.40	1.00	J
Ethylbenzene	ND	0.50	0.20	1.00	
Isopropylbenzene	ND	0.50	0.20	1.00	
Methylene Chloride	ND	1.0	0.80	1.00	
Naphthalene	ND	1.0	0.40	1.00	
Styrene	ND	0.50	0.20	1.00	
Tetrachloroethene	4.3	0.50	0.20	1.00	
Toluene	ND	0.50	0.20	1.00	
t-1,2-Dichloroethene	ND	0.50	0.20	1.00	
Trichloroethene	0.50	0.50	0.29	1.00	
Trichlorofluoromethane	ND	0.50	0.20	1.00	
Vinyl Acetate	ND	5.0	2.0	1.00	
Vinyl Chloride	ND	0.50	0.20	1.00	
c-1,3-Dichloropropene	ND	0.50	0.20	1.00	
c-1,2-Dichloroethene	ND	0.50	0.20	1.00	
n-Butylbenzene	ND	0.50	0.20	1.00	
n-Propylbenzene	ND	0.50	0.20	1.00	
o-Xylene	ND	0.50	0.32	1.00	
p-Isopropyltoluene	ND	0.50	0.20	1.00	
sec-Butylbenzene	ND	0.50	0.20	1.00	
t-1,3-Dichloropropene	ND	0.50	0.20	1.00	
tert-Butylbenzene	ND	0.50	0.20	1.00	
p/m-Xylene	ND	0.50	0.20	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	0.50	0.20	1.00	
2-Chloroethyl Vinyl Ether	ND	5.0	4.2	1.00	
Hexachloro-1,3-Butadiene	ND	2.0	0.80	1.00	
Iodomethane	ND	10	5.0	1.00	
<u>Surrogate</u>	Rec. (%)	Control Limits	Qualifiers		
1,4-Bromofluorobenzene	95	68-120			
Dibromofluoromethane	98	80-127			

Date Received: 04/10/17 Tetra Tech, Inc. Work Order: 17-04-0729 301 E. Vanderbilt Way, Suite 450 Preparation: **EPA 5030C** San Bernardino, CA 92408-3562 Method: **EPA 8260B** Units: ug/L Page 21 of 30 Project: LMC BOU

Surrogate Rec. (%) **Control Limits** Qualifiers 1,2-Dichloroethane-d4 103 80-128

Toluene-d8 80-120 98

Project: LMC BOU

Analytical Report

 Tetra Tech, Inc.
 Date Received:
 04/10/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0729

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

Method: EPA 8260B

Units: ug/L Page 22 of 30

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
A-1-CW04-N-17Q2	17-04-0729-8-B	04/10/17 13:26	Aqueous	GC/MS L	04/21/17	04/21/17 17:31	170421L006
Comment(s): - Results were evaluated t	o the MDL (DL), cond	entrations >=	to the MDL (DI	L) but < RL (LO	Q), if found, are	qualified with a	a "J" flag.
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>(</u>	<u>Qualifiers</u>
1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,1-Trichloroethane	ND		0.50	0.20	1.00		
1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane	1.3		0.50	0.24	1.00		
1,1,2-Trichloroethane	7.4		0.50	0.20	1.00		
1,1-Dichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethene	0.76		0.50	0.28	1.00		
1,1-Dichloropropene	ND		0.50	0.30	1.00		
1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,3-Trichloropropane	17		1.0	0.40	1.00		
1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,4-Trimethylbenzene	ND		0.50	0.20	1.00		
1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00		
1,2-Dibromoethane	ND		0.50	0.20	1.00		
1,2-Dichlorobenzene	ND		0.50	0.20	1.00		
1,2-Dichloroethane	0.42		0.50	0.20	1.00		J
1,2-Dichloropropane	0.50		0.50	0.20	1.00		
1,3,5-Trimethylbenzene	ND		0.50	0.20	1.00		
1,3-Dichlorobenzene	ND		0.50	0.28	1.00		
1,3-Dichloropropane	ND		1.0	0.40	1.00		
1,4-Dichlorobenzene	ND		0.50	0.20	1.00		
2,2-Dichloropropane	ND		1.0	0.40	1.00		
2-Butanone	ND		5.0	2.0	1.00		
2-Chlorotoluene	ND		0.50	0.20	1.00		
2-Hexanone	ND		10	4.0	1.00		
4-Chlorotoluene	ND		0.50	0.36	1.00		
4-Methyl-2-Pentanone	ND		5.0	2.0	1.00		
Acetone	4.7		10	4.0	1.00		J
Benzene	ND		0.50	0.20	1.00		
Bromobenzene	ND		0.50	0.32	1.00		
Bromochloromethane	ND		1.0	0.40	1.00		
Bromodichloromethane	ND		0.50	0.20	1.00		
Bromoform	ND		0.50	0.25	1.00		
Bromomethane	ND		1.0	0.40	1.00		

 Tetra Tech, Inc.
 Date Received:
 04/10/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0729

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 23 of 30

Froject. Livio Boo					Fage 23 01 30
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Carbon Disulfide	ND	1.0	0.40	1.00	
Carbon Tetrachloride	0.91	0.50	0.20	1.00	
Chlorobenzene	ND	0.50	0.20	1.00	
Chloroethane	ND	0.50	0.32	1.00	
Chloroform	3.6	0.50	0.20	1.00	
Chloromethane	ND	0.50	0.29	1.00	
Dibromochloromethane	ND	0.50	0.20	1.00	
Dibromomethane	ND	0.50	0.20	1.00	
Dichlorodifluoromethane	0.88	1.0	0.40	1.00	J
Ethylbenzene	ND	0.50	0.20	1.00	
Isopropylbenzene	ND	0.50	0.20	1.00	
Methylene Chloride	ND	1.0	0.80	1.00	
Naphthalene	ND	1.0	0.40	1.00	
Styrene	ND	0.50	0.20	1.00	
Tetrachloroethene	5.2	0.50	0.20	1.00	
Toluene	ND	0.50	0.20	1.00	
t-1,2-Dichloroethene	ND	0.50	0.20	1.00	
Trichloroethene	4.8	0.50	0.29	1.00	
Trichlorofluoromethane	ND	0.50	0.20	1.00	
Vinyl Acetate	ND	5.0	2.0	1.00	
Vinyl Chloride	ND	0.50	0.20	1.00	
c-1,3-Dichloropropene	ND	0.50	0.20	1.00	
c-1,2-Dichloroethene	ND	0.50	0.20	1.00	
n-Butylbenzene	ND	0.50	0.20	1.00	
n-Propylbenzene	ND	0.50	0.20	1.00	
o-Xylene	ND	0.50	0.32	1.00	
p-Isopropyltoluene	ND	0.50	0.20	1.00	
sec-Butylbenzene	ND	0.50	0.20	1.00	
t-1,3-Dichloropropene	ND	0.50	0.20	1.00	
tert-Butylbenzene	ND	0.50	0.20	1.00	
p/m-Xylene	ND	0.50	0.20	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	0.50	0.20	1.00	
2-Chloroethyl Vinyl Ether	ND	5.0	4.2	1.00	
Hexachloro-1,3-Butadiene	ND	2.0	0.80	1.00	
lodomethane	ND	10	5.0	1.00	
Surrogate	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	93	68-120			
Dibromofluoromethane	99	80-127			

Tetra Tech, Inc.	Date Received:	04/10/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0729
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOU		Page 24 of 30

Surrogate	Rec. (%)	Control Limits	Qualifiers
1,2-Dichloroethane-d4	105	80-128	
Toluene-d8	99	80-120	

ug/L

Analytical Report

 Tetra Tech, Inc.
 Date Received:
 04/10/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0729

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

Method: EPA 8260B

Project: LMC BOU Page 25 of 30

Units:

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
3862E-N-17Q2	17-04-0729-9-C	04/10/17 15:22	Aqueous	GC/MS L	04/21/17	04/21/17 18:01	170421L006
Comment(s): - Results were evaluated	to the MDL (DL), cond	centrations >=	to the MDL (D	L) but < RL (LO	Q), if found, are	qualified with a	a "J" flag.
<u>Parameter</u>	Resu	ı <u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>(</u>	<u>Qualifiers</u>
1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,1-Trichloroethane	ND		0.50	0.20	1.00		
1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		0.50	0.24	1.00		
1,1,2-Trichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethene	0.58		0.50	0.28	1.00		
1,1-Dichloropropene	ND		0.50	0.30	1.00		
1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,3-Trichloropropane	ND		1.0	0.40	1.00		
1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,4-Trimethylbenzene	ND		0.50	0.20	1.00		
1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00		
1,2-Dibromoethane	ND		0.50	0.20	1.00		
1,2-Dichlorobenzene	ND		0.50	0.20	1.00		
1,2-Dichloroethane	ND		0.50	0.20	1.00		
1,2-Dichloropropane	ND		0.50	0.20	1.00		
1,3,5-Trimethylbenzene	ND		0.50	0.20	1.00		
1,3-Dichlorobenzene	ND		0.50	0.28	1.00		
1,3-Dichloropropane	ND		1.0	0.40	1.00		
1,4-Dichlorobenzene	ND		0.50	0.20	1.00		
2,2-Dichloropropane	ND		1.0	0.40	1.00		
2-Butanone	ND		5.0	2.0	1.00		
2-Chlorotoluene	ND		0.50	0.20	1.00		
2-Hexanone	ND		10	4.0	1.00		
4-Chlorotoluene	ND		0.50	0.36	1.00		
4-Methyl-2-Pentanone	ND		5.0	2.0	1.00		
Acetone	ND		10	4.0	1.00		
Benzene	ND		0.50	0.20	1.00		
Bromobenzene	ND		0.50	0.32	1.00		
Bromochloromethane	ND		1.0	0.40	1.00		
Bromodichloromethane	ND		0.50	0.20	1.00		
Bromoform	ND		0.50	0.25	1.00		
Bromomethane	ND		1.0	0.40	1.00		

 Tetra Tech, Inc.
 Date Received:
 04/10/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0729

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 26 of 30

<u>Parameter</u>	Result	RL	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Carbon Disulfide	ND	1.0	0.40	1.00	
Carbon Tetrachloride	0.40	0.50	0.20	1.00	J
Chlorobenzene	ND	0.50	0.20	1.00	
Chloroethane	ND	0.50	0.32	1.00	
Chloroform	0.29	0.50	0.20	1.00	J
Chloromethane	ND	0.50	0.29	1.00	
Dibromochloromethane	ND	0.50	0.20	1.00	
Dibromomethane	ND	0.50	0.20	1.00	
Dichlorodifluoromethane	0.87	1.0	0.40	1.00	J
Ethylbenzene	ND	0.50	0.20	1.00	
Isopropylbenzene	ND	0.50	0.20	1.00	
Methylene Chloride	ND	1.0	0.80	1.00	
Naphthalene	ND	1.0	0.40	1.00	
Styrene	ND	0.50	0.20	1.00	
Tetrachloroethene	15	0.50	0.20	1.00	
Toluene	ND	0.50	0.20	1.00	
t-1,2-Dichloroethene	ND	0.50	0.20	1.00	
Trichloroethene	32	0.50	0.29	1.00	
Trichlorofluoromethane	ND	0.50	0.20	1.00	
Vinyl Acetate	ND	5.0	2.0	1.00	
Vinyl Chloride	ND	0.50	0.20	1.00	
c-1,3-Dichloropropene	ND	0.50	0.20	1.00	
c-1,2-Dichloroethene	0.21	0.50	0.20	1.00	J
n-Butylbenzene	ND	0.50	0.20	1.00	
n-Propylbenzene	ND	0.50	0.20	1.00	
o-Xylene	ND	0.50	0.32	1.00	
p-Isopropyltoluene	ND	0.50	0.20	1.00	
sec-Butylbenzene	ND	0.50	0.20	1.00	
t-1,3-Dichloropropene	ND	0.50	0.20	1.00	
tert-Butylbenzene	ND	0.50	0.20	1.00	
p/m-Xylene	ND	0.50	0.20	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	0.50	0.20	1.00	
2-Chloroethyl Vinyl Ether	ND	5.0	4.2	1.00	
Hexachloro-1,3-Butadiene	ND	2.0	0.80	1.00	
Iodomethane	ND	10	5.0	1.00	
<u>Surrogate</u>	Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	94	68-120			
Dibromofluoromethane	96	80-127			

Tetra Tech, Inc.	Date Received:	04/10/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0729
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOU		Page 27 of 30

Surrogate	Rec. (%)	Control Limits	Qualifiers
1,2-Dichloroethane-d4	103	80-128	
Toluene-d8	100	80-120	

04/10/17

17-04-0729

EPA 5030C

Project: LMC BOU

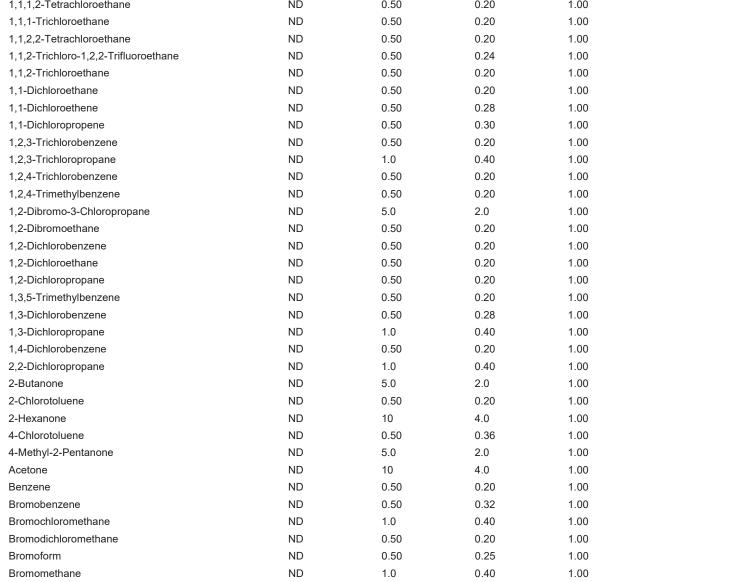
Analytical Report

Tetra Tech, Inc.

301 E. Vanderbilt Way, Suite 450

San Bernardino, CA 92408-3562

Date Received:


Work Order:

Preparation:

Method: EPA 8260B Units: ug/L

Page 28 of 30

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-10-025-4633	N/A	Aqueous	GC/MS L	04/21/17	04/21/17 11:52	170421L006
Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.							
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
1,1,1,2-Tetrachloroethane	ND	(0.50	0.20	1.00		
1.1.Trichloroethane	ND		0.50	0.20	1.00		

 Tetra Tech, Inc.
 Date Received:
 04/10/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0729

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 29 of 30

Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
ND	1.0	0.40	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.32	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.29	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	1.0	0.40	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	1.0	0.80	1.00	
ND	1.0	0.40	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.29	1.00	
ND	0.50	0.20	1.00	
ND	5.0	2.0	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.32	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	5.0	4.2	1.00	
ND	2.0	0.80	1.00	
ND	10	5.0	1.00	
Rec. (%)	Control Limits	<u>Qualifiers</u>		
96	68-120			
94	80-127			
	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND 1.0 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 1.0 ND 0.50 ND 1.0 ND 1.0 ND 1.0 ND 0.50 <td>ND 1.0 0.40 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.32 ND 0.50 0.20 ND 0.50 0.29 ND 0.50 0.20 ND 0.50 0.20 ND 1.0 0.40 ND 0.50 0.20 ND 1.0 0.40 ND 0.50 0.20 ND 1.0 0.40 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND <td< td=""><td>ND</td></td<></td>	ND 1.0 0.40 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.32 ND 0.50 0.20 ND 0.50 0.29 ND 0.50 0.20 ND 0.50 0.20 ND 1.0 0.40 ND 0.50 0.20 ND 1.0 0.40 ND 0.50 0.20 ND 1.0 0.40 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND <td< td=""><td>ND</td></td<>	ND

Tetra Tech, Inc.	Date Received:	04/10/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0729
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOU		Page 30 of 30

Surrogate	Rec. (%)	Control Limits	Qualifiers
1.2 Dichloroothana d4	06	90 129	

1,2-Dichloroethane-d4 80-128 96 Toluene-d8 98 80-120

 Tetra Tech, Inc.
 Date Received:
 04/10/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0729

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B SIM

 Units:
 ug/L

Project: LMC BOU Page 1 of 3

Client Sample N	umber	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-04-N-17Q2		17-04-0729-1-F	04/10/17 08:58	Aqueous	GC/MS M	04/12/17	04/13/17 02:13	170412L047
Comment(s):	- Results were evaluated t	o the MDL (DL), con	centrations >= 1	to the MDL (DL) but < RL (LO	Q), if found, are	qualified with a	ı "J" flag.
<u>Parameter</u>		Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>0</u>	<u>Qualifiers</u>
1,2,3-Trichloropr	opane	0.96		0.050	0.025	10.0		

<u>Surrogate</u> <u>Rec. (%)</u> <u>Control Limits</u> <u>Qualifiers</u>

1,4-Dichlorobutane 98 80-120

SW-5-N-17Q2	17-04-0729-2	-G 04/10/17 13:20	Aqueous	GC/MS M	04/13/17	04/13/17 170413L029 18:30
Comment(s):	- Results were evaluated to the MDL (DL),	, concentrations >	= to the MDL (DL	.) but < RL (LO	Q), if found, are	qualified with a "J" flag.
<u>Parameter</u>		<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
1,2,3-Trichlorop	ropane	ND	0.0050	0.0025	1.00	

<u>Surrogate</u> <u>Rec. (%)</u> <u>Control Limits</u> <u>Qualifiers</u>

1,4-Dichlorobutane 108 80-120

B-5-CW02-N-17Q2	17-04-0729-3-G	04/10/17 15:56	Aqueous	GC/MS M	04/13/17	04/13/17 19:00	170413L029
Comment(s): - Results were evaluated to	the MDL (DL), conc	entrations >=	to the MDL (DL	.) but < RL (LO	(a), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resul	<u>t</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
1,2,3-Trichloropropane	ND		0.0050	0.0025	1.00		
Surrogate	Rec.	<u>(%)</u>	Control Limits	<u>Qualifiers</u>			
1,4-Dichlorobutane	100		80-120				

B-1-CW27-N-17Q2	17-04-0729-5-G	04/10/17 Aqueor 09:11	us GC/MS M	04/13/17	04/13/17 19:30	170413L029
Comment(s): - Results were ev	valuated to the MDL (DL), cond	entrations >= to the MDL	(DL) but < RL (LC	Q), if found, are o	qualified with a	"J" flag.
<u>Parameter</u>	Resul	<u>t</u> <u>RL</u>	<u>MDL</u>	<u>DF</u>	Q	ualifiers
1,2,3-Trichloropropane	ND	0.0050	0.0025	1.00		
<u>Surrogate</u>	Rec.	(%) Control Lin	<u>nits</u> <u>Qualifier</u>	<u>s</u>		
1,4-Dichlorobutane	110	80-120				

Comment(s):

Analytical Report

 Tetra Tech, Inc.
 Date Received:
 04/10/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0729

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B SIM

 Units:
 ug/L

Project: LMC BOU Page 2 of 3

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
A-1-CW05-N-17Q2	17-04-0729-6-E	04/10/17 11:36	Aqueous	GC/MS M	04/14/17	04/14/17 18:28	170414L032

- Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

 Parameter
 Result
 RL
 MDL
 DF
 Qualifiers

 1,2,3-Trichloropropane
 ND
 0.0050
 0.0025
 1.00

<u>Surrogate</u> <u>Rec. (%)</u> <u>Control Limits</u> <u>Qualifiers</u>

1,4-Dichlorobutane 114 80-120

A-1-CW05-FD	-17Q2	17-04-0729-7-F	04/10/17 11:36	Aqueous	GC/MS M	04/14/17	04/14/17 18:58	170414L032
Comment(s):	- Results were evaluated t	to the MDL (DL), con	centrations >=	to the MDL (DI	L) but < RL (Lo	OQ), if found, are	e qualified with a	a "J" flag.

<u>Parameter</u> <u>Result</u> <u>RL</u> <u>MDL</u> <u>DF</u> <u>Qualifiers</u>

1,2,3-Trichloropropane ND 0.0050 0.0025 1.00

<u>Surrogate</u> <u>Rec. (%)</u> <u>Control Limits</u> <u>Qualifiers</u>

1,4-Dichlorobutane 113 80-120

A-1-CW04-N-17Q2		4/10/17 Aqueo 3:26	us GC/MS M		04/14/17 170414L0 13:59	32
Comment(s): - Results were evaluated to	the MDL (DL), concent	rations >= to the MDL	(DL) but < RL (LOC	Q), if found, are qu	alified with a "J" flag.	
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>	
1,2,3-Trichloropropane	25	2.5	1.2	500		
<u>Surrogate</u>	Rec. (%)	<u>Control Lir</u>	nits Qualifiers			
1,4-Dichlorobutane	120	80-120				

3862E-N-17Q2		17-04-0729-9-J	04/10/17 15:22	Aqueous	GC/MS M	04/14/17	04/14/17 19:28	170414L032
Comment(s):	- Results were evaluated to	the MDL (DL), conc	entrations >= to	the MDL (DL) but < RL (LOQ), if found, are q	ualified with a "J	l" flag.
<u>Parameter</u>		Resul	<u>t RI</u>	<u>_</u>	MDL	DF	Qu	alifiers

 Parameter
 Result
 RL
 MDL
 DF

 1,2,3-Trichloropropane
 0.013
 0.0050
 0.0025
 1.00

Surrogate Rec. (%) Control Limits Qualifiers

1,4-Dichlorobutane 108 80-120

 Tetra Tech, Inc.
 Date Received:
 04/10/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0729

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

Method: EPA 8260B SIM Units: ug/L

Project: LMC BOU Page 3 of 3

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-15-118-483	N/A	Aqueous	GC/MS M	04/12/17	04/12/17 23:14	170412L047

Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

Parameter Result RL MDL DF Qualifiers

1,2,3-Trichloropropane ND 0.0050 0.0025 1.00

Surrogate Rec. (%) Control Limits Qualifiers

1,4-Dichlorobutane 110 80-120

Method Blank	099-15-118-484	N/A	Aqueous	GC/MS M	04/13/17	04/13/17 12:32	170413L029
Comment(s):	- Results were evaluated to the MDL (DL), con	ncentrations	>= to the MDL (DL	.) but < RL (LC	Q), if found, are	e qualified with a	a "J" flag.
<u>Parameter</u>	Res	<u>sult</u>	<u>RL</u>	MDL	<u>DF</u>	<u>(</u>	<u>Qualifiers</u>

1,2,3-Trichloropropane ND 0.0050 0.0025 1.00

<u>Surrogate</u> <u>Rec. (%)</u> <u>Control Limits</u> <u>Qualifiers</u>

1,4-Dichlorobutane 90 80-120

Method Blank		099-15-118-485 N/A	Aqueous	GC/MS M	04/14/17	04/14/17 11:58	170414L032
Comment(s):	- Results were evaluated to	the MDL (DL), concentration	ns >= to the MDL (DL) but < RL (LC	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>		<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
1,2,3-Trichloropr	ropane	ND	0.0050	0.0025	1.00		
Surrogate 1,4-Dichlorobuta	ne	<u>Rec. (%)</u> 98	Control Limits 80-120	Qualifiers	<u> </u>		

Tetra Tech, Inc.

Date Received:

04/10/17

301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-0729

San Bernardino, CA 92408-3562

Preparation:

N/A

Method:

EPA 218.6

Project: LMC BOU Page 1 of 7

Quality Control Sample ID	Туре	Ма	atrix Ir	nstrument	Date Prepared	Date Analy	yzed	MS/MSD Bate	ch Number
3862E-N-17Q2	Sample	Aq	queous IC	C 16	N/A	04/10/17 2	2:39	170410S01	
3862E-N-17Q2	Matrix Spike	Aq	queous IC	C 16	N/A	04/10/17 2	2:51	170410S01	
3862E-N-17Q2	Matrix Spike Dup	olicate Aq	queous IC	C 16	N/A	04/10/17 2	23:02	170410S01	
Parameter		<u>pike</u> <u>MS</u> dded <u>Con</u>	<u>MS</u> nc. %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Chromium, Hexavalent	1.015 10	0.00 11.6	62 106	11.91	109	85-121	2	0-25	

Tetra Tech, Inc. Date Received: 04/10/17 301 E. Vanderbilt Way, Suite 450 Work Order: 17-04-0729 San Bernardino, CA 92408-3562 Preparation: EPA 3020A Total Method: EPA 6020

Project: LMC BOU Page 2 of 7

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Bato	ch Number
17-04-1153-8	Sample	Aqueous	ICP/MS 03	04/17/17	04/19/17 02:08	170417SA3	
17-04-1153-8	Matrix Spike	Aqueous	ICP/MS 03	04/17/17	04/19/17 02:03	170417SA3	
17-04-1153-8	Matrix Spike Duplic	ate Aqueous	ICP/MS 03	04/17/17	04/19/17 02:06	170417SA3	
<u>Parameter</u>	Sample Spik Conc. Add		MS MSD %Rec. Conc.	MSD %Rec.	%Rec. CL RPD	RPD CL	Qualifiers
Chromium	ND 0.10	0.09347	93 0.09325	93	73-133 0	0-11	

 Tetra Tech, Inc.
 Date Received:
 04/10/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0729

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 3510C

Method: EPA 8270C (M) Isotope Dilution

Project: LMC BOU Page 3 of 7

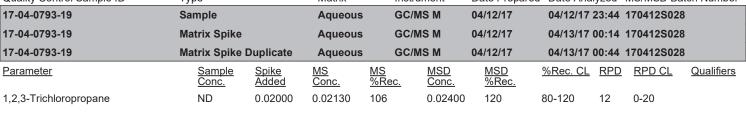
Quality Control Sample ID	Туре	Matrix	Instru	ument	Date Prepared	Date Anal	yzed	MS/MSD Bat	ch Number
17-04-0796-1	Sample	Aqueo	us GC/N	IS DDD	04/12/17	04/13/17	15:36	170412S07	
17-04-0796-1	Matrix Spike	Aqueo	us GC/N	IS DDD	04/12/17	04/12/17	15:32	170412S07	
17-04-0796-1	Matrix Spike Dup	licate Aqueo	us GC/N	IS DDD	04/12/17	04/12/17 1	15:47	170412S07	
Parameter		oike <u>MS</u> dded <u>Conc.</u>	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,4-Dioxane	241.6 20	0.00 264.1	112	272.2	153	50-130	3	0-20	3

 Tetra Tech, Inc.
 Date Received:
 04/10/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0729

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B


Project: LMC BOU Page 4 of 7

Quality Control Sample ID	Туре		Matrix	lı	nstrument	Date Prepared	d Date Ana	lyzed	MS/MSD Bat	ch Number
MW-04-N-17Q2	Sample		Aqueou	s C	GC/MS L	04/21/17	04/21/17	13:26	170421S007	
MW-04-N-17Q2	Matrix Spike		Aqueou	s C	GC/MS L	04/21/17	04/21/17	13:57	170421S007	
MW-04-N-17Q2	Matrix Spike	Duplicate	Aqueou	s C	GC/MS L	04/21/17	04/21/17	14:27	170421S007	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,1-Dichloroethene	2.492	10.00	12.11	96	12.82	103	66-126	6	0-20	
1,2-Dibromoethane	ND	10.00	9.127	91	9.658	97	75-126	6	0-20	
1,2-Dichlorobenzene	ND	10.00	9.015	90	9.756	98	75-125	8	0-20	
1,2-Dichloroethane	ND	10.00	9.624	96	10.23	102	75-127	6	0-20	
Benzene	ND	10.00	9.052	91	9.375	94	75-125	4	0-20	
Carbon Tetrachloride	1.099	10.00	8.964	79	9.474	84	69-135	6	0-20	
Chlorobenzene	ND	10.00	9.259	93	9.760	98	75-125	5	0-20	
Ethylbenzene	ND	10.00	9.191	92	9.849	98	75-125	7	0-20	
Toluene	ND	10.00	9.315	93	9.762	98	75-125	5	0-20	
Trichloroethene	20.58	10.00	29.62	90	29.91	93	75-125	1	0-20	
Vinyl Chloride	ND	10.00	11.72	117	11.77	118	52-142	0	0-20	
o-Xylene	ND	10.00	9.303	93	9.796	98	75-127	5	0-20	
p/m-Xylene	ND	20.00	18.32	92	19.62	98	75-125	7	0-20	
Methyl-t-Butyl Ether (MTBE)	ND	10.00	9.580	96	8.964	90	71-131	7	0-20	

Date Received: 04/10/17 Tetra Tech, Inc. Work Order: 17-04-0729 301 E. Vanderbilt Way, Suite 450 Preparation: **EPA 5030C** San Bernardino, CA 92408-3562 Method: **EPA 8260B SIM** Project: LMC BOU Page 5 of 7

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Batch Number
17-04-0793-19	Sample	Aqueous	GC/MS M	04/12/17	04/12/17 23:44	170412S028
17-04-0793-19	Matrix Spike	Aqueous	GC/MS M	04/12/17	04/13/17 00:14	170412S028
17-04-0793-19	Matrix Spike Duplicate	Aqueous	GC/MS M	04/12/17	04/13/17 00:44	170412S028
<u>Parameter</u>	Sample Spike	MS MS	S MSD	MSD % Boo	%Rec. CL RPD	RPD CL Qualifiers

 Tetra Tech, Inc.
 Date Received:
 04/10/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0729

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B SIM

 Project: LMC BOU
 Page 6 of 7

Quality Control Sample ID	Туре		Matrix Ir		trument	Date Prepared	Date Analyzed		MS/MSD Bat	ch Number
17-04-0944-2	Sample		Aqueous GC/		GC/MS M 04/13/17		04/13/17 13:39		170413S014	
17-04-0944-2	Matrix Spike		Aqueous GC/MS M		MS M	04/13/17 04/13/17		15:00	0 170413S014	
17-04-0944-2	Matrix Spike Duplicate		Aqueous GC/MS N		MS M	04/13/17 04/13/17 15:31		170413S014		
<u>Parameter</u>	Sample Conc.	<u>Spike</u> Added	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,2,3-Trichloropropane	ND	0.02000	0.01800	90	0.01560	78	80-120	14	0-20	3

Quality Control - Spike/Spike Duplicate

Date Received: 04/10/17 Tetra Tech, Inc. Work Order: 17-04-0729 301 E. Vanderbilt Way, Suite 450 Preparation: **EPA 5030C** San Bernardino, CA 92408-3562 Method: **EPA 8260B SIM**

Project: LMC BOU Page 7 of 7

Quality Control Sample ID	Туре		Matrix	In	strument	Date Prepared	Date Ana	lyzed	MS/MSD Ba	tch Number
A-1-CW04-N-17Q2	Sample		Aqueou	ıs G	C/MS M	04/14/17	04/14/17	13:59	170414S011	
A-1-CW04-N-17Q2	Matrix Spike		Aqueou	ıs G	C/MS M	04/14/17	04/14/17	14:59	170414S011	
A-1-CW04-N-17Q2	Matrix Spike	Duplicate	Aqueou	ıs G	C/MS M	04/14/17	04/14/17	15:29	170414S011	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> <u>Added</u>	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,2,3-Trichloropropane	24.65	10.00	37.40	128	33.05	84	80-120	12	0-20	3

RPD: Relative Percent Difference. CL: Control Limits

EPA 6020

Quality Control - PDS

Date Received: 04/10/17 Tetra Tech, Inc. Work Order: 17-04-0729 301 E. Vanderbilt Way, Suite 450 Preparation: EPA 3020A Total San Bernardino, CA 92408-3562

Method:

Project: LMC BOU Page 1 of 1

Quality Control Sample ID	Туре	N	/latrix	Instrument	Date Prepared	Date Analyzed	PDS/PDSD Batch Number
17-04-1153-8	Sample	Α	Aqueous	ICP/MS 03	04/17/17 00:00	04/19/17 02:08	170417SA3
17-04-1153-8	PDS	A	Aqueous	ICP/MS 03	04/17/17 00:00	04/24/17 11:42	170417SA3
<u>Parameter</u>		Sample Conc.	Spike Added	PDS Conc.	PDS %Re	ec. %Rec. 0	<u>Qualifiers</u>
Chromium		ND	0.1000	0.1000	100	75-125	

Tetra Tech, Inc.

Date Received:

04/10/17

301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-0729

San Bernardino, CA 92408-3562

Preparation:

N/A

Method: EPA 218.6

Project: LMC BOU Page 1 of 7

Quality Control Sample ID	Type	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-14-567-234	LCS	Aqueous	IC 16	N/A	04/10/17 16:40	170410L01
<u>Parameter</u>		Spike Added	Conc. Recov	ered LCS %R	tec. %Rec	. CL Qualifiers
Chromium, Hexavalent		10.00	10.04	100	95-10	7

Date Received: Tetra Tech, Inc. Work Order: 301 E. Vanderbilt Way, Suite 450 Preparation: San Bernardino, CA 92408-3562 Method:

EPA 3020A Total EPA 6020

04/10/17

17-04-0729

Project: LMC BOU Page 2 of 7

Quality Control Sample ID	Type	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
096-06-003-5537	LCS	Aqueous	ICP/MS 03	04/17/17	04/19/17 02:01	170417LA3
<u>Parameter</u>		Spike Added	Conc. Recovere	ed LCS %Re	ec. %Rec	. CL Qualifiers
Chromium		0.1000	0.1031	103	80-12	0

 Tetra Tech, Inc.
 Date Received:
 04/10/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0729

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 3510C

Method: EPA 8270C (M) Isotope Dilution

Project: LMC BOU Page 3 of 7

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-16-216-1005	LCS	Aqueous	GC/MS DDD	04/12/17	04/12/17 15:16	170412L07
<u>Parameter</u>		Spike Added	Conc. Recovere	ed LCS %Re	ec. %Rec	. CL Qualifiers
1,4-Dioxane		20.00	19.91	100	50-130	0

Tetra Tech, Inc. 301 E. Vanderbilt Way, Suite 450 San Bernardino, CA 92408-3562

Date Received: Work Order: Preparation: Method:

04/10/17 17-04-0729 **EPA 5030C**

EPA 8260B

Project: LMC BOU Page 4 of 7

Quality Control Sample ID	Type	Matrix	k Instrumen	t Date Prep	ared Date Ana	lyzed LCS Bate	ch Number
099-10-025-4633	LCS	Aque	ous GC/MS L	04/21/17	04/21/17	11:06 170421L	006
<u>Parameter</u>		Spike Added	Conc. Recovered	LCS %Rec.	%Rec. CL	ME CL	<u>Qualifiers</u>
1,1-Dichloroethene		10.00	10.03	100	77-120	70-127	
1,2-Dibromoethane		10.00	10.32	103	80-120	73-127	
1,2-Dichlorobenzene		10.00	10.20	102	80-120	73-127	
1,2-Dichloroethane		10.00	10.40	104	80-122	73-129	
Benzene		10.00	9.936	99	80-120	73-127	
Carbon Tetrachloride		10.00	8.834	88	80-129	72-137	
Chlorobenzene		10.00	10.34	103	80-120	73-127	
Ethylbenzene		10.00	10.33	103	80-120	73-127	
Toluene		10.00	10.32	103	80-120	73-127	
Trichloroethene		10.00	10.32	103	80-120	73-127	
Vinyl Chloride		10.00	10.39	104	63-135	51-147	
o-Xylene		10.00	10.39	104	80-120	73-127	
p/m-Xylene		20.00	20.84	104	80-120	73-127	
Methyl-t-Butyl Ether (MTBE)		10.00	10.23	102	75-123	67-131	

Total number of LCS compounds: 14 Total number of ME compounds: 0

Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass

RPD: Relative Percent Difference. CL: Control Limits

Date Received: 04/10/17 Tetra Tech, Inc. Work Order: 17-04-0729 301 E. Vanderbilt Way, Suite 450 Preparation: **EPA 5030C** San Bernardino, CA 92408-3562 Method: **EPA 8260B SIM** Project: LMC BOU Page 5 of 7

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prep	ared Date	Analyzed	LCS Batch Number	
099-15-118-483	LCS	Aqueous	GC/MS M	04/12/17	04/12	2/17 22:15	170412L047	
<u>Parameter</u>		Spike Added	Conc. Recove	ered LCS	%Rec.	%Rec	. CL Qualifie	rs
1,2,3-Trichloropropane		0.02000	0.01680	84		80-120)	

 Tetra Tech, Inc.
 Date Received:
 04/10/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0729

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B SIM

Project: LMC BOU Page 6 of 7

Quality Control Sample ID	Type	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-15-118-484	LCS	Aqueous	GC/MS M	04/13/17	04/13/17 11:28	170413L029
<u>Parameter</u>		Spike Added	Conc. Recover	ed LCS %R	ec. %Rec	. CL Qualifiers
1,2,3-Trichloropropane		0.02000	0.01880	94	80-12	0

 Tetra Tech, Inc.
 Date Received:
 04/10/17

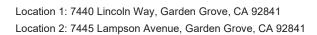
 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0729

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B SIM

Project: LMC BOU Page 7 of 7

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-15-118-485	LCS	Aqueous	GC/MS M	04/14/17	04/14/17 10:58	170414L032
<u>Parameter</u>		Spike Added	Conc. Recovere	ed LCS %R	ec. %Rec	. CL Qualifiers
1,2,3-Trichloropropane		0.02000	0.01920	96	80-12	0



Sample Analysis Summary Report

Work Order: 17-04-0729	Vork Order: 17-04-0729					
Method	<u>Extraction</u>	Chemist ID	Instrument	Analytical Location		
EPA 218.6	N/A	1065	IC 16	1		
EPA 6020	EPA 3020A Total	598	ICP/MS 03	1		
EPA 8260B	EPA 5030C	316	GC/MS L	2		
EPA 8260B SIM	EPA 5030C	486	GC/MS M	2		
EPA 8270C (M) Isotope Dilution	EPA 3510C	928	GC/MS DDD	1		

Χ

Ζ

Glossary of Terms and Qualifiers

Work Order: 17-04-0729 Page 1 of 1

Qualifiers	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
CI	See case narrative.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
SG	The sample extract was subjected to Silica Gel treatment prior to analysis.

Analyte presence was not confirmed by second column or GC/MS analysis.

% Recovery and/or RPD out-of-range.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

Ň	eurofins	į
·		:

WORK ORDER NUMBER: 17-04-

Calscience / SAMPLE RECEIPT CHECKLIST

COOL	ΕF	ŧ	1	OF	<u>/</u>	
_		-	\$100			_

CLIENT: Jetra Tech	•

DATE: 04 / 1/2017

TEMPERATURE: (Criteria: 0.0°C – 6.0°C, not frozen except sediment/tissue)			
Thermometer ID: SC (CF: 0.0°C); Temperature (w/o CF): 2 2 °C (w/ CF): 2 C (w/ CF):	lank □:	Sample	
☐ Sample(s) outside temperature criteria (PM/APM contacted by:)			
☐ Sample(s) outside temperature criteria but received on ice/chilled on same day of sampling			
☐ Sample(s) received at ambient temperature; placed on ice for transport by courier			601
Ambient Temperature: □ Air □ Filter	Checke	d by: <u>/</u>	071
CUSTODY SEAL:			291
Cooler ☐ Present and Intact ☐ Present but Not Intact ☐ Not Present ☐ N/A	Checke	4 \$11	110
Sample(s) Present and intact Present but Not intact Not Present NA	Checke	d by: _/	<u>110.</u>
SAMPLE CONDITION:	Yes	No	N/A
Chain-of-Custody (COC) document(s) received with samples	JE		
COC document(s) received complete		JEY .	
☐ Sampling date ☐ Sampling time ☐ Matrix ☑ Number of containers	. 44		
☐ No analysis requested ☐ Not relinguished ☐ No relinguished date ☐ No relinguished time			
Sampler's name Indicated on COC	Ø		
Sample container label(s) consistent with COC			
Sample container(s) intact and in good condition			
Proper containers for analyses requested			
Sufficient volume/mass for analyses requested			
Samples received within holding time			
Aqueous samples for certain analyses received within 15-minute holding time			
□ pH □ Residual Chlorine □ Dissolved Sulfide □ Dissolved Oxygen			
Proper preservation chemical(s) noted on COC and/or sample container			_
Unpreserved aqueous sample(s) received for certain analyses	/-		
□ Volatile Organics □ Total Metals □ Dissolved Metals			
Container(s) for certain analysis free of headspace	17		
✓ Volatile Organics □ Dissolved Gases (RSK-175) □ Dissolved Oxygen (SM 4500)	_	_	
☐ Carbon Dioxide (SM 4500) ☐ Ferrous Iron (SM 3500) ☐ Hydrogen Sulfide (Hach)			
Tedlar™ bag(s) free of condensation		0	
			; Æ
TAIN .			
Aqueous: UVOA UVOAnaz U 100PJ U 100PJnaz U 125AG8 U 125AG8 U 125AG8 U 125AG8	GRD III	25PB	
☐ 125PBznna ☐ 250AGB ☐ 250CGB ☐ 250CGBe ☐ 250PB ☐ 250PBn ☐ 500AGB ☐ 500AGJ			
500PB 11AGB 14AGBne 11AGBs 11PB 11PBna 1			
Solid: □ 4ozCGJ □ 8ozCGJ □ 16ozCGJ □ Sleeve () □ EnCores [®] () □ TerraCores [®] ()			
Air: ☐ Tedlar [™] ☐ Canister ☐ Sorbent Tube ☐ PUF ☐ Other Matrix (): ☐			
Container: A = Amber, B = Bottle, C = Clear, E = Envelope, G = Glass, J = Jar, P = Plastic, and Z = Ziploc/Res			القرخ 12
Preservative: $b = buffered$, $f = filtered$, $h = HCl$, $n = HNO_S$, $na = NaOH$, $na_Z = Na_ZS_2O_Z$, $p = H_2PO_S$. Labeled			-
$\mathbf{s} = H_2SO_4$, $\mathbf{u} = \mathbf{ultra-pure}$, $\mathbf{x} = Na_2SO_3 + NaHSO_4$. H_2O , \mathbf{z} nna = \mathbf{Z} n (CH ₃ CO ₂) ₂ + NaOH	Reviewe	a by: <u>t</u>	121

SAMPLE ANOMALY REPORT

DATE: 04 / 10 / 2017

									1047 10 7 2017
SAMPLES,	CONTAIN	ERS, AN	D LABEL	8:		Comme	nts	•	
🛚 Sample(s) N	NOT RECE	IVED but I	listed on C0	oc .					
☐ Sample(s) r	eceived but	NOT LIS	TED on CC	c					<u>.</u>
☐ Holding time	e expirad (l.	ist client o	r ECI samp	le ID and anal	lysie)				
☐ insufficient :	sample am	ount for re	quesied an	alysis (list ana	alysis)				
☐ Improper co	ontainer(s) (used (list a	analysis)						
☐ Improper pr	eservative	used (list a	analysis)						
□ No preserva	ative noted	an COC a	r label (list	analysis and r	notify lab)				-N - 17Q <u>2</u>
☐ Sample con	italner(s) no	beledal fo				co ect	ion data	e 8 tin	ne matched.
□ Client samp	ile label(s) l	llegible (lb	st containe	type and ana	lysis)				
☑ Client samp	ile lebel(s)	do not mai	tch COC (c	omment)					
☐ Project i	information					(- <u>5</u>) ਲੇ (-	-7) Reca	eived °	1 watainers
,⊿'Client se	ample ID						<u>d of 13</u>		
☐ Samplin	g date and/	or time				_(rece	rived 5 v	ials in	stead of 10).
∫2 Number	of contains	er(s)							
☐ Request	ted analysis	5							
☐ Sample con	itainer(s) co	ympromise	ed (comma	nt)					
🖾 Broken									
☐ Water pa	resent in sa	empie cont	tainer						
☐ Air sample (container(s) compron	nised (com	nent)					
□ Flat									
☐ Very low	emulov ni v								
 Leaking 	(not transfe	erred; dup	licate bag s	rubmitted)					
🗀 Leaking	(transferre	d into ECI	Tedlar™ b	eg9*)					
☐ Leaking	(transferre	d into clier	nt'e Tedlar™	≒ bags*)			****		
* Transferred	와 CB EMER Lexin	1991							
MISCELLAN	IEOUS: (D	escribe)				Comme	nts		
HEADSPAC	E:								
(Containers with b	ubble > 6 mm	or 14 inch for	volalije orgalij	io or dissolved gae	analysis)	(Containers w	ith bubble for offe	er atmadysais.]	
ECI Sanda ID	EÇI Conlaîner ID	Total Jeanbar	ECI Semple ID	EÇI Caribiner ID	Total Number**	ECS Sample ID	ECI Compiner ID	Total Number=	Requested Analysis
SOUCH IL	COLLEGE	74ESIDAE	Seripero	Cultural of the cultural of th		Sample 10	1 44-(4	1	
\vdash		<u></u>					<u> </u> 		
						 			
				•					
Comments:									
Solder Roll Mo.								F	Reported by://Ô
™ Record the lobal	I number of co	ntelnere (Le	viels or bottle	s) for the effected	sample.			Ŕ	Reported by: 1/10 eviewed by: 69 r
		(- 30)							

Calscience

WORK ORDER NUMBER: 17-04-0598

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: Tetra Tech, Inc.

Client Project Name: LMC BOU

Attention: Robert Sabater

301 E. Vanderbilt Way, Suite 450 San Bernardino, CA 92408-3562

Tes Och for

Approved for release on 04/25/2017 by: Vikas Patel Project Manager

ResultLink >

Email your PM >

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name: LMC BOU
Work Order Number: 17-04-0598

1	Work Order Narrative	3
2	Detections Summary	4
3	Client Sample Data. 3.1 EPA 218.6 Hexavalent Chromium Low Level (Aqueous). 3.2 EPA 6020 ICP/MS Metals (Aqueous). 3.3 1,4-Dioxane by EPA 8270C (M) Isotope Dilution (Aqueous). 3.4 EPA 8260B Volatile Organics (Aqueous). 3.5 EPA 8260B SIM Emergent Volatiles (Aqueous).	7 7 9 10 12 42
4	Quality Control Sample Data. 4.1 MS/MSD. 4.2 PDS/PDSD. 4.3 LCS/LCSD.	45 45 52 53
5	Sample Analysis Summary	60
6	Glossary of Terms and Qualifiers	61
7	Chain-of-Custody/Sample Receipt Form	62

Work Order Narrative

Work Order: 17-04-0598 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 04/07/17. They were assigned to Work Order 17-04-0598.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Detections Summary

Client: Tetra Tech, Inc.

Work Order: 17-04-0598
Project Name: LMC BOU

301 E. Vanderbilt Way, Suite 450 San Bernardino, CA 92408-3562

Received: 04/07/17

Attn: Robert Sabater Page 1 of 3

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	<u>Extraction</u>
MW-03-N-17Q2 (17-04-0598-1)						
Chromium, Hexavalent	2.7		0.020	ug/L	EPA 218.6	N/A
Chromium	0.00297		0.00100	mg/L	EPA 6020	EPA 3020A Total
1,1,2-Trichloro-1,2,2-Trifluoroethane	2.9		0.50	ug/L	EPA 8260B	EPA 5030C
1,1-Dichloroethene	7.2		0.50	ug/L	EPA 8260B	EPA 5030C
1,2,3-Trichloropropane	0.53	J	0.40*	ug/L	EPA 8260B	EPA 5030C
1,2-Dichloroethane	0.32	J	0.20*	ug/L	EPA 8260B	EPA 5030C
Acetone	4.1	J	4.0*	ug/L	EPA 8260B	EPA 5030C
Carbon Tetrachloride	0.78		0.50	ug/L	EPA 8260B	EPA 5030C
Chloroform	2.6		0.50	ug/L	EPA 8260B	EPA 5030C
Tetrachloroethene	32		0.50	ug/L	EPA 8260B	EPA 5030C
Trichloroethene	12		0.50	ug/L	EPA 8260B	EPA 5030C
Trichlorofluoromethane	0.34	J	0.20*	ug/L	EPA 8260B	EPA 5030C
c-1,2-Dichloroethene	0.25	J	0.20*	ug/L	EPA 8260B	EPA 5030C
1,2,3-Trichloropropane	0.93		0.050	ug/L	EPA 8260B SIM	EPA 5030C
MW-08-N-17Q2 (17-04-0598-2)						
Chromium, Hexavalent	2.1		0.020	ug/L	EPA 218.6	N/A
Chromium	0.00281		0.00100	mg/L	EPA 6020	EPA 3020A Total
1,1,2-Trichloro-1,2,2-Trifluoroethane	3.4		0.50	ug/L	EPA 8260B	EPA 5030C
1,1-Dichloroethene	2.1		0.50	ug/L	EPA 8260B	EPA 5030C
1,2,3-Trichloropropane	0.65	J	0.40*	ug/L	EPA 8260B	EPA 5030C
Acetone	6.3	J	4.0*	ug/L	EPA 8260B	EPA 5030C
Carbon Tetrachloride	0.57		0.50	ug/L	EPA 8260B	EPA 5030C
Chloroform	4.3		0.50	ug/L	EPA 8260B	EPA 5030C
Naphthalene	0.45	J	0.40*	ug/L	EPA 8260B	EPA 5030C
Trichloroethene	24		0.50	ug/L	EPA 8260B	EPA 5030C
Tetrachloroethene	71		2.0	ug/L	EPA 8260B	EPA 5030C
1,2,3-Trichloropropane	0.93		0.050	ug/L	EPA 8260B SIM	EPA 5030C

^{*} MDL is shown

Detections Summary

Client: Tetra Tech, Inc.

Work Order: Project Name: 17-04-0598

301 E. Vanderbilt Way, Suite 450 San Bernardino, CA 92408-3562 Project Name: LMC BOU Received: 04/07/17

Attn: Robert Sabater Page 2 of 3

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	Method	Extraction
MW-07-N-17Q2 (17-04-0598-3)						
Chromium, Hexavalent	1.9		0.020	ug/L	EPA 218.6	N/A
Chromium	0.00262		0.020	mg/L	EPA 6020	EPA 3020A Total
1,1,2-Trichloro-1,2,2-Trifluoroethane	3.9		0.50	ug/L	EPA 8260B	EPA 5030C
1,1-Dichloroethene	2.9		0.50	ug/L	EPA 8260B	EPA 5030C
1,2,3-Trichloropropane	0.40	J	0.40*	ug/L	EPA 8260B	EPA 5030C
1.2-Dichloroethane	0.23	J	0.20*	ug/L	EPA 8260B	EPA 5030C
Acetone	4.0	J	4.0*	ug/L	EPA 8260B	EPA 5030C
Carbon Tetrachloride	0.34	J	0.20*	ug/L	EPA 8260B	EPA 5030C
Chloroform	1.9	Ü	0.50	ug/L	EPA 8260B	EPA 5030C
Trichloroethene	17		0.50	ug/L	EPA 8260B	EPA 5030C
Tetrachloroethene	34		1.0	ug/L	EPA 8260B	EPA 5030C
1,2,3-Trichloropropane	0.60		0.050	ug/L	EPA 8260B SIM	EPA 5030C
3871H-N-17Q2 (17-04-0598-5)				9/		
Chromium, Hexavalent	9.6		0.020	ug/L	EPA 218.6	N/A
Chromium	0.0114		0.00100	mg/L	EPA 6020	EPA 3020A Total
Tetrachloroethene	120		4.0	ug/L	EPA 8260B	EPA 5030C
Trichloroethene	140		4.0	ug/L	EPA 8260B	EPA 5030C
1,2,3-Trichloropropane	0.084		0.0050	ug/L	EPA 8260B SIM	EPA 5030C
3871J-N-17Q2 (17-04-0598-6)						
Chromium, Hexavalent	3.8		0.020	ug/L	EPA 218.6	N/A
Chromium	0.00447		0.00100	mg/L	EPA 6020	EPA 3020A Total
Acetone	5.5	J	4.0*	ug/L	EPA 8260B	EPA 5030C
Tetrachloroethene	0.25	J	0.20*	ug/L	EPA 8260B	EPA 5030C
3861F-N-17Q2 (17-04-0598-7)						
Chromium, Hexavalent	4.9		0.020	ug/L	EPA 218.6	N/A
Chromium	0.00556		0.00100	mg/L	EPA 6020	EPA 3020A Total
Acetone	7.2	J	4.0*	ug/L	EPA 8260B	EPA 5030C
Chloroform	0.39	J	0.20*	ug/L	EPA 8260B	EPA 5030C
Tetrachloroethene	7.0		0.50	ug/L	EPA 8260B	EPA 5030C
Trichloroethene	4.1		0.50	ug/L	EPA 8260B	EPA 5030C
1,2,3-Trichloropropane	0.0045	J	0.0025*	ug/L	EPA 8260B SIM	EPA 5030C

^{*} MDL is shown

Detections Summary

Client: Tetra Tech, Inc.

301 E. Vanderbilt Way, Suite 450 San Bernardino, CA 92408-3562 Work Order:

17-04-0598

Project Name: Received:

LMC BOU 04/07/17

Attn: Robert Sabater

Page 3 of 3

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
3861D-N-17Q2 (17-04-0598-8)						
Chromium, Hexavalent	6.8		0.020	ug/L	EPA 218.6	N/A
Chromium	0.00894		0.00100	mg/L	EPA 6020	EPA 3020A Total
Acetone	4.1	J	4.0*	ug/L	EPA 8260B	EPA 5030C
Carbon Tetrachloride	0.41	J	0.20*	ug/L	EPA 8260B	EPA 5030C
Chloroform	1.2		0.50	ug/L	EPA 8260B	EPA 5030C
Dichlorodifluoromethane	7.1		1.0	ug/L	EPA 8260B	EPA 5030C
Tetrachloroethene	24		0.50	ug/L	EPA 8260B	EPA 5030C
Toluene	0.41	J	0.20*	ug/L	EPA 8260B	EPA 5030C
c-1,2-Dichloroethene	0.21	J	0.20*	ug/L	EPA 8260B	EPA 5030C
Trichloroethene	160		10	ug/L	EPA 8260B	EPA 5030C
1,2,3-Trichloropropane	0.0056		0.0050	ug/L	EPA 8260B SIM	EPA 5030C

Subcontracted analyses, if any, are not included in this summary.

<u>Parameter</u>

3861F-N-17Q2

Comment(s):

<u>Parameter</u>

Chromium, Hexavalent

Chromium, Hexavalent

Analytical Report

Tetra Tech, Inc.			Date Recei	ved:			04/07/17
301 E. Vanderbilt Way, Suite 450			Work Order	r:			17-04-0598
San Bernardino, CA 92408-3562			Preparation	1:			N/A
,			Method:				EPA 218.6
			Units:				ug/L
Project: LMC BOU						F	Page 1 of 2
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-03-N-17Q2	17-04-0598-1-M	04/07/17 12:58	Aqueous	IC 16	N/A	04/07/17 21:40	170407L01
Comment(s): - Results were evaluated to	the MDL (DL), cond	centrations >=	to the MDL (DI	L) but < RL (LC	Q), if found, are	qualified with	ı a "J" flag.
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	MDL	<u>DF</u>		<u>Qualifiers</u>
Chromium, Hexavalent	2.7		0.020	0.0099	1.00		
MW-08-N-17Q2	17-04-0598-2-M	04/07/17 11:01	Aqueous	IC 16	N/A	04/07/17 21:51	170407L01
Comment(s): - Results were evaluated to	the MDL (DL), cond	centrations >=	to the MDL (DI	L) but < RL (LC	Q), if found, are	qualified with	n a "J" flag.
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
Chromium, Hexavalent	2.1		0.020	0.0099	1.00		
MW-07-N-17Q2	17-04-0598-3-M	04/07/17 09:26	Aqueous	IC 16	N/A	04/07/17 22:02	170407L01
Comment(s): - Results were evaluated to	the MDL (DL), cond	centrations >=	to the MDL (DI	L) but < RL (LC	Q), if found, are	qualified with	ı a "J" flag.
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>		Qualifiers
Chromium, Hexavalent	1.9		0.020	0.0099	1.00		
3871H-N-17Q2	17-04-0598-5-M	04/07/17 09:45	Aqueous	IC 16	N/A	04/07/17 22:14	170407L01
Comment(s): - Results were evaluated to	the MDL (DL), cond	centrations >=	to the MDL (DI	L) but < RL (LC	Q), if found, are	qualified with	ı a "J" flag.
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
Chromium, Hexavalent	9.6		0.020	0.0099	1.00		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Result

Result

4.9

04/07/17 12:19

3.8

17-04-0598-7-M

<u>RL</u>

0.020

- Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

0.020

Aqueous IC 16

MDL

<u>MDL</u>

0.0099

0.0099

<u>DF</u>

1.00

1.00

N/A

04/07/17 22:36 Qualifiers

Qualifiers

170407L01

Date Received: 04/07/17 Tetra Tech, Inc. Work Order: 17-04-0598 301 E. Vanderbilt Way, Suite 450 Preparation: N/A San Bernardino, CA 92408-3562 Method: EPA 218.6 Units: ug/L

Page 2 of 2 Project: LMC BOU

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
3861D-N-17Q2	17-04-0598-8-M	04/07/17 13:50	Aqueous	IC 16	N/A	04/07/17 22:47	170407L01

Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. <u>Parameter</u> Result <u>RL</u> <u>MDL</u> Qualifiers 1.00 Chromium, Hexavalent 6.8 0.020 0.0099

Method Blank		099-14-567-233	N/A	Aqueous IC	C 16	N/A	04/07/17 19:31	170407L01
Comment(s):	- Results were evaluated to	the MDL (DL), conc	entrations >= to t	he MDL (DL) b	out < RL (LOQ)	, if found, are q	ualified with a "J	J" flag.
<u>Parameter</u>		Resul	t RL	<u> </u>	<u>MDL</u>	<u>DF</u>	Qu	<u>alifiers</u>
Chromium, Hexa	avalent	ND	0.0)20	0.0099	1.00		

Analytical Report

Tetra Tech, Inc.			Date Recei	ved:			04/07/17	
301 E. Vanderbilt Way, Suite 450			Work Orde	r:		17-04-0598		
San Bernardino, CA 92408-3562			Preparation	1:		EP	A 3020A Total	
			Method:				EPA 6020	
			Units:				mg/L	
Project: LMC BOU						Pa	ge 1 of 1	
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
MW-03-N-17Q2	17-04-0598-1-L	04/07/17 12:58	Aqueous	ICP/MS 05	04/17/17	04/17/17 19:22	170417LA1	
Parameter		Result	RL	:	<u>DF</u>	Qua	<u>alifiers</u>	
Chromium		0.00297	0.0	00100	1.00			
MW-08-N-17Q2	17-04-0598-2-L	04/07/17 11:01	Aqueous	ICP/MS 05	04/17/17	04/17/17 19:25	170417LA1	
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	alifiers	
Chromium		0.00281	0.0	00100	1.00			
MW-07-N-17Q2	17-04-0598-3-L	04/07/17 09:26	Aqueous	ICP/MS 05	04/17/17	04/17/17 19:29	170417LA1	
<u>Parameter</u>		Result	RL	:	DF	Qua	alifiers	
Chromium		0.00262	0.0	00100	1.00			
3871H-N-17Q2	17-04-0598-5-L	04/07/17 09:45	Aqueous	ICP/MS 05	04/17/17	04/17/17 19:33	170417LA1	
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	alifiers	
Chromium		0.0114	0.0	00100	1.00			
3871J-N-17Q2	17-04-0598-6-L	04/07/17 11:02	Aqueous	ICP/MS 05	04/17/17	04/17/17 19:36	170417LA1	
Parameter		Result	RL	:	DF	Qua	<u>alifiers</u>	
Chromium		0.00447	0.0	00100	1.00			
3861F-N-17Q2	17-04-0598-7-L	04/07/17 12:19	Aqueous	ICP/MS 05	04/17/17	04/17/17 19:51	170417LA1	
Parameter		Result	RL	i	<u>DF</u>	Qua	<u>alifiers</u>	
Chromium		0.00556	0.0	00100	1.00			
3861D-N-17Q2	17-04-0598-8-L	04/07/17 13:50	Aqueous	ICP/MS 05	04/17/17	04/17/17 19:18	170417LA1	
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	alifiers	
Chromium		0.00894	0.0	00100	1.00			
Method Blank	096-06-003-5525	N/A	Aqueous	ICP/MS 05	04/17/17	04/17/17 15:53	170417LA1	
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	alifiers	

Tetra Tech, Inc.

Date Received: 04/07/17

301 E. Vanderbilt Way, Suite 450 Work Order: 17-04-0598 San Bernardino, CA 92408-3562 Preparation: EPA 3510C

Method: EPA 8270C (M) Isotope Dilution Units: ug/L

Project: LMC BOU Page 1 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
MW-03-N-17Q2	17-04-0598-1-K	04/07/17 12:58	Aqueous	GC/MS DDD	04/10/17	04/11/17 01:55	170410L09	
Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.								
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>(</u>	Qualifiers	
1,4-Dioxane	ND		1.0	0.28	1.00			
Surrogate	Rec.	(%)	Control Limits	Qualifiers				
Nitrobenzene-d5	113		56-123					
1,4-Dioxane-d8(IDS-IS)	45		30-120					

MW-08-N-17Q2		17-04-0598-2-K	04/07/17 11:01	Aqueous	GC/MS DDD	04/10/17	04/11/17 02:11	170410L09	
Comment(s):	- Results were evaluated to t	he MDL (DL), conc	entrations >=	to the MDL (DL) but < RL (LOC	Q), if found, are	e qualified with	a "J" flag.	
<u>Parameter</u>		<u>Resul</u>	<u>t</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>	
1,4-Dioxane		ND		1.0	0.28	1.00			
Surrogate		Rec. ((%)	Control Limits	Qualifiers				
Nitrobenzene-d5		120	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	56-123	<u>Quantioro</u>				
1,4-Dioxane-d8(I	IDS-IS)	40		30-120					

MW-07-N-17Q2	17-04-0598-3-K	04/07/17 Aq 09:26	ueous GC/MS DDD		04/11/17 170410L09 02:28
Comment(s): - Results were eva	aluated to the MDL (DL), conce	entrations >= to the	MDL (DL) but < RL (LC	OQ), if found, are qu	ualified with a "J" flag.
<u>Parameter</u>	Result	<u>t RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
1,4-Dioxane	ND	1.0	0.28	1.00	
Surrogate	Rec. ((%) Contro	ol Limits Qualifier	<u>s</u>	
Nitrobenzene-d5	109	56-12	3		
1,4-Dioxane-d8(IDS-IS)	42	30-12	0		

3871H-N-17Q2	17-04-0598-5-K	04/07/17 09:45	Aqueous	GC/MS DDD	04/10/17	04/11/17 02:44	170410L09
Comment(s): - Results were evaluated	to the MDL (DL), conc	entrations >= t	to the MDL (DL	.) but < RL (LOC)), if found, are	qualified with	a "J" flag.
<u>Parameter</u>	<u>Resul</u>	<u>t</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
1,4-Dioxane	ND		1.0	0.28	1.00		
<u>Surrogate</u>	Rec. ((%)	Control Limits	Qualifiers			
Nitrobenzene-d5	112		56-123				
1,4-Dioxane-d8(IDS-IS)	42		30-120				

Tetra Tech, Inc.

Date Received: 04/07/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0598

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 3510C

Method: EPA 8270C (M) Isotope Dilution

Units: ug/L

Project: LMC BOU Page 2 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
3871J-N-17Q2	17-04-0598-6-K	04/07/17 11:02	Aqueous	GC/MS DDD	04/10/17	04/11/17 03:00	170410L09	
Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.								
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>	
1,4-Dioxane	ND		1.0	0.28	1.00			
Surrogate	Rec.	(%)	Control Limits	Qualifiers				
Nitrobenzene-d5	113		56-123					
1,4-Dioxane-d8(IDS-IS)	44	;	30-120					

3861F-N-17Q2	17-04-0598-7-K	04/07/17 12:19	Aqueous	GC/MS DDD	04/10/17	04/14/17 15:07	170410L09
Comment(s): - Results were evaluate	ed to the MDL (DL), cond	centrations >=	to the MDL (DL	.) but < RL (LOC	(a), if found, are	qualified with a	'J" flag.
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Q	<u>ualifiers</u>
1,4-Dioxane	ND		1.0	0.28	1.00		
Surrogate	Rec.	<u>(%)</u>	Control Limits	Qualifiers			
Nitrobenzene-d5	104		56-123				
1,4-Dioxane-d8(IDS-IS)	39		30-120				

3861D-N-17Q2	1	17-04-0598-8-K	04/07/17 13:50	Aqueous	GC/MS DDD	04/10/17	04/11/17 03:32	170410L09
Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.								
<u>Parameter</u>		Resul	<u>t</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Q	<u>ualifiers</u>
1,4-Dioxane		ND		1.0	0.28	1.00		
<u>Surrogate</u>		<u>Rec. (</u>	<u>(%)</u>	Control Limits	<u>Qualifiers</u>			
Nitrobenzene-d5	j.	88		56-123				
1,4-Dioxane-d8(IDS-IS)	59		30-120				

Method Blank		099-16-216-1007	N/A	Aqueous	GC/MS DDD	04/10/17	04/10/17 21:40	170410L09
Comment(s):	- Results were evaluated to t	he MDL (DL), conce	entrations >= t	o the MDL (DL)	but < RL (LOQ), if found, are	qualified with a	"J" flag.
<u>Parameter</u>		Result	<u>t</u> .	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
1,4-Dioxane		ND		1.0	0.28	1.00		
<u>Surrogate</u>		<u>Rec. (</u>	<u>%)</u>	Control Limits	<u>Qualifiers</u>			
Nitrobenzene-d5		106	:	56-123				
1,4-Dioxane-d8(I	DS-IS)	42	;	30-120				

Project: LMC BOU

Analytical Report

 Tetra Tech, Inc.
 Date Received:
 04/07/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0598

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

Method: EPA 8260B

Units: ug/L Page 1 of 30

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-03-N-17Q2	17-04-0598-1-A	04/07/17 12:58	Aqueous	GC/MS T	04/19/17	04/20/17 03:32	170419L037
Comment(s): - Results were evaluate	d to the MDL (DL), cond	centrations >=	to the MDL (DI	L) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	MDL	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,1-Trichloroethane	ND		0.50	0.20	1.00		
1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane	2.9		0.50	0.24	1.00		
1,1,2-Trichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethene	7.2		0.50	0.28	1.00		
1,1-Dichloropropene	ND		0.50	0.30	1.00		
1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,3-Trichloropropane	0.53		1.0	0.40	1.00	J	l
1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,4-Trimethylbenzene	ND		0.50	0.20	1.00		
1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00		
1,2-Dibromoethane	ND		0.50	0.20	1.00		
1,2-Dichlorobenzene	ND		0.50	0.20	1.00		
1,2-Dichloroethane	0.32		0.50	0.20	1.00	J	l
1,2-Dichloropropane	ND		0.50	0.20	1.00		
1,3,5-Trimethylbenzene	ND		0.50	0.20	1.00		
1,3-Dichlorobenzene	ND		0.50	0.28	1.00		
1,3-Dichloropropane	ND		1.0	0.40	1.00		
1,4-Dichlorobenzene	ND		0.50	0.20	1.00		
2,2-Dichloropropane	ND		1.0	0.40	1.00		
2-Butanone	ND		5.0	2.0	1.00		
2-Chlorotoluene	ND		0.50	0.20	1.00		
2-Hexanone	ND		10	4.0	1.00		
4-Chlorotoluene	ND		0.50	0.36	1.00		
4-Methyl-2-Pentanone	ND		5.0	2.0	1.00		
Acetone	4.1		10	4.0	1.00	J	l
Benzene	ND		0.50	0.20	1.00		
Bromobenzene	ND		0.50	0.32	1.00		
Bromochloromethane	ND		1.0	0.40	1.00		
Bromodichloromethane	ND		0.50	0.20	1.00		
Bromoform	ND		0.50	0.25	1.00		
Bromomethane	ND		1.0	0.40	1.00		

 Tetra Tech, Inc.
 Date Received:
 04/07/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0598

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 2 of 30

Floject. Livio Boo					rage 2 or 30
<u>Parameter</u>	<u>Result</u>	RL	<u>MDL</u>	<u>DF</u>	Qualifiers
Carbon Disulfide	ND	1.0	0.40	1.00	
Carbon Tetrachloride	0.78	0.50	0.20	1.00	
Chlorobenzene	ND	0.50	0.20	1.00	
Chloroethane	ND	0.50	0.32	1.00	
Chloroform	2.6	0.50	0.20	1.00	
Chloromethane	ND	0.50	0.29	1.00	
Dibromochloromethane	ND	0.50	0.20	1.00	
Dibromomethane	ND	0.50	0.20	1.00	
Dichlorodifluoromethane	ND	1.0	0.40	1.00	
Ethylbenzene	ND	0.50	0.20	1.00	
Isopropylbenzene	ND	0.50	0.20	1.00	
Methylene Chloride	ND	1.0	0.80	1.00	
Naphthalene	ND	1.0	0.40	1.00	
Styrene	ND	0.50	0.20	1.00	
Tetrachloroethene	32	0.50	0.20	1.00	
Toluene	ND	0.50	0.20	1.00	
t-1,2-Dichloroethene	ND	0.50	0.20	1.00	
Trichloroethene	12	0.50	0.29	1.00	
Trichlorofluoromethane	0.34	0.50	0.20	1.00	J
Vinyl Acetate	ND	5.0	2.0	1.00	
Vinyl Chloride	ND	0.50	0.20	1.00	
c-1,3-Dichloropropene	ND	0.50	0.20	1.00	
c-1,2-Dichloroethene	0.25	0.50	0.20	1.00	J
n-Butylbenzene	ND	0.50	0.20	1.00	
n-Propylbenzene	ND	0.50	0.20	1.00	
o-Xylene	ND	0.50	0.32	1.00	
p-Isopropyltoluene	ND	0.50	0.20	1.00	
sec-Butylbenzene	ND	0.50	0.20	1.00	
t-1,3-Dichloropropene	ND	0.50	0.20	1.00	
tert-Butylbenzene	ND	0.50	0.20	1.00	
p/m-Xylene	ND	0.50	0.20	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	0.50	0.20	1.00	
2-Chloroethyl Vinyl Ether	ND	5.0	4.2	1.00	
Hexachloro-1,3-Butadiene	ND	2.0	0.80	1.00	
Iodomethane	ND	10	5.0	1.00	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	99	68-120			
Dibromofluoromethane	103	80-127			

Tetra Tech, Inc.	Date Received:	04/07/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0598
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOU		Page 3 of 30

Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>
1,2-Dichloroethane-d4	103	80-128	
Toluene-d8	99	80-120	

Project: LMC BOU

Analytical Report

 Tetra Tech, Inc.
 Date Received:
 04/07/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0598

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

Method: EPA 8260B

Units: ug/L Page 4 of 30

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-08-N-17Q2	17-04-0598-2-A	04/07/17 11:01	Aqueous	GC/MS T	04/19/17	04/20/17 04:05	170419L037
Comment(s): - Results were evaluated to	o the MDL (DL), cond	centrations >=	to the MDL (DI	L) but < RL (LO	Q), if found, are	qualified with a	a "J" flag.
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>(</u>	<u>Qualifiers</u>
1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,1-Trichloroethane	ND		0.50	0.20	1.00		
1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane	3.4		0.50	0.24	1.00		
1,1,2-Trichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethene	2.1		0.50	0.28	1.00		
1,1-Dichloropropene	ND		0.50	0.30	1.00		
1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,3-Trichloropropane	0.65		1.0	0.40	1.00		J
1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,4-Trimethylbenzene	ND		0.50	0.20	1.00		
1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00		
1,2-Dibromoethane	ND		0.50	0.20	1.00		
1,2-Dichlorobenzene	ND		0.50	0.20	1.00		
1,2-Dichloroethane	ND		0.50	0.20	1.00		
1,2-Dichloropropane	ND		0.50	0.20	1.00		
1,3,5-Trimethylbenzene	ND		0.50	0.20	1.00		
1,3-Dichlorobenzene	ND		0.50	0.28	1.00		
1,3-Dichloropropane	ND		1.0	0.40	1.00		
1,4-Dichlorobenzene	ND		0.50	0.20	1.00		
2,2-Dichloropropane	ND		1.0	0.40	1.00		
2-Butanone	ND		5.0	2.0	1.00		
2-Chlorotoluene	ND		0.50	0.20	1.00		
2-Hexanone	ND		10	4.0	1.00		
4-Chlorotoluene	ND		0.50	0.36	1.00		
4-Methyl-2-Pentanone	ND		5.0	2.0	1.00		
Acetone	6.3		10	4.0	1.00		J
Benzene	ND		0.50	0.20	1.00		
Bromobenzene	ND		0.50	0.32	1.00		
Bromochloromethane	ND		1.0	0.40	1.00		
Bromodichloromethane	ND		0.50	0.20	1.00		
Bromoform	ND		0.50	0.25	1.00		
Bromomethane	ND		1.0	0.40	1.00		

 Tetra Tech, Inc.
 Date Received:
 04/07/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0598

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 5 of 30

Floject. Livio Boo					rage 3 or 30
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
Carbon Disulfide	ND	1.0	0.40	1.00	
Carbon Tetrachloride	0.57	0.50	0.20	1.00	
Chlorobenzene	ND	0.50	0.20	1.00	
Chloroethane	ND	0.50	0.32	1.00	
Chloroform	4.3	0.50	0.20	1.00	
Chloromethane	ND	0.50	0.29	1.00	
Dibromochloromethane	ND	0.50	0.20	1.00	
Dibromomethane	ND	0.50	0.20	1.00	
Dichlorodifluoromethane	ND	1.0	0.40	1.00	
Ethylbenzene	ND	0.50	0.20	1.00	
Isopropylbenzene	ND	0.50	0.20	1.00	
Methylene Chloride	ND	1.0	0.80	1.00	
Naphthalene	0.45	1.0	0.40	1.00	J
Styrene	ND	0.50	0.20	1.00	
Toluene	ND	0.50	0.20	1.00	
t-1,2-Dichloroethene	ND	0.50	0.20	1.00	
Trichloroethene	24	0.50	0.29	1.00	
Trichlorofluoromethane	ND	0.50	0.20	1.00	
Vinyl Acetate	ND	5.0	2.0	1.00	
Vinyl Chloride	ND	0.50	0.20	1.00	
c-1,3-Dichloropropene	ND	0.50	0.20	1.00	
c-1,2-Dichloroethene	ND	0.50	0.20	1.00	
n-Butylbenzene	ND	0.50	0.20	1.00	
n-Propylbenzene	ND	0.50	0.20	1.00	
o-Xylene	ND	0.50	0.32	1.00	
p-Isopropyltoluene	ND	0.50	0.20	1.00	
sec-Butylbenzene	ND	0.50	0.20	1.00	
t-1,3-Dichloropropene	ND	0.50	0.20	1.00	
tert-Butylbenzene	ND	0.50	0.20	1.00	
p/m-Xylene	ND	0.50	0.20	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	0.50	0.20	1.00	
2-Chloroethyl Vinyl Ether	ND	5.0	4.2	1.00	
Hexachloro-1,3-Butadiene	ND	2.0	0.80	1.00	
lodomethane	ND	10	5.0	1.00	
Surrogate	Rec. (%)	Control Limits	Qualifiers		
1,4-Bromofluorobenzene	97	68-120			
Dibromofluoromethane	102	80-127			
1,2-Dichloroethane-d4	103	80-128			

<u>Surrogate</u>

Toluene-d8

Analytical Report

Tetra Tech, Inc.	Date Received:	04/07/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0598
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L

Project: LMC BOU Page 6 of 30

Control Limits

Qualifiers

Toluene-d8	99		80-120				
Client Sample Number	Lab Sample	Date/Time	Matrix	Instrument	Date	Date/Time	QC Batch ID

Rec. (%)

99

Chork Campio 14		Number	Collected	Widdix	modamone	Prepared	Analyzed	QO Baton 1B
MW-08-N-17Q2		17-04-0598-2-B	04/07/17 11:01	Aqueous	GC/MS T	04/20/17	04/20/17 13:00	170420L010
Comment(s):	- Results were evaluated to	the MDL (DL), cond	centrations >= t	to the MDL (DI	L) but < RL (LC	Q), if found, are	e qualified with a	"J" flag.

	· '	, ,	, ,		-
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Tetrachloroethene	71	2.0	0.80	4.00	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	98	68-120			
Dibromofluoromethane	104	80-127			
1,2-Dichloroethane-d4	104	80-128			

80-120

Project: LMC BOU

Analytical Report

 Tetra Tech, Inc.
 Date Received:
 04/07/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0598

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

Method: EPA 8260B

Units: ug/L Page 7 of 30

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-07-N-17Q2	17-04-0598-3-A	04/07/17 09:26	Aqueous	GC/MS T	04/19/17	04/20/17 04:37	170419L037
Comment(s): - Results were evaluate	d to the MDL (DL), cond	centrations >=	to the MDL (DI	L) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,1-Trichloroethane	ND		0.50	0.20	1.00		
1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane	3.9		0.50	0.24	1.00		
1,1,2-Trichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethene	2.9		0.50	0.28	1.00		
1,1-Dichloropropene	ND		0.50	0.30	1.00		
1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,3-Trichloropropane	0.40		1.0	0.40	1.00	J	l
1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,4-Trimethylbenzene	ND		0.50	0.20	1.00		
1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00		
1,2-Dibromoethane	ND		0.50	0.20	1.00		
1,2-Dichlorobenzene	ND		0.50	0.20	1.00		
1,2-Dichloroethane	0.23		0.50	0.20	1.00	J	l
1,2-Dichloropropane	ND		0.50	0.20	1.00		
1,3,5-Trimethylbenzene	ND		0.50	0.20	1.00		
1,3-Dichlorobenzene	ND		0.50	0.28	1.00		
1,3-Dichloropropane	ND		1.0	0.40	1.00		
1,4-Dichlorobenzene	ND		0.50	0.20	1.00		
2,2-Dichloropropane	ND		1.0	0.40	1.00		
2-Butanone	ND		5.0	2.0	1.00		
2-Chlorotoluene	ND		0.50	0.20	1.00		
2-Hexanone	ND		10	4.0	1.00		
4-Chlorotoluene	ND		0.50	0.36	1.00		
4-Methyl-2-Pentanone	ND		5.0	2.0	1.00		
Acetone	4.0		10	4.0	1.00	J	l
Benzene	ND		0.50	0.20	1.00		
Bromobenzene	ND		0.50	0.32	1.00		
Bromochloromethane	ND		1.0	0.40	1.00		
Bromodichloromethane	ND		0.50	0.20	1.00		
Bromoform	ND		0.50	0.25	1.00		
Bromomethane	ND		1.0	0.40	1.00		

 Tetra Tech, Inc.
 Date Received:
 04/07/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0598

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 8 of 30

Project: LINC BOU					Page 8 01 30
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
Carbon Disulfide	ND	1.0	0.40	1.00	
Carbon Tetrachloride	0.34	0.50	0.20	1.00	J
Chlorobenzene	ND	0.50	0.20	1.00	
Chloroethane	ND	0.50	0.32	1.00	
Chloroform	1.9	0.50	0.20	1.00	
Chloromethane	ND	0.50	0.29	1.00	
Dibromochloromethane	ND	0.50	0.20	1.00	
Dibromomethane	ND	0.50	0.20	1.00	
Dichlorodifluoromethane	ND	1.0	0.40	1.00	
Ethylbenzene	ND	0.50	0.20	1.00	
Isopropylbenzene	ND	0.50	0.20	1.00	
Methylene Chloride	ND	1.0	0.80	1.00	
Naphthalene	ND	1.0	0.40	1.00	
Styrene	ND	0.50	0.20	1.00	
Toluene	ND	0.50	0.20	1.00	
t-1,2-Dichloroethene	ND	0.50	0.20	1.00	
Trichloroethene	17	0.50	0.29	1.00	
Trichlorofluoromethane	ND	0.50	0.20	1.00	
Vinyl Acetate	ND	5.0	2.0	1.00	
Vinyl Chloride	ND	0.50	0.20	1.00	
c-1,3-Dichloropropene	ND	0.50	0.20	1.00	
c-1,2-Dichloroethene	ND	0.50	0.20	1.00	
n-Butylbenzene	ND	0.50	0.20	1.00	
n-Propylbenzene	ND	0.50	0.20	1.00	
o-Xylene	ND	0.50	0.32	1.00	
p-Isopropyltoluene	ND	0.50	0.20	1.00	
sec-Butylbenzene	ND	0.50	0.20	1.00	
t-1,3-Dichloropropene	ND	0.50	0.20	1.00	
tert-Butylbenzene	ND	0.50	0.20	1.00	
p/m-Xylene	ND	0.50	0.20	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	0.50	0.20	1.00	
2-Chloroethyl Vinyl Ether	ND	5.0	4.2	1.00	
Hexachloro-1,3-Butadiene	ND	2.0	0.80	1.00	
Iodomethane	ND	10	5.0	1.00	
Surrogate	Rec. (%)	Control Limits	Qualifiers		
1,4-Bromofluorobenzene	98	68-120			
Dibromofluoromethane	103	80-127			
1,2-Dichloroethane-d4	105	80-128			

 Tetra Tech, Inc.
 Date Received:
 04/07/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0598

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

Project: LMC BOU Page 9 of 30

Surrogate Rec. (%) Control Limits Qualifiers

Toluene-d8 98 80-120

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-07-N-17Q2	17-04-0598-3-B	04/07/17 09:26	Aqueous	GC/MS T	04/20/17	04/20/17 13:32	170420L010

Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

Parameter Result RL MDL DF Qualifiers

Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>
1,4-Bromofluorobenzene	98	68-120	
Dibromofluoromethane	103	80-127	
1,2-Dichloroethane-d4	103	80-128	
Toluene-d8	99	80-120	

04/07/17

17-04-0598

Analytical Report

Tetra Tech, Inc.

301 E. Vanderbilt Way, Suite 450

San Bernardino, CA 92408-3562

Date Received:

Work Order:

Preparation:

Preparation: EPA 5030C Method: EPA 8260B Units: ug/L

Project: LMC BOU Page 10 of 30

N	annoon	Collected			Prepared	Analyzed	QC Batch ID
LTB-20170407 17	7-04-0598-4-A	04/07/17 07:00	Aqueous	GC/MS T	04/20/17	04/20/17 10:49	170420L010
Comment(s): - Results were evaluated to the	e MDL (DL), cond	centrations >=	to the MDL (DI	L) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,1-Trichloroethane	ND		0.50	0.20	1.00		
1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		0.50	0.24	1.00		
1,1,2-Trichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethene	ND		0.50	0.28	1.00		
1,1-Dichloropropene	ND		0.50	0.30	1.00		
1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,3-Trichloropropane	ND		1.0	0.40	1.00		
1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,4-Trimethylbenzene	ND		0.50	0.20	1.00		
1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00		
1,2-Dibromoethane	ND		0.50	0.20	1.00		
1,2-Dichlorobenzene	ND		0.50	0.20	1.00		
1,2-Dichloroethane	ND		0.50	0.20	1.00		
1,2-Dichloropropane	ND		0.50	0.20	1.00		
1,3,5-Trimethylbenzene	ND		0.50	0.20	1.00		
1,3-Dichlorobenzene	ND		0.50	0.28	1.00		
1,3-Dichloropropane	ND		1.0	0.40	1.00		
1,4-Dichlorobenzene	ND		0.50	0.20	1.00		
2,2-Dichloropropane	ND		1.0	0.40	1.00		
2-Butanone	ND		5.0	2.0	1.00		
2-Chlorotoluene	ND		0.50	0.20	1.00		
2-Hexanone	ND		10	4.0	1.00		
4-Chlorotoluene	ND		0.50	0.36	1.00		
4-Methyl-2-Pentanone	ND		5.0	2.0	1.00		
Acetone	ND		10	4.0	1.00		
Benzene	ND		0.50	0.20	1.00		
Bromobenzene	ND		0.50	0.32	1.00		
Bromochloromethane	ND		1.0	0.40	1.00		
Bromodichloromethane	ND		0.50	0.20	1.00		
Bromoform	ND		0.50	0.25	1.00		
Bromomethane	ND		1.0	0.40	1.00		

 Tetra Tech, Inc.
 Date Received:
 04/07/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0598

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 11 of 30

Parameter Result <u>RL</u> **MDL** <u>DF</u> Qualifiers Carbon Disulfide ND 1.0 0.40 1.00 Carbon Tetrachloride ND 0.50 0.20 1.00 Chlorobenzene ND 0.50 0.20 1.00 Chloroethane ND 0.50 0.32 1.00 Chloroform ND 0.50 0.20 1.00 Chloromethane ND 0.50 0.29 1.00 Dibromochloromethane ND 0.50 0.20 1.00 Dibromomethane ND 0.50 0.20 1.00 Dichlorodifluoromethane ND 1.0 0.40 1.00 ND 0.20 Ethylbenzene 0.50 1.00 0.20 Isopropylbenzene ND 0.50 1.00 Methylene Chloride ND 1.0 0.80 1.00 Naphthalene ND 0.40 1.00 1.0 Styrene ND 0.50 0.20 1.00 Tetrachloroethene ND 0.50 0.20 1.00 Toluene ND 0.20 0.50 1.00 t-1,2-Dichloroethene ND 0.20 0.50 1.00 Trichloroethene ND 0.50 0.29 1.00 Trichlorofluoromethane ND 0.50 0.20 1.00 Vinyl Acetate ND 2.0 1.00 5.0 Vinyl Chloride ND 0.50 0.20 1.00 c-1,3-Dichloropropene ND 0.20 0.50 1.00 0.20 c-1,2-Dichloroethene ND 0.50 1.00 n-Butylbenzene ND 0.50 0.20 1.00 n-Propylbenzene ND 0.50 0.20 1.00 o-Xylene ND 0.50 0.32 1.00 ND 0.20 1.00 p-Isopropyltoluene 0.50 sec-Butylbenzene ND 0.50 0.20 1.00 t-1,3-Dichloropropene ND 0.50 0.20 1.00 ND 0.20 tert-Butylbenzene 0.50 1.00 p/m-Xylene ND 0.50 0.20 1.00 0.20 Methyl-t-Butyl Ether (MTBE) ND 0.50 1.00 2-Chloroethyl Vinyl Ether ND 5.0 4.2 1.00 Hexachloro-1,3-Butadiene ND 2.0 0.80 1.00 Iodomethane ND 10 5.0 1.00 Rec. (%) Surrogate **Control Limits Qualifiers** 1,4-Bromofluorobenzene 95 68-120 80-127 Dibromofluoromethane

Tetra Tech, Inc.	Date Received:	04/07/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0598
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOU		Page 12 of 30

<u>Surrogate</u>	Rec. (%)	Control Limits	<u>Qualifiers</u>
1,2-Dichloroethane-d4	91	80-128	
Toluene-d8	99	80-120	

Tetra Tech, Inc.Date Received:04/07/17301 E. Vanderbilt Way, Suite 450Work Order:17-04-0598San Bernardino, CA 92408-3562Preparation:EPA 5030C

Method: EPA 8260B Units: ug/L

Project: LMC BOU Page 13 of 30

17-04-0598-5-b. 04/07/11 04/19/12 07-04/19/13 07-04/19/13 07-04/19/13 07-04/19/13 07-04/19/13 07-04/19/13 07-04/19/13 07-04/19/13 07-04/13	Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Parameter Result RL MDL DF Qualifiers 1,1,1,2-Tetrachloroethane ND 4.0 1.6 8.0 1,1,1,2-Tetrachloroethane ND 4.0 1.6 8.0 1,1,2-Tichloroethane ND 4.0 1.6 8.0 1,1,2-Trichloroethane ND 4.0 1.6 8.0 1,1-Dichloroethane ND 4.0 1.6 8.0 1,1-Dichloroethane ND 4.0 1.6 8.0 1,1-Dichloroethane ND 4.0 2.2 8.0 1,1-Dichloroethane ND 4.0 2.2 8.0 1,1-Dichloroethane ND 4.0 1.6 8.0 1,2-Jichloroethane ND 4.0 1.6 8.0 1,2-Jirchloropropane ND 4.0 1.6 8.0 1,2-Dichloroethane ND 4.0 1.6 8.0 1,2-Dichloroethane ND 4.0 1.6 8.0 1,2-Dichloroethane ND	3871H-N-17Q2	17-04-0598-5-A		Aqueous	GC/MS T	04/19/17		170419L037
1,1,1,2-Tetrachloroethane ND 4,0 1,6 8,00 1,1,1-Trichloroethane ND 4,0 1,6 8,00 1,1,2-Trichloroethane ND 4,0 1,6 8,00 1,1,2-Trichloroethane ND 4,0 1,6 8,00 1,1-Dichloroethane ND 4,0 1,6 8,00 1,1-Dichloroethene ND 4,0 2,2 8,00 1,1-Dichloropropene ND 4,0 2,4 8,00 1,2-3-Trichlorobenzene ND 4,0 2,4 8,00 1,2-3-Trichlorobenzene ND 4,0 1,6 8,00 1,2-4-Trimethylbenzene ND 4,0 1,6 8,00 1,2-4-Trichlorobenzene ND 4,0 1,6 8,00 1,2-4-Trichlorobenzene ND 4,0 1,6 8,00 1,2-Dichroemethane ND 4,0 1,6 8,00 1,2-Dichroemethane ND 4,0 1,6 8,00 1,2-Dichroemethane ND </td <td>Comment(s): - Results were evaluated</td> <td>to the MDL (DL), cond</td> <td>centrations >= t</td> <td>o the MDL (D</td> <td>L) but < RL (LO</td> <td>Q), if found, are</td> <td>qualified with a</td> <td>"J" flag.</td>	Comment(s): - Results were evaluated	to the MDL (DL), cond	centrations >= t	o the MDL (D	L) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
1,1,1-Trichloroethane ND 4.0 1.6 8.00 1,1,2,2-Terlachloroethane ND 4.0 1.6 8.00 1,1,2-Trichloro-1,2,2-Trifluorethane ND 4.0 1.9 8.00 1,1,1-Trichloroethane ND 4.0 1.6 8.00 1,1-Dichloroethane ND 4.0 2.2 8.00 1,1-Dichloropene ND 4.0 2.2 8.00 1,2-S-Trichlorobenzene ND 4.0 2.4 8.00 1,2,3-Trichlorobenzene ND 4.0 1.6 8.00 1,2,3-Trichloropropane ND 4.0 1.6 8.00 1,2,4-Trinchlorobenzene ND 4.0 1.6 8.00 1,2,4-Trinchloropropane ND 4.0 1.6 8.00 1,2-Dichlorobenzene ND 4.0 1.6 8.00 1,2-Dichlorobenzene ND 4.0 1.6 8.00 1,2-Dichlorobenzene ND 4.0 1.6 8.00 1,3-Dichlorobenzene <td><u>Parameter</u></td> <td>Resu</td> <td><u>ilt</u> <u>I</u></td> <td><u> </u></td> <td><u>MDL</u></td> <td><u>DF</u></td> <td><u>(</u></td> <td><u>Qualifiers</u></td>	<u>Parameter</u>	Resu	<u>ilt</u> <u>I</u>	<u> </u>	<u>MDL</u>	<u>DF</u>	<u>(</u>	<u>Qualifiers</u>
1,1,2,2-Tetrachioroethane ND 4.0 1.9 8.00 1,1,2-Trichloroe-1,2,2-Triffuloroethane ND 4.0 1.9 8.00 1,1-Dichloroethane ND 4.0 1.6 8.00 1,1-Dichloroethane ND 4.0 1.6 8.00 1,1-Dichloropropene ND 4.0 2.2 8.00 1,1-Dichloropropene ND 4.0 2.4 8.00 1,2,3-Trichlorobenzene ND 4.0 1.6 8.00 1,2,3-Trichloropenzene ND 4.0 1.6 8.00 1,2,4-Trimethylbenzene ND 4.0 1.6 8.00 1,2,4-Trimethylbenzene ND 4.0 1.6 8.00 1,2-Dichloroebraene ND 4.0 1.6 8.00 1,2-Dichloroebraene ND 4.0 1.6 8.00 1,3-Dichloroebraene ND 4.0 1.6 8.00 1,3-Dichloroebraene ND 4.0 1.6 8.00 1,3-Dichloroebraene	1,1,1,2-Tetrachloroethane	ND	4	4.0	1.6	8.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane ND 4.0 1.6 8.00 1,1-Dichloroethane ND 4.0 1.6 8.00 1,1-Dichloroethane ND 4.0 1.6 8.00 1,1-Dichloroethane ND 4.0 2.2 8.00 1,2,3-Trichlorobenzene ND 4.0 1.6 8.00 1,2,3-Trichlorobenzene ND 8.0 3.2 8.00 1,2,3-Trichlorobenzene ND 4.0 1.6 8.00 1,2,4-Trichlorobenzene ND 4.0 1.6 8.00 1,2,4-Trinchlybenzene ND 4.0 1.6 8.00 1,2-Dichlorobenzene ND 4.0 1.6 8.00 1,2-Dichlorobenzene ND 4.0 1.6 8.00 1,2-Dichlorobenzene ND 4.0 1.6 8.00 1,2-Dichloropropane ND 4.0 1.6 8.00 1,3-Dichlorobenzene ND 8.0 3.2 8.00 1,4-Dichlorobenzene <	1,1,1-Trichloroethane	ND	4	4.0	1.6	8.00		
1,1,2-Trichloroethane ND 4,0 1,6 8,00 1,1-Dichloroethane ND 4,0 1,6 8,00 1,1-Dichloroethene ND 4,0 2,2 8,00 1,2,3-Trichloropene ND 4,0 1,6 8,00 1,2,3-Trichloropenzene ND 4,0 1,6 8,00 1,2,3-Trichloropenzene ND 4,0 1,6 8,00 1,2,4-Trinchlorobenzene ND 4,0 1,6 8,00 1,2,4-Trinchlorobenzene ND 4,0 1,6 8,00 1,2-Dibromo-3-Chloropropane ND 4,0 1,6 8,00 1,2-Dichlorobenzene ND 4,0 1,6 8,00 1,2-Dichlorobenzene ND 4,0 1,6 8,00 1,2-Dichloroptopane ND 4,0 1,6 8,00 1,3-Sirlinderylbenzene ND 4,0 1,6 8,00 1,3-Dichloroptopane ND 4,0 1,6 8,00 1,3-Dichloroptopane N	1,1,2,2-Tetrachloroethane	ND	4	4.0	1.6	8.00		
1.1-Dichloroethane ND 4.0 1.6 8.00 1.1-Dichloroethene ND 4.0 2.2 8.00 1.1-Dichloropropene ND 4.0 2.4 8.00 1,2.3-Trichloropenzene ND 4.0 1.6 8.00 1,2.3-Trichlorobenzene ND 4.0 1.6 8.00 1,2.4-Trichlorobenzene ND 4.0 1.6 8.00 1,2.4-Trimethylbenzene ND 4.0 1.6 8.00 1,2-Dichlorobenzene ND 4.0 1.6 8.00 1,2-Dichloropropane ND 4.0 1.6 8.00 1,2-Dichlorobenzene ND 4.0 1.6 8.00 1,2-Dichloropropane ND 4.0 1.6 8.00 1,3-Dichloropropane ND 4.0 1.6 8.00 1,3-Dichloropropane ND 4.0 2.2 8.00 1,4-Dichlorobenzene ND 4.0 1.6 8.00 2,2-Dichloropropane ND	1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	4	4.0	1.9	8.00		
1,1-Dichloroethene ND 4.0 2.2 8.00 1,1-Dichloropropene ND 4.0 2.4 8.00 1,2,3-Trichlorobenzene ND 4.0 1.6 8.00 1,2,3-Trichloropropane ND 4.0 1.6 8.00 1,2,4-Trichlorobenzene ND 4.0 1.6 8.00 1,2-Dichloropopane ND 4.0 1.6 8.00 1,2-Dichloropopane ND 4.0 1.6 8.00 1,2-Dichlorobenzene ND 4.0 1.6 8.00 1,2-Dichlorobenzene ND 4.0 1.6 8.00 1,2-Dichloropropane ND 4.0 1.6 8.00 1,2-Dichloropropane ND 4.0 1.6 8.00 1,2-Dichloropropane ND 4.0 1.6 8.00 1,3-Dichlorobenzene ND 4.0 1.6 8.00 1,3-Dichlorobenzene ND 4.0 1.6 8.00 2,2-Dichloropropane ND	1,1,2-Trichloroethane	ND	4	4.0	1.6	8.00		
1,1-Dichloropropene ND 4.0 2.4 8.00 1,2.3-Trichlorobenzene ND 4.0 1.6 8.00 1,2.3-Trichloropropane ND 8.0 3.2 8.00 1,2.4-Trichlorobenzene ND 4.0 1.6 8.00 1,2.4-Trimethylbenzene ND 4.0 1.6 8.00 1,2-Dibromo-3-Chloropropane ND 4.0 1.6 8.00 1,2-Dibromoethane ND 4.0 1.6 8.00 1,2-Dichlorobenzene ND 4.0 1.6 8.00 1,2-Dichloropropane ND 4.0 1.6 8.00 1,2-Dichloropropane ND 4.0 1.6 8.00 1,3-Dichlorobenzene ND 4.0 1.6 8.00 1,3-Dichlorobenzene ND 4.0 1.6 8.00 1,4-Dichloropropane ND 8.0 3.2 8.00 2,2-Dichloropropane ND 8.0 3.2 8.00 2-Dichloropropane ND	1,1-Dichloroethane	ND	2	4.0	1.6	8.00		
1,2,3-Trichlorobenzene ND 4.0 1.6 8.00 1,2,3-Trichloropropane ND 8.0 3.2 8.00 1,2,4-Trichlorobenzene ND 4.0 1.6 8.00 1,2,4-Trimethylbenzene ND 4.0 1.6 8.00 1,2-Dibromo-3-Chloropropane ND 4.0 1.6 8.00 1,2-Dibromoethane ND 4.0 1.6 8.00 1,2-Dichlorobenzene ND 4.0 1.6 8.00 1,2-Dichlorobenzene ND 4.0 1.6 8.00 1,2-Dichloropropane ND 4.0 1.6 8.00 1,3-Dichloropropane ND 4.0 1.6 8.00 1,3-Dichloropropane ND 4.0 1.6 8.00 1,3-Dichloropropane ND 4.0 1.6 8.00 1,4-Dichloropropane ND 8.0 3.2 8.00 2,2-Dichloropropane ND 8.0 3.2 8.00 2,2-Dichloropropane ND	1,1-Dichloroethene	ND	4	4.0	2.2	8.00		
1,2,3-Trichloropropane ND 8.0 3.2 8.00 1,2,4-Trichlorobenzene ND 4.0 1.6 8.00 1,2,4-Trimethylbenzene ND 4.0 1.6 8.00 1,2-Dibromo-3-Chloropropane ND 4.0 1.6 8.00 1,2-Dibromoethane ND 4.0 1.6 8.00 1,2-Dichlorobenzene ND 4.0 1.6 8.00 1,2-Dichlorobenzene ND 4.0 1.6 8.00 1,2-Dichloropropane ND 4.0 1.6 8.00 1,2-Dichloropropane ND 4.0 1.6 8.00 1,3-Trimethylbenzene ND 4.0 1.6 8.00 1,3-Dichlorobenzene ND 4.0 1.6 8.00 1,3-Dichloropropane ND 8.0 3.2 8.00 1,4-Dichlorobenzene ND 4.0 1.6 8.00 2,-Dichloropropane ND 4.0 1.6 8.00 2-Butanone ND	1,1-Dichloropropene	ND	4	4.0	2.4	8.00		
1,2,4-Trichlorobenzene ND 4.0 1.6 8.00 1,2,4-Trimethylbenzene ND 4.0 1.6 8.00 1,2-Dibromo-3-Chloropropane ND 4.0 1.6 8.00 1,2-Dibromoethane ND 4.0 1.6 8.00 1,2-Dichlorobenzene ND 4.0 1.6 8.00 1,2-Dichloroethane ND 4.0 1.6 8.00 1,2-Dichloropropane ND 4.0 1.6 8.00 1,3-Dichlorobenzene ND 4.0 1.6 8.00 1,3-Dichlorobenzene ND 4.0 1.6 8.00 1,3-Dichlorobenzene ND 4.0 2.2 8.00 1,4-Dichlorobenzene ND 8.0 3.2 8.00 2,2-Dichloropropane ND 4.0 1.6 8.00 2,2-Dichloropropane ND 4.0 1.6 8.00 2-Chlorotoluene ND 4.0 1.6 8.00 2-Hexanone ND 4.0	1,2,3-Trichlorobenzene	ND	4	4.0	1.6	8.00		
1,2,4-Trimethylbenzene ND 4.0 1.6 8.00 1,2-Dibromo-3-Chloropropane ND 40 16 8.00 1,2-Dibromoethane ND 4.0 1.6 8.00 1,2-Dichlorobenzene ND 4.0 1.6 8.00 1,2-Dichloropthane ND 4.0 1.6 8.00 1,2-Dichloroptopane ND 4.0 1.6 8.00 1,3-Trimethylbenzene ND 4.0 1.6 8.00 1,3-Dichloroptopane ND 4.0 1.6 8.00 1,3-Dichloroptopane ND 4.0 2.2 8.00 1,4-Dichlorobenzene ND 4.0 1.6 8.00 2,2-Dichloropropane ND 8.0 3.2 8.00 2,2-Dichloropropane ND 4.0 1.6 8.00 2,2-Dichloropropane ND 4.0 1.6 8.00 2,2-Dichloropropane ND 4.0 1.6 8.00 2-Hexanone ND 4.0	1,2,3-Trichloropropane	ND	8	3.0	3.2	8.00		
1,2-Dibromo-3-Chloropropane ND 40 16 8.00 1,2-Dibromoethane ND 4.0 1.6 8.00 1,2-Dichlorobenzene ND 4.0 1.6 8.00 1,2-Dichloroptopane ND 4.0 1.6 8.00 1,2-Dichloropropane ND 4.0 1.6 8.00 1,3-5-Trimethylbenzene ND 4.0 1.6 8.00 1,3-Dichlorobenzene ND 4.0 1.6 8.00 1,3-Dichlorobenzene ND 4.0 2.2 8.00 1,4-Dichlorobenzene ND 4.0 1.6 8.00 2,2-Dichloropropane ND 4.0 1.6 8.00 2,2-Dichloropropane ND 4.0 1.6 8.00 2,2-Dichloropropane ND 4.0 1.6 8.00 2-Eutanone ND 4.0 1.6 8.00 2-Chlorotoluene ND 4.0 1.6 8.00 4-Hexanone ND 4.0 1.6 8.00 4-Methyl-2-Pentanone ND 4.0 1.6 <td>1,2,4-Trichlorobenzene</td> <td>ND</td> <td>4</td> <td>4.0</td> <td>1.6</td> <td>8.00</td> <td></td> <td></td>	1,2,4-Trichlorobenzene	ND	4	4.0	1.6	8.00		
1,2-Dibromoethane ND 4.0 1.6 8.00 1,2-Dichlorobenzene ND 4.0 1.6 8.00 1,2-Dichloroethane ND 4.0 1.6 8.00 1,2-Dichloropropane ND 4.0 1.6 8.00 1,3-5-Trimethylbenzene ND 4.0 1.6 8.00 1,3-Dichlorobenzene ND 4.0 2.2 8.00 1,3-Dichlorobenzene ND 8.0 3.2 8.00 1,4-Dichlorobenzene ND 4.0 1.6 8.00 2,2-Dichloropropane ND 4.0 1.6 8.00 2,2-Dichloropropane ND 8.0 3.2 8.00 2-Butanone ND 4.0 1.6 8.00 2-Chlorotoluene ND 4.0 1.6 8.00 2-Hexanone ND 4.0 1.6 8.00 4-Methyl-2-Pentanone ND 4.0 1.6 8.00 4-Methyl-2-Pentanone ND 4.0 1.6 8.00 Benzene ND 4.0 2.6 8.00 </td <td>1,2,4-Trimethylbenzene</td> <td>ND</td> <td>4</td> <td>4.0</td> <td>1.6</td> <td>8.00</td> <td></td> <td></td>	1,2,4-Trimethylbenzene	ND	4	4.0	1.6	8.00		
1,2-Dibromoethane ND 4.0 1.6 8.00 1,2-Dichlorobenzene ND 4.0 1.6 8.00 1,2-Dichloroethane ND 4.0 1.6 8.00 1,2-Dichloropropane ND 4.0 1.6 8.00 1,3-5-Trimethylbenzene ND 4.0 1.6 8.00 1,3-Dichlorobenzene ND 4.0 2.2 8.00 1,3-Dichloropropane ND 8.0 3.2 8.00 1,4-Dichlorobenzene ND 4.0 1.6 8.00 2,2-Dichloropropane ND 8.0 3.2 8.00 2,2-Dichloropropane ND 8.0 3.2 8.00 2-Butanone ND 4.0 1.6 8.00 2-Hexanone ND 4.0 1.6 8.00 2-Hexanone ND 4.0 1.6 8.00 4-Methyl-2-Pentanone ND 4.0 1.6 8.00 4-Methyl-2-Pentanone ND 4.0 1.6 8.00 Benzene ND 4.0 2.6 8.00	1,2-Dibromo-3-Chloropropane	ND	4	40	16	8.00		
1,2-Dichlorobenzene ND 4.0 1.6 8.00 1,2-Dichloropropane ND 4.0 1.6 8.00 1,2-Dichloropropane ND 4.0 1.6 8.00 1,3-Trimethylbenzene ND 4.0 1.6 8.00 1,3-Dichlorobenzene ND 4.0 2.2 8.00 1,3-Dichloropropane ND 8.0 3.2 8.00 1,4-Dichlorobenzene ND 4.0 1.6 8.00 2,2-Dichloropropane ND 8.0 3.2 8.00 2,2-Dichloropropane ND 4.0 1.6 8.00 2-Butanone ND 4.0 1.6 8.00 2-Butanone ND 4.0 1.6 8.00 2-Hexanone ND 4.0 1.6 8.00 2-Hexanone ND 4.0 2.8 8.00 4-Methyl-2-Pentanone ND 4.0 1.6 8.00 Benzene ND 4.0 1.6 8.00 Bromobenzene ND 4.0 1.6 8.00 <tr< td=""><td>1,2-Dibromoethane</td><td>ND</td><td>4</td><td>4.0</td><td>1.6</td><td></td><td></td><td></td></tr<>	1,2-Dibromoethane	ND	4	4.0	1.6			
1,2-Dichloroethane ND 4.0 1.6 8.00 1,2-Dichloropropane ND 4.0 1.6 8.00 1,3,5-Trimethylbenzene ND 4.0 1.6 8.00 1,3-Dichlorobenzene ND 4.0 2.2 8.00 1,3-Dichloropropane ND 8.0 3.2 8.00 1,4-Dichlorobenzene ND 4.0 1.6 8.00 2,2-Dichloropropane ND 8.0 3.2 8.00 2-Butanone ND 40 16 8.00 2-Chlorotoluene ND 4.0 1.6 8.00 2-Hexanone ND 80 32 8.00 4-Chlorotoluene ND 4.0 1.6 8.00 4-Methyl-2-Pentanone ND 40 16 8.00 Acetone ND 80 32 8.00 Benzene ND 4.0 1.6 8.00 Bromobenzene ND 4.0 1.6 8.00 Bromochloromethane ND 4.0 2.6 8.00 <t< td=""><td>1,2-Dichlorobenzene</td><td>ND</td><td>4</td><td>4.0</td><td>1.6</td><td></td><td></td><td></td></t<>	1,2-Dichlorobenzene	ND	4	4.0	1.6			
1,3,5-Trimethylbenzene ND 4.0 1.6 8.00 1,3-Dichlorobenzene ND 4.0 2.2 8.00 1,3-Dichloropropane ND 8.0 3.2 8.00 1,4-Dichlorobenzene ND 4.0 1.6 8.00 2,2-Dichloropropane ND 8.0 3.2 8.00 2-Butanone ND 40 16 8.00 2-Chlorotoluene ND 4.0 1.6 8.00 2-Hexanone ND 80 32 8.00 4-Chlorotoluene ND 4.0 16 8.00 4-Methyl-2-Pentanone ND 4.0 16 8.00 Acetone ND 80 32 8.00 Benzene ND 4.0 1.6 8.00 Bromobenzene ND 4.0 1.6 8.00 Bromochloromethane ND 4.0 2.6 8.00 Bromochloromethane ND 4.0 1.6 8.00 Bromochloromethane ND 4.0 1.6 8.00 <td< td=""><td>1,2-Dichloroethane</td><td></td><td>4</td><td>4.0</td><td>1.6</td><td></td><td></td><td></td></td<>	1,2-Dichloroethane		4	4.0	1.6			
1,3-Dichlorobenzene ND 4.0 2.2 8.00 1,3-Dichloropropane ND 8.0 3.2 8.00 1,4-Dichlorobenzene ND 4.0 1.6 8.00 2,2-Dichloropropane ND 8.0 3.2 8.00 2-Butanone ND 40 16 8.00 2-Chlorotoluene ND 4.0 1.6 8.00 2-Hexanone ND 80 32 8.00 4-Chlorotoluene ND 4.0 2.8 8.00 4-Methyl-2-Pentanone ND 40 16 8.00 Acetone ND 80 32 8.00 Benzene ND 4.0 1.6 8.00 Bromobenzene ND 4.0 2.6 8.00 Bromochloromethane ND 4.0 3.2 8.00 Bromoform ND 4.0 1.6 8.00 Bromoform 8.00 3.2 8.00	1,2-Dichloropropane	ND	4	4.0	1.6	8.00		
1,3-Dichloropropane ND 8.0 3.2 8.00 1,4-Dichlorobenzene ND 4.0 1.6 8.00 2,2-Dichloropropane ND 8.0 3.2 8.00 2-Butanone ND 40 16 8.00 2-Chlorotoluene ND 4.0 1.6 8.00 2-Hexanone ND 80 32 8.00 4-Chlorotoluene ND 4.0 2.8 8.00 4-Methyl-2-Pentanone ND 40 16 8.00 Acetone ND 80 32 8.00 Benzene ND 4.0 1.6 8.00 Bromobenzene ND 4.0 1.6 8.00 Bromochloromethane ND 8.0 3.2 8.00 Bromodichloromethane ND 4.0 1.6 8.00 Bromoform ND 4.0 1.6 8.00	1,3,5-Trimethylbenzene	ND	4	4.0	1.6	8.00		
1,3-Dichloropropane ND 8.0 3.2 8.00 1,4-Dichlorobenzene ND 4.0 1.6 8.00 2,2-Dichloropropane ND 8.0 3.2 8.00 2-Butanone ND 40 16 8.00 2-Chlorotoluene ND 4.0 1.6 8.00 2-Hexanone ND 80 32 8.00 4-Chlorotoluene ND 4.0 2.8 8.00 4-Methyl-2-Pentanone ND 40 16 8.00 Acetone ND 80 32 8.00 Benzene ND 4.0 1.6 8.00 Bromobenzene ND 4.0 1.6 8.00 Bromochloromethane ND 8.0 3.2 8.00 Bromodichloromethane ND 4.0 1.6 8.00 Bromoform ND 4.0 1.6 8.00	1,3-Dichlorobenzene	ND	4	4.0	2.2	8.00		
2,2-Dichloropropane ND 8.0 3.2 8.00 2-Butanone ND 40 16 8.00 2-Chlorotoluene ND 4.0 1.6 8.00 2-Hexanone ND 80 32 8.00 4-Chlorotoluene ND 4.0 2.8 8.00 4-Methyl-2-Pentanone ND 40 16 8.00 Acetone ND 80 32 8.00 Benzene ND 4.0 1.6 8.00 Bromobenzene ND 4.0 2.6 8.00 Bromochloromethane ND 4.0 3.2 8.00 Bromodichloromethane ND 4.0 1.6 8.00 Bromoform ND 4.0 2.6 8.00	1,3-Dichloropropane		8	3.0	3.2	8.00		
2,2-Dichloropropane ND 8.0 3.2 8.00 2-Butanone ND 40 16 8.00 2-Chlorotoluene ND 4.0 1.6 8.00 2-Hexanone ND 80 32 8.00 4-Chlorotoluene ND 4.0 2.8 8.00 4-Methyl-2-Pentanone ND 40 16 8.00 Acetone ND 80 32 8.00 Benzene ND 4.0 1.6 8.00 Bromobenzene ND 4.0 2.6 8.00 Bromochloromethane ND 4.0 3.2 8.00 Bromodichloromethane ND 4.0 1.6 8.00 Bromoform ND 4.0 2.6 8.00	1,4-Dichlorobenzene	ND	4	4.0	1.6	8.00		
2-Butanone ND 40 16 8.00 2-Chlorotoluene ND 4.0 1.6 8.00 2-Hexanone ND 80 32 8.00 4-Chlorotoluene ND 4.0 2.8 8.00 4-Methyl-2-Pentanone ND 40 16 8.00 Acetone ND 80 32 8.00 Benzene ND 4.0 1.6 8.00 Bromobenzene ND 4.0 2.6 8.00 Bromodichloromethane ND 8.0 3.2 8.00 Bromodichloromethane ND 4.0 1.6 8.00 Bromoform ND 4.0 2.0 8.00	2,2-Dichloropropane		8	3.0				
2-Chlorotoluene ND 4.0 1.6 8.00 2-Hexanone ND 80 32 8.00 4-Chlorotoluene ND 4.0 2.8 8.00 4-Methyl-2-Pentanone ND 40 16 8.00 Acetone ND 80 32 8.00 Benzene ND 4.0 1.6 8.00 Bromobenzene ND 4.0 2.6 8.00 Bromodichloromethane ND 4.0 3.2 8.00 Bromoform ND 4.0 1.6 8.00	2-Butanone	ND	4	40		8.00		
2-Hexanone ND 80 32 8.00 4-Chlorotoluene ND 4.0 2.8 8.00 4-Methyl-2-Pentanone ND 40 16 8.00 Acetone ND 80 32 8.00 Benzene ND 4.0 1.6 8.00 Bromobenzene ND 4.0 2.6 8.00 Bromochloromethane ND 8.0 3.2 8.00 Bromodichloromethane ND 4.0 1.6 8.00 Bromoform ND 4.0 2.0 8.00	2-Chlorotoluene	ND			1.6	8.00		
4-Chlorotoluene ND 4.0 2.8 8.00 4-Methyl-2-Pentanone ND 40 16 8.00 Acetone ND 80 32 8.00 Benzene ND 4.0 1.6 8.00 Bromobenzene ND 4.0 2.6 8.00 Bromochloromethane ND 8.0 3.2 8.00 Bromodichloromethane ND 4.0 1.6 8.00 Bromoform ND 4.0 2.0 8.00	2-Hexanone	ND		30		8.00		
4-Methyl-2-Pentanone ND 40 16 8.00 Acetone ND 80 32 8.00 Benzene ND 4.0 1.6 8.00 Bromobenzene ND 4.0 2.6 8.00 Bromochloromethane ND 8.0 3.2 8.00 Bromodichloromethane ND 4.0 1.6 8.00 Bromoform ND 4.0 2.0 8.00								
Acetone ND 80 32 8.00 Benzene ND 4.0 1.6 8.00 Bromobenzene ND 4.0 2.6 8.00 Bromochloromethane ND 8.0 3.2 8.00 Bromodichloromethane ND 4.0 1.6 8.00 Bromoform ND 4.0 2.0 8.00								
Benzene ND 4.0 1.6 8.00 Bromobenzene ND 4.0 2.6 8.00 Bromochloromethane ND 8.0 3.2 8.00 Bromodichloromethane ND 4.0 1.6 8.00 Bromoform ND 4.0 2.0 8.00	•							
Bromobenzene ND 4.0 2.6 8.00 Bromochloromethane ND 8.0 3.2 8.00 Bromodichloromethane ND 4.0 1.6 8.00 Bromoform ND 4.0 2.0 8.00								
Bromochloromethane ND 8.0 3.2 8.00 Bromodichloromethane ND 4.0 1.6 8.00 Bromoform ND 4.0 2.0 8.00								
Bromodichloromethane ND 4.0 1.6 8.00 Bromoform ND 4.0 2.0 8.00								
Bromoform ND 4.0 2.0 8.00								
	Bromomethane	ND			3.2	8.00		

 Tetra Tech, Inc.
 Date Received:
 04/07/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0598

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 14 of 30

Floject. Livio Boo					Fage 14 01 30
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Carbon Disulfide	ND	8.0	3.2	8.00	
Carbon Tetrachloride	ND	4.0	1.6	8.00	
Chlorobenzene	ND	4.0	1.6	8.00	
Chloroethane	ND	4.0	2.5	8.00	
Chloroform	ND	4.0	1.6	8.00	
Chloromethane	ND	4.0	2.4	8.00	
Dibromochloromethane	ND	4.0	1.6	8.00	
Dibromomethane	ND	4.0	1.6	8.00	
Dichlorodifluoromethane	ND	8.0	3.2	8.00	
Ethylbenzene	ND	4.0	1.6	8.00	
Isopropylbenzene	ND	4.0	1.6	8.00	
Methylene Chloride	ND	8.0	6.4	8.00	
Naphthalene	ND	8.0	3.2	8.00	
Styrene	ND	4.0	1.6	8.00	
Tetrachloroethene	120	4.0	1.6	8.00	
Toluene	ND	4.0	1.6	8.00	
t-1,2-Dichloroethene	ND	4.0	1.6	8.00	
Trichloroethene	140	4.0	2.3	8.00	
Trichlorofluoromethane	ND	4.0	1.6	8.00	
Vinyl Acetate	ND	40	16	8.00	
Vinyl Chloride	ND	4.0	1.6	8.00	
c-1,3-Dichloropropene	ND	4.0	1.6	8.00	
c-1,2-Dichloroethene	ND	4.0	1.6	8.00	
n-Butylbenzene	ND	4.0	1.6	8.00	
n-Propylbenzene	ND	4.0	1.6	8.00	
o-Xylene	ND	4.0	2.5	8.00	
p-Isopropyltoluene	ND	4.0	1.6	8.00	
sec-Butylbenzene	ND	4.0	1.6	8.00	
t-1,3-Dichloropropene	ND	4.0	1.6	8.00	
tert-Butylbenzene	ND	4.0	1.6	8.00	
p/m-Xylene	ND	4.0	1.6	8.00	
Methyl-t-Butyl Ether (MTBE)	ND	4.0	1.6	8.00	
2-Chloroethyl Vinyl Ether	ND	40	33	8.00	
Hexachloro-1,3-Butadiene	ND	16	6.4	8.00	
lodomethane	ND	80	40	8.00	
Surrogate	<u>Rec. (%)</u>	Control Limits	Qualifiers		
1,4-Bromofluorobenzene	97	68-120			
Dibromofluoromethane	102	80-127			

Tetra Tech, Inc.	Date Received:	04/07/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0598
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOU		Page 15 of 30

Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>
1,2-Dichloroethane-d4	106	80-128	
Toluene-d8	98	80-120	

Project: LMC BOU

Analytical Report

 Tetra Tech, Inc.
 Date Received:
 04/07/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0598

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

Method: EPA 8260B

Units: ug/L Page 16 of 30

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
3871J-N-17Q2	17-04-0598-6-A	04/07/17 11:02	Aqueous	GC/MS T	04/19/17	04/20/17 05:43	170419L037
Comment(s): - Results were evaluated	to the MDL (DL), cond	centrations >=	to the MDL (DI	L) but < RL (LO	Q), if found, are	qualified with a	ı "J" flag.
<u>Parameter</u>	Resu	ı <u>lt</u>	<u>RL</u>	MDL	<u>DF</u>	<u>(</u>	<u>Qualifiers</u>
1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,1-Trichloroethane	ND		0.50	0.20	1.00		
1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		0.50	0.24	1.00		
1,1,2-Trichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethene	ND		0.50	0.28	1.00		
1,1-Dichloropropene	ND		0.50	0.30	1.00		
1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,3-Trichloropropane	ND		1.0	0.40	1.00		
1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,4-Trimethylbenzene	ND		0.50	0.20	1.00		
1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00		
1,2-Dibromoethane	ND		0.50	0.20	1.00		
1,2-Dichlorobenzene	ND		0.50	0.20	1.00		
1,2-Dichloroethane	ND		0.50	0.20	1.00		
1,2-Dichloropropane	ND		0.50	0.20	1.00		
1,3,5-Trimethylbenzene	ND		0.50	0.20	1.00		
1,3-Dichlorobenzene	ND		0.50	0.28	1.00		
1,3-Dichloropropane	ND		1.0	0.40	1.00		
1,4-Dichlorobenzene	ND		0.50	0.20	1.00		
2,2-Dichloropropane	ND		1.0	0.40	1.00		
2-Butanone	ND		5.0	2.0	1.00		
2-Chlorotoluene	ND		0.50	0.20	1.00		
2-Hexanone	ND		10	4.0	1.00		
4-Chlorotoluene	ND		0.50	0.36	1.00		
4-Methyl-2-Pentanone	ND		5.0	2.0	1.00		
Acetone	5.5		10	4.0	1.00		J
Benzene	ND		0.50	0.20	1.00	•	
Bromobenzene	ND		0.50	0.32	1.00		
Bromochloromethane	ND		1.0	0.40	1.00		
Bromodichloromethane	ND		0.50	0.20	1.00		
Bromoform	ND		0.50	0.25	1.00		
Bromomethane	ND		1.0	0.40	1.00		

 Tetra Tech, Inc.
 Date Received:
 04/07/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0598

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 17 of 30

1 Tojoot: Livio Boo					1 490 17 01 00
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	MDL	<u>DF</u>	<u>Qualifiers</u>
Carbon Disulfide	ND	1.0	0.40	1.00	
Carbon Tetrachloride	ND	0.50	0.20	1.00	
Chlorobenzene	ND	0.50	0.20	1.00	
Chloroethane	ND	0.50	0.32	1.00	
Chloroform	ND	0.50	0.20	1.00	
Chloromethane	ND	0.50	0.29	1.00	
Dibromochloromethane	ND	0.50	0.20	1.00	
Dibromomethane	ND	0.50	0.20	1.00	
Dichlorodifluoromethane	ND	1.0	0.40	1.00	
Ethylbenzene	ND	0.50	0.20	1.00	
Isopropylbenzene	ND	0.50	0.20	1.00	
Methylene Chloride	ND	1.0	0.80	1.00	
Naphthalene	ND	1.0	0.40	1.00	
Styrene	ND	0.50	0.20	1.00	
Tetrachloroethene	0.25	0.50	0.20	1.00	J
Toluene	ND	0.50	0.20	1.00	
t-1,2-Dichloroethene	ND	0.50	0.20	1.00	
Trichloroethene	ND	0.50	0.29	1.00	
Trichlorofluoromethane	ND	0.50	0.20	1.00	
Vinyl Acetate	ND	5.0	2.0	1.00	
Vinyl Chloride	ND	0.50	0.20	1.00	
c-1,3-Dichloropropene	ND	0.50	0.20	1.00	
c-1,2-Dichloroethene	ND	0.50	0.20	1.00	
n-Butylbenzene	ND	0.50	0.20	1.00	
n-Propylbenzene	ND	0.50	0.20	1.00	
o-Xylene	ND	0.50	0.32	1.00	
p-Isopropyltoluene	ND	0.50	0.20	1.00	
sec-Butylbenzene	ND	0.50	0.20	1.00	
t-1,3-Dichloropropene	ND	0.50	0.20	1.00	
tert-Butylbenzene	ND	0.50	0.20	1.00	
p/m-Xylene	ND	0.50	0.20	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	0.50	0.20	1.00	
2-Chloroethyl Vinyl Ether	ND	5.0	4.2	1.00	
Hexachloro-1,3-Butadiene	ND	2.0	0.80	1.00	
Iodomethane	ND	10	5.0	1.00	
Surrogate	<u>Rec. (%)</u>	Control Limits	Qualifiers		
1,4-Bromofluorobenzene	98	68-120			
Dibromofluoromethane	100	80-127			

Tetra Tech, Inc.	Date Received:	04/07/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0598
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOU		Page 18 of 30

Surrogate	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>
1,2-Dichloroethane-d4	103	80-128	
Toluene-d8	99	80-120	

Project: LMC BOU

Analytical Report

 Tetra Tech, Inc.
 Date Received:
 04/07/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0598

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

Method: EPA 8260B

Units: ug/L Page 19 of 30

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
3861F-N-17Q2	17-04-0598-7-A	04/07/17 12:19	Aqueous	GC/MS T	04/19/17	04/20/17 06:15	170419L037
Comment(s): - Results were evaluate	d to the MDL (DL), con	centrations >=	to the MDL (DI	L) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>(</u>	Qualifiers
1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,1-Trichloroethane	ND		0.50	0.20	1.00		
1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		0.50	0.24	1.00		
1,1,2-Trichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethene	ND		0.50	0.28	1.00		
1,1-Dichloropropene	ND		0.50	0.30	1.00		
1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,3-Trichloropropane	ND		1.0	0.40	1.00		
1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,4-Trimethylbenzene	ND		0.50	0.20	1.00		
1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00		
1,2-Dibromoethane	ND		0.50	0.20	1.00		
1,2-Dichlorobenzene	ND		0.50	0.20	1.00		
1,2-Dichloroethane	ND		0.50	0.20	1.00		
1,2-Dichloropropane	ND		0.50	0.20	1.00		
1,3,5-Trimethylbenzene	ND		0.50	0.20	1.00		
1,3-Dichlorobenzene	ND		0.50	0.28	1.00		
1,3-Dichloropropane	ND		1.0	0.40	1.00		
1,4-Dichlorobenzene	ND		0.50	0.20	1.00		
2,2-Dichloropropane	ND		1.0	0.40	1.00		
2-Butanone	ND		5.0	2.0	1.00		
2-Chlorotoluene	ND		0.50	0.20	1.00		
2-Hexanone	ND		10	4.0	1.00		
4-Chlorotoluene	ND		0.50	0.36	1.00		
4-Methyl-2-Pentanone	ND		5.0	2.0	1.00		
Acetone	7.2		10	4.0	1.00		I
Benzene	ND		0.50	0.20	1.00		
Bromobenzene	ND		0.50	0.32	1.00		
Bromochloromethane	ND		1.0	0.40	1.00		
Bromodichloromethane	ND		0.50	0.20	1.00		
Bromoform	ND		0.50	0.25	1.00		
Bromomethane	ND		1.0	0.40	1.00		

 Tetra Tech, Inc.
 Date Received:
 04/07/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0598

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 20 of 30

Result	<u>RL</u>	<u>MDL</u>	DF	Qualifiers
ND	1.0	0.40	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.32	1.00	
0.39	0.50	0.20	1.00	J
ND	0.50	0.29	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	1.0	0.40	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	1.0	0.80	1.00	
ND	1.0	0.40	1.00	
ND	0.50	0.20	1.00	
7.0	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
4.1	0.50	0.29	1.00	
ND	0.50	0.20	1.00	
ND	5.0	2.0	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.32	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	5.0	4.2	1.00	
ND	2.0	0.80	1.00	
ND	10	5.0	1.00	
Rec. (%)	Control Limits	Qualifiers		
97	68-120			
101	80-127			
	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND 1.0 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 1.0 ND 0.50 ND 1.0 ND 1.0 ND 1.0 ND 0.50 <td>ND</td> <td>ND</td>	ND	ND

Tetra Tech, Inc.	Date Received:	04/07/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0598
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOU		Page 21 of 30

Surrogate	Rec. (%)	Control Limits	Qualifiers
1,2-Dichloroethane-d4	104	80-128	

Toluene-d8 99 80-120

Project: LMC BOU

Analytical Report

Tetra Tech, Inc.

Date Received:

04/07/17

301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-0598

San Bernardino, CA 92408-3562

Preparation:

EPA 5030C

Method: EPA 8260B

Units: ug/L Page 22 of 30

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
3861D-N-17Q2	17-04-0598-8-A	04/07/17 13:50	Aqueous	GC/MS T	04/19/17	04/20/17 01:21	170419L037
Comment(s): - Results were evaluated	to the MDL (DL), cond	centrations >=	to the MDL (DI	L) but < RL (LO	Q), if found, are	qualified with a	ı "J" flag.
<u>Parameter</u>	Resu	ı <u>lt</u>	<u>RL</u>	MDL	<u>DF</u>	<u>(</u>	<u>Qualifiers</u>
1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,1-Trichloroethane	ND		0.50	0.20	1.00		
1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		0.50	0.24	1.00		
1,1,2-Trichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethene	ND		0.50	0.28	1.00		
1,1-Dichloropropene	ND		0.50	0.30	1.00		
1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,3-Trichloropropane	ND		1.0	0.40	1.00		
1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,4-Trimethylbenzene	ND		0.50	0.20	1.00		
1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00		
1,2-Dibromoethane	ND		0.50	0.20	1.00		
1,2-Dichlorobenzene	ND		0.50	0.20	1.00		
1,2-Dichloroethane	ND		0.50	0.20	1.00		
1,2-Dichloropropane	ND		0.50	0.20	1.00		
1,3,5-Trimethylbenzene	ND		0.50	0.20	1.00		
1,3-Dichlorobenzene	ND		0.50	0.28	1.00		
1,3-Dichloropropane	ND		1.0	0.40	1.00		
1,4-Dichlorobenzene	ND		0.50	0.20	1.00		
2,2-Dichloropropane	ND		1.0	0.40	1.00		
2-Butanone	ND		5.0	2.0	1.00		
2-Chlorotoluene	ND		0.50	0.20	1.00		
2-Hexanone	ND		10	4.0	1.00		
4-Chlorotoluene	ND		0.50	0.36	1.00		
4-Methyl-2-Pentanone	ND		5.0	2.0	1.00		
Acetone	4.1		10	4.0	1.00		J
Benzene	ND		0.50	0.20	1.00	•	-
Bromobenzene	ND		0.50	0.32	1.00		
Bromochloromethane	ND		1.0	0.40	1.00		
Bromodichloromethane	ND		0.50	0.20	1.00		
Bromoform	ND		0.50	0.25	1.00		
Bromomethane	ND		1.0	0.40	1.00		

 Tetra Tech, Inc.
 Date Received:
 04/07/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0598

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 23 of 30

Project: LMC BOU					Page 23 of 30
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
Carbon Disulfide	ND	1.0	0.40	1.00	
Carbon Tetrachloride	0.41	0.50	0.20	1.00	J
Chlorobenzene	ND	0.50	0.20	1.00	
Chloroethane	ND	0.50	0.32	1.00	
Chloroform	1.2	0.50	0.20	1.00	
Chloromethane	ND	0.50	0.29	1.00	
Dibromochloromethane	ND	0.50	0.20	1.00	
Dibromomethane	ND	0.50	0.20	1.00	
Dichlorodifluoromethane	7.1	1.0	0.40	1.00	
Ethylbenzene	ND	0.50	0.20	1.00	
Isopropylbenzene	ND	0.50	0.20	1.00	
Methylene Chloride	ND	1.0	0.80	1.00	
Naphthalene	ND	1.0	0.40	1.00	
Styrene	ND	0.50	0.20	1.00	
Tetrachloroethene	24	0.50	0.20	1.00	
Toluene	0.41	0.50	0.20	1.00	J
t-1,2-Dichloroethene	ND	0.50	0.20	1.00	
Trichlorofluoromethane	ND	0.50	0.20	1.00	
Vinyl Acetate	ND	5.0	2.0	1.00	
Vinyl Chloride	ND	0.50	0.20	1.00	
c-1,3-Dichloropropene	ND	0.50	0.20	1.00	
c-1,2-Dichloroethene	0.21	0.50	0.20	1.00	J
n-Butylbenzene	ND	0.50	0.20	1.00	
n-Propylbenzene	ND	0.50	0.20	1.00	
o-Xylene	ND	0.50	0.32	1.00	
p-Isopropyltoluene	ND	0.50	0.20	1.00	
sec-Butylbenzene	ND	0.50	0.20	1.00	
t-1,3-Dichloropropene	ND	0.50	0.20	1.00	
tert-Butylbenzene	ND	0.50	0.20	1.00	
p/m-Xylene	ND	0.50	0.20	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	0.50	0.20	1.00	
2-Chloroethyl Vinyl Ether	ND	5.0	4.2	1.00	
Hexachloro-1,3-Butadiene	ND	2.0	0.80	1.00	
Iodomethane	ND	10	5.0	1.00	
<u>Surrogate</u>	Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	99	68-120			
Dibromofluoromethane	103	80-127			
1,2-Dichloroethane-d4	102	80-128			

Date Received: 04/07/17 Tetra Tech, Inc. Work Order: 17-04-0598 301 E. Vanderbilt Way, Suite 450 Preparation: **EPA 5030C** San Bernardino, CA 92408-3562 Method: **EPA 8260B** Units: ug/L

Page 24 of 30 Project: LMC BOU

Surrogate Rec. (%) Control Limits Qualifiers

Toluene-d8 100 80-120

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
3861D-N-17Q2	17-04-0598-8-B	04/07/17 13:50	Aqueous	GC/MS T	04/19/17	04/20/17 02:59	170419L037

Comment(s):	- Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. Result RE MDL DF Qualifiers					
<u>Parameter</u>		Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
Trichloroethene		160	10	5.7	20.0	

<u>Surrogate</u>	Rec. (%)	Control Limits	Qualifiers
1,4-Bromofluorobenzene	97	68-120	
Dibromofluoromethane	102	80-127	
1,2-Dichloroethane-d4	101	80-128	
Toluene-d8	98	80-120	

1,2,4-Trimethylbenzene

1,2-Dibromoethane

1,2-Dichlorobenzene 1,2-Dichloroethane

1,2-Dichloropropane

1,3-Dichlorobenzene

1,3-Dichloropropane

1,4-Dichlorobenzene

2,2-Dichloropropane

2-Butanone

2-Chlorotoluene

1,3,5-Trimethylbenzene

1,2-Dibromo-3-Chloropropane

Analytical Report

Date Received: 04/07/17 Tetra Tech, Inc. Work Order: 17-04-0598 301 E. Vanderbilt Way, Suite 450 Preparation: **EPA 5030C** San Bernardino, CA 92408-3562

Units:

Method: **EPA 8260B**

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

ug/L Page 25 of 30

Project: LMC BOU						Pag	e 25 of 30
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-10-025-4628	N/A	Aqueous	GC/MS T	04/19/17	04/20/17 00:48	170419L037
Comment(s): - Results were evaluated to	to the MDL (DL), conc	entrations >= 1	to the MDL (DL	_) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resul	<u>t</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,1-Trichloroethane	ND		0.50	0.20	1.00		
1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		0.50	0.24	1.00		
1,1,2-Trichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethene	ND		0.50	0.28	1.00		
1,1-Dichloropropene	ND		0.50	0.30	1.00		
1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,3-Trichloropropane	ND		1.0	0.40	1.00		
1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00		

0.50

5.0

0.50

0.50

0.50

0.50

0.50

0.50

1.0

0.50

1.0

5.0

0.50

0.20

2.0

0.20

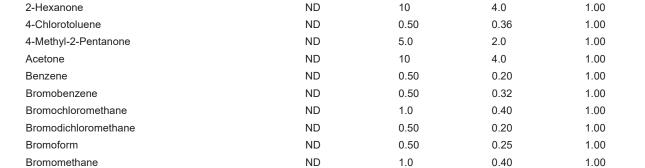
0.20

0.20

0.20

0.20

0.28


0.40

0.20

0.40

2.0

0.20

ND

ND

ND

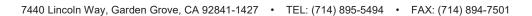
ND

ND

ND

ND

ND


ND

ND

ND

ND

ND

 Tetra Tech, Inc.
 Date Received:
 04/07/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0598

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 26 of 30

Trojock Livio Boo					1 490 20 01 00
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Carbon Disulfide	ND	1.0	0.40	1.00	
Carbon Tetrachloride	ND	0.50	0.20	1.00	
Chlorobenzene	ND	0.50	0.20	1.00	
Chloroethane	ND	0.50	0.32	1.00	
Chloroform	ND	0.50	0.20	1.00	
Chloromethane	ND	0.50	0.29	1.00	
Dibromochloromethane	ND	0.50	0.20	1.00	
Dibromomethane	ND	0.50	0.20	1.00	
Dichlorodifluoromethane	ND	1.0	0.40	1.00	
Ethylbenzene	ND	0.50	0.20	1.00	
Isopropylbenzene	ND	0.50	0.20	1.00	
Methylene Chloride	ND	1.0	0.80	1.00	
Naphthalene	ND	1.0	0.40	1.00	
Styrene	ND	0.50	0.20	1.00	
Tetrachloroethene	ND	0.50	0.20	1.00	
Toluene	ND	0.50	0.20	1.00	
t-1,2-Dichloroethene	ND	0.50	0.20	1.00	
Trichloroethene	ND	0.50	0.29	1.00	
Trichlorofluoromethane	ND	0.50	0.20	1.00	
Vinyl Acetate	ND	5.0	2.0	1.00	
Vinyl Chloride	ND	0.50	0.20	1.00	
c-1,3-Dichloropropene	ND	0.50	0.20	1.00	
c-1,2-Dichloroethene	ND	0.50	0.20	1.00	
n-Butylbenzene	ND	0.50	0.20	1.00	
n-Propylbenzene	ND	0.50	0.20	1.00	
o-Xylene	ND	0.50	0.32	1.00	
p-Isopropyltoluene	ND	0.50	0.20	1.00	
sec-Butylbenzene	ND	0.50	0.20	1.00	
t-1,3-Dichloropropene	ND	0.50	0.20	1.00	
tert-Butylbenzene	ND	0.50	0.20	1.00	
p/m-Xylene	ND	0.50	0.20	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	0.50	0.20	1.00	
2-Chloroethyl Vinyl Ether	ND	5.0	4.2	1.00	
Hexachloro-1,3-Butadiene	ND	2.0	0.80	1.00	
Iodomethane	ND	10	5.0	1.00	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	100	68-120			
Dibromofluoromethane	102	80-127			

Tetra Tech, Inc.	Date Received:	04/07/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0598
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOU		Page 27 of 30

Surrogate	Rec. (%)	Control Limits	Qualifiers
1,2-Dichloroethane-d4	102	80-128	
Toluene-d8	99	80-120	

Project: LMC BOU

Analytical Report

 Tetra Tech, Inc.
 Date Received:
 04/07/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0598

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

Method: EPA 8260B

Units: ug/L Page 28 of 30

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-10-025-4629	N/A	Aqueous	GC/MS T	04/20/17	04/20/17 10:14	170420L010
Comment(s): - Results were evalu	ated to the MDL (DL), cond	entrations >=	to the MDL (DI	L) but < RL (LC	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resul	<u>t</u>	<u>RL</u>	MDL	<u>DF</u>	<u>C</u>	Qualifiers
Tetrachloroethene	ND		0.50	0.20	1.00		
Acetone	ND		10	4.0	1.00		
Benzene	ND		0.50	0.20	1.00		
Bromobenzene	ND		0.50	0.32	1.00		
Bromochloromethane	ND		1.0	0.40	1.00		
Bromodichloromethane	ND		0.50	0.20	1.00		
Bromoform	ND		0.50	0.25	1.00		
Bromomethane	ND		1.0	0.40	1.00		
2-Butanone	ND		5.0	2.0	1.00		
n-Butylbenzene	ND		0.50	0.20	1.00		
sec-Butylbenzene	ND		0.50	0.20	1.00		
tert-Butylbenzene	ND		0.50	0.20	1.00		
Carbon Disulfide	ND		1.0	0.40	1.00		
Carbon Tetrachloride	ND		0.50	0.20	1.00		
Chlorobenzene	ND		0.50	0.20	1.00		
Chloroethane	ND		0.50	0.32	1.00		
2-Chloroethyl Vinyl Ether	ND		5.0	4.2	1.00		
Chloroform	ND		0.50	0.20	1.00		
Chloromethane	ND		0.50	0.29	1.00		
2-Chlorotoluene	ND		0.50	0.20	1.00		
4-Chlorotoluene	ND		0.50	0.36	1.00		
Dibromochloromethane	ND		0.50	0.20	1.00		
1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00		
1,2-Dibromoethane	ND		0.50	0.20	1.00		
Dibromomethane	ND		0.50	0.20	1.00		
1,2-Dichlorobenzene	ND		0.50	0.20	1.00		
1,3-Dichlorobenzene	ND		0.50	0.28	1.00		
1,4-Dichlorobenzene	ND		0.50	0.20	1.00		
Dichlorodifluoromethane	ND		1.0	0.40	1.00		
1,1-Dichloroethane	ND		0.50	0.20	1.00		
1,2-Dichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethene	ND		0.50	0.28	1.00		
c-1,2-Dichloroethene	ND		0.50	0.20	1.00		
t-1,2-Dichloroethene	ND		0.50	0.20	1.00		

 Tetra Tech, Inc.
 Date Received:
 04/07/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0598

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 29 of 30

<u>Result</u>	<u>RL</u>	MDL	<u>DF</u>	Qualifiers
ND	0.50	0.20	1.00	
ND	1.0	0.40	1.00	
ND	1.0	0.40	1.00	
ND	0.50	0.30	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	10	4.0	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	1.0	0.80	1.00	
ND	5.0	2.0	1.00	
ND	1.0	0.40	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	2.0	0.80	1.00	
ND	0.50	0.24	1.00	
ND	0.50	0.20	1.00	
ND	10	5.0	1.00	
ND	0.50	0.29	1.00	
ND	0.50	0.20	1.00	
ND	1.0	0.40	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	5.0	2.0	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.32	1.00	
ND	0.50	0.20	1.00	
Rec. (%)	Control Limits	Qualifiers		
97	68-120			
96	80-127			
	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND 0.50 ND 1.0 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 10 ND 0.50 ND 1.0 ND 0.50 ND 1.0 ND 0.50 <td>ND 0.50 0.20 ND 1.0 0.40 ND 1.0 0.40 ND 0.50 0.30 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 10 4.0 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 1.0 0.80 ND 1.0 0.40 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.</td> <td>ND ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND ND 1.0 ND ND 0.50 ND ND 0.50 ND ND 0.50 ND ND 0.50 ND ND 0.50 ND ND 10 ND 10 ND ND 10 ND ND 0.50 ND ND 0.50 ND ND 0.50 ND ND 0.50 ND ND 0.50 ND ND 0.50 ND ND 1.0 ND ND 0.50 ND ND 1.0 ND ND 1.0 ND ND 1.0 ND ND 1.0 ND ND 0.50 ND ND 1.0 ND ND 0.50 ND ND 0.50 ND ND 0.50 ND ND 0.50 ND ND 0.50 ND ND 0.50 ND ND 0.50 ND ND 0.50 ND ND 0.50 ND ND 0.50 ND 0.20 1.00 ND ND 0.50 ND ND 0.50 ND 0.20 1.00 ND ND 0.50 ND 0.20 1.00 ND ND 0.50 0.20 1.00 ND 0.50 0.20 1.00 ND 0.50 0.20 1.00 ND 0.50 0.20 1.00 ND 0.50 0.20 1.00 ND 0.50 0.20 1.00 ND 0.50 0.20 1.00 ND 0.50 0.20 1.00 ND 0.50 0.20 1.00 ND 0.50 0.20 1.00 ND 0.50 0.20 1.00 ND 0.50 0.20 1.00 0.00</td>	ND 0.50 0.20 ND 1.0 0.40 ND 1.0 0.40 ND 0.50 0.30 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 10 4.0 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 1.0 0.80 ND 1.0 0.40 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.	ND ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND ND 1.0 ND ND 0.50 ND ND 0.50 ND ND 0.50 ND ND 0.50 ND ND 0.50 ND ND 10 ND 10 ND ND 10 ND ND 0.50 ND ND 0.50 ND ND 0.50 ND ND 0.50 ND ND 0.50 ND ND 0.50 ND ND 1.0 ND ND 0.50 ND ND 1.0 ND ND 1.0 ND ND 1.0 ND ND 1.0 ND ND 0.50 ND ND 1.0 ND ND 0.50 ND ND 0.50 ND ND 0.50 ND ND 0.50 ND ND 0.50 ND ND 0.50 ND ND 0.50 ND ND 0.50 ND ND 0.50 ND ND 0.50 ND 0.20 1.00 ND ND 0.50 ND ND 0.50 ND 0.20 1.00 ND ND 0.50 ND 0.20 1.00 ND ND 0.50 0.20 1.00 ND 0.50 0.20 1.00 ND 0.50 0.20 1.00 ND 0.50 0.20 1.00 ND 0.50 0.20 1.00 ND 0.50 0.20 1.00 ND 0.50 0.20 1.00 ND 0.50 0.20 1.00 ND 0.50 0.20 1.00 ND 0.50 0.20 1.00 ND 0.50 0.20 1.00 ND 0.50 0.20 1.00 0.00

Tetra Tech, Inc.	Date Received:	04/07/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0598
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOU		Page 30 of 30

Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>
1,2-Dichloroethane-d4	96	80-128	
Toluene-d8	99	80-120	

 Tetra Tech, Inc.
 Date Received:
 04/07/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0598

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B SIM

Units: ug/L

Project: LMC BOU Page 1 of 3

Client Sample Number	Lab Sample Number			Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID			
MW-03-N-17Q2	17-04-0598-1-F	04/07/17 Aque 12:58		GC/MS M	04/17/17	04/17/17 13:04	170417L018			
Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.										
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>			
1,2,3-Trichloropropane	0.93		0.050	0.025	10.0					
<u>Surrogate</u>	Rec.	(%)	Control Limits	Qualifiers						

1,4-Dichlorobutane 113 80-120

MW-08-N-17Q2 17-04-0598-2-F 04/07/17 Aqueous GC/MS M 04/17/17 04/17/17 170417L018 11:01 13:34

Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

Parameter
1,2,3-Trichloropropane
Result
0.93
Result
0.050
Result
0.025
Result
0.025
Result
0.025

Surrogate Rec. (%) Control Limits Qualifiers

1.4 Dipherebutane

1,4-Dichlorobutane 110 80-120

MW-07-N-17Q2	17-04-0598-3-F	04/07/17 09:26	Aqueous	GC/MS M	04/17/17	04/17/17 14:04	170417L018
Comment(s): - Results were evaluated to	the MDL (DL), cond	entrations >= t	to the MDL (DL) but < RL (LO	Q), if found, are	qualified with	a "J" flag.
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
1,2,3-Trichloropropane	0.60		0.050	0.025	10.0		
<u>Surrogate</u> 1,4-Dichlorobutane	<u>Rec.</u> 113		Control Limits 80-120	<u>Qualifiers</u>			

3871H-N-17Q2		04/07/17 Aque 09:45	ous GC/MS M	04/14/17	04/15/17 06:24	170414L054
Comment(s): - Results were evaluated	d to the MDL (DL), concer	ntrations >= to the MD	DL (DL) but < RL (LC	OQ), if found, are	qualified with	a "J" flag.
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
1,2,3-Trichloropropane	0.084	0.0050	0.0025	1.00		
<u>Surrogate</u>	Rec. (%	<u>Control L</u>	<u>imits</u> <u>Qualifier</u>	<u>'S</u>		
1,4-Dichlorobutane	119	80-120				

Tetra Tech, Inc.

Date Received:

04/07/17

301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-0598

San Bernardino, CA 92408-3562

Preparation:

EPA 5030C

Method:

EPA 8260B SIM

Units: ug/L

Project: LMC BOU Page 2 of 3

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
3871J-N-17Q2	17-04-0598-6-H	04/07/17 11:02	Aqueous	GC/MS M	04/14/17	04/15/17 06:54	170414L054	
Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.								

Parameter Result RL MDL DF Qualifiers

1,2,3-Trichloropropane ND 0.0050 0.0025 1.00

<u>Surrogate</u> <u>Rec. (%)</u> <u>Control Limits</u> <u>Qualifiers</u>

1,4-Dichlorobutane 112 80-120

3861F-N-17Q2	17-04-0598-7-H	04/07/17 12:19	Aqueous	GC/MS M	04/14/17	04/15/17 07:24	170414L054	
Comment(s):	- Results were evaluated to the MDL (DL), con	centrations >	= to the MDL (DI	_) but < RL (L0	DQ), if found, are	qualified with	a "J" flag.	
Parameter	Res	ult	RL	MDL	DF		Qualifiers	

1,2,3-Trichloropropane 0.0045 0.0050 0.0025 1.00 J

<u>Surrogate</u> <u>Rec. (%)</u> <u>Control Limits</u> <u>Qualifiers</u>

1,4-Dichlorobutane 108 80-120

3861D-N-17Q2	17-04-0598-		1/07/17 Aque 3:50	ous GC/MS M	04/17/17	04/17/17 12:34	170417L018			
Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.										
<u>Parameter</u>		Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>			
1,2,3-Trichloropr	opane	0.0056	0.0050	0.0025	1.00					

<u>Surrogate</u> <u>Rec. (%)</u> <u>Control Limits</u> <u>Qualifiers</u>

1,4-Dichlorobutane 110 80-120

Method Blank	099-15-118-486	N/A	Aqueous	GC/MS M	04/14/17	04/14/17 23:27	170414L054
Comment(s):	- Results were evaluated to the MDL (DL), co	ncentrations	>= to the MDL (DL) but < RL (LC	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Res	<u>sult</u>	<u>RL</u>	MDL	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>

1,2,3-Trichloropropane ND 0.0050 0.0025 1.00

Surrogate Rec. (%) Control Limits Qualifiers

1,4-Dichlorobutane 104 80-120

1,4-Dichlorobutane

Analytical Report

Date Received: 04/07/17 Tetra Tech, Inc. Work Order: 17-04-0598 301 E. Vanderbilt Way, Suite 450 Preparation: **EPA 5030C** San Bernardino, CA 92408-3562 Method: **EPA 8260B SIM**

> Units: ug/L

Project: LMC BOU Page 3 of 3

Client Sample Number	Lab Sample Number			Matrix Instrument		Date/Time Analyzed	QC Batch ID			
Method Blank	099-15-118-487	N/A	Aqueous	GC/MS M	04/17/17	04/17/17 11:34	170417L018			
Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.										
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	MDL	<u>DF</u>	<u>(</u>	Qualifiers			
1,2,3-Trichloropropane	ND		0.0050	0.0025	1.00					
Surrogate	Rec.	(%)	Control Limits	Qualifiers						

106

80-120

 Tetra Tech, Inc.
 Date Received:
 04/07/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0598

 San Bernardino, CA 92408-3562
 Preparation:
 N/A

 Method:
 EPA 218.6

Project: LMC BOU Page 1 of 7

Quality Control Sample ID	Туре		Matrix	Ins	strument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	tch Number
3861D-N-17Q2	Sample		Aqueous	s IC	16	N/A	04/07/17	22:47	170407S01	
3861D-N-17Q2	Matrix Spike		Aqueous	s IC	16	N/A	04/07/17	22:59	170407S01	
3861D-N-17Q2	Matrix Spike I	Duplicate	Aqueous	s IC	16	N/A	04/07/17	23:10	170407S01	
Parameter	Sample Conc.	Spike Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Chromium, Hexavalent	6.800	10.00	17.29	105	17.50	107	85-121	1	0-25	

Tetra Tech, Inc.Date Received:04/07/17301 E. Vanderbilt Way, Suite 450Work Order:17-04-0598San Bernardino, CA 92408-3562Preparation:EPA 3020A TotalMethod:EPA 6020

Project: LMC BOU Page 2 of 7

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Batch Number
3861D-N-17Q2	Sample	Aqueous	ICP/MS 05	04/17/17	04/17/17 19:18	170417SA1
3861D-N-17Q2	Matrix Spike	Aqueous	ICP/MS 05	04/17/17	04/17/17 16:00	170417SA1
3861D-N-17Q2	Matrix Spike Duplicate	Aqueous	ICP/MS 05	04/17/17	04/17/17 19:07	170417SA1
Parameter	Sample Spike Conc. Added	MS MS Conc. %I	S MSD Rec. Conc.	MSD %Rec.	%Rec. CL RPD	RPD CL Qualifiers
Chromium	0.008942 0.1000	0.1151 10	6 0.1131	104	73-133 2	0-11

Tetra Tech, Inc.

Date Received:

04/07/17

301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-0598

San Bernardino, CA 92408-3562

Preparation:

EPA 3510C

Method: EPA 8270C (M) Isotope Dilution

Project: LMC BOU Page 3 of 7

Quality Control Sample ID	Туре	Matrix	Instr	ument	Date Prepared	Date Analy	yzed	MS/MSD Bate	ch Number
3861D-N-17Q2	Sample	Aqueo	ous GC/I	MS DDD	04/10/17	04/11/17 0	3:32	170410S09A	
3861D-N-17Q2	Matrix Spike	Aqueo	ous GC/I	MS DDD	04/10/17	04/11/17 0	1:24	170410S09A	
3861D-N-17Q2	Matrix Spike Dup	olicate Aqueo	ous GC/I	MS DDD	04/10/17	04/11/17 0	1:39	170410S09A	
Parameter	Sample Sp Conc. Ac	pike <u>MS</u> dded <u>Conc.</u>	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,4-Dioxane	ND 20	0.00 21.11	106	19.33	97	50-130	9	0-20	

Tetra Tech, Inc.

Date Received:

04/07/17

301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-0598

San Bernardino, CA 92408-3562

Preparation:

EPA 5030C

Method:

EPA 8260B

Project: LMC BOU Page 4 of 7

Quality Control Sample ID	Туре		Matrix		Instrument	Date Prepared			MS/MSD Bat	ch Number
3861D-N-17Q2	Sample		Aqueous	S	GC/MS T	04/19/17			170419S022	
3861D-N-17Q2	Matrix Spike		Aqueous	S	GC/MS T	04/19/17	04/20/17	01:54	170419S022	
3861D-N-17Q2	Matrix Spike	Duplicate	Aqueous	s	GC/MS T	04/19/17	04/20/17	02:26	170419S022	
<u>Parameter</u>	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Re	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	<u>Qualifiers</u>
1,1-Dichloroethene	ND	10.00	10.98	110	10.48	105	66-126	5	0-20	
1,2-Dibromoethane	ND	10.00	9.917	99	9.620	96	75-126	3	0-20	
1,2-Dichlorobenzene	ND	10.00	9.823	98	9.509	95	75-125	3	0-20	
1,2-Dichloroethane	ND	10.00	9.779	98	9.512	95	75-127	3	0-20	
Benzene	ND	10.00	9.960	100	9.670	97	75-125	3	0-20	
Carbon Tetrachloride	ND	10.00	11.51	115	10.89	109	69-135	6	0-20	
Chlorobenzene	ND	10.00	9.789	98	9.566	96	75-125	2	0-20	
Ethylbenzene	ND	10.00	9.968	100	9.684	97	75-125	3	0-20	
Toluene	ND	10.00	10.47	105	10.21	102	75-125	3	0-20	
Trichloroethene	159.3	10.00	161.0	17	162.3	30	75-125	1	0-20	3
Vinyl Chloride	ND	10.00	12.42	124	11.95	119	52-142	4	0-20	
o-Xylene	ND	10.00	9.833	98	9.495	95	75-127	3	0-20	
p/m-Xylene	ND	20.00	19.80	99	19.05	95	75-125	4	0-20	
Methyl-t-Butyl Ether (MTBE)	ND	10.00	10.25	103	9.783	98	71-131	5	0-20	
Tert-Butyl Alcohol (TBA)	ND	50.00	64.30	129	70.66	141	20-180	9	0-40	
Diisopropyl Ether (DIPE)	ND	10.00	10.34	103	9.752	98	64-136	6	0-20	
Ethyl-t-Butyl Ether (ETBE)	ND	10.00	9.964	100	9.455	95	73-133	5	0-20	
Tert-Amyl-Methyl Ether (TAME)	ND	10.00	9.479	95	9.244	92	75-125	3	0-20	
Ethanol	ND	100.0	126.3	126	123.9	124	73-139	2	0-27	

Tetra Tech, Inc.

Date Received:

04/07/17

301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-0598

San Bernardino, CA 92408-3562

Preparation:

EPA 5030C

Method:

EPA 8260B

Project: LMC BOU Page 5 of 7

Quality Control Sample ID	Туре		Matrix		Instrument	Date Prepared	I Date Ana	lyzed	MS/MSD Bat	ch Number
17-04-1153-3	Sample		Aqueou	s	GC/MS T	04/20/17	04/20/17	11:22	170420S006	
17-04-1153-3	Matrix Spike		Aqueou	s	GC/MS T	04/20/17	04/20/17	11:54	170420S006	
17-04-1153-3	Matrix Spike	Duplicate	Aqueou	s	GC/MS T	04/20/17	04/20/17	12:27	170420S006	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Re	MSD c. Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Benzene	ND	10.00	9.316	93	8.568	86	75-125	8	0-20	
Carbon Tetrachloride	ND	10.00	10.35	103	9.437	94	69-135	9	0-20	
Chlorobenzene	ND	10.00	9.317	93	8.693	87	75-125	7	0-20	
1,2-Dibromoethane	ND	10.00	9.438	94	9.262	93	75-126	2	0-20	
1,2-Dichlorobenzene	ND	10.00	9.509	95	8.729	87	75-125	9	0-20	
1,2-Dichloroethane	ND	10.00	9.211	92	8.763	88	75-127	5	0-20	
1,1-Dichloroethene	0.5449	10.00	10.54	100	9.532	90	66-126	10	0-20	
Ethylbenzene	ND	10.00	9.546	95	8.660	87	75-125	10	0-20	
Toluene	ND	10.00	9.487	95	8.664	87	75-125	9	0-20	
Trichloroethene	ND	10.00	9.507	95	8.656	87	75-125	9	0-20	
Vinyl Chloride	2.568	10.00	14.32	118	14.31	117	52-142	0	0-20	
p/m-Xylene	ND	20.00	18.99	95	17.41	87	75-125	9	0-20	
o-Xylene	ND	10.00	9.340	93	8.558	86	75-127	9	0-20	
Methyl-t-Butyl Ether (MTBE)	ND	10.00	9.204	92	9.132	91	71-131	1	0-20	
Tert-Butyl Alcohol (TBA)	ND	50.00	52.82	106	52.97	106	20-180	0	0-40	
Diisopropyl Ether (DIPE)	ND	10.00	9.537	95	9.124	91	64-136	4	0-20	
Ethyl-t-Butyl Ether (ETBE)	ND	10.00	9.135	91	8.926	89	73-133	2	0-20	
Tert-Amyl-Methyl Ether (TAME)	ND	10.00	8.838	88	8.545	85	75-125	3	0-20	
Ethanol	ND	100.0	99.08	99	107.7	108	73-139	8	0-27	

Tetra Tech, Inc.

Date Received:

04/07/17

301 E. Vanderbilt Way, Suite 450

San Bernardino, CA 92408-3562

Preparation:

EPA 5030C

Method:

EPA 8260B SIM

Project: LMC BOU Page 6 of 7

Quality Control Sample ID	Туре		Matrix	Ins	strument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
17-04-0600-3	Sample		Aqueous	G G	C/MS M	04/14/17	04/14/17	23:56	170414S027	
17-04-0600-3	Matrix Spike		Aqueous	G G	C/MS M	04/14/17	04/15/17	00:26	170414S027	
17-04-0600-3	Matrix Spike D	Ouplicate	Aqueous	s GC	C/MS M	04/14/17	04/15/17	00:56	170414S027	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,4-Dioxane	ND	20.00	21.46	107	20.58	103	80-120	4	0-20	
1,2,3-Trichloropropane	0.005200	0.02000	0.02790	114	0.02700	109	80-120	3	0-20	

 Tetra Tech, Inc.
 Date Received:
 04/07/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0598

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B SIM

 Project: LMC BOU
 Page 7 of 7

Quality Control Sample ID	Туре		Matrix	Ir	nstrument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
3861D-N-17Q2	Sample		Aqueous	s G	C/MS M	04/17/17	04/17/17	12:34	170417S008	
3861D-N-17Q2	Matrix Spike		Aqueous	s G	C/MS M	04/17/17	04/17/17	15:03	170417S008	
3861D-N-17Q2	Matrix Spike I	Duplicate	Aqueous	s G	C/MS M	04/17/17	04/17/17	15:34	170417S008	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,4-Dioxane	ND	20.00	23.12	116	23.44	117	80-120	1	0-20	
1,2,3-Trichloropropane	0.005600	0.02000	0.02790	112	0.02590	102	80-120	7	0-20	

Date Received: 04/07/17 Tetra Tech, Inc. Work Order: 17-04-0598 301 E. Vanderbilt Way, Suite 450 Preparation: EPA 3020A Total San Bernardino, CA 92408-3562

> Method: EPA 6020

Project: LMC BOU Page 1 of 1

Quality Control Sample ID	Туре	N	/latrix	Instrument	Date Prepared	Date Analyzed	PDS/PDSD Batch Number
3861D-N-17Q2	Sample	A	Aqueous	ICP/MS 05	04/17/17 00:00	04/17/17 19:18	170417SA1
3861D-N-17Q2	PDS	A	Aqueous	ICP/MS 05	04/17/17 00:00	04/17/17 19:11	170417SA1
<u>Parameter</u>		Sample Conc.	Spike Added	PDS Conc.	PDS %Re	<u>%Rec. 0</u>	CL Qualifiers
Chromium		0.008942	0.1000	0.1098	101	75-125	

Tetra Tech, Inc.

Date Received:

04/07/17

301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-0598

San Bernardino, CA 92408-3562

Preparation:

N/A

Method: EPA 218.6

Project: LMC BOU Page 1 of 7

Quality Control Sample ID	Type	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-14-567-233	LCS	Aqueous	IC 16	N/A	04/07/17 19:42	170407L01
<u>Parameter</u>		Spike Added	Conc. Recov	ered LCS %R	ec. %Rec	. CL Qualifiers
Chromium, Hexavalent		10.00	10.10	101	95-10	7

Project: LMC BOU

Quality Control - LCS

Date Received: 04/07/17 Tetra Tech, Inc. Work Order: 17-04-0598 301 E. Vanderbilt Way, Suite 450 Preparation: EPA 3020A Total San Bernardino, CA 92408-3562

> Method: EPA 6020 Page 2 of 7

Quality Control Sample ID	Туре	Matrix	Instrument	Date	e Prepared	Date Analyze	d LCS	Batch Number
096-06-003-5525	LCS	Aqueous	ICP/MS 05	04/1	17/17	04/17/17 15:	7 1704	117LA1
<u>Parameter</u>		Spike Added	Conc. Recove	ered	LCS %Re	<u>ec.</u> %R	ec. CL	<u>Qualifiers</u>
Chromium		0.1000	0.1124		112	80-	20	

Date Received: 04/07/17 Tetra Tech, Inc. Work Order: 17-04-0598 301 E. Vanderbilt Way, Suite 450 San Bernardino, CA 92408-3562

Preparation: **EPA 3510C** Method: EPA 8270C (M) Isotope Dilution

Page 3 of 7 Project: LMC BOU

Quality Control Sample ID	Туре	Matrix	Instrument	Date	e Prepared	Date Analyzed	LCS Batch	Number
099-16-216-1007	LCS	Aqueous	GC/MS DDD	04/1	0/17	04/10/17 21:56	170410L09)
<u>Parameter</u>		Spike Added	Conc. Recove	ered	LCS %Re	ec. %Red	. CL	<u>Qualifiers</u>
1,4-Dioxane		20.00	18.50		93	50-13	0	

Tetra Tech, Inc. 301 E. Vanderbilt Way, Suite 450 San Bernardino, CA 92408-3562

Project: LMC BOU

Date Received: Work Order: Preparation:

Method:

17-04-0598 EPA 5030C EPA 8260B

04/07/17

Page 4 of 7

Quality Control Sample ID	Туре	Matri	x Instru	ument Date Pr	epared Date Ana	lyzed LCS Bato	h Number
099-10-025-4628	LCS	Aque	eous GC/I	/IS T 04/19/1	7 04/19/17	23:43 170419L	037
<u>Parameter</u>		Spike Added	Conc. Recov	ered LCS %Rec.	%Rec. CL	ME CL	<u>Qualifiers</u>
1,1-Dichloroethene		10.00	10.71	107	77-120	70-127	
1,2-Dibromoethane		10.00	10.44	104	80-120	73-127	
1,2-Dichlorobenzene		10.00	10.13	101	80-120	73-127	
1,2-Dichloroethane		10.00	10.11	101	80-122	73-129	
Benzene		10.00	10.08	101	80-120	73-127	
Carbon Tetrachloride		10.00	10.81	108	80-129	72-137	
Chlorobenzene		10.00	10.06	101	80-120	73-127	
Ethylbenzene		10.00	10.12	101	80-120	73-127	
Toluene		10.00	10.12	101	80-120	73-127	
Trichloroethene		10.00	10.13	101	80-120	73-127	
Vinyl Chloride		10.00	11.11	111	63-135	51-147	
o-Xylene		10.00	10.13	101	80-120	73-127	
p/m-Xylene		20.00	20.12	101	80-120	73-127	
Methyl-t-Butyl Ether (MTBE)		10.00	10.68	107	75-123	67-131	
Tert-Butyl Alcohol (TBA)		50.00	53.27	107	80-120	73-127	
Diisopropyl Ether (DIPE)		10.00	10.83	108	73-121	65-129	
Ethyl-t-Butyl Ether (ETBE)		10.00	10.51	105	76-124	68-132	
Tert-Amyl-Methyl Ether (TAME)		10.00	9.951	100	80-120	73-127	
Ethanol		100.0	109.7	110	73-133	63-143	

Total number of LCS compounds: 19
Total number of ME compounds: 0
Total number of ME compounds allowed: 1
LCS ME CL validation result: Pass

Tetra Tech, Inc. 301 E. Vanderbilt Way, Suite 450 San Bernardino, CA 92408-3562 Date Received: Work Order: Preparation:

Method:

17-04-0598 EPA 5030C EPA 8260B

04/07/17

Project: LMC BOU Page 5 of 7

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared [Date Analyzed	LCS Batch Number
099-10-025-4629	LCS	Aqueous	GC/MS T	04/20/17	04/20/17 09:27	170420L010
<u>Parameter</u>	Spike A	dded Conc.	Recovered LCS	%Rec. %Re	c. CL ME	CL Qualifiers
Benzene	10.00	10.16	102	80-12	20 73-	127
Carbon Tetrachloride	10.00	10.62	106	80-12	29 72-	137
Chlorobenzene	10.00	10.18	102	80-12	20 73-	127
1,2-Dibromoethane	10.00	9.913	99	80-12	20 73-	127
1,2-Dichlorobenzene	10.00	10.08	101	80-12	20 73-	127
1,2-Dichloroethane	10.00	9.906	99	80-12	22 73-	129
1,1-Dichloroethene	10.00	10.59	106	77-12	20 70-	127
Ethylbenzene	10.00	10.26	103	80-12	20 73-	127
Toluene	10.00	10.20	102	80-12	20 73-	127
Trichloroethene	10.00	10.45	105	80-12	20 73-	127
Vinyl Chloride	10.00	10.71	107	63-13	35 51-	147
p/m-Xylene	20.00	20.63	103	80-12	20 73-	127
o-Xylene	10.00	10.17	102	80-12	20 73-	127
Methyl-t-Butyl Ether (MTBE)	10.00	9.932	99	75-12	23 67-	131
Tert-Butyl Alcohol (TBA)	50.00	51.36	103	80-12	20 73-	127
Diisopropyl Ether (DIPE)	10.00	10.37	104	73-12	21 65-	129
Ethyl-t-Butyl Ether (ETBE)	10.00	9.960	100	76-12	24 68-	132
Tert-Amyl-Methyl Ether (TAME)	10.00	9.513	95	80-12	20 73-	127
Ethanol	100.0	110.8	111	73-13	33 63-	143

Total number of LCS compounds: 19
Total number of ME compounds: 0
Total number of ME compounds allowed: 1
LCS ME CL validation result: Pass

Tetra Tech, Inc.

Date Received:

04/07/17

301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-0598

Preparation:

EPA 5030C

Method:

EPA 8260B SIM

Project: LMC BOU Page 6 of 7

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-15-118-486	LCS	Aqueous	GC/MS M	04/14/17	04/14/17 22:27	170414L054
<u>Parameter</u>		Spike Added	Conc. Recovered	ed LCS %R	ec. %Rec	. CL Qualifiers
1,4-Dioxane		20.00	20.00	100	80-120)
1,2,3-Trichloropropane		0.02000	0.01910	96	80-120)

Quality Control - LCS

 Tetra Tech, Inc.
 Date Received:
 04/07/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0598

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B SIM

 Project: LMC BOU
 Page 7 of 7

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-15-118-487	LCS	Aqueous	GC/MS M	04/17/17	04/17/17 10:34	170417L018
<u>Parameter</u>		Spike Added	Conc. Recover	ed LCS %R	ec. %Rec	. CL Qualifiers
1,4-Dioxane		20.00	21.09	105	80-120)
1,2,3-Trichloropropane		0.02000	0.01960	98	80-120)

Sample Analysis Summary Report

Work Order: 17-04-0598				Page 1 of 1
Method	Extraction	Chemist ID	Instrument	Analytical Location
EPA 218.6	N/A	834	IC 16	1
EPA 6020	EPA 3020A Total	598	ICP/MS 05	1
EPA 8260B	EPA 5030C	316	GC/MS T	2
EPA 8260B SIM	EPA 5030C	486	GC/MS M	2
EPA 8270C (M) Isotope Dilution	EPA 3510C	928	GC/MS DDD	1

Glossary of Terms and Qualifiers

Work Order: 17-04-0598 Page 1 of 1

Qualifiers	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
CI	See case narrative.
Е	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
SG	The sample extract was subjected to Silica Gel treatment prior to analysis.
Y	% Recovery and/or RPD out-of-range

- % Recovery and/or RPD out-of-range.
- Χ
- Ζ Analyte presence was not confirmed by second column or GC/MS analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

2016-04-01-Revision

Return to Contents

SAMPL	F	RECEIPT	CHECKL	IST

COOLER / OF (

CLIENT: Tetra	Tech		
TEMPERATURE: (D-1)		and the same assessment as after a matter as a fine and the same as a second a	

9 1 00	<u>**.</u>		DAI	E: U4 /	<u> </u>	2011
(CF: 0.0°C); Tem side temperature c side temperature c	perature (w/o CF): 7.8 riteria (PM/APM contacted by riteria but received on ice/chi	_°C (w/ CF): /-2 y:) illed on same day of			h	91
	·					
sent and Intact sent and Intact	☐ Present but Not Intact ☐ Present but Not Intact	☑ Not Present ☑ Not Present	□ N/A □ N/A		* *-	29/ 81
N:	•			Yes	Nσ	N/A
OC) document(s)	received with samples			Ø		
				Ø		
			quished time			
				Ø		
					a	
-						
				Ø		
-						
-		-				ø
					_	_
				•		
	_					
				ď		
				_	_	_
						a '
						_ i
10 ENOVE	- m kompi m kompina. E					
IVOAN LIVOANS	E D SECONDO DE DOMANTE DE	DEADER DESADAGE	ያውዘ ይህ 1450~V ወደ በ1460~V	בי אספי זיי אספי	i Zaro I Cile	:
_		•				
	-					и
						_
	criteria: 0.0°C – 6.0°C; Temide temperature of detemperat	criteria: 0.0°C = 6.0°C, not frozen except sedimic (CF: 0.0°C); Temperature (w/o CF);	interia: 0.0°C = 6.0°C, not frozen except sediment/tissue) (CF: 0.0°C): Temperature (w/o CF):	interial in 0.0°C = 6.0°C, not frozen except sediment/tissue) (CF: 0.0°C): Temperature (w/o CF):	interia: 0.0°C – 6.0°C, not frozen except sediment/tissue) ((CF: 0.0°C); Temperature (w/o CF);	interias: 0.0°C = 6.0°C, not frozen except sediment/tissue) (CF: 0.0°C): Temperature (w/o CF):

Calscience

WORK ORDER NUMBER: 17-04-0454

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: Tetra Tech, Inc.

Client Project Name: LMC BOU

Attention: Robert Sabater

301 E. Vanderbilt Way, Suite 450 San Bernardino, CA 92408-3562

Vikas Patel

Approved for release on 04/24/2017 by:

Vikas Patel Project Manager

ResultLink >

Email your PM >

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name: LMC BOU
Work Order Number: 17-04-0454

1	Work Order Narrative	3
2	Detections Summary	4
3	Client Sample Data. 3.1 EPA 218.6 Hexavalent Chromium Low Level (Aqueous). 3.2 EPA 6020 ICP/MS Metals (Aqueous). 3.3 1,4-Dioxane by EPA 8270C (M) Isotope Dilution (Aqueous). 3.4 EPA 8260B Volatile Organics (Aqueous). 3.5 EPA 8260B SIM Emergent Volatiles (Aqueous).	6 8 10 13 46
4	Quality Control Sample Data. 4.1 MS/MSD. 4.2 PDS/PDSD. 4.3 LCS/LCSD.	49 49 56 57
5	Sample Analysis Summary	64
6	Glossary of Terms and Qualifiers	65
7	Chain-of-Custody/Sample Receipt Form	66

Work Order Narrative

Work Order: 17-04-0454 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 04/06/17. They were assigned to Work Order 17-04-0454.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Detections Summary

Client: Tetra Tech, Inc.

Work Order: 17-04-0454
Project Name: LMC BOU

301 E. Vanderbilt Way, Suite 450 San Bernardino, CA 92408-3562

Received: 04/06/17

Attn: Robert Sabater Page 1 of 2

Client SampleID						
<u>Analyte</u>	Result	<u>Qualifiers</u>	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
B-1-CW30-N-17Q2 (17-04-0454-1)						
Chromium, Hexavalent	0.59		0.020	ug/L	EPA 218.6	N/A
Chromium	0.0333		0.00100	mg/L	EPA 6020	EPA 3020A Total
Tetrachloroethene	110		5.0	ug/L	EPA 8260B	EPA 5030C
Trichloroethene	200		5.0	ug/L	EPA 8260B	EPA 5030C
B-1-CW31-N-17Q2 (17-04-0454-2)						
Chromium, Hexavalent	16		0.020	ug/L	EPA 218.6	N/A
Chromium	0.0217		0.00100	mg/L	EPA 6020	EPA 3020A Total
Tetrachloroethene	55		1.0	ug/L	EPA 8260B	EPA 5030C
Trichloroethene	47		1.0	ug/L	EPA 8260B	EPA 5030C
B-1-CW33-N-17Q2 (17-04-0454-3)						
Chromium, Hexavalent	0.44		0.020	ug/L	EPA 218.6	N/A
Chromium	0.0149		0.00100	mg/L	EPA 6020	EPA 3020A Total
1,1,2-Trichloro-1,2,2-Trifluoroethane	15		10	ug/L	EPA 8260B	EPA 5030C
1,1-Dichloroethene	17		10	ug/L	EPA 8260B	EPA 5030C
Tetrachloroethene	630		10	ug/L	EPA 8260B	EPA 5030C
Trichloroethene	180		10	ug/L	EPA 8260B	EPA 5030C
1,2,3-Trichloropropane	0.87		0.050	ug/L	EPA 8260B SIM	EPA 5030C
1,4-Dioxane	1.2		1.0	ug/L	EPA 8270C (M) Isotope Dilution	EPA 3510C
A-1-CW08-N-17Q2 (17-04-0454-5)						
Chromium, Hexavalent	1.2		0.020	ug/L	EPA 218.6	N/A
Chromium	0.00176		0.00100	mg/L	EPA 6020	EPA 3020A Total
1,1-Dichloroethene	1.4		1.0	ug/L	EPA 8260B	EPA 5030C
1,2,3-Trichloropropane	67		2.0	ug/L	EPA 8260B	EPA 5030C
Carbon Tetrachloride	1.0		1.0	ug/L	EPA 8260B	EPA 5030C
Chloroform	30		1.0	ug/L	EPA 8260B	EPA 5030C
Tetrachloroethene	28		1.0	ug/L	EPA 8260B	EPA 5030C
Trichloroethene	69		1.0	ug/L	EPA 8260B	EPA 5030C
1,2,3-Trichloropropane	87		5.0	ug/L	EPA 8260B SIM	EPA 5030C
B-6-CW14-N-17Q2 (17-04-0454-6)						
Chromium, Hexavalent	1.2		0.020	ug/L	EPA 218.6	N/A
Chromium	0.00177		0.00100	mg/L	EPA 6020	EPA 3020A Total
Acetone	4.5	J	4.0*	ug/L	EPA 8260B	EPA 5030C
Chloroform	0.29	J	0.20*	ug/L	EPA 8260B	EPA 5030C
Tetrachloroethene	22		0.50	ug/L	EPA 8260B	EPA 5030C
Trichloroethene	5.1		0.50	ug/L	EPA 8260B	EPA 5030C
1,4-Dioxane	1.8		1.0	ug/L	EPA 8270C (M) Isotope Dilution	EPA 3510C

^{*} MDL is shown

Detections Summary

Client: Tetra Tech, Inc.

301 E. Vanderbilt Way, Suite 450

San Bernardino, CA 92408-3562

Work Order: 17-04-0454

Project Name: LMC BOU Received: 04/06/17

Attn: Robert Sabater Page 2 of 2

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	Method	Extraction
C-1-CW05-N-17Q2 (17-04-0454-7)						
Chromium, Hexavalent	0.18		0.020	ug/L	EPA 218.6	N/A
Chromium	0.000735	J	0.000402*	mg/L	EPA 6020	EPA 3020A Total
1,1-Dichloroethane	1.1		0.50	ug/L	EPA 8260B	EPA 5030C
Dichlorodifluoromethane	1.9		1.0	ug/L	EPA 8260B	EPA 5030C
Tetrachloroethene	0.68		0.50	ug/L	EPA 8260B	EPA 5030C
Trichloroethene	0.29	J	0.29*	ug/L	EPA 8260B	EPA 5030C
c-1,2-Dichloroethene	0.30	J	0.20*	ug/L	EPA 8260B	EPA 5030C
B-6-CW02-N-17Q2 (17-04-0454-8)						
Chromium, Hexavalent	2.5		0.020	ug/L	EPA 218.6	N/A
Chromium	0.00295		0.00100	mg/L	EPA 6020	EPA 3020A Total
Chloroform	0.35	J	0.20*	ug/L	EPA 8260B	EPA 5030C
Tetrachloroethene	0.56		0.50	ug/L	EPA 8260B	EPA 5030C
B-6-CW02-FD-17Q2 (17-04-0454-9)						
Chromium, Hexavalent	2.5		0.020	ug/L	EPA 218.6	N/A
Chromium	0.00311		0.00100	mg/L	EPA 6020	EPA 3020A Total
Acetone	4.2	J	4.0*	ug/L	EPA 8260B	EPA 5030C
Chloroform	0.37	J	0.20*	ug/L	EPA 8260B	EPA 5030C
Tetrachloroethene	0.54		0.50	ug/L	EPA 8260B	EPA 5030C

Subcontracted analyses, if any, are not included in this summary.

^{*} MDL is shown

Comment(s):

Comment(s):

Parameter

Chromium. Hexavalent

Chromium, Hexavalent

C-1-CW05-N-17Q2

<u>Parameter</u>

Analytical Report

Date Received: 04/06/17 Tetra Tech, Inc. Work Order: 17-04-0454 301 E. Vanderbilt Way, Suite 450 Preparation: N/A San Bernardino, CA 92408-3562 Method: EPA 218.6 Units: ug/L Project: LMC BOU Page 1 of 2 Client Sample Number Lab Sample Date/Time Matrix Instrument Date Date/Time QC Batch ID Number Collected Prepared Analyzed B-1-CW30-N-17Q2 17-04-0454-1-K 04/06/17 04/06/17 Aqueous IC 16 N/A 170406L01 14:44 21:13 - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. Comment(s): <u>Parameter</u> MDL <u>DF</u> Result <u>RL</u> Chromium, Hexavalent 0.59 0.020 0.0099 1.00 B-1-CW31-N-17Q2 17-04-0454-2-K 04/06/17 IC 16 N/A 04/06/17 Aqueous 170406L01 13:05 21:24 - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. Comment(s): Qualifiers Parameter Result RL MDL DF Chromium, Hexavalent 0.020 0.0099 1.00 B-1-CW33-N-17Q2 17-04-0454-3-K 04/06/17 Aqueous IC 16 N/A 04/06/17 170406L01 - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. Comment(s): RL MDL <u>DF</u> Qualifiers **Parameter** Result 0.44 0.020 0.0099 1.00 Chromium. Hexavalent A-1-CW08-N-17Q2 17-04-0454-5-K 04/06/17 Aqueous IC 16 N/A 04/06/17 170406L01 21:46 14:44 - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. Comment(s): MDL DF Parameter Result <u>RL</u> Qualifiers Chromium, Hexavalent 1.2 0.020 0.0099 1.00 04/06/17 B-6-CW14-N-17Q2 17-04-0454-6-K Aqueous IC 16 N/A 04/06/17 170406L01

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

- Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

<u>RL</u>

0.020

- Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

0.020

Aqueous

Result

Result

0.18

04/06/17

09:52

12

17-04-0454-7-K

<u>DF</u>

1.00

<u>DF</u>

1.00

N/A

04/06/17 22:09

MDL

MDL 0.0099

IC 16

0.0099

Qualifiers

170406L01

Date Received: 04/06/17 Tetra Tech, Inc. Work Order: 17-04-0454 301 E. Vanderbilt Way, Suite 450 Preparation: N/A San Bernardino, CA 92408-3562 Method: EPA 218.6 Units: ug/L

Page 2 of 2 Project: LMC BOU

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-6-CW02-N-17Q2	17-04-0454-8-K	04/06/17 16:21	Aqueous	IC 16	N/A	04/06/17 22:20	170406L01
Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.							

<u>Parameter</u> Result <u>RL</u> <u>MDL</u> DF Qualifiers Chromium, Hexavalent 2.5 0.020 0.0099 1.00

B-6-CW02-FD-17Q2	17-04-0454-9-K	04/06/17 16:21	Aqueous	IC 16	N/A	04/06/17 22:31	170406L01
------------------	----------------	-------------------	---------	-------	-----	-------------------	-----------

Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. <u>Parameter</u> Result <u>RL</u> **MDL** <u>DF</u> Qualifiers Chromium, Hexavalent 2.5 0.020 0.0099 1.00

Method Blank	099-14-567	7-232 N/A	Aqueous	IC 16	N/A	04/06/17 19:46	170406L01
Comment(s):	- Results were evaluated to the MDL (D	L), concentra	tions >= to the MDL (D	DL) but < RL (LC	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>		Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>(ualifiers</u>
Chromium, Hexa	avalent	ND	0.020	0.0099	1.00		

Comment(s): Parameter

Chromium

Analytical Report

Date Received: 04/06/17 Tetra Tech, Inc. Work Order: 17-04-0454 301 E. Vanderbilt Way, Suite 450 Preparation: EPA 3020A Total San Bernardino, CA 92408-3562 Method: EPA 6020 Units: mg/L Project: LMC BOU Page 1 of 2 Client Sample Number Lab Sample Date/Time Matrix Instrument Date Date/Time QC Batch ID Number Collected Prepared Analyzed 17-04-0454-1-L 04/06/17 04/19/17 B-1-CW30-N-17Q2 Aqueous ICP/MS 03 04/15/17 170415LA6 14:44 00:35 - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. Comment(s): <u>Parameter</u> <u>DF</u> Result <u>RL</u> **MDL** Qualifiers Chromium 0.0333 0.00100 0.000402 1.00 B-1-CW31-N-17Q2 17-04-0454-2-L 04/06/17 04/19/17 Aqueous ICP/MS 03 04/15/17 170415LA6 13:05 00:45 - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. Comment(s): Qualifiers Parameter Result MDL DF Chromium 0.0217 0.00100 0.000402 1.00 B-1-CW33-N-17Q2 17-04-0454-3-L 04/06/17 Aqueous ICP/MS 03 04/15/17 04/19/17 170415LA6 - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. Comment(s): <u>Parameter</u> MDL <u>DF</u> Qualifiers Result <u>RL</u> Chromium 0.0149 0.00100 0.000402 1.00 A-1-CW08-N-17Q2 17-04-0454-5-L 04/06/17 Aqueous ICP/MS 03 04/15/17 04/19/17 170415LA6 00:52 14:44 Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. MDL DF Parameter Result Qualifiers Chromium 0.00176 0.00100 0.000402 1.00 B-6-CW14-N-17Q2 04/06/17 17-04-0454-6-L Aqueous ICP/MS 03 04/15/17 04/19/17 170415LA6 - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. Comment(s): <u>Parameter</u> <u>DF</u> Qualifiers Result <u>RL</u> **MDL** Chromium 0.00177 0.00100 0.000402 1.00 04/19/17 00:57 C-1-CW05-N-17Q2 17-04-0454-7-L 04/06/17 ICP/MS 03 04/15/17 170415LA6 Aqueous 09:52

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Result

0.000735

- Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

0.00100

MDL

0.000402

<u>DF</u> 1.00

Date Received: 04/06/17 Tetra Tech, Inc. Work Order: 17-04-0454 301 E. Vanderbilt Way, Suite 450

Preparation: EPA 3020A Total San Bernardino, CA 92408-3562 Method: EPA 6020

> Units: mg/L

Project: LMC BOU Page 2 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-6-CW02-N-17Q2	17-04-0454-8-G	04/06/17 16:21	Aqueous	ICP/MS 03	04/15/17	04/19/17 01:00	170415LA6

Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. <u>Parameter</u> Result <u>MDL</u> <u>DF</u> Qualifiers <u>RL</u> Chromium 0.00295 0.00100 0.000402 1.00

B-6-CW02-FD-17Q2 17-04-0454-9-G 04/06/17 ICP/MS 03 04/15/17 04/19/17 170415LA6 Aqueous 16:21 01:02

- Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. Comment(s): <u>Parameter</u> Result **MDL** <u>DF</u> Qualifiers RL Chromium 0.00311 0.00100 0.000402 1.00

Method Blank	096-06-003-5532	N/A	Aqueous ICP/MS (03 04/15/17	04/19/17 170415LA6 04:11
Comment(s):	- Results were evaluated to the MDL (DL), cor	centrations >= to th	he MDL (DL) but < RL	(LOQ), if found, are o	qualified with a "J" flag.
<u>Parameter</u>	Res	ult RL	MDL	<u>DF</u>	<u>Qualifiers</u>

Result <u>RL</u> <u>MDL</u> <u>DF</u> Chromium ND 0.00100 0.000402 1.00

Tetra Tech, Inc.

Date Received: 04/06/17

301 E. Vanderbilt Way, Suite 450 Work Order: 17-04-0454 San Bernardino, CA 92408-3562 Preparation: EPA 3510C

Method: EPA 8270C (M) Isotope Dilution

Units: ug/L

Project: LMC BOU Page 1 of 3

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-1-CW30-N-17Q2	17-04-0454-1-M	04/06/17 14:44	Aqueous	GC/MS DDD	04/07/17	04/08/17 08:37	170407L15
Comment(s): - Results were evaluate	ed to the MDL (DL), con	centrations >= 1	to the MDL (DL	.) but < RL (LOC	ຊ), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
1,4-Dioxane	ND		1.0	0.28	1.00		
Surrogate	Rec.	(%)	Control Limits	Qualifiers			
Nitrobenzene-d5	107		56-123	<u> </u>			
1.4-Dioxane-d8(IDS-IS)	37		30-120				

B-1-CW31-N-17Q2	17-04-0454-2-M	04/06/17 13:05	Aqueous	GC/MS DDD	04/07/17	04/08/17 08:53	170407L15
Comment(s): - Results were evaluated to	the MDL (DL), cond	entrations >=	to the MDL (DL	.) but < RL (LOC	(a), if found, are	qualified with a	ı "J" flag.
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	9	<u>Qualifiers</u>
1,4-Dioxane	ND		1.0	0.28	1.00		
<u>Surrogate</u>	Rec.	<u>(%)</u>	Control Limits	<u>Qualifiers</u>			
Nitrobenzene-d5	106		56-123				
1,4-Dioxane-d8(IDS-IS)	39		30-120				

B-1-CW33-N-17Q2	17-04-0454-3-M	04/06/17 A 09:04	Aqueous GC/MS	S DDD 04/07/17	04/08/17 170407L15 09:09
Comment(s): - Results	vere evaluated to the MDL (DL), con-	centrations >= to th	e MDL (DL) but <	RL (LOQ), if found, a	are qualified with a "J" flag.
<u>Parameter</u>	Resu	<u>ult</u> <u>RL</u>	<u>M</u>	<u>DL</u> <u>DF</u>	<u>Qualifiers</u>
1,4-Dioxane	1.2	1.0	0.2	28 1.0	00
Surrogate	Rec.	. (%) Con	trol Limits Qu	ualifiers	
Nitrobenzene-d5	108	56-1			
1,4-Dioxane-d8(IDS-IS)	38	30-1	20		

A-1-CW08-N-17Q2		4/06/17 Aqueo 4:44	us GC/MS DDD	04/07/17	04/08/17 09:24	170407L15
Comment(s): - Results were evaluated to	the MDL (DL), concent	trations >= to the MDL	(DL) but < RL (LOC)), if found, are	qualified with a "	J" flag.
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Q</u> ı	<u>ıalifiers</u>
1,4-Dioxane	ND	1.0	0.28	1.00		
Surrogate	Rec. (%)	Control Lir	nits Qualifiers			
Nitrobenzene-d5	107	56-123				
1,4-Dioxane-d8(IDS-IS)	39	30-120				

Tetra Tech, Inc.

Date Received: 04/06/17

301 E. Vanderbilt Way, Suite 450

San Bernardino, CA 92408-3562

Preparation:

Method:

17-04-0454

EPA 3510C

EPA 8270C (M) Isotope Dilution

Method: EPA 8270C (M) Isotope Dilution Units: ug/L

Project: LMC BOU Page 2 of 3

Client Sample Number	Lab Sample Number		Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-6-CW14-N-17Q2	17-04-0454-6-M	04/06/17 11:47	Aqueous	GC/MS DDD	04/07/17	04/08/17 09:40	170407L15
Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with							"J" flag.
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
1,4-Dioxane	1.8		1.0	0.28	1.00		
Surrogate	Rec.	(%)	Control Limits	Qualifiers			
Nitrobenzene-d5	110		56-123				
1.4-Dioxane-d8(IDS-IS)	39		30-120				

C-1-CW05-N-17Q2	17-04-0454-7-M	04/06/17 09:52	Aqueous	GC/MS DDD	04/07/17	04/08/17 09:56	170407L15
Comment(s): - Results were evaluated to	the MDL (DL), cond	entrations >=	to the MDL (DL	.) but < RL (LOC	(a), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>(</u>	<u>Qualifiers</u>
1,4-Dioxane	ND		1.0	0.28	1.00		
Surrogate	Rec.	<u>(%)</u>	Control Limits	<u>Qualifiers</u>			
Nitrobenzene-d5	108		56-123				
1,4-Dioxane-d8(IDS-IS)	36		30-120				

B-6-CW02-N-17Q2	17-04-0454-8-H	04/06/17 Aqued 16:21	ous GC/MS DDD		04/08/17 10:12	170407L15
Comment(s): - Results wer	e evaluated to the MDL (DL), conc	centrations >= to the MD	L (DL) but < RL (LO	Q), if found, are qu	ualified with a "	J" flag.
<u>Parameter</u>	Resul	<u>lt</u> <u>RL</u>	<u>MDL</u>	<u>DF</u>	Qu	<u>ialifiers</u>
1,4-Dioxane	ND	1.0	0.28	1.00		
<u>Surrogate</u>	Rec. ((%) Control Li	<u>imits</u> <u>Qualifiers</u>			
Nitrobenzene-d5	106	56-123				
1,4-Dioxane-d8(IDS-IS)	37	30-120				

B-6-CW02-FD-17Q2	17-04-0454-9-H	04/06/17 16:21	Aqueous	GC/MS DDD	04/07/17	04/08/17 10:28	170407L15
Comment(s): - Results were evaluated	to the MDL (DL), conce	entrations >= t	o the MDL (DL	.) but < RL (LOC)), if found, are	qualified with	a "J" flag.
<u>Parameter</u>	Result	<u>t</u> !	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
1,4-Dioxane	ND	•	1.0	0.28	1.00		
Surrogate	Rec. (<u>%)</u>	Control Limits	<u>Qualifiers</u>			
Nitrobenzene-d5	104	Į	56-123				
1,4-Dioxane-d8(IDS-IS)	35	;	30-120				

Date Received: 04/06/17 Tetra Tech, Inc.

Work Order: 17-04-0454 301 E. Vanderbilt Way, Suite 450 Preparation: **EPA 3510C** San Bernardino, CA 92408-3562

> Method: EPA 8270C (M) Isotope Dilution

Units: ug/L

Project: LMC BOU Page 3 of 3

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-16-216-1000	N/A	Aqueous	GC/MS DDD	04/07/17	04/08/17 04:23	170407L15
Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flat							"J" flag.
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>(ualifiers</u>
1,4-Dioxane	ND		1.0	0.28	1.00		
<u>Surrogate</u>	Rec.	(%)	Control Limits	Qualifiers			
Nitrobenzene-d5	110		56-123				
1,4-Dioxane-d8(IDS-IS)	41	;	30-120				

ug/L

Analytical Report

Tetra Tech, Inc.

Date Received:

04/06/17

301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-0454

San Bernardino, CA 92408-3562

Preparation:

EPA 5030C

Method: EPA 8260B

Project: LMC BOU Page 1 of 33

Units:

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID		
B-1-CW30-N-17Q2	17-04-0454-1-A	04/06/17 14:44	Aqueous	GC/MS FFF	04/07/17	04/08/17 04:36	170407L043		
Comment(s): - Results were evaluated	Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.								
<u>Parameter</u>	Resu	<u>ılt</u> <u>F</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	9	<u>Qualifiers</u>		
1,1,1,2-Tetrachloroethane	ND	5	5.0	2.0	10.0				
1,1,1-Trichloroethane	ND	5	5.0	2.0	10.0				
1,1,2,2-Tetrachloroethane	ND	5	5.0	2.0	10.0				
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	5	5.0	2.4	10.0				
1,1,2-Trichloroethane	ND	5	5.0	2.0	10.0				
1,1-Dichloroethane	ND	Ę	5.0	2.0	10.0				
1,1-Dichloroethene	ND	5	5.0	2.8	10.0				
1,1-Dichloropropene	ND	5	5.0	3.0	10.0				
1,2,3-Trichlorobenzene	ND	5	5.0	2.0	10.0				
1,2,3-Trichloropropane	ND	1	10	4.0	10.0				
1,2,4-Trichlorobenzene	ND	5	5.0	2.0	10.0				
1,2,4-Trimethylbenzene	ND	5	5.0	2.0	10.0				
1,2-Dibromo-3-Chloropropane	ND	Ę	50	20	10.0				
1,2-Dibromoethane	ND	Ę	5.0	2.0	10.0				
1,2-Dichlorobenzene	ND	Ę	5.0	2.0	10.0				
1,2-Dichloroethane	ND	Ę	5.0	2.0	10.0				
1,2-Dichloropropane	ND	5	5.0	2.0	10.0				
1,3,5-Trimethylbenzene	ND	Ę	5.0	2.0	10.0				
1,3-Dichlorobenzene	ND	Ę	5.0	2.8	10.0				
1,3-Dichloropropane	ND	1	10	4.0	10.0				
1,4-Dichlorobenzene	ND	Ę	5.0	2.0	10.0				
2,2-Dichloropropane	ND	1	10	4.0	10.0				
2-Butanone	ND	Ę	50	20	10.0				
2-Chlorotoluene	ND	Ę	5.0	2.0	10.0				
2-Hexanone	ND	1	100	40	10.0				
4-Chlorotoluene	ND	Ę	5.0	3.6	10.0				
4-Methyl-2-Pentanone	ND	Ę	50	20	10.0				
Acetone	ND	1	100	40	10.0				
Benzene	ND	Ę	5.0	2.0	10.0				
Bromobenzene	ND	Ę	5.0	3.2	10.0				
Bromochloromethane	ND	1	10	4.0	10.0				
Bromodichloromethane	ND	Ę	5.0	2.0	10.0				
Bromoform	ND	Ę	5.0	2.5	10.0				
Bromomethane	ND		10	4.0	10.0				

 Tetra Tech, Inc.
 Date Received:
 04/06/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0454

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 2 of 33

Troject: Livio Boo					1 age 2 or ee
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	MDL	<u>DF</u>	<u>Qualifiers</u>
Carbon Disulfide	ND	10	4.0	10.0	
Carbon Tetrachloride	ND	5.0	2.0	10.0	
Chlorobenzene	ND	5.0	2.0	10.0	
Chloroethane	ND	5.0	3.2	10.0	
Chloroform	ND	5.0	2.0	10.0	
Chloromethane	ND	5.0	2.9	10.0	
Dibromochloromethane	ND	5.0	2.0	10.0	
Dibromomethane	ND	5.0	2.0	10.0	
Dichlorodifluoromethane	ND	10	4.0	10.0	
Ethylbenzene	ND	5.0	2.0	10.0	
Isopropylbenzene	ND	5.0	2.0	10.0	
Methylene Chloride	ND	10	8.0	10.0	
Naphthalene	ND	10	4.0	10.0	
Styrene	ND	5.0	2.0	10.0	
Tetrachloroethene	110	5.0	2.0	10.0	
Toluene	ND	5.0	2.0	10.0	
t-1,2-Dichloroethene	ND	5.0	2.0	10.0	
Trichloroethene	200	5.0	2.9	10.0	
Trichlorofluoromethane	ND	5.0	2.0	10.0	
Vinyl Acetate	ND	50	20	10.0	
Vinyl Chloride	ND	5.0	2.0	10.0	
c-1,3-Dichloropropene	ND	5.0	2.0	10.0	
c-1,2-Dichloroethene	ND	5.0	2.0	10.0	
n-Butylbenzene	ND	5.0	2.0	10.0	
n-Propylbenzene	ND	5.0	2.0	10.0	
o-Xylene	ND	5.0	3.2	10.0	
p-Isopropyltoluene	ND	5.0	2.0	10.0	
sec-Butylbenzene	ND	5.0	2.0	10.0	
t-1,3-Dichloropropene	ND	5.0	2.0	10.0	
tert-Butylbenzene	ND	5.0	2.0	10.0	
p/m-Xylene	ND	5.0	2.0	10.0	
Methyl-t-Butyl Ether (MTBE)	ND	5.0	2.0	10.0	
2-Chloroethyl Vinyl Ether	ND	50	42	10.0	
Hexachloro-1,3-Butadiene	ND	20	8.0	10.0	
Iodomethane	ND	100	50	10.0	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	91	68-120			
Dibromofluoromethane	101	80-127			

Tetra Tech, Inc.	Date Received:	04/06/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0454
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOU		Page 3 of 33

Surrogate	Rec. (%)	Control Limits	Qualifiers
1,2-Dichloroethane-d4	102	80-128	
Toluene-d8	102	80-120	

Tetra Tech, Inc.

Date Received:

04/06/17

301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-0454

San Bernardino, CA 92408-3562

Preparation:

EPA 5030C

Method: EPA 8260B Units: ug/L

Project: LMC BOU Page 4 of 33

17-04-0454-2-C 04/06/11 05/05 04/06/11 04/19/19/11 04/19/11 04/19/11 04/19/11 04/19/11 04/19/11 04	Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
Parameter Result RL MDL DF Qualifiers 1.1.1,2-Tetrachioroethane ND 1.0 0.40 2.00 1.1.1,1-17richioroethane ND 1.0 0.40 2.00 1.1.2-Tetrachioroethane ND 1.0 0.40 2.00 1.1.2-Trichioroethane ND 1.0 0.40 2.00 1.1.2-Trichioroethane ND 1.0 0.40 2.00 1.1.2-Trichioroethane ND 1.0 0.40 2.00 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	B-1-CW31-N-17Q2	17-04-0454-2-C		Aqueous	GC/MS L	04/19/17		170419L010	
1,1,1,2-Tetrachloroethane ND 1,0 0.40 2.00 1,1,1-Trichloroethane ND 1,0 0.40 2.00 1,1,2-Trichloroethane ND 1,0 0.40 2.00 1,1,2-Trichloroethane ND 1,0 0.48 2.00 1,1-Dichloroethane ND 1,0 0.40 2.00 1,1-Dichloroethene ND 1,0 0.56 2.00 1,1-Dichloropropene ND 1,0 0.60 2.00 1,2-3-Trichlorobenzene ND 1,0 0.40 2.00 1,2,3-Trichlorobenzene ND 1,0 0.40 2.00 1,2,4-Trimethylbenzene ND 1,0 0.40 2.00 1,2,4-Trichlorobenzene ND 1,0 0.40 2.00 1,2-Dichromethane ND 1,0 0.40 2.00 1,2-Dichromethane ND 1,0 0.40 2.00 1,2-Dichromethane ND 1,0 0.40 2.00 1,2-Dichromethane <t< td=""><td colspan="9">Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.</td></t<>	Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.								
1,1,1-Trichloroethane ND 1,0 0.40 2.00 1,1,2,2-Teichloro-1,2,2-Trifhuorethane ND 1,0 0.48 2.00 1,1,2-Trichloro-thane ND 1,0 0.48 2.00 1,1-Dichloroethane ND 1,0 0.40 2.00 1,1-Dichloropene ND 1,0 0.56 2.00 1,1-Dichloropene ND 1,0 0.60 2.00 1,2-S-Trichlorobenzene ND 1,0 0.60 2.00 1,2-S-Trichloropropane ND 1,0 0.40 2.00 1,2-S-Trichloropropane ND 1,0 0.40 2.00 1,2-S-Trichloropropane ND 1,0 0.40 2.00 1,2-S-Trichloropropane ND 1,0 0.40 2.00 1,2-Dichlorobenzene ND 1,0 0.40 2.00 1,2-Dichlorobenzene ND 1,0 0.40 2.00 1,3-Dichlorobenzene ND 1,0 0.40 2.00 1,3-Dichlorobenzen	<u>Parameter</u>	Resu	<u>ılt</u> <u>!</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>(</u>	Qualifiers	
1,1,2,2-Tetrachloroethane ND 1,0 0,40 2,00 1,1,2-Trichloro-1,2,2-Trifluoroethane ND 1,0 0,48 2,00 1,1-Dichloroethane ND 1,0 0,40 2,00 1,1-Dichloroethane ND 1,0 0,40 2,00 1,1-Dichloroethane ND 1,0 0,56 2,00 1,1-Dichloropropene ND 1,0 0,60 2,00 1,2,3-Trichlorobenzene ND 1,0 0,40 2,00 1,2,3-Trichloropropane ND 1,0 0,40 2,00 1,2,4-Trimethylbenzene ND 1,0 0,40 2,00 1,2,4-Trimethylbenzene ND 1,0 0,40 2,00 1,2-Dichlorobenzene ND 1,0 0,40 2,00 1,2-Dichlorobenzene ND 1,0 0,40 2,00 1,2-Dichlorobenzene ND 1,0 0,40 2,00 1,3-Dichlorobenzene ND 1,0 0,40 2,00 1,3-Dichlorobenz	1,1,1,2-Tetrachloroethane	ND		1.0	0.40	2.00			
1,1,2-Trichloro-1,2,2-Trifluoroethane ND 1.0 0.48 2.00 1,1,2-Trichloroethane ND 1.0 0.40 2.00 1,1-Dichloroethane ND 1.0 0.56 2.00 1,1-Dichloroethene ND 1.0 0.56 2.00 1,2,3-Trichlorobenzene ND 1.0 0.40 2.00 1,2,3-Trichlorobenzene ND 1.0 0.40 2.00 1,2,4-Trichlorobenzene ND 1.0 0.40 2.00 1,2,4-Trichlorobenzene ND 1.0 0.40 2.00 1,2,4-Trichlorobenzene ND 1.0 0.40 2.00 1,2-Dichromo-3-Chloropropane ND 1.0 0.40 2.00 1,2-Dichlorobenzene ND 1.0 0.40 2.00 1,2-Dichlorobenzene ND 1.0 0.40 2.00 1,2-Dichloropropane ND 1.0 0.40 2.00 1,3-Dichloropropane ND 1.0 0.40 2.00 1,4-Dic	1,1,1-Trichloroethane	ND		1.0	0.40	2.00			
1,1,2-Trichloroethane ND 1,0 0.40 2.00 1,1-Dichloroethane ND 1,0 0.40 2.00 1,1-Dichloroethene ND 1,0 0.56 2.00 1,2-3-Trichloropene ND 1,0 0.60 2.00 1,2,3-Trichloropenzene ND 1,0 0.40 2.00 1,2,3-Trichloropenzene ND 1,0 0.40 2.00 1,2,4-Trinchlorobenzene ND 1,0 0.40 2.00 1,2,4-Trinchlorobenzene ND 1,0 0.40 2.00 1,2-Dichloropropane ND 1,0 0.40 2.00 1,2-Dichloroptopane ND 1,0 0.40 2.00 1,2-Dichloroptopane ND 1,0 0.40 2.00 1,2-Dichloroptopane ND 1,0 0.40 2.00 1,3-Sirimethylbenzene ND 1,0 0.40 2.00 1,3-Dichloroptopane ND 1,0 0.40 2.00 1,4-Dichloroptopane	1,1,2,2-Tetrachloroethane	ND		1.0	0.40	2.00			
1,1-Dichloroethane ND 1,0 0.40 2.00 1,1-Dichloroethene ND 1,0 0.56 2.00 1,1-Dichloropropene ND 1,0 0.60 2.00 1,2,3-Trichlorobenzene ND 1,0 0.40 2.00 1,2,3-Trichlorobenzene ND 1,0 0.40 2.00 1,2,4-Trimethylbenzene ND 1,0 0.40 2.00 1,2-Dibromo-3-Chloropropane ND 1,0 0.40 2.00 1,2-Dichlorobenzene ND 1,0 0.40 2.00 1,2-Dichlorobenzene ND 1,0 0.40 2.00 1,2-Dichloropropane ND 1,0 0.40 2.00 1,2-Dichloropropane ND 1,0 0.40 2.00 1,3-Dichloropropane ND 1,0 0.40 2.00 1,3-Dichloropropane ND 1,0 0.40 2.00 1,3-Dichloropropane ND 1,0 0.40 2.00 2-Dichloropropane <th< td=""><td>1,1,2-Trichloro-1,2,2-Trifluoroethane</td><td>ND</td><td></td><td>1.0</td><td>0.48</td><td>2.00</td><td></td><td></td></th<>	1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		1.0	0.48	2.00			
1,1-Dichloroethene ND 1,0 0.56 2.00 1,1-Dichloropropene ND 1,0 0.60 2.00 1,2,3-Trichlorobropropane ND 1,0 0.40 2.00 1,2,3-Trichlorobropropane ND 1,0 0.40 2.00 1,2,4-Trimethylbenzene ND 1,0 0.40 2.00 1,2-Dibromo-3-Chloropropane ND 1,0 0.40 2.00 1,2-Dibromo-3-Chloropropane ND 1,0 0.40 2.00 1,2-Dichlorobenzene ND 1,0 0.40 2.00 1,2-Dichlorobenzene ND 1,0 0.40 2.00 1,2-Dichlorobenzene ND 1,0 0.40 2.00 1,2-Dichlorobenzene ND 1,0 0.40 2.00 1,2-Dichlorobenzene ND 1,0 0.40 2.00 1,2-Dichlorobenzene ND 1,0 0.40 2.00 1,3-Dichlorobenzene ND 1,0 0.40 2.00 1,3-Dichlorobenzene	1,1,2-Trichloroethane	ND		1.0	0.40	2.00			
1,1-Dichloropropene ND 1.0 0.60 2.00 1,2,3-Trichlorobenzene ND 1.0 0.40 2.00 1,2,3-Trichloropropane ND 2.0 0.80 2.00 1,2,4-Trichlorobenzene ND 1.0 0.40 2.00 1,2,4-Trinethylbenzene ND 1.0 0.40 2.00 1,2-Dibromo-3-Chloropropane ND 1.0 0.40 2.00 1,2-Dibromoethane ND 1.0 0.40 2.00 1,2-Dichlorobenzene ND 1.0 0.40 2.00 1,2-Dichloropropane ND 1.0 0.40 2.00 1,2-Dichloropropane ND 1.0 0.40 2.00 1,3-Dichlorobenzene ND 1.0 0.40 2.00 1,3-Dichlorobenzene ND 1.0 0.55 2.00 1,3-Dichlorobenzene ND 2.0 0.80 2.00 2,2-Dichlorobrenzene ND 2.0 0.80 2.00 2-Butanone ND	1,1-Dichloroethane	ND		1.0	0.40	2.00			
1.2,3-Trichlorobenzene ND 1.0 0.40 2.00 1.2,3-Trichloropropane ND 2.0 0.80 2.00 1.2,4-Trichlorobenzene ND 1.0 0.40 2.00 1.2,4-Trimethylbenzene ND 1.0 0.40 2.00 1,2-Dibromo-3-Chloropropane ND 1.0 0.40 2.00 1,2-Dibromoethane ND 1.0 0.40 2.00 1,2-Dichlorobenzene ND 1.0 0.40 2.00 1,2-Dichloropenzene ND 1.0 0.40 2.00 1,2-Dichloropropane ND 1.0 0.40 2.00 1,3-Dichloropropane ND 1.0 0.40 2.00 1,3-Dichloropropane ND 1.0 0.55 2.00 1,3-Dichloropropane ND 2.0 0.80 2.00 1,4-Dichloropropane ND 2.0 0.80 2.00 2,2-Dichloropropane ND 2.0 0.80 2.00 2-Butanone ND<	1,1-Dichloroethene	ND		1.0	0.56	2.00			
1,2,3-Trichloropropane ND 2.0 0.80 2.00 1,2,4-Trichlorobenzene ND 1.0 0.40 2.00 1,2,4-Trimethylbenzene ND 1.0 0.40 2.00 1,2-Dibromo-3-Chloropropane ND 1.0 0.40 2.00 1,2-Dibromo-3-Chloropropane ND 1.0 0.40 2.00 1,2-Dichlorobenzene ND 1.0 0.40 2.00 1,2-Dichlorobenzene ND 1.0 0.40 2.00 1,2-Dichloropropane ND 1.0 0.40 2.00 1,2-Dichloropropane ND 1.0 0.40 2.00 1,3-S-Trimethylbenzene ND 1.0 0.40 2.00 1,3-Dichlorobenzene ND 1.0 0.55 2.00 1,3-Dichloropropane ND 1.0 0.40 2.00 2,-Dichloropropane ND 1.0 0.40 2.00 2,-Dichloropropane ND 1.0 0.40 2.00 2-Hexanone	1,1-Dichloropropene	ND		1.0	0.60	2.00			
1,2,3-Trichloropropane ND 2.0 0.80 2.00 1,2,4-Trichlorobenzene ND 1.0 0.40 2.00 1,2,4-Trimethylbenzene ND 1.0 0.40 2.00 1,2-Dibromo-3-Chloropropane ND 1.0 0.40 2.00 1,2-Dibromoethane ND 1.0 0.40 2.00 1,2-Dichlorobenzene ND 1.0 0.40 2.00 1,2-Dichloroptopane ND 1.0 0.40 2.00 1,2-Dichloropropane ND 1.0 0.40 2.00 1,3-Trimethylbenzene ND 1.0 0.40 2.00 1,3-Dichlorobenzene ND 1.0 0.40 2.00 1,3-Dichloropropane ND 1.0 0.55 2.00 1,3-Dichloropropane ND 1.0 0.40 2.00 2,-Dichloropropane ND 1.0 0.40 2.00 2-Butanone ND 1.0 0.40 2.00 2-Hexanone ND	1,2,3-Trichlorobenzene	ND		1.0	0.40	2.00			
1,2,4-Trimethylbenzene ND 1.0 0.40 2.00 1,2-Dibromo-3-Chloropropane ND 10 4.0 2.00 1,2-Dibromoethane ND 1.0 0.40 2.00 1,2-Dichlorobenzene ND 1.0 0.40 2.00 1,2-Dichloropthane ND 1.0 0.40 2.00 1,3-Dichloroptopane ND 1.0 0.40 2.00 1,3-Dichlorobenzene ND 1.0 0.40 2.00 1,3-Dichloroptopane ND 1.0 0.40 2.00 1,3-Dichloroptopane ND 1.0 0.55 2.00 1,3-Dichloroptopane ND 1.0 0.40 2.00 1,3-Dichloroptopane ND 1.0 0.40 2.00 2,2-Dichloroptopane ND 1.0 0.40 2.00 2,2-Dichloroptopane ND 1.0 0.40 2.00 2-Butanone ND 1.0 0.40 2.00 2-Hexanone ND 1.0 0.40 2.00 4-Methyl-2-Pentanone ND 1.0	1,2,3-Trichloropropane	ND	:	2.0	0.80	2.00			
1,2-Dibromo-3-Chloropropane ND 10 4.0 2.00 1,2-Dibromoethane ND 1.0 0.40 2.00 1,2-Dichlorobenzene ND 1.0 0.40 2.00 1,2-Dichloroptopane ND 1.0 0.40 2.00 1,2-Dichloropropane ND 1.0 0.40 2.00 1,3-5-Trimethylbenzene ND 1.0 0.40 2.00 1,3-Dichlorobenzene ND 1.0 0.55 2.00 1,3-Dichloropropane ND 1.0 0.80 2.00 1,4-Dichlorobenzene ND 1.0 0.40 2.00 2,2-Dichloropropane ND 1.0 0.40 2.00 2,2-Dichloropropane ND 1.0 0.40 2.00 2-Butanone ND 1.0 0.40 2.00 2-Chlorotoluene ND 1.0 0.40 2.00 2-Hexanone ND 1.0 0.71 2.00 4-Methyl-2-Pentanone ND 1.0 0.71 2.00 4-Methyl-2-Pentanone ND 1.0	1,2,4-Trichlorobenzene	ND		1.0	0.40	2.00			
1,2-Dibromoethane ND 1.0 0.40 2.00 1,2-Dichlorobenzene ND 1.0 0.40 2.00 1,2-Dichloroethane ND 1.0 0.40 2.00 1,2-Dichloropropane ND 1.0 0.40 2.00 1,3-5-Trimethylbenzene ND 1.0 0.40 2.00 1,3-Dichlorobenzene ND 1.0 0.55 2.00 1,3-Dichloropropane ND 2.0 0.80 2.00 1,3-Dichlorobenzene ND 1.0 0.40 2.00 1,3-Dichloropropane ND 2.0 0.80 2.00 1,3-Dichlorobenzene ND 1.0 0.40 2.00 2,2-Dichloropropane ND 1.0 0.40 2.00 2,2-Dichloropropane ND 1.0 0.40 2.00 2-Butanone ND 1.0 0.40 2.00 2-Hexanone ND 1.0 0.71 2.00 4-Methyl-2-Pentanone ND 1.0	1,2,4-Trimethylbenzene	ND		1.0	0.40	2.00			
1,2-Dichlorobenzene ND 1.0 0.40 2.00 1,2-Dichloroethane ND 1.0 0.40 2.00 1,2-Dichloropropane ND 1.0 0.40 2.00 1,3-5-Trimethylbenzene ND 1.0 0.40 2.00 1,3-Dichlorobenzene ND 1.0 0.55 2.00 1,3-Dichloropropane ND 2.0 0.80 2.00 1,4-Dichlorobenzene ND 1.0 0.40 2.00 2,2-Dichloropropane ND 2.0 0.80 2.00 2,2-Dichloropropane ND 1.0 0.40 2.00 2-Buanone ND 1.0 0.40 2.00 2-Buanone ND 1.0 0.40 2.00 2-Hexanone ND 1.0 0.71 2.00 4-Chlorotoluene ND 1.0 0.40 2.00 Acetone ND 1.0 0.40 2.00 Benzene ND 1.0 0.40 2.00	1,2-Dibromo-3-Chloropropane	ND		10	4.0	2.00			
1,2-Dichloroethane ND 1.0 0.40 2.00 1,2-Dichloropropane ND 1.0 0.40 2.00 1,3,5-Trimethylbenzene ND 1.0 0.40 2.00 1,3-Dichlorobenzene ND 1.0 0.55 2.00 1,3-Dichloropropane ND 2.0 0.80 2.00 1,4-Dichlorobenzene ND 1.0 0.40 2.00 2,2-Dichloropropane ND 1.0 0.80 2.00 2-Butanone ND 1.0 4.0 2.00 2-Chlorotoluene ND 1.0 0.40 2.00 2-Hexanone ND 1.0 0.71 2.00 4-Chlorotoluene ND 1.0 0.71 2.00 4-Methyl-2-Pentanone ND 1.0 4.0 2.00 Acetone ND 2.0 8.0 2.00 Benzene ND 1.0 0.40 2.00 Bromobenzene ND 1.0 0.64 2.00 Bromochloromethane ND 1.0 0.40 2.00 </td <td>1,2-Dibromoethane</td> <td>ND</td> <td></td> <td>1.0</td> <td>0.40</td> <td>2.00</td> <td></td> <td></td>	1,2-Dibromoethane	ND		1.0	0.40	2.00			
1,2-Dichloropropane ND 1.0 0.40 2.00 1,3,5-Trimethylbenzene ND 1.0 0.40 2.00 1,3-Dichlorobenzene ND 1.0 0.55 2.00 1,3-Dichloropropane ND 2.0 0.80 2.00 1,4-Dichlorobenzene ND 1.0 0.40 2.00 2,2-Dichloropropane ND 1.0 0.80 2.00 2-Butanone ND 1.0 4.0 2.00 2-Chlorotoluene ND 1.0 0.40 2.00 2-Hexanone ND 1.0 0.71 2.00 4-Chlorotoluene ND 1.0 0.71 2.00 4-Methyl-2-Pentanone ND 1.0 4.0 2.00 Acetone ND 1.0 0.40 2.00 Benzene ND 1.0 0.40 2.00 Bromobenzene ND 1.0 0.64 2.00 Bromochloromethane ND 1.0 0.40 2.00<	1,2-Dichlorobenzene	ND		1.0	0.40	2.00			
1,3,5-Trimethylbenzene ND 1.0 0.40 2.00 1,3-Dichlorobenzene ND 1.0 0.55 2.00 1,3-Dichloropropane ND 2.0 0.80 2.00 1,4-Dichlorobenzene ND 1.0 0.40 2.00 2,2-Dichloropropane ND 1.0 0.80 2.00 2-Butanone ND 10 4.0 2.00 2-Chlorotoluene ND 1.0 0.40 2.00 2-Hexanone ND 1.0 0.71 2.00 4-Chlorotoluene ND 1.0 0.71 2.00 4-Methyl-2-Pentanone ND 10 4.0 2.00 Acetone ND 20 8.0 2.00 Benzene ND 1.0 0.40 2.00 Bromobenzene ND 1.0 0.64 2.00 Bromochloromethane ND 2.0 0.80 2.00 Bromodichloromethane ND 1.0 0.40 2.00 Bromoform ND 1.0 0.40 2.00 <td>1,2-Dichloroethane</td> <td>ND</td> <td></td> <td>1.0</td> <td>0.40</td> <td>2.00</td> <td></td> <td></td>	1,2-Dichloroethane	ND		1.0	0.40	2.00			
1,3-Dichlorobenzene ND 1.0 0.55 2.00 1,3-Dichloropropane ND 2.0 0.80 2.00 1,4-Dichlorobenzene ND 1.0 0.40 2.00 2,2-Dichloropropane ND 2.0 0.80 2.00 2-Butanone ND 10 4.0 2.00 2-Chlorotoluene ND 1.0 0.40 2.00 2-Hexanone ND 20 8.0 2.00 4-Chlorotoluene ND 1.0 0.71 2.00 4-Methyl-2-Pentanone ND 10 4.0 2.00 Acetone ND 20 8.0 2.00 Benzene ND 1.0 0.40 2.00 Bromobenzene ND 1.0 0.64 2.00 Bromochloromethane ND 2.0 0.80 2.00 Bromoform ND 1.0 0.40 2.00	1,2-Dichloropropane	ND		1.0	0.40	2.00			
1,3-Dichloropropane ND 2.0 0.80 2.00 1,4-Dichlorobenzene ND 1.0 0.40 2.00 2,2-Dichloropropane ND 2.0 0.80 2.00 2-Butanone ND 10 4.0 2.00 2-Chlorotoluene ND 1.0 0.40 2.00 2-Hexanone ND 1.0 0.71 2.00 4-Chlorotoluene ND 1.0 0.71 2.00 4-Methyl-2-Pentanone ND 10 4.0 2.00 Acetone ND 20 8.0 2.00 Benzene ND 1.0 0.40 2.00 Bromobenzene ND 1.0 0.64 2.00 Bromochloromethane ND 2.0 0.80 2.00 Bromoform ND 1.0 0.40 2.00	1,3,5-Trimethylbenzene	ND		1.0	0.40	2.00			
1,4-Dichlorobenzene ND 1.0 0.40 2.00 2,2-Dichloropropane ND 2.0 0.80 2.00 2-Butanone ND 10 4.0 2.00 2-Chlorotoluene ND 1.0 0.40 2.00 2-Hexanone ND 20 8.0 2.00 4-Chlorotoluene ND 1.0 0.71 2.00 4-Methyl-2-Pentanone ND 10 4.0 2.00 Acetone ND 20 8.0 2.00 Benzene ND 1.0 0.40 2.00 Bromobenzene ND 1.0 0.64 2.00 Bromochloromethane ND 2.0 0.80 2.00 Bromodichloromethane ND 1.0 0.40 2.00 Bromoform ND 1.0 0.40 2.00	1,3-Dichlorobenzene	ND		1.0	0.55	2.00			
2,2-Dichloropropane ND 2.0 0.80 2.00 2-Butanone ND 10 4.0 2.00 2-Chlorotoluene ND 1.0 0.40 2.00 2-Hexanone ND 20 8.0 2.00 4-Chlorotoluene ND 1.0 0.71 2.00 4-Methyl-2-Pentanone ND 10 4.0 2.00 Acetone ND 20 8.0 2.00 Benzene ND 1.0 0.40 2.00 Bromobenzene ND 1.0 0.64 2.00 Bromochloromethane ND 2.0 0.80 2.00 Bromodichloromethane ND 1.0 0.40 2.00 Bromoform ND 1.0 0.40 2.00	1,3-Dichloropropane	ND	2	2.0	0.80	2.00			
2-Butanone ND 10 4.0 2.00 2-Chlorotoluene ND 1.0 0.40 2.00 2-Hexanone ND 20 8.0 2.00 4-Chlorotoluene ND 1.0 0.71 2.00 4-Methyl-2-Pentanone ND 10 4.0 2.00 Acetone ND 20 8.0 2.00 Benzene ND 1.0 0.40 2.00 Bromobenzene ND 1.0 0.64 2.00 Bromodichloromethane ND 2.0 0.80 2.00 Bromodichloromethane ND 1.0 0.40 2.00 Bromoform ND 1.0 0.49 2.00	1,4-Dichlorobenzene	ND		1.0	0.40	2.00			
2-Chlorotoluene ND 1.0 0.40 2.00 2-Hexanone ND 20 8.0 2.00 4-Chlorotoluene ND 1.0 0.71 2.00 4-Methyl-2-Pentanone ND 10 4.0 2.00 Acetone ND 20 8.0 2.00 Benzene ND 1.0 0.40 2.00 Bromobenzene ND 1.0 0.64 2.00 Bromochloromethane ND 2.0 0.80 2.00 Bromoform ND 1.0 0.40 2.00	2,2-Dichloropropane	ND	:	2.0	0.80	2.00			
2-Hexanone ND 20 8.0 2.00 4-Chlorotoluene ND 1.0 0.71 2.00 4-Methyl-2-Pentanone ND 10 4.0 2.00 Acetone ND 20 8.0 2.00 Benzene ND 1.0 0.40 2.00 Bromobenzene ND 1.0 0.64 2.00 Bromochloromethane ND 2.0 0.80 2.00 Bromodichloromethane ND 1.0 0.40 2.00 Bromoform ND 1.0 0.49 2.00	2-Butanone	ND		10	4.0	2.00			
4-Chlorotoluene ND 1.0 0.71 2.00 4-Methyl-2-Pentanone ND 10 4.0 2.00 Acetone ND 20 8.0 2.00 Benzene ND 1.0 0.40 2.00 Bromobenzene ND 1.0 0.64 2.00 Bromochloromethane ND 2.0 0.80 2.00 Bromodichloromethane ND 1.0 0.40 2.00 Bromoform ND 1.0 0.49 2.00	2-Chlorotoluene	ND		1.0	0.40	2.00			
4-Chlorotoluene ND 1.0 0.71 2.00 4-Methyl-2-Pentanone ND 10 4.0 2.00 Acetone ND 20 8.0 2.00 Benzene ND 1.0 0.40 2.00 Bromobenzene ND 1.0 0.64 2.00 Bromochloromethane ND 2.0 0.80 2.00 Bromodichloromethane ND 1.0 0.40 2.00 Bromoform ND 1.0 0.49 2.00	2-Hexanone	ND	:	20	8.0	2.00			
Acetone ND 20 8.0 2.00 Benzene ND 1.0 0.40 2.00 Bromobenzene ND 1.0 0.64 2.00 Bromochloromethane ND 2.0 0.80 2.00 Bromodichloromethane ND 1.0 0.40 2.00 Bromoform ND 1.0 0.49 2.00	4-Chlorotoluene	ND							
Benzene ND 1.0 0.40 2.00 Bromobenzene ND 1.0 0.64 2.00 Bromochloromethane ND 2.0 0.80 2.00 Bromodichloromethane ND 1.0 0.40 2.00 Bromoform ND 1.0 0.49 2.00	4-Methyl-2-Pentanone	ND		10	4.0	2.00			
Bromobenzene ND 1.0 0.64 2.00 Bromochloromethane ND 2.0 0.80 2.00 Bromodichloromethane ND 1.0 0.40 2.00 Bromoform ND 1.0 0.49 2.00	Acetone	ND	:	20	8.0	2.00			
Bromobenzene ND 1.0 0.64 2.00 Bromochloromethane ND 2.0 0.80 2.00 Bromodichloromethane ND 1.0 0.40 2.00 Bromoform ND 1.0 0.49 2.00	Benzene	ND		1.0	0.40	2.00			
Bromochloromethane ND 2.0 0.80 2.00 Bromodichloromethane ND 1.0 0.40 2.00 Bromoform ND 1.0 0.49 2.00	Bromobenzene	ND			0.64				
Bromodichloromethane ND 1.0 0.40 2.00 Bromoform ND 1.0 0.49 2.00									
Bromoform ND 1.0 0.49 2.00									

 Tetra Tech, Inc.
 Date Received:
 04/06/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0454

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 5 of 33

Project: LIMC BOU					Page 5 of 33
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	DF	<u>Qualifiers</u>
Carbon Disulfide	ND	2.0	0.80	2.00	
Carbon Tetrachloride	ND	1.0	0.40	2.00	
Chlorobenzene	ND	1.0	0.40	2.00	
Chloroethane	ND	1.0	0.63	2.00	
Chloroform	ND	1.0	0.40	2.00	
Chloromethane	ND	1.0	0.59	2.00	
Dibromochloromethane	ND	1.0	0.40	2.00	
Dibromomethane	ND	1.0	0.40	2.00	
Dichlorodifluoromethane	ND	2.0	0.80	2.00	
Ethylbenzene	ND	1.0	0.40	2.00	
Isopropylbenzene	ND	1.0	0.40	2.00	
Methylene Chloride	ND	2.0	1.6	2.00	
Naphthalene	ND	2.0	0.80	2.00	
Styrene	ND	1.0	0.40	2.00	
Tetrachloroethene	55	1.0	0.40	2.00	
Toluene	ND	1.0	0.40	2.00	
t-1,2-Dichloroethene	ND	1.0	0.40	2.00	
Trichloroethene	47	1.0	0.57	2.00	
Trichlorofluoromethane	ND	1.0	0.40	2.00	
Vinyl Acetate	ND	10	4.0	2.00	
Vinyl Chloride	ND	1.0	0.40	2.00	
c-1,3-Dichloropropene	ND	1.0	0.40	2.00	
c-1,2-Dichloroethene	ND	1.0	0.40	2.00	
n-Butylbenzene	ND	1.0	0.40	2.00	
n-Propylbenzene	ND	1.0	0.40	2.00	
o-Xylene	ND	1.0	0.63	2.00	
p-Isopropyltoluene	ND	1.0	0.40	2.00	
sec-Butylbenzene	ND	1.0	0.40	2.00	
t-1,3-Dichloropropene	ND	1.0	0.40	2.00	
tert-Butylbenzene	ND	1.0	0.40	2.00	
p/m-Xylene	ND	1.0	0.40	2.00	
Methyl-t-Butyl Ether (MTBE)	ND	1.0	0.40	2.00	
2-Chloroethyl Vinyl Ether	ND	10	8.4	2.00	
Hexachloro-1,3-Butadiene	ND	4.0	1.6	2.00	
lodomethane	ND	20	10	2.00	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	98	68-120			
Dibromofluoromethane	98	80-127			

Tetra Tech, Inc.	Date Received:	04/06/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0454
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOU		Page 6 of 33

SurrogateRec. (%)Control LimitsQualifiers1,2-Dichloroethane-d49880-128Toluene-d810080-120

ug/L

Analytical Report

Tetra Tech, Inc.

Date Received:

04/06/17

301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-0454

San Bernardino, CA 92408-3562

Preparation:

EPA 5030C

Method: EPA 8260B

Project: LMC BOU Page 7 of 33

Units:

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
B-1-CW33-N-17Q2	17-04-0454-3-C	04/06/17 09:04	Aqueous	GC/MS L	04/19/17	04/19/17 14:48	170419L010	
Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.								
<u>Parameter</u>	Resu	<u>It</u> <u>F</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>	
1,1,1,2-Tetrachloroethane	ND	,	10	4.0	20.0			
1,1,1-Trichloroethane	ND	•	10	4.0	20.0			
1,1,2,2-Tetrachloroethane	ND	,	10	4.0	20.0			
1,1,2-Trichloro-1,2,2-Trifluoroethane	15	,	10	4.8	20.0			
1,1,2-Trichloroethane	ND	,	10	4.0	20.0			
1,1-Dichloroethane	ND		10	4.0	20.0			
1,1-Dichloroethene	17		10	5.6	20.0			
1,1-Dichloropropene	ND		10	6.0	20.0			
1,2,3-Trichlorobenzene	ND		10	4.0	20.0			
1,2,3-Trichloropropane	ND	2	20	8.0	20.0			
1,2,4-Trichlorobenzene	ND		10	4.0	20.0			
1,2,4-Trimethylbenzene	ND		10	4.0	20.0			
1,2-Dibromo-3-Chloropropane	ND		100	40	20.0			
1,2-Dibromoethane	ND		10	4.0	20.0			
1,2-Dichlorobenzene	ND		10	4.0	20.0			
1,2-Dichloroethane	ND		10	4.0	20.0			
1,2-Dichloropropane	ND		10	4.0	20.0			
1,3,5-Trimethylbenzene	ND		10	4.0	20.0			
1,3-Dichlorobenzene	ND		10	5.5	20.0			
1,3-Dichloropropane	ND	2	20	8.0	20.0			
1,4-Dichlorobenzene	ND		10	4.0	20.0			
2,2-Dichloropropane	ND	2	20	8.0	20.0			
2-Butanone	ND		100	40	20.0			
2-Chlorotoluene	ND		10	4.0	20.0			
2-Hexanone	ND	2	200	80	20.0			
4-Chlorotoluene	ND		10	7.1	20.0			
4-Methyl-2-Pentanone	ND		100	40	20.0			
Acetone	ND	2	200	80	20.0			
Benzene	ND		10	4.0	20.0			
Bromobenzene	ND		10	6.4	20.0			
Bromochloromethane	ND	2	20	8.0	20.0			
Bromodichloromethane	ND		10	4.0	20.0			
Bromoform	ND		10	4.9	20.0			
Bromomethane	ND	2	20	8.0	20.0			

 Tetra Tech, Inc.
 Date Received:
 04/06/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0454

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 8 of 33

Project: LIMC BOU					Page 8 01 33
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Carbon Disulfide	ND	20	8.0	20.0	
Carbon Tetrachloride	ND	10	4.0	20.0	
Chlorobenzene	ND	10	4.0	20.0	
Chloroethane	ND	10	6.3	20.0	
Chloroform	ND	10	4.0	20.0	
Chloromethane	ND	10	5.9	20.0	
Dibromochloromethane	ND	10	4.0	20.0	
Dibromomethane	ND	10	4.0	20.0	
Dichlorodifluoromethane	ND	20	8.0	20.0	
Ethylbenzene	ND	10	4.0	20.0	
Isopropylbenzene	ND	10	4.0	20.0	
Methylene Chloride	ND	20	16	20.0	
Naphthalene	ND	20	8.0	20.0	
Styrene	ND	10	4.0	20.0	
Tetrachloroethene	630	10	4.0	20.0	
Toluene	ND	10	4.0	20.0	
t-1,2-Dichloroethene	ND	10	4.0	20.0	
Trichloroethene	180	10	5.7	20.0	
Trichlorofluoromethane	ND	10	4.0	20.0	
Vinyl Acetate	ND	100	40	20.0	
Vinyl Chloride	ND	10	4.0	20.0	
c-1,3-Dichloropropene	ND	10	4.0	20.0	
c-1,2-Dichloroethene	ND	10	4.0	20.0	
n-Butylbenzene	ND	10	4.0	20.0	
n-Propylbenzene	ND	10	4.0	20.0	
o-Xylene	ND	10	6.3	20.0	
p-Isopropyltoluene	ND	10	4.0	20.0	
sec-Butylbenzene	ND	10	4.0	20.0	
t-1,3-Dichloropropene	ND	10	4.0	20.0	
tert-Butylbenzene	ND	10	4.0	20.0	
p/m-Xylene	ND	10	4.0	20.0	
Methyl-t-Butyl Ether (MTBE)	ND	10	4.0	20.0	
2-Chloroethyl Vinyl Ether	ND	100	84	20.0	
Hexachloro-1,3-Butadiene	ND	40	16	20.0	
lodomethane	ND	200	100	20.0	
<u>Surrogate</u>	Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	97	68-120			
Dibromofluoromethane	98	80-127			

Tetra Tech, Inc.	Date Received:	04/06/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0454
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Proiect: LMC BOU		Page 9 of 33

Surrogate	Rec. (%)	Control Limits	Qualifiers
1,2-Dichloroethane-d4	99	80-128	
Toluene-d8	101	80-120	

Tetra Tech, Inc.

Date Received:

04/06/17

301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-0454

San Bernardino, CA 92408-3562

Preparation:

EPA 5030C

Method: EPA 8260B Units: ug/L

Project: LMC BOU Page 10 of 33

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID		
LTB-20160406	17-04-0454-4-A	04/06/17 07:00	Aqueous	GC/MS FFF	04/07/17	04/07/17 23:24	170407L043		
Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.									
<u>Parameter</u>	Resu	<u>ılt</u>	RL	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>		
1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00				
1,1,1-Trichloroethane	ND		0.50	0.20	1.00				
1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00				
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		0.50	0.24	1.00				
1,1,2-Trichloroethane	ND		0.50	0.20	1.00				
1,1-Dichloroethane	ND		0.50	0.20	1.00				
1,1-Dichloroethene	ND		0.50	0.28	1.00				
1,1-Dichloropropene	ND		0.50	0.30	1.00				
1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00				
1,2,3-Trichloropropane	ND		1.0	0.40	1.00				
1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00				
1,2,4-Trimethylbenzene	ND		0.50	0.20	1.00				
1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00				
1,2-Dibromoethane	ND		0.50	0.20	1.00				
1,2-Dichlorobenzene	ND		0.50	0.20	1.00				
1,2-Dichloroethane	ND		0.50	0.20	1.00				
1,2-Dichloropropane	ND		0.50	0.20	1.00				
1,3,5-Trimethylbenzene	ND		0.50	0.20	1.00				
1,3-Dichlorobenzene	ND		0.50	0.28	1.00				
1,3-Dichloropropane	ND		1.0	0.40	1.00				
1,4-Dichlorobenzene	ND		0.50	0.20	1.00				
2,2-Dichloropropane	ND		1.0	0.40	1.00				
2-Butanone	ND		5.0	2.0	1.00				
2-Chlorotoluene	ND		0.50	0.20	1.00				
2-Hexanone	ND		10	4.0	1.00				
4-Chlorotoluene	ND		0.50	0.36	1.00				
4-Methyl-2-Pentanone	ND		5.0	2.0	1.00				
Acetone	ND		10	4.0	1.00				
Benzene	ND		0.50	0.20	1.00				
Bromobenzene	ND		0.50	0.32	1.00				
Bromochloromethane	ND		1.0	0.40	1.00				
Bromodichloromethane	ND		0.50	0.20	1.00				
Bromoform	ND		0.50	0.25	1.00				
Bromomethane	ND		1.0	0.40	1.00				

 Tetra Tech, Inc.
 Date Received:
 04/06/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0454

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 11 of 33

<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
Carbon Disulfide	ND	1.0	0.40	1.00	
Carbon Tetrachloride	ND	0.50	0.20	1.00	
Chlorobenzene	ND	0.50	0.20	1.00	
Chloroethane	ND	0.50	0.32	1.00	
Chloroform	ND	0.50	0.20	1.00	
Chloromethane	ND	0.50	0.29	1.00	
Dibromochloromethane	ND	0.50	0.20	1.00	
Dibromomethane	ND	0.50	0.20	1.00	
Dichlorodifluoromethane	ND	1.0	0.40	1.00	
Ethylbenzene	ND	0.50	0.20	1.00	
Isopropylbenzene	ND	0.50	0.20	1.00	
Methylene Chloride	ND	1.0	0.80	1.00	
Naphthalene	ND	1.0	0.40	1.00	
Styrene	ND	0.50	0.20	1.00	
Tetrachloroethene	ND	0.50	0.20	1.00	
Toluene	ND	0.50	0.20	1.00	
t-1,2-Dichloroethene	ND	0.50	0.20	1.00	
Trichloroethene	ND	0.50	0.29	1.00	
Trichlorofluoromethane	ND	0.50	0.20	1.00	
Vinyl Acetate	ND	5.0	2.0	1.00	
Vinyl Chloride	ND	0.50	0.20	1.00	
c-1,3-Dichloropropene	ND	0.50	0.20	1.00	
c-1,2-Dichloroethene	ND	0.50	0.20	1.00	
n-Butylbenzene	ND	0.50	0.20	1.00	
n-Propylbenzene	ND	0.50	0.20	1.00	
o-Xylene	ND	0.50	0.32	1.00	
p-Isopropyltoluene	ND	0.50	0.20	1.00	
sec-Butylbenzene	ND	0.50	0.20	1.00	
t-1,3-Dichloropropene	ND	0.50	0.20	1.00	
tert-Butylbenzene	ND	0.50	0.20	1.00	
p/m-Xylene	ND	0.50	0.20	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	0.50	0.20	1.00	
2-Chloroethyl Vinyl Ether	ND	5.0	4.2	1.00	
Hexachloro-1,3-Butadiene	ND	2.0	0.80	1.00	
lodomethane	ND	10	5.0	1.00	
Surrogate	Rec. (%)	Control Limits	Qualifiers		
1,4-Bromofluorobenzene	93	68-120			
Dibromofluoromethane	102	80-127			

Tetra Tech, Inc.	Date Received:	04/06/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0454
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Proiect: LMC BOU		Page 12 of 33

Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>
1,2-Dichloroethane-d4	102	80-128	
Toluene-d8	105	80-120	

04/06/17

17-04-0454

Project: LMC BOU

Analytical Report

Tetra Tech, Inc.

301 E. Vanderbilt Way, Suite 450

San Bernardino, CA 92408-3562

Date Received:

Work Order:

Preparation:

Preparation: EPA 5030C Method: EPA 8260B

Units: ug/L Page 13 of 33

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
A-1-CW08-N-17Q2	17-04-0454-5-C	04/06/17 14:44	Aqueous	GC/MS L	04/19/17	04/19/17 16:20	170419L010
Comment(s): - Results were evaluated to	o the MDL (DL), cond	centrations >= to	o the MDL (DI	L) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>It</u> <u>F</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>(</u>	<u>Qualifiers</u>
1,1,1,2-Tetrachloroethane	ND	,	1.0	0.40	2.00		
1,1,1-Trichloroethane	ND	•	1.0	0.40	2.00		
1,1,2,2-Tetrachloroethane	ND	,	1.0	0.40	2.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	,	1.0	0.48	2.00		
1,1,2-Trichloroethane	ND	,	1.0	0.40	2.00		
1,1-Dichloroethane	ND		1.0	0.40	2.00		
1,1-Dichloroethene	1.4		1.0	0.56	2.00		
1,1-Dichloropropene	ND		1.0	0.60	2.00		
1,2,3-Trichlorobenzene	ND		1.0	0.40	2.00		
1,2,3-Trichloropropane	67	2	2.0	0.80	2.00		
1,2,4-Trichlorobenzene	ND		1.0	0.40	2.00		
1,2,4-Trimethylbenzene	ND		1.0	0.40	2.00		
1,2-Dibromo-3-Chloropropane	ND		10	4.0	2.00		
1,2-Dibromoethane	ND		1.0	0.40	2.00		
1,2-Dichlorobenzene	ND		1.0	0.40	2.00		
1,2-Dichloroethane	ND		1.0	0.40	2.00		
1,2-Dichloropropane	ND		1.0	0.40	2.00		
1,3,5-Trimethylbenzene	ND		1.0	0.40	2.00		
1,3-Dichlorobenzene	ND		1.0	0.55	2.00		
1,3-Dichloropropane	ND	2	2.0	0.80	2.00		
1,4-Dichlorobenzene	ND		1.0	0.40	2.00		
2,2-Dichloropropane	ND	2	2.0	0.80	2.00		
2-Butanone	ND		10	4.0	2.00		
2-Chlorotoluene	ND		1.0	0.40	2.00		
2-Hexanone	ND	2	20	8.0	2.00		
4-Chlorotoluene	ND		1.0	0.71	2.00		
4-Methyl-2-Pentanone	ND		10	4.0	2.00		
Acetone	ND	2	20	8.0	2.00		
Benzene	ND		1.0	0.40	2.00		
Bromobenzene	ND		1.0	0.64	2.00		
Bromochloromethane	ND	2	2.0	0.80	2.00		
Bromodichloromethane	ND	,	1.0	0.40	2.00		
Bromoform	ND		1.0	0.49	2.00		
Bromomethane	ND	2	2.0	0.80	2.00		

 Tetra Tech, Inc.
 Date Received:
 04/06/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0454


 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 14 of 33

Parameter Result <u>RL</u> **MDL** <u>DF</u> Qualifiers Carbon Disulfide ND 2.0 0.80 2.00 Carbon Tetrachloride 0.40 2.00 1.0 1.0 Chlorobenzene 0.40 2.00 ND 1.0 Chloroethane ND 1.0 0.63 2.00 Chloroform 30 1.0 0.40 2.00 Chloromethane ND 1.0 0.59 2.00 Dibromochloromethane ND 0.40 2.00 1.0 Dibromomethane ND 1.0 0.40 2.00 Dichlorodifluoromethane ND 2.0 0.80 2.00 ND 0.40 2.00 Ethylbenzene 1.0 Isopropylbenzene ND 1.0 0.40 2.00 Methylene Chloride ND 2.0 1.6 2.00 Naphthalene ND 2.0 0.80 2.00 Styrene ND 1.0 0.40 2.00 Tetrachloroethene 28 1.0 0.40 2.00 Toluene ND 0.40 2.00 1.0 t-1,2-Dichloroethene ND 0.40 2.00 1.0 Trichloroethene 69 1.0 0.57 2.00 Trichlorofluoromethane ND 1.0 0.40 2.00 Vinyl Acetate ND 4.0 2.00 10 Vinyl Chloride ND 0.40 2.00 1.0 c-1,3-Dichloropropene ND 0.40 1.0 2.00 0.40 2.00 c-1,2-Dichloroethene ND 1.0 n-Butylbenzene ND 1.0 0.40 2.00 n-Propylbenzene ND 1.0 0.40 2.00 ND 0.63 o-Xylene 1.0 2.00 ND 0.40 2.00 p-Isopropyltoluene 1.0 sec-Butylbenzene ND 1.0 0.40 2.00 t-1,3-Dichloropropene ND 1.0 0.40 2.00 ND 0.40 tert-Butylbenzene 1.0 2.00 p/m-Xylene ND 0.40 2.00 1.0 2.00 Methyl-t-Butyl Ether (MTBE) ND 1.0 0.40 2-Chloroethyl Vinyl Ether ND 10 8.4 2.00 Hexachloro-1,3-Butadiene ND 4.0 1.6 2.00 Iodomethane ND 20 10 2.00 Rec. (%) **Qualifiers** Surrogate **Control Limits** 1,4-Bromofluorobenzene 97 68-120 Dibromofluoromethane 80-127 98

Tetra Tech, Inc.	Date Received:	04/06/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0454
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOU		Page 15 of 33

Surrogate	Rec. (%)	Control Limits	Qualifiers
1,2-Dichloroethane-d4	99	80-128	

1,2-Dichloroethane-d4 99 Toluene-d8 98 80-120

ug/L

Analytical Report

Tetra Tech, Inc.

Date Received:

04/06/17

301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-0454

San Bernardino, CA 92408-3562

Preparation:

EPA 5030C

Method: EPA 8260B

Project: LMC BOU Page 16 of 33

Units:

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-6-CW14-N-17Q2	17-04-0454-6-C	04/06/17 11:47	Aqueous	GC/MS L	04/19/17	04/19/17 16:51	170419L010
Comment(s): - Results were evaluated	to the MDL (DL), cond	centrations >=	to the MDL (DI	L) but < RL (LO	Q), if found, are	qualified with a	a "J" flag.
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	9	<u>Qualifiers</u>
1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,1-Trichloroethane	ND		0.50	0.20	1.00		
1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		0.50	0.24	1.00		
1,1,2-Trichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethene	ND		0.50	0.28	1.00		
1,1-Dichloropropene	ND		0.50	0.30	1.00		
1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,3-Trichloropropane	ND		1.0	0.40	1.00		
1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,4-Trimethylbenzene	ND		0.50	0.20	1.00		
1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00		
1,2-Dibromoethane	ND		0.50	0.20	1.00		
1,2-Dichlorobenzene	ND		0.50	0.20	1.00		
1,2-Dichloroethane	ND		0.50	0.20	1.00		
1,2-Dichloropropane	ND		0.50	0.20	1.00		
1,3,5-Trimethylbenzene	ND		0.50	0.20	1.00		
1,3-Dichlorobenzene	ND		0.50	0.28	1.00		
1,3-Dichloropropane	ND		1.0	0.40	1.00		
1,4-Dichlorobenzene	ND		0.50	0.20	1.00		
2,2-Dichloropropane	ND		1.0	0.40	1.00		
2-Butanone	ND		5.0	2.0	1.00		
2-Chlorotoluene	ND		0.50	0.20	1.00		
2-Hexanone	ND		10	4.0	1.00		
4-Chlorotoluene	ND		0.50	0.36	1.00		
4-Methyl-2-Pentanone	ND		5.0	2.0	1.00		
Acetone	4.5		10	4.0	1.00	,	J
Benzene	ND		0.50	0.20	1.00		
Bromobenzene	ND		0.50	0.32	1.00		
Bromochloromethane	ND		1.0	0.40	1.00		
Bromodichloromethane	ND		0.50	0.20	1.00		
Bromoform	ND		0.50	0.25	1.00		
Bromomethane	ND		1.0	0.40	1.00		

 Tetra Tech, Inc.
 Date Received:
 04/06/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0454

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 17 of 33

<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Carbon Disulfide	ND	1.0	0.40	1.00	
Carbon Tetrachloride	ND	0.50	0.20	1.00	
Chlorobenzene	ND	0.50	0.20	1.00	
Chloroethane	ND	0.50	0.32	1.00	
Chloroform	0.29	0.50	0.20	1.00	J
Chloromethane	ND	0.50	0.29	1.00	
Dibromochloromethane	ND	0.50	0.20	1.00	
Dibromomethane	ND	0.50	0.20	1.00	
Dichlorodifluoromethane	ND	1.0	0.40	1.00	
Ethylbenzene	ND	0.50	0.20	1.00	
Isopropylbenzene	ND	0.50	0.20	1.00	
Methylene Chloride	ND	1.0	0.80	1.00	
Naphthalene	ND	1.0	0.40	1.00	
Styrene	ND	0.50	0.20	1.00	
Tetrachloroethene	22	0.50	0.20	1.00	
Toluene	ND	0.50	0.20	1.00	
t-1,2-Dichloroethene	ND	0.50	0.20	1.00	
Trichloroethene	5.1	0.50	0.29	1.00	
Trichlorofluoromethane	ND	0.50	0.20	1.00	
Vinyl Acetate	ND	5.0	2.0	1.00	
Vinyl Chloride	ND	0.50	0.20	1.00	
c-1,3-Dichloropropene	ND	0.50	0.20	1.00	
c-1,2-Dichloroethene	ND	0.50	0.20	1.00	
n-Butylbenzene	ND	0.50	0.20	1.00	
n-Propylbenzene	ND	0.50	0.20	1.00	
o-Xylene	ND	0.50	0.32	1.00	
p-Isopropyltoluene	ND	0.50	0.20	1.00	
sec-Butylbenzene	ND	0.50	0.20	1.00	
t-1,3-Dichloropropene	ND	0.50	0.20	1.00	
tert-Butylbenzene	ND	0.50	0.20	1.00	
p/m-Xylene	ND	0.50	0.20	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	0.50	0.20	1.00	
2-Chloroethyl Vinyl Ether	ND	5.0	4.2	1.00	
Hexachloro-1,3-Butadiene	ND	2.0	0.80	1.00	
lodomethane	ND	10	5.0	1.00	
Surrogate	Rec. (%)	Control Limits	Qualifiers		
1,4-Bromofluorobenzene	98	68-120			
Dibromofluoromethane	97	80-127			

Tetra Tech, Inc.	Date Received:	04/06/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0454
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOU		Page 18 of 33

Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>
1,2-Dichloroethane-d4	100	80-128	
Toluene-d8	99	80-120	

Project: LMC BOU

Analytical Report

Tetra Tech, Inc.

Date Received:

04/06/17

301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-0454

San Bernardino, CA 92408-3562

Preparation:

EPA 5030C

Method: EPA 8260B

Units: ug/L Page 19 of 33

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
C-1-CW05-N-17Q2	17-04-0454-7-C	04/06/17 09:52	Aqueous	GC/MS L	04/19/17	04/19/17 17:22	170419L010
Comment(s): - Results were evaluated t	o the MDL (DL), cond	centrations >=	to the MDL (DI	L) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,1-Trichloroethane	ND		0.50	0.20	1.00		
1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		0.50	0.24	1.00		
1,1,2-Trichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethane	1.1		0.50	0.20	1.00		
1,1-Dichloroethene	ND		0.50	0.28	1.00		
1,1-Dichloropropene	ND		0.50	0.30	1.00		
1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,3-Trichloropropane	ND		1.0	0.40	1.00		
1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,4-Trimethylbenzene	ND		0.50	0.20	1.00		
1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00		
1,2-Dibromoethane	ND		0.50	0.20	1.00		
1,2-Dichlorobenzene	ND		0.50	0.20	1.00		
1,2-Dichloroethane	ND		0.50	0.20	1.00		
1,2-Dichloropropane	ND		0.50	0.20	1.00		
1,3,5-Trimethylbenzene	ND		0.50	0.20	1.00		
1,3-Dichlorobenzene	ND		0.50	0.28	1.00		
1,3-Dichloropropane	ND		1.0	0.40	1.00		
1,4-Dichlorobenzene	ND		0.50	0.20	1.00		
2,2-Dichloropropane	ND		1.0	0.40	1.00		
2-Butanone	ND		5.0	2.0	1.00		
2-Chlorotoluene	ND		0.50	0.20	1.00		
2-Hexanone	ND		10	4.0	1.00		
4-Chlorotoluene	ND		0.50	0.36	1.00		
4-Methyl-2-Pentanone	ND		5.0	2.0	1.00		
Acetone	ND		10	4.0	1.00		
Benzene	ND		0.50	0.20	1.00		
Bromobenzene	ND		0.50	0.32	1.00		
Bromochloromethane	ND		1.0	0.40	1.00		
Bromodichloromethane	ND		0.50	0.20	1.00		
Bromoform	ND		0.50	0.25	1.00		
Bromomethane	ND		1.0	0.40	1.00		

 Tetra Tech, Inc.
 Date Received:
 04/06/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0454

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 20 of 33

<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Carbon Disulfide	ND	1.0	0.40	1.00	
Carbon Tetrachloride	ND	0.50	0.20	1.00	
Chlorobenzene	ND	0.50	0.20	1.00	
Chloroethane	ND	0.50	0.32	1.00	
Chloroform	ND	0.50	0.20	1.00	
Chloromethane	ND	0.50	0.29	1.00	
Dibromochloromethane	ND	0.50	0.20	1.00	
Dibromomethane	ND	0.50	0.20	1.00	
Dichlorodifluoromethane	1.9	1.0	0.40	1.00	
Ethylbenzene	ND	0.50	0.20	1.00	
Isopropylbenzene	ND	0.50	0.20	1.00	
Methylene Chloride	ND	1.0	0.80	1.00	
Naphthalene	ND	1.0	0.40	1.00	
Styrene	ND	0.50	0.20	1.00	
Tetrachloroethene	0.68	0.50	0.20	1.00	
Toluene	ND	0.50	0.20	1.00	
t-1,2-Dichloroethene	ND	0.50	0.20	1.00	
Trichloroethene	0.29	0.50	0.29	1.00	J
Trichlorofluoromethane	ND	0.50	0.20	1.00	
Vinyl Acetate	ND	5.0	2.0	1.00	
Vinyl Chloride	ND	0.50	0.20	1.00	
c-1,3-Dichloropropene	ND	0.50	0.20	1.00	
c-1,2-Dichloroethene	0.30	0.50	0.20	1.00	J
n-Butylbenzene	ND	0.50	0.20	1.00	
n-Propylbenzene	ND	0.50	0.20	1.00	
o-Xylene	ND	0.50	0.32	1.00	
p-Isopropyltoluene	ND	0.50	0.20	1.00	
sec-Butylbenzene	ND	0.50	0.20	1.00	
t-1,3-Dichloropropene	ND	0.50	0.20	1.00	
tert-Butylbenzene	ND	0.50	0.20	1.00	
p/m-Xylene	ND	0.50	0.20	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	0.50	0.20	1.00	
2-Chloroethyl Vinyl Ether	ND	5.0	4.2	1.00	
Hexachloro-1,3-Butadiene	ND	2.0	0.80	1.00	
Iodomethane	ND	10	5.0	1.00	
Surrogate	Rec. (%)	Control Limits	Qualifiers		
1,4-Bromofluorobenzene	96	68-120			
Dibromofluoromethane	95	80-127			

Tetra Tech, Inc.	Date Received:	04/06/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0454
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOU		Page 21 of 33

Surrogate	Rec. (%)	Control Limits	Qualifiers
1,2-Dichloroethane-d4	99	80-128	
Toluene-d8	98	80-120	

ug/L

Analytical Report

Tetra Tech, Inc.

Date Received:

04/06/17

301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-0454

San Bernardino, CA 92408-3562

Preparation:

EPA 5030C

Method: EPA 8260B

Project: LMC BOU Page 22 of 33

Units:

	Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Parameter Result RL MDL DF Qualifiers 1.1,1.2-Tebrachloroethane ND 0.50 0.20 1.00 1.1,1.2-Tichloroethane ND 0.50 0.20 1.00 1.1,2.2-Tichloroethane ND 0.50 0.20 1.00 1.1,2.2-Tichloroethane ND 0.50 0.20 1.00 1.1,2.5-Tichloroethane ND 0.50 0.20 1.00 1.1-Dichloroethane ND 0.50 0.20 1.00 1.1-Dichloroethane ND 0.50 0.20 1.00 1.1-Dichloroethane ND 0.50 0.20 1.00 1.2.3-Tichloropence ND 0.50 0.20 1.00 1.2.3-Tichloropencene ND 0.50 0.20 1.00 1.2.4-Trineflylbenzene ND 0.50 0.20 1.00 1.2-Dibromoethane ND 0.50 0.20 1.00 1.2-Dichloroethane ND 0.50 0.20 1.00 1	B-6-CW02-N-17Q2	17-04-0454-8-C		Aqueous	GC/MS L	04/19/17		170419L010
1,1,1,2-Tetrachloroethane ND 0.50 0.20 1.00 1,1,1-Trichloroethane ND 0.50 0.20 1.00 1,1,2-Trichloroethane ND 0.50 0.20 1.00 1,1,2-Trichloroethane ND 0.50 0.24 1.00 1,1,2-Trichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethane ND 0.50 0.20 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2-Dichlorophospare ND 0.50 0.20 1.00 1,2-Dichloro	Comment(s): - Results were evaluated	to the MDL (DL), cond	centrations >=	to the MDL (D	L) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
1,1,1-Trichloroethane ND 0.50 0.20 1,00 1,1,2-Trichloroe1,2,2-Trifluorethane ND 0.50 0.24 1,00 1,1,2-Trichloro-1,2,2-Trifluorethane ND 0.50 0.24 1,00 1,1,2-Trichloroethane ND 0.50 0.20 1,00 1,1-Dichloroethane ND 0.50 0.28 1,00 1,1-Dichloropropane ND 0.50 0.28 1,00 1,2,3-Trichloropersene ND 0.50 0.20 1,00 1,2,3-Trichloropropane ND 0.50 0.20 1,00 1,2,3-Trichloropropane ND 0.50 0.20 1,00 1,2,4-Trinchlorobenzene ND 0.50 0.20 1,00 1,2,4-Trinchloropropane ND 0.50 0.20 1,00 1,2-Dichlorobenzene ND 0.50 0.20 1,00 1,2-Dichlorobenzene ND 0.50 0.20 1,00 1,2-Dichloropropane ND 0.50 0.20 1,00	<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
1,1,2,2-Tetrachloroethane ND 0.50 0.20 1.00 1,1,2-Trichloro-1,2,2-Triflutorethane ND 0.50 0.24 1.00 1,1,2-Trichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethane ND 0.50 0.28 1.00 1,1-Dichloropthane ND 0.50 0.30 1.00 1,1-Dichloropropene ND 0.50 0.30 1.00 1,1-Dichloropropene ND 0.50 0.30 1.00 1,2-3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,3-Trichloropropane ND 0.50 0.20 1.00 1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.28 1.00 1,	1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane ND 0.50 0.24 1.00 1,1,2-Trichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethane ND 0.50 0.28 1.00 1,1-Dichloroethene ND 0.50 0.28 1.00 1,1-Dichloropropene ND 0.50 0.30 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trichloropenzene ND 0.50 0.20 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2-Librorobenzene ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 0.50 0.20 1.00 1,2-Dibriomoethane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,	1,1,1-Trichloroethane	ND		0.50	0.20	1.00		
1,1,2-Trichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethene ND 0.50 0.28 1.00 1,1-Dichloropropene ND 0.50 0.30 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,3-Trichloropropane ND 1.0 0.40 1.00 1,2,4-Trichloropropane ND 0.50 0.20 1.00 1,2,4-Trichloropenzene ND 0.50 0.20 1.00 1,2-Dichloropenzene ND 0.50 0.20 1.00 1,3-Dichloropenzene ND 0.50 0.20 1.00 1,4-Dichloropenzene ND 0.50 0.20 1.00 1,4-Dichloropenzene	1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethene ND 0.50 0.28 1.00 1,1-Dichloropropene ND 0.50 0.30 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,3-Trichloropenzene ND 1.0 0.40 1.00 1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichlorobenzen	1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		0.50	0.24	1.00		
1,1-Dichloropropene ND 0.50 0.28 1.00 1,1-Dichloropropene ND 0.50 0.30 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloroptopane ND 0.50 0.20 1.00 1,2-Dichloroptopane ND 0.50 0.20 1.00 1,3-Dichloroptopane ND 0.50 0.20 1.00 1,3-Dichloroptopane ND 0.50 0.20 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloroptopane <td>1,1,2-Trichloroethane</td> <td>ND</td> <td></td> <td>0.50</td> <td>0.20</td> <td>1.00</td> <td></td> <td></td>	1,1,2-Trichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloropropene ND 0.50 0.30 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,3-Trichloropropane ND 1.0 0.40 1.00 1,2,4-Trichloropropane ND 0.50 0.20 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,2-Trinchlylbenzene ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.28 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 0.50 0.20 1.00 2,2-Dichlorop	1,1-Dichloroethane	ND		0.50	0.20	1.00		
1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,3-Trichloropropane ND 1.0 0.40 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2-Dibriomo-3-Chloropropane ND 0.50 0.20 1.00 1,2-Dibriomo-thane ND 0.50 0.20 1.00 1,2-Dichloropenzene ND 0.50 0.20 1.00 1,2-Dichloropenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.28 1.00 1,4-Dichloropropane ND 1.0 0.40 1.00 2-Butanone	1,1-Dichloroethene	ND		0.50	0.28	1.00		
1,2,3-Trichloropropane ND 1.0 0.40 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2-Dibriomo-3-Chloropropane ND 0.50 0.20 1.00 1,2-Dibriomoethane ND 0.50 0.20 1.00 1,2-Dibriorobenzene ND 0.50 0.20 1.00 1,2-Dibriorobenzene ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichlorobenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichlorobrazene ND 1.0 0.40 1.00 2-Eutanone ND 0.50 0.20 1.00 2-Hexanone ND<	1,1-Dichloropropene	ND		0.50	0.30	1.00		
1,2,3-Trichloropropane ND 1.0 0.40 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2-Dibriomo-3-Chloropropane ND 0.50 0.20 1.00 1,2-Dibriomoethane ND 0.50 0.20 1.00 1,2-Dibriorobenzene ND 0.50 0.20 1.00 1,2-Dibriorobenzene ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichlorobenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichlorobrazene ND 1.0 0.40 1.00 2-Eutanone ND 0.50 0.20 1.00 2-Hexanone ND<	1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 2.0 1.00 1,2-Dibromoethane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloroptoethane ND 0.50 0.20 1.00 1,2-Dichloroptopane ND 0.50 0.20 1.00 1,3-Trimethylbenzene ND 0.50 0.20 1.00 1,3-Trimethylbenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 1.0 0.40 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND <	1,2,3-Trichloropropane	ND		1.0	0.40	1.00		
1,2-Dibromo-3-Chloropropane ND 5.0 2.0 1.00 1,2-Dibromoethane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloroethane ND 0.50 0.20 1.00 1,2-Dichloroptopane ND 0.50 0.20 1.00 1,3-Trimethylbenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 1,4-Dichloropropane ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 0.50 0.20 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 0.	1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2-Dibromo-3-Chloropropane ND 5.0 2.0 1.00 1,2-Dibromoethane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloroethane ND 0.50 0.20 1.00 1,2-Dichloroptopane ND 0.50 0.20 1.00 1,3-Trimethylbenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 1,4-Dichloropropane ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 0.50 0.20 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 0.	1,2,4-Trimethylbenzene	ND		0.50	0.20	1.00		
1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloroethane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3,5-Trimethylbenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.	1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00		
1,2-Dichloroethane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3,5-Trimethylbenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 0.50 0.20 1.00	1,2-Dibromoethane	ND		0.50	0.20	1.00		
1,2-Dichloroethane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3,5-Trimethylbenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 0.50 0.20 1.00	1,2-Dichlorobenzene	ND		0.50	0.20	1.00		
1,2-Dichloropropane ND 0.50 0.20 1.00 1,3,5-Trimethylbenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Hexanone ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromodichloromethane ND 0.50 0.32 1.00 Bromodichloromethane ND 0.50 0.20 1.00	1,2-Dichloroethane			0.50		1.00		
1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00	1,2-Dichloropropane	ND		0.50	0.20	1.00		
1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00	1,3,5-Trimethylbenzene	ND		0.50	0.20	1.00		
1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 0.50 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00	1,3-Dichlorobenzene			0.50	0.28	1.00		
1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00	1,3-Dichloropropane	ND		1.0	0.40			
2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00	1,4-Dichlorobenzene	ND		0.50	0.20	1.00		
2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00	2,2-Dichloropropane			1.0				
2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00	2-Butanone	ND			2.0			
2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00	2-Chlorotoluene	ND		0.50	0.20	1.00		
4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00	2-Hexanone							
4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00								
Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00								
Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00	•							
Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00	Benzene							
Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00	Bromobenzene							
Bromodichloromethane ND 0.50 0.20 1.00								
0100 0100								
Bromomethane ND 1.0 0.40 1.00	Bromomethane							

 Tetra Tech, Inc.
 Date Received:
 04/06/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0454

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 23 of 33

				1 490 20 01 00
<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
ND	1.0	0.40	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.32	1.00	
0.35	0.50	0.20	1.00	J
ND	0.50	0.29	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	1.0	0.40	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	1.0	0.80	1.00	
ND	1.0	0.40	1.00	
ND	0.50	0.20	1.00	
0.56	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.29	1.00	
ND	0.50	0.20	1.00	
ND	5.0	2.0	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.32	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	5.0	4.2	1.00	
ND	2.0	0.80	1.00	
ND	10	5.0	1.00	
Rec. (%)	Control Limits	<u>Qualifiers</u>		
97	68-120			
96	80-127			
	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND 1.0 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 1.0 ND 0.50 ND 1.0 ND 1.0 ND 1.0 ND 0.50 ND 1.0 ND 0.50 ND 0	ND 1.0 0.40 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.32 0.35 0.50 0.29 ND 0.50 0.29 ND 0.50 0.20 ND 0.50 0.20 ND 1.0 0.40 ND 0.50 0.20 ND 1.0 0.40 ND 0.50 0.20 ND 1.0 0.40 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND <	ND 1.0 0.40 1.00 ND 0.50 0.20 1.00 ND 0.50 0.20 1.00 ND 0.50 0.32 1.00 0.35 0.50 0.20 1.00 ND 0.50 0.20 1.00 ND 0.50 0.20 1.00 ND 0.50 0.20 1.00 ND 0.50 0.20 1.00 ND 0.50 0.20 1.00 ND 0.50 0.20 1.00 ND 0.50 0.20 1.00 ND 1.0 0.40 1.00 ND 0.50 0.20 1.00 ND 1.0 0.80 1.00 ND 1.0 0.80 1.00 ND 1.0 0.40 1.00 ND 1.0 0.80 1.00 ND 1.0 1.0 0.40 1.00 ND 1.0 0.50 0.20 1.00 ND 1.0 1.0 0.40 1.00 ND 1.0 0.50 0.20 1.00 ND 1.0 0.50 0.20 1.00 ND 1.0 0.50 0.20 1.00 ND 0.50 0.20 1.00

Tetra Tech, Inc.	Date Received:	04/06/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0454
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOU		Page 24 of 33

Surrogate	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>
1,2-Dichloroethane-d4	101	80-128	
Toluene-d8	97	80-120	

Tetra Tech, Inc.

Date Received:

04/06/17

301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-0454

San Bernardino, CA 92408-3562

Preparation:

EPA 5030C

Method: EPA 8260B

Units: ug/L

Project: LMC BOU

Page 25 of 33

Client Sample Number Date Detection OC Batch I

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-6-CW02-FD-17Q2	17-04-0454-9-C	04/06/17 16:21	Aqueous	GC/MS L	04/19/17	04/19/17 18:23	170419L010
Comment(s): - Results were evaluated	I to the MDL (DL), cond	centrations >=	to the MDL (D	L) but < RL (LC	Q), if found, are	qualified with a	ı "J" flag.
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>(</u>	<u>Qualifiers</u>
1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,1-Trichloroethane	ND		0.50	0.20	1.00		
1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		0.50	0.24	1.00		
1,1,2-Trichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethene	ND		0.50	0.28	1.00		
1,1-Dichloropropene	ND		0.50	0.30	1.00		
1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,3-Trichloropropane	ND		1.0	0.40	1.00		
1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,4-Trimethylbenzene	ND		0.50	0.20	1.00		
1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00		
1,2-Dibromoethane	ND		0.50	0.20	1.00		
1,2-Dichlorobenzene	ND		0.50	0.20	1.00		
1,2-Dichloroethane	ND		0.50	0.20	1.00		
1,2-Dichloropropane	ND		0.50	0.20	1.00		
1,3,5-Trimethylbenzene	ND		0.50	0.20	1.00		
1,3-Dichlorobenzene	ND		0.50	0.28	1.00		
1,3-Dichloropropane	ND		1.0	0.40	1.00		
1,4-Dichlorobenzene	ND		0.50	0.20	1.00		
2,2-Dichloropropane	ND		1.0	0.40	1.00		
2-Butanone	ND		5.0	2.0	1.00		
2-Chlorotoluene	ND		0.50	0.20	1.00		
2-Hexanone	ND		10	4.0	1.00		
4-Chlorotoluene	ND		0.50	0.36	1.00		
4-Methyl-2-Pentanone	ND		5.0	2.0	1.00		
Acetone	4.2		10	4.0	1.00		J
Benzene	ND		0.50	0.20	1.00		
Bromobenzene	ND		0.50	0.32	1.00		
Bromochloromethane	ND		1.0	0.40	1.00		
Bromodichloromethane	ND		0.50	0.20	1.00		
Bromoform	ND		0.50	0.25	1.00		
Bromomethane	ND		1.0	0.40	1.00		

 Tetra Tech, Inc.
 Date Received:
 04/06/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0454

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 26 of 33

Project: LMC BOU					Page 26 of 33
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Carbon Disulfide	ND	1.0	0.40	1.00	
Carbon Tetrachloride	ND	0.50	0.20	1.00	
Chlorobenzene	ND	0.50	0.20	1.00	
Chloroethane	ND	0.50	0.32	1.00	
Chloroform	0.37	0.50	0.20	1.00	J
Chloromethane	ND	0.50	0.29	1.00	
Dibromochloromethane	ND	0.50	0.20	1.00	
Dibromomethane	ND	0.50	0.20	1.00	
Dichlorodifluoromethane	ND	1.0	0.40	1.00	
Ethylbenzene	ND	0.50	0.20	1.00	
Isopropylbenzene	ND	0.50	0.20	1.00	
Methylene Chloride	ND	1.0	0.80	1.00	
Naphthalene	ND	1.0	0.40	1.00	
Styrene	ND	0.50	0.20	1.00	
Tetrachloroethene	0.54	0.50	0.20	1.00	
Toluene	ND	0.50	0.20	1.00	
t-1,2-Dichloroethene	ND	0.50	0.20	1.00	
Trichloroethene	ND	0.50	0.29	1.00	
Trichlorofluoromethane	ND	0.50	0.20	1.00	
Vinyl Acetate	ND	5.0	2.0	1.00	
Vinyl Chloride	ND	0.50	0.20	1.00	
c-1,3-Dichloropropene	ND	0.50	0.20	1.00	
c-1,2-Dichloroethene	ND	0.50	0.20	1.00	
n-Butylbenzene	ND	0.50	0.20	1.00	
n-Propylbenzene	ND	0.50	0.20	1.00	
o-Xylene	ND	0.50	0.32	1.00	
p-Isopropyltoluene	ND	0.50	0.20	1.00	
sec-Butylbenzene	ND	0.50	0.20	1.00	
t-1,3-Dichloropropene	ND	0.50	0.20	1.00	
tert-Butylbenzene	ND	0.50	0.20	1.00	
p/m-Xylene	ND	0.50	0.20	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	0.50	0.20	1.00	
2-Chloroethyl Vinyl Ether	ND	5.0	4.2	1.00	
Hexachloro-1,3-Butadiene	ND	2.0	0.80	1.00	
lodomethane	ND	10	5.0	1.00	
<u>Surrogate</u>	<u>Rec. (%)</u>	Control Limits	Qualifiers		
1,4-Bromofluorobenzene	100	68-120			
Dibromofluoromethane	102	80-127			

Tetra Tech, Inc.	Date Received:	04/06/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0454
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOU		Page 27 of 33

<u>Surrogate</u>	Rec. (%)	Control Limits	<u>Qualifiers</u>
1,2-Dichloroethane-d4	111	80-128	
Toluene-d8	100	80-120	

Project: LMC BOU

Analytical Report

Tetra Tech, Inc.

Date Received:

04/06/17

301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-0454

San Bernardino, CA 92408-3562

Preparation:

EPA 5030C

Method: EPA 8260B

Units: ug/L Page 28 of 33

March Mar	Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Parameter Result BL MDI DE Qualifiers 1,1,1,2-Tetrachloroethane ND 0.50 0.20 1,00 1,11,1-17tichloroethane ND 0.50 0.20 1,00 1,12,1-17tichloroethane ND 0.50 0.20 1,00 1,12,17tichloroethane ND 0.50 0.24 1,00 1,10 1,11,17tichloroethane ND 0.50 0.20 1,00 1,10 1,11,17tichloroethane ND 0.50 0.20 1,00 1,10 1,1-15tichloroethane ND 0.50 0.20 1,00 1,1-15tichloroethane ND 0.50 0.20 1,00 1,1-15tichloroethane ND 0.50 0.20 1,00 1,1-15tichloroethane ND 0.50 0.20 1,00 1,1-15tichloroethane ND 0.50 0.20 1,00 1,1-15tichloroethane ND 0.50 0.20 1,00 1,1-15tichloroethane ND 0.50 0.20 1,00 1,1-15tichloroethane ND 0.50 0.20 1,00 1,1-15tichloroethane ND	Method Blank	099-10-025-4613	N/A	Aqueous	GC/MS FFF	04/07/17		170407L043
1,1,1,2-Tetrachloroethane ND 0,50 0,20 1,00 1,1,1-Trichloroethane ND 0,50 0,20 1,00 1,1,2-Trichloroethane ND 0,50 0,20 1,00 1,1,2-Trichloroethane ND 0,50 0,24 1,00 1,1-Dichloroethane ND 0,50 0,20 1,00 1,1-Dichloroethene ND 0,50 0,20 1,00 1,1-Dichloropropene ND 0,50 0,20 1,00 1,1-Dichloropropene ND 0,50 0,20 1,00 1,2-3-Trichlorobenzene ND 0,50 0,20 1,00 1,2-3-Trichlorobenzene ND 1,0 0,40 1,00 1,2-4-Trimethylbenzene ND 0,50 0,20 1,00 1,2-Dichromoethane ND 0,50 0,20 1,00 1,2-Dichromoethane ND 0,50 0,20 1,00 1,2-Dichromoethane ND 0,50 0,20 1,00 1,2-Dichromoethane </td <td>Comment(s): - Results were evaluated</td> <td>to the MDL (DL), cond</td> <td>centrations >=</td> <td>to the MDL (DI</td> <td>L) but < RL (LO</td> <td>Q), if found, are</td> <td>qualified with</td> <td>a "J" flag.</td>	Comment(s): - Results were evaluated	to the MDL (DL), cond	centrations >=	to the MDL (DI	L) but < RL (LO	Q), if found, are	qualified with	a "J" flag.
1,1,1-Trichloroethane ND 0,50 0,20 1,00 1,1,2,2-Terlachloroethane ND 0,50 0,20 1,00 1,1,2-Trichloro-1,2,2-Trifluorethane ND 0,50 0,24 1,00 1,1,2-Trichloroethane ND 0,50 0,20 1,00 1,1-Dichloroethane ND 0,50 0,20 1,00 1,1-Dichloropene ND 0,50 0,30 1,00 1,2-S-Trichloropene ND 0,50 0,30 1,00 1,2,3-Trichloropeneae ND 0,50 0,20 1,00 1,2,3-Trichloropeneae ND 0,50 0,20 1,00 1,2,4-Trinchlorobenzene ND 0,50 0,20 1,00 1,2,4-Trinchloropenzene ND 0,50 0,20 1,00 1,2-Dichloroethane ND 0,50 0,20 1,00 1,2-Dichloroethane ND 0,50 0,20 1,00 1,2-Dichloroethane ND 0,50 0,20 1,00 1,3	<u>Parameter</u>	Resu	<u>It</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
1,1,2,2-Tetrachioroethane ND 0.50 0.20 1.00 1,1,2-Trichloroe-1,2,2-Trifluoroethane ND 0.50 0.24 1.00 1,1-Dichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethane ND 0.50 0.28 1.00 1,1-Dichloroethane ND 0.50 0.28 1.00 1,1-Dichloroethane ND 0.50 0.30 1.00 1,1-Dichloropropene ND 0.50 0.30 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2-Dichloroethane ND 0.50 0.20 1.00 1,2-Dichloroethane ND 0.50 0.20 1.00 1,3-Dichloroethane ND 0.50 0.20 1.00 1,3-Dichloroethane ND 0.50 0.20 1.00 1,3-Dichl	1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane ND 0.50 0.24 1.00 1,1,2-Trichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethane ND 0.50 0.28 1.00 1,1-Dichloroethene ND 0.50 0.28 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2-Librinorbenzene ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-D	1,1,1-Trichloroethane	ND		0.50	0.20	1.00		
1.1,2-Trichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethene ND 0.50 0.28 1.00 1,2-Dichloroptopene ND 0.50 0.30 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,3-Trichloroptopane ND 0.50 0.20 1.00 1,2,4-Triindhrobenzene ND 0.50 0.20 1.00 1,2,4-Triindhroptopane ND 0.50 0.20 1.00 1,2,4-Triindhroptopane ND 0.50 0.20 1.00 1,2-Dichloroptopane ND 0.50 0.20 1.00 1,2-Dichloroptopane ND 0.50 0.20 1.00 1,3-S-Triimethylbenzene ND 0.50 0.20 1.00 1,3-Dichloroptopane ND 0.50 0.20 1.00 1,4-Dichloroptopane ND 1.0 0.40 1.00 2-Eultanone	1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1.1-Dichloroethane ND 0.50 0.20 1.00 1.1-Dichloroethene ND 0.50 0.28 1.00 1.1-Dichloropropene ND 0.50 0.30 1.00 1.2.3-Trichlorobenzene ND 0.50 0.20 1.00 1.2.3-Trichlorobenzene ND 0.50 0.20 1.00 1.2.4-Trichlorobenzene ND 0.50 0.20 1.00 1.2.4-Trindethylbenzene ND 0.50 0.20 1.00 1.2-Dichromo-3-Chloropropane ND 5.0 0.20 1.00 1.2-Dichlorobenzene ND 0.50 0.20 1.00 1.2-Dichlorobenzene ND 0.50 0.20 1.00 1.2-Dichloropropane ND 0.50 0.20 1.00 1.3-Dichloropropane ND 0.50 0.20 1.00 1.3-Dichloropropane ND 0.50 0.28 1.00 1.4-Dichlorobenzene ND 0.50 0.20 1.00 2-Dichloropropan	1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		0.50	0.24	1.00		
1,1-Dichloroethene ND 0.50 0.28 1.00 1,1-Dichloropropene ND 0.50 0.30 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,3-Trichloropropane ND 1.0 0.40 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 5.0 2.0 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichlorobenzene ND 0.50 0.20 1.00 2,-Dichlorobenzene	1,1,2-Trichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloropropene ND 0.50 0.30 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,3-Trichloropropane ND 1.0 0.40 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trindhylbenzene ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 2.0 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,4-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichloropropane ND 1.0 0.40 1.00 2,2-Dichloropropane ND 5.0 0.20 1.00 2-Butanone	1,1-Dichloroethane	ND		0.50	0.20	1.00		
1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,3-Trichloropropane ND 1.0 0.40 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 2.0 1.00 1,2-Dibromo-3-Chloropropane ND 0.50 0.20 1.00 1,2-Dibromoethane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.28 1.00 1,3-Dichloropropane ND 0.50 0.28 1.00 1,4-Dichlorobrazene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 0.50 0.20 1.00 2-Dichloropr	1,1-Dichloroethene	ND		0.50	0.28	1.00		
1,2,3-Trichloropropane ND 1.0 0.40 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 2.0 1.00 1,2-Dibromo-3-Chloropropane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloroptopane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.20 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 0.50 0.20 1.00 2-Butanone ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.36 1.00 4-Hexthyl-2-Pentanone	1,1-Dichloropropene	ND		0.50	0.30	1.00		
1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 2.0 1.00 1,2-Dibromoethane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloroptopane ND 0.50 0.20 1.00 1,2-Dichloroptopane ND 0.50 0.20 1.00 1,3-Dichloroptopane ND 0.50 0.20 1.00 1,3-Dichloroptopane ND 0.50 0.20 1.00 1,3-Dichloroptopane ND 0.50 0.20 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2-Butanone ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.20 1.00 4-Methyl-2-Pentanone ND <td>1,2,3-Trichlorobenzene</td> <td>ND</td> <td></td> <td>0.50</td> <td>0.20</td> <td>1.00</td> <td></td> <td></td>	1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 2.0 1.00 1,2-Dibromoethane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloroptopane ND 0.50 0.20 1.00 1,3-Dichloroptopane ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloroptopane ND 0.50 0.28 1.00 1,3-Dichloroptopane ND 0.50 0.28 1.00 1,3-Dichloroptopane ND 1.0 0.40 1.00 1,4-Dichloroptopane ND 1.0 0.40 1.00 2,2-Dichloroptopane ND 5.0 0.20 1.00 2,2-Dichloroptopane ND 5.0 0.20 1.00 2-Butanone ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.20 1.00 4-Methyl-2-Pentanone ND	1,2,3-Trichloropropane	ND		1.0				
1,2-Dibromo-3-Chloropropane ND 5.0 2.0 1.00 1,2-Dibromoethane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloropethane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-Trimethylbenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 0.50 0.28 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 0.50 0.20 1.00 2,2-Dichloropropane ND 0.50 0.20 1.00 2-Butanone ND 0.50 0.20 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 0.50 0.20 1.00 4-Methyl-2-Pentanone ND <	1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2-Dibromoethane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloroethane ND 0.50 0.20 1.00 1,2-Dichloroptopane ND 0.50 0.20 1.00 1,3-5-Trimethylbenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichlorobenzene ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Hexanone ND 0.50 0.20 1.00 4-Hexanone ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 0.50	1,2,4-Trimethylbenzene	ND		0.50	0.20	1.00		
1,2-Dibromoethane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloroethane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-5-Trimethylbenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 1,4-Dichloropropane ND 1.0 0.40 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.20 1.00 4-Hohyl-2-Pentanone ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 0.50 0.20 1.00 Benzene ND 0.50	1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00		
1,2-Dichloroethane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3,5-Trimethylbenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Butanone ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.36 1.00 4-Chlorotoluene ND 5.0 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 0.50 0.20 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.20 1.00 <td></td> <td>ND</td> <td></td> <td>0.50</td> <td>0.20</td> <td>1.00</td> <td></td> <td></td>		ND		0.50	0.20	1.00		
1,2-Dichloropropane ND 0.50 0.20 1.00 1,3,5-Trimethylbenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2,2-Dichloropropane ND 5.0 2.0 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.36 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 0.50 0.20 1.00 Benzene ND 0.50 0.32 1.00 Bromobelnzene ND 0.50 0.20	1,2-Dichlorobenzene	ND		0.50	0.20	1.00		
1,3,5-Trimethylbenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 0.50 0.20 1.00 Bromodichloromethane ND 0.50 0.20 <th< td=""><td>1,2-Dichloroethane</td><td>ND</td><td></td><td>0.50</td><td>0.20</td><td>1.00</td><td></td><td></td></th<>	1,2-Dichloroethane	ND		0.50	0.20	1.00		
1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.20 1.00	1,2-Dichloropropane	ND		0.50	0.20	1.00		
1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.36 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 0.50 0.32 1.00 Bromoform ND 0.50 0.20 1.00	1,3,5-Trimethylbenzene	ND		0.50	0.20	1.00		
1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.20 1.00	1,3-Dichlorobenzene	ND		0.50	0.28	1.00		
2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 0.50 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.20 1.00	1,3-Dichloropropane	ND		1.0	0.40	1.00		
2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromodichloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.20 1.00	1,4-Dichlorobenzene	ND		0.50	0.20	1.00		
2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromoform ND 0.50 0.20 1.00	2,2-Dichloropropane	ND		1.0	0.40	1.00		
2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	2-Butanone	ND		5.0	2.0	1.00		
4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	2-Chlorotoluene	ND		0.50	0.20	1.00		
4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	2-Hexanone	ND		10	4.0	1.00		
Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	4-Chlorotoluene	ND		0.50	0.36	1.00		
Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	4-Methyl-2-Pentanone	ND		5.0	2.0	1.00		
Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	Acetone	ND		10	4.0	1.00		
Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	Benzene	ND		0.50	0.20	1.00		
Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	Bromobenzene	ND		0.50				
Bromoform ND 0.50 0.25 1.00	Bromochloromethane	ND		1.0	0.40	1.00		
Bromoform ND 0.50 0.25 1.00	Bromodichloromethane	ND		0.50	0.20	1.00		
Bromomethane ND 1.0 0.40 1.00	Bromoform							
						1.00		

 Tetra Tech, Inc.
 Date Received:
 04/06/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0454

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 29 of 33

Trojock Livio Boo					1 490 20 01 00
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Carbon Disulfide	ND	1.0	0.40	1.00	
Carbon Tetrachloride	ND	0.50	0.20	1.00	
Chlorobenzene	ND	0.50	0.20	1.00	
Chloroethane	ND	0.50	0.32	1.00	
Chloroform	ND	0.50	0.20	1.00	
Chloromethane	ND	0.50	0.29	1.00	
Dibromochloromethane	ND	0.50	0.20	1.00	
Dibromomethane	ND	0.50	0.20	1.00	
Dichlorodifluoromethane	ND	1.0	0.40	1.00	
Ethylbenzene	ND	0.50	0.20	1.00	
Isopropylbenzene	ND	0.50	0.20	1.00	
Methylene Chloride	ND	1.0	0.80	1.00	
Naphthalene	ND	1.0	0.40	1.00	
Styrene	ND	0.50	0.20	1.00	
Tetrachloroethene	ND	0.50	0.20	1.00	
Toluene	ND	0.50	0.20	1.00	
t-1,2-Dichloroethene	ND	0.50	0.20	1.00	
Trichloroethene	ND	0.50	0.29	1.00	
Trichlorofluoromethane	ND	0.50	0.20	1.00	
Vinyl Acetate	ND	5.0	2.0	1.00	
Vinyl Chloride	ND	0.50	0.20	1.00	
c-1,3-Dichloropropene	ND	0.50	0.20	1.00	
c-1,2-Dichloroethene	ND	0.50	0.20	1.00	
n-Butylbenzene	ND	0.50	0.20	1.00	
n-Propylbenzene	ND	0.50	0.20	1.00	
o-Xylene	ND	0.50	0.32	1.00	
p-Isopropyltoluene	ND	0.50	0.20	1.00	
sec-Butylbenzene	ND	0.50	0.20	1.00	
t-1,3-Dichloropropene	ND	0.50	0.20	1.00	
tert-Butylbenzene	ND	0.50	0.20	1.00	
p/m-Xylene	ND	0.50	0.20	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	0.50	0.20	1.00	
2-Chloroethyl Vinyl Ether	ND	5.0	4.2	1.00	
Hexachloro-1,3-Butadiene	ND	2.0	0.80	1.00	
lodomethane	ND	10	5.0	1.00	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	91	68-120			
Dibromofluoromethane	103	80-127			

Tetra Tech, Inc.	Date Received:	04/06/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0454
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOU		Page 30 of 33

Surrogate	Rec. (%)	Control Limits	Qualifiers
1,2-Dichloroethane-d4	106	80-128	
Toluene-d8	102	80-120	

04/06/17

17-04-0454

EPA 5030C

Analytical Report

Tetra Tech, Inc.

301 E. Vanderbilt Way, Suite 450

San Bernardino, CA 92408-3562

Date Received:

Work Order:

Preparation:

Method: EPA 8260B Units: ug/L

Project: LMC BOU Page 31 of 33

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-10-025-4626	N/A	Aqueous	GC/MS L	04/19/17	04/19/17 10:40	170419L010
Comment(s): - Results were evaluated	to the MDL (DL), cond	entrations >=	to the MDL (DI	L) but < RL (LO	Q), if found, are	qualified with a	ı "J" flag.
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>(</u>	Qualifiers
1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,1-Trichloroethane	ND		0.50	0.20	1.00		
1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		0.50	0.24	1.00		
1,1,2-Trichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethene	ND		0.50	0.28	1.00		
1,1-Dichloropropene	ND		0.50	0.30	1.00		
1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,3-Trichloropropane	ND		1.0	0.40	1.00		
1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,4-Trimethylbenzene	ND		0.50	0.20	1.00		
1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00		
1,2-Dibromoethane	ND		0.50	0.20	1.00		
1,2-Dichlorobenzene	ND		0.50	0.20	1.00		
1,2-Dichloroethane	ND		0.50	0.20	1.00		
1,2-Dichloropropane	ND		0.50	0.20	1.00		
1,3,5-Trimethylbenzene	ND		0.50	0.20	1.00		
1,3-Dichlorobenzene	ND		0.50	0.28	1.00		
1,3-Dichloropropane	ND		1.0	0.40	1.00		
1,4-Dichlorobenzene	ND		0.50	0.20	1.00		
2,2-Dichloropropane	ND		1.0	0.40	1.00		
2-Butanone	ND		5.0	2.0	1.00		
2-Chlorotoluene	ND		0.50	0.20	1.00		
2-Hexanone	ND		10	4.0	1.00		
4-Chlorotoluene	ND		0.50	0.36	1.00		
4-Methyl-2-Pentanone	ND		5.0	2.0	1.00		
Acetone	ND		10	4.0	1.00		
Benzene	ND		0.50	0.20	1.00		
Bromobenzene	ND		0.50	0.32	1.00		
Bromochloromethane	ND		1.0	0.40	1.00		
Bromodichloromethane	ND		0.50	0.20	1.00		
Bromoform	ND		0.50	0.25	1.00		
Bromomethane	ND		1.0	0.40	1.00		
	.,,,			0.10	1.00		

 Tetra Tech, Inc.
 Date Received:
 04/06/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0454

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 32 of 33

FTOJECI. LIVIO BOO					Fage 32 01 33
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Carbon Disulfide	ND	1.0	0.40	1.00	
Carbon Tetrachloride	ND	0.50	0.20	1.00	
Chlorobenzene	ND	0.50	0.20	1.00	
Chloroethane	ND	0.50	0.32	1.00	
Chloroform	ND	0.50	0.20	1.00	
Chloromethane	ND	0.50	0.29	1.00	
Dibromochloromethane	ND	0.50	0.20	1.00	
Dibromomethane	ND	0.50	0.20	1.00	
Dichlorodifluoromethane	ND	1.0	0.40	1.00	
Ethylbenzene	ND	0.50	0.20	1.00	
Isopropylbenzene	ND	0.50	0.20	1.00	
Methylene Chloride	ND	1.0	0.80	1.00	
Naphthalene	ND	1.0	0.40	1.00	
Styrene	ND	0.50	0.20	1.00	
Tetrachloroethene	ND	0.50	0.20	1.00	
Toluene	ND	0.50	0.20	1.00	
t-1,2-Dichloroethene	ND	0.50	0.20	1.00	
Trichloroethene	ND	0.50	0.29	1.00	
Trichlorofluoromethane	ND	0.50	0.20	1.00	
Vinyl Acetate	ND	5.0	2.0	1.00	
Vinyl Chloride	ND	0.50	0.20	1.00	
c-1,3-Dichloropropene	ND	0.50	0.20	1.00	
c-1,2-Dichloroethene	ND	0.50	0.20	1.00	
n-Butylbenzene	ND	0.50	0.20	1.00	
n-Propylbenzene	ND	0.50	0.20	1.00	
o-Xylene	ND	0.50	0.32	1.00	
p-Isopropyltoluene	ND	0.50	0.20	1.00	
sec-Butylbenzene	ND	0.50	0.20	1.00	
t-1,3-Dichloropropene	ND	0.50	0.20	1.00	
tert-Butylbenzene	ND	0.50	0.20	1.00	
p/m-Xylene	ND	0.50	0.20	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	0.50	0.20	1.00	
2-Chloroethyl Vinyl Ether	ND	5.0	4.2	1.00	
Hexachloro-1,3-Butadiene	ND	2.0	0.80	1.00	
lodomethane	ND	10	5.0	1.00	
<u>Surrogate</u>	Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	95	68-120			
Dibromofluoromethane	95	80-127			

Tetra Tech, Inc.	Date Received:	04/06/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0454
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOLL		Page 33 of 33

<u>Surrogate</u>	Rec. (%)	Control Limits	Qualifiers
1,2-Dichloroethane-d4	90	80-128	
Toluene-d8	98	80-120	

Project: LMC BOU

Comment(s):

Analytical Report

 Tetra Tech, Inc.
 Date Received:
 04/06/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0454

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B SIM

Units: ug/L Page 1 of 3

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-1-CW30-N-17Q2	17-04-0454-1-F	04/06/17 14:44	Aqueous	GC/MS M	04/11/17	04/12/17 00:18	170411L078

- Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

ParameterResultRLMDLDFQualifiers1,2,3-TrichloropropaneND0.00500.00251.00

<u>Surrogate</u> <u>Rec. (%)</u> <u>Control Limits</u> <u>Qualifiers</u>

1,4-Dichlorobutane 91 80-120

B-1-CW31-N-1	7Q2	17-04-0454-2-F	04/06/17 13:05	Aqueous	GC/MS M	04/11/17	04/12/17 03:47	170411L078
Comment(s):	- Results were evaluated t	o the MDL (DL), con	centrations >=	to the MDL (DI	_) but < RL (L0	OQ), if found, ar	e qualified with a	a "J" flag.

ParameterResultRLMDLDFQualifiers1,2,3-TrichloropropaneND0.00500.00251.00

1,2,0 Thomorphopano 1.0

<u>Surrogate</u> <u>Rec. (%)</u> <u>Control Limits</u> <u>Qualifiers</u>

1,4-Dichlorobutane 89 80-120

B-1-CW33-N-17Q2	17-04-0454-3-H	04/06/17 09:04	Aqueous	GC/MS M	04/18/17	04/18/17 14:09	170418L051
Comment(s): - Results were evaluated	to the MDL (DL), con-	centrations >=	to the MDL (DL	.) but < RL (LO	Q), if found, are	qualified with	a "J" flag.
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
1,2,3-Trichloropropane	0.87		0.050	0.025	10.0		
Surrogate	Rec.	(%)	Control Limits	Qualifiers			

Surrogate Nec. (//) Control Limits Qualifiers

1,4-Dichlorobutane 114 80-120

LTB-20160406		7-04-0454-4-C	04/06/17 07:00	Aqueous	GC/MS M	04/11/17	04/11/17 23:48	170411L078
Comment(s):	- Results were evaluated to the	ne MDL (DL), cond	entrations >=	to the MDL (DL	.) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>		<u>Resu</u>	<u>It</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	9	<u>Qualifiers</u>
1,2,3-Trichloropro	pane	ND		0.0050	0.0025	1.00		

Surrogate Rec. (%) Control Limits Qualifiers

1,4-Dichlorobutane 88 80-120

Date Received: 04/06/17 Tetra Tech, Inc. Work Order: 17-04-0454 301 E. Vanderbilt Way, Suite 450 Preparation: **EPA 5030C** San Bernardino, CA 92408-3562 Method: **EPA 8260B SIM**

> Units: ug/L

Page 2 of 3 Project: LMC BOU

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
A-1-CW08-N-17Q2	17-04-0454-5-H	04/06/17 14:44	Aqueous	GC/MS M	04/18/17	04/18/17 19:07	170418L051
Comment(s): - Results were evaluated to	o the MDL (DL), cond	centrations >=	to the MDL (DL) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
1,2,3-Trichloropropane	87		5.0	2.5	1000		
Surrogate	Rec.	(%)	Control Limits	Qualifiers			

1,4-Dichlorobutane 103 80-120

B-6-CW14-N-17Q2		17-04-0454-6-H	04/06/17 11:47	Aqueous	GC/MS M	04/18/17	04/18/17 18:38	170418L051
Comment(s):	- Results were evaluated t	o the MDL (DL), cond	entrations >=	to the MDL (DL	.) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>		Resu	<u>It</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Q</u>	<u>Qualifiers</u>
1,2,3-Trichlorop	ropane	ND		0.0050	0.0025	1.00		

Surrogate Rec. (%) **Control Limits** Qualifiers

1,4-Dichlorobutane 108 80-120

C-1-CW05-N-17Q2		4/06/17 Aqueous 9:52	GC/MS M	04/18/17	04/18/17 12:09	170418L051
Comment(s): - Results were evaluated to	the MDL (DL), concent	rations >= to the MDL (D	L) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
1,2,3-Trichloropropane	ND	0.0050	0.0025	1.00		
Surrogate 1,4-Dichlorobutane	<u>Rec. (%)</u> 119	Control Limits 80-120	<u>Qualifiers</u>			

B-6-CW02-N-17	7Q2	17-04-0454-8-F	04/06/17 16:21	Aqueous	GC/MS M	04/18/17	04/18/17 12:39	170418L051
Comment(s):	- Results were evaluated to	the MDL (DL), cond	entrations >	= to the MDL (DL	.) but < RL (LOC	Q), if found, are	qualified with a	a "J" flag.
<u>Parameter</u>		<u>Resu</u>	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
1,2,3-Trichlorop	ropane	ND		0.0050	0.0025	1.00		
Surrogate		Rec.	(%)	Control Limits	Qualifiers			
1,4-Dichlorobuta	ane	113		80-120				

Tetra Tech, Inc.

Date Received:

04/06/17

301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-0454

San Bernardino, CA 92408-3562

Preparation:

EPA 5030C

Method: EPA 8260B SIM Units: ug/L

Project: LMC BOU Page 3 of 3

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-6-CW02-FD-17Q2	17-04-0454-9-E	04/06/17 16:21	Aqueous	GC/MS M	04/18/17	04/18/17 13:09	170418L051

Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

Parameter Result RL MDL DF Qualifiers

1,2,3-Trichloropropane ND 0.0050 0.0025 1.00

<u>Surrogate</u> <u>Rec. (%)</u> <u>Control Limits</u> <u>Qualifiers</u>

1,4-Dichlorobutane 104 80-120

Method Blank	099-15-118-481	N/A	Aqueous	GC/MS M	04/11/17	04/11/17 23:18	170411L078
Comment(s):	- Results were evaluated to the MDL (DL), con	centration	s >= to the MDL (DI	L) but < RL (LC	DQ), if found, are	e qualified with	a "J" flag.
<u>Parameter</u>	Resi	<u>ult</u>	<u>RL</u>	MDL	<u>DF</u>		<u>Qualifiers</u>

1,2,3-Trichloropropane ND 0.0050 0.0025 1.00

<u>Surrogate</u> <u>Rec. (%)</u> <u>Control Limits</u> <u>Qualifiers</u>

1,4-Dichlorobutane 90 80-120

Method Blank	(99-15-118-489 N/A	Aqueous	GC/MS M	04/18/17	04/18/17 11:33	170418L051
Comment(s):	- Results were evaluated to the	ne MDL (DL), concentrations	>= to the MDL (DL	but < RL (LC	Q), if found, are	qualified with	a "J" flag.
<u>Parameter</u>		<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
1,2,3-Trichloropr	ropane	ND	0.0050	0.0025	1.00		
Surrogate 1,4-Dichlorobuta	nne	<u>Rec. (%)</u> 112	Control Limits 80-120	Qualifiers	<u>5</u>		

Date Received: 04/06/17 Tetra Tech, Inc. Work Order: 17-04-0454 301 E. Vanderbilt Way, Suite 450 Preparation: N/A San Bernardino, CA 92408-3562 Method: EPA 218.6

Project: LMC BOU Page 1 of 7

Quality Control Sample ID	Туре		Matrix	Ins	strument	Date Prepared	Date Ana	lyzed	MS/MSD Ba	tch Number
B-6-CW02-FD-17Q2	Sample		Aqueous	s IC	16	N/A	04/06/17	22:31	170406S01	
B-6-CW02-FD-17Q2	Matrix Spike		Aqueous	s IC	16	N/A	04/06/17	22:43	170406S01	
B-6-CW02-FD-17Q2	Matrix Spike	Duplicate	Aqueous	s IC	16	N/A	04/06/17	22:54	170406S01	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Chromium, Hexavalent	2.533	10.00	13.29	108	12.88	103	85-121	3	0-25	

 Tetra Tech, Inc.
 Date Received:
 04/06/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0454

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 3005A Filt.

 Method:
 EPA 6020

Project: LMC BOU Page 2 of 7

Quality Control Sample ID	Туре	Matrix	. Instru	ument	Date Prepared	Date Anal	yzed	MS/MSD Bate	ch Number
17-04-0984-2	Sample	Aque	ous ICP/I	MS 03	04/15/17	04/20/17	17:20	170415SA6	
17-04-0984-2	Matrix Spike	Aque	ous ICP/I	MS 03	04/15/17	04/20/17 1	17:09	170415SA6	
17-04-0984-2	Matrix Spike Dup	plicate Aque	ous ICP/I	MS 03	04/15/17	04/20/17	17:12	170415SA6	
<u>Parameter</u>		Spike <u>MS</u> Added <u>Conc.</u>	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Chromium	ND 0.	0.1000 0.0945	4 95	0.09343	93	73-133	1	0-11	

Tetra Tech, Inc.

Date Received:

04/06/17

301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-0454

San Bernardino, CA 92408-3562

Preparation:

EPA 3510C

Method: EPA 8270C (M) Isotope Dilution

Project: LMC BOU Page 3 of 7

Quality Control Sample ID	Туре	Matrix	Instrumen	Date Prepared	Date Analyzed	MS/MSD Bat	ch Number
17-04-0319-3	Sample	Aqueou	s GC/MS D	OD 04/07/17	04/08/17 05:26	170407S15	
17-04-0319-3	Matrix Spike	Aqueou	s GC/MS D	OD 04/07/17	04/08/17 04:55	170407S15	
17-04-0319-3	Matrix Spike Dupli	licate Aqueou	s GC/MS D	OD 04/07/17	04/08/17 05:10	170407S15	
Parameter	Sample Spi Conc. Add	<u>ike MS</u> ded <u>Conc.</u>	MS MS %Rec. Co		%Rec. CL RPE	RPD CL	Qualifiers
1,4-Dioxane	ND 20.	.00 19.71	99 19.	76 99	50-130 0	0-20	

 Tetra Tech, Inc.
 Date Received:
 04/06/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0454

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

Project: LMC BOU Page 4 of 7

Quality Control Sample ID	Туре		Matrix	I	Instrument	Date Prepared	Date Ana	lyzed	MS/MSD Ba	tch Number
17-04-0581-8	Sample		Aqueou	s (GC/MS L	04/19/17	04/19/17	11:45	1704198008	;
17-04-0581-8	Matrix Spike		Aqueou	s (GC/MS L	04/19/17	04/19/17	12:15	1704198008	;
17-04-0581-8	Matrix Spike	Duplicate	Aqueou	s (GC/MS L	04/19/17	04/19/17	12:46	1704198008	;
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,1-Dichloroethene	ND	100.0	79.92	80	95.14	95	66-126	17	0-20	
1,2-Dibromoethane	ND	100.0	84.58	85	89.81	90	75-126	6	0-20	
1,2-Dichlorobenzene	ND	100.0	79.66	80	89.05	89	75-125	11	0-20	
1,2-Dichloroethane	53.86	100.0	132.6	79	143.3	89	75-127	8	0-20	
Benzene	970.6	100.0	949.1	0	1032	62	75-125	8	0-20	3
Carbon Tetrachloride	ND	100.0	70.48	70	86.95	87	69-135	21	0-20	4
Chlorobenzene	ND	100.0	77.18	77	87.37	87	75-125	12	0-20	
Ethylbenzene	61.25	100.0	136.4	75	153.1	92	75-125	12	0-20	
Toluene	ND	100.0	78.80	79	90.47	90	75-125	14	0-20	
Trichloroethene	ND	100.0	73.55	74	86.31	86	75-125	16	0-20	3
Vinyl Chloride	ND	100.0	112.3	112	120.4	120	52-142	7	0-20	
o-Xylene	15.96	100.0	93.21	77	105.1	89	75-127	12	0-20	
p/m-Xylene	76.40	200.0	226.1	75	254.3	89	75-125	12	0-20	
Methyl-t-Butyl Ether (MTBE)	ND	100.0	81.27	81	89.27	89	71-131	9	0-20	

Tetra Tech, Inc.

Date Received:

04/06/17

301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-0454

San Bernardino, CA 92408-3562

Preparation:

EPA 5030C

Method:

EPA 8260B

Project: LMC BOU Page 5 of 7

Quality Control Sample ID	Туре		Matrix	I	nstrument	Date Prepared	Date Ana	lyzed	MS/MSD Ba	tch Number
17-04-0468-1	Sample		Aqueou	ıs (GC/MS FFF	04/07/17	04/07/17	23:56	170407S023	
17-04-0468-1	Matrix Spike		Aqueou	ıs (GC/MS FFF	04/07/17	04/08/17	00:27	170407S023	
17-04-0468-1	Matrix Spike	Duplicate	Aqueou	ıs (GC/MS FFF	04/07/17	04/08/17	00:58	170407S023	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,1-Dichloroethene	ND	10.00	8.476	85	8.529	85	66-126	1	0-20	
1,2-Dibromoethane	ND	10.00	9.761	98	9.292	93	75-126	5	0-20	
1,2-Dichlorobenzene	ND	10.00	10.06	101	9.799	98	75-125	3	0-20	
1,2-Dichloroethane	ND	10.00	10.03	100	9.748	97	75-127	3	0-20	
Benzene	ND	10.00	9.367	94	9.086	91	75-125	3	0-20	
Carbon Tetrachloride	ND	10.00	10.21	102	9.770	98	69-135	4	0-20	
Chlorobenzene	ND	10.00	9.881	99	9.584	96	75-125	3	0-20	
Ethylbenzene	ND	10.00	9.885	99	9.482	95	75-125	4	0-20	
Toluene	ND	10.00	9.749	97	9.507	95	75-125	3	0-20	
Trichloroethene	ND	10.00	8.932	89	8.577	86	75-125	4	0-20	
Vinyl Chloride	ND	10.00	10.77	108	10.10	101	52-142	6	0-20	
o-Xylene	ND	10.00	10.43	104	9.801	98	75-127	6	0-20	
p/m-Xylene	ND	20.00	20.33	102	19.14	96	75-125	6	0-20	
Methyl-t-Butyl Ether (MTBE)	ND	10.00	9.196	92	9.150	92	71-131	0	0-20	

Tetra Tech, Inc.

Date Received:

04/06/17

301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-0454

Preparation:

EPA 5030C

Method:

EPA 8260B SIM

Project: LMC BOU	Page 6 of 7
------------------	-------------

Quality Control Sample ID	Туре		Matrix	Ins	trument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
B-1-CW30-N-17Q2	Sample		Aqueous	s GC	MS M	04/11/17	04/12/17	00:18	170411S039	
B-1-CW30-N-17Q2	Matrix Spike		Aqueous	s GC	MS M	04/11/17	04/12/17	00:47	170411S039	
B-1-CW30-N-17Q2	Matrix Spike	Duplicate	Aqueous	s GC	MS M	04/11/17	04/12/17	01:17	170411S039	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> <u>Added</u>	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,2,3-Trichloropropane	ND	0.02000	0.02140	107	0.02660	133	80-120	22	0-20	3,4

Date Received: 04/06/17 Tetra Tech, Inc. Work Order: 17-04-0454 301 E. Vanderbilt Way, Suite 450 Preparation: **EPA 5030C** San Bernardino, CA 92408-3562 Method: **EPA 8260B SIM** Project: LMC BOU Page 7 of 7

Quality Control Sample ID	Туре		Matrix	Ins	strument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	tch Number
B-1-CW33-N-17Q2	Sample		Aqueous	G G	C/MS M	04/18/17	04/18/17	14:09	170418S019	
B-1-CW33-N-17Q2	Matrix Spike		Aqueous	G G	C/MS M	04/18/17	04/18/17	16:08	170418S019	
B-1-CW33-N-17Q2	Matrix Spike I	Duplicate	Aqueous	G G	C/MS M	04/18/17	04/18/17	16:38	170418S019	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,2,3-Trichloropropane	0.8690	0.2000	0.8720	2	0.9300	30	80-120	6	0-20	3

Date Received: 04/06/17 Tetra Tech, Inc. Work Order: 17-04-0454 301 E. Vanderbilt Way, Suite 450 Preparation: EPA 3005A Filt. San Bernardino, CA 92408-3562 Method: EPA 6020

Project: LMC BOU Page 1 of 1

Quality Control Sample ID	Туре	N	/latrix	Instrument	Date Prepared	Date Analyzed	PDS/PDSD Batch Number
17-04-0984-2	Sample	Α	Aqueous	ICP/MS 03	04/15/17 00:00	04/20/17 17:20	170415SA6
17-04-0984-2	PDS	A	Aqueous	ICP/MS 03	04/15/17 00:00	04/20/17 17:15	170415SA6
<u>Parameter</u>		Sample Conc.	Spike Added	PDS Conc.	PDS %Re	ec. <u>%Rec. (</u>	<u>Qualifiers</u>
Chromium		ND	0.1000	0.09362	94	75-125	

Date Received: 04/06/17 Tetra Tech, Inc. Work Order: 17-04-0454 301 E. Vanderbilt Way, Suite 450 Preparation: N/A San Bernardino, CA 92408-3562 Method: EPA 218.6

Project: LMC BOU Page 1 of 7

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-14-567-232	LCS	Aqueous	IC 16	N/A	04/06/17 19:58	170406L01
<u>Parameter</u>		Spike Added	Conc. Recove	red LCS %Re	ec. %Rec	. CL Qualifiers
Chromium, Hexavalent		10.00	10.18	102	95-10	7

Tetra Tech, Inc.

Date Received:

04/06/17

301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-0454

San Bernardino, CA 92408-3562

Preparation:

Method:

EPA 3020A Total

Method:

EPA 6020

Project: LMC BOU Page 2 of 7

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
096-06-003-5532	LCS	Aqueous	ICP/MS 03	04/15/17	04/19/17 04:16	170415LA6
<u>Parameter</u>		Spike Added	Conc. Recovered	ed LCS %Re	ec. %Rec	. CL Qualifiers
Chromium		0.1000	0.1012	101	80-12	0

04/06/17

Quality Control - LCS

Date Received: Tetra Tech, Inc. Work Order: 17-04-0454 301 E. Vanderbilt Way, Suite 450 Preparation: **EPA 3510C** San Bernardino, CA 92408-3562

Method: EPA 8270C (M) Isotope Dilution

Page 3 of 7 Project: LMC BOU

Quality Control Sample ID	Туре	Matrix	Instrument I	Date Prepared	Date Analyzed	LCS Batch Number
099-16-216-1000	LCS	Aqueous	GC/MS DDD	04/07/17	04/08/17 04:39	170407L15
<u>Parameter</u>		Spike Added	Conc. Recovere	ed LCS %Re	ec. %Rec	. CL Qualifiers
1,4-Dioxane		20.00	19.48	97	50-130)

Quality Control - LCS/LCSD

Tetra Tech, Inc. 301 E. Vanderbilt Way, Suite 450 San Bernardino, CA 92408-3562 Date Received: Work Order: Preparation: Method: 04/06/17 17-04-0454 EPA 5030C

EPA 8260B

Page 4 of 7

Project: LMC BOU	Page 4
------------------	--------

Quality Control Sample ID	Type		Matrix		Instrument	Date Prepare	d Date A	nalyzed	LCS/LCSD Bat	tch Number
099-10-025-4626	LCS		Aqueous		GC/MS L	04/19/17	04/19/1	17 09:25	170419L010	
099-10-025-4626	LCSD		Aqueous		GC/MS L	04/19/17	04/19/1	17 09:55	170419L010	
Parameter	<u>Spike</u> <u>Added</u>	LCS Conc.	LCS %Rec.	LCSD Conc.		%Rec. CL	ME CL	RPD	RPD CL	Qualifiers
1,1-Dichloroethene	10.00	9.855	99	10.02	100	77-120	70-127	2	0-26	
1,2-Dibromoethane	10.00	9.639	96	9.885	99	80-120	73-127	3	0-32	
1,2-Dichlorobenzene	10.00	9.981	100	10.16	102	80-120	73-127	2	0-30	
1,2-Dichloroethane	10.00	9.628	96	9.787	98	80-122	73-129	2	0-23	
Benzene	10.00	9.915	99	9.937	99	80-120	73-127	0	0-22	
Carbon Tetrachloride	10.00	9.562	96	9.395	94	80-129	72-137	2	0-36	
Chlorobenzene	10.00	9.923	99	10.02	100	80-120	73-127	1	0-29	
Ethylbenzene	10.00	10.14	101	10.12	101	80-120	73-127	0	0-25	
Toluene	10.00	10.05	100	10.11	101	80-120	73-127	1	0-28	
Trichloroethene	10.00	9.845	98	9.780	98	80-120	73-127	1	0-25	
Vinyl Chloride	10.00	10.03	100	10.26	103	63-135	51-147	2	0-30	
o-Xylene	10.00	10.02	100	10.21	102	80-120	73-127	2	0-30	
p/m-Xylene	20.00	20.09	100	20.34	102	80-120	73-127	1	0-30	
Methyl-t-Butyl Ether (MTBE)	10.00	9.142	91	10.51	105	75-123	67-131	14	0-27	

Total number of LCS compounds: 14
Total number of ME compounds: 0

Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass

Tetra Tech, Inc. 301 E. Vanderbilt Way, Suite 450 San Bernardino, CA 92408-3562

Date Received: Work Order: Preparation: Method:

17-04-0454 **EPA 5030C**

EPA 8260B

04/06/17

Project: LMC BOU Page 5 of 7

Quality Control Sample ID	Туре	Matrix	x Ir	nstrument	Date Prepared	Date Analyzed	LCS Batch Nu	mber
099-10-025-4613	LCS	Aque	ous G	C/MS FFF	04/07/17	04/07/17 21:51	170407L043	
Parameter		Spike Added	Conc. Re	covered LC	S %Rec. %F	Rec. CL M	E CL	<u>Qualifiers</u>
1,1-Dichloroethene		10.00	9.373	94	77-	-120 70)-127	
1,2-Dibromoethane		10.00	9.494	95	80-	-120 73	3-127	
1,2-Dichlorobenzene		10.00	9.776	98	80-	-120 73	3-127	
1,2-Dichloroethane		10.00	10.06	101	80-	-122 73	3-129	
Benzene		10.00	9.453	95	80-	-120 73	3-127	
Carbon Tetrachloride		10.00	10.22	102	2 80-	-129 72	2-137	
Chlorobenzene		10.00	9.693	97	80-	-120 73	3-127	
Ethylbenzene		10.00	9.731	97	80-	-120 73	3-127	
Toluene		10.00	9.844	98	80-	-120 73	3-127	
Trichloroethene		10.00	9.216	92	80-	-120 73	3-127	
Vinyl Chloride		10.00	9.069	91	63-	-135 51	-147	
o-Xylene		10.00	10.10	101	80-	-120 73	3-127	
p/m-Xylene		20.00	20.01	100	80-	-120 73	3-127	
Methyl-t-Butyl Ether (MTBE)		10.00	9.058	91	75-	-123 67	'-131	

Total number of LCS compounds: 14 Total number of ME compounds: 0

Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass

RPD: Relative Percent Difference. CL: Control Limits

Date Received: 04/06/17 Tetra Tech, Inc. Work Order: 17-04-0454 301 E. Vanderbilt Way, Suite 450 Preparation: **EPA 5030C** San Bernardino, CA 92408-3562 Method: **EPA 8260B SIM**

Project: LMC BOU Page 6 of 7

Quality Control Sample ID	Type	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-15-118-481	LCS	Aqueous	GC/MS M	04/11/17	04/11/17 22:18	170411L078
<u>Parameter</u>		Spike Added	Conc. Recovered	ed LCS %R	ec. %Rec	. CL Qualifiers
1,2,3-Trichloropropane		0.02000	0.02050	102	80-120	0

 Tetra Tech, Inc.
 Date Received:
 04/06/17

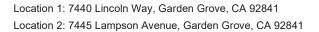
 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0454

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B SIM

Project: LMC BOU Page 7 of 7

Quality Control Sample ID	Type	Matrix	Instrument D	Date Prepared	Date Analyzed	LCS Batch Number
099-15-118-489	LCS	Aqueous	GC/MS M 0	04/18/17	04/18/17 10:33	170418L051
<u>Parameter</u>		Spike Added	Conc. Recovered	d LCS %Re	ec. %Rec	. CL Qualifiers
1,2,3-Trichloropropane		0.02000	0.02070	104	80-120)



Sample Analysis Summary Report

Work Order: 17-04-0454			Page 1 of 1	
Method	<u>Extraction</u>	Chemist ID	Instrument	Analytical Location
EPA 218.6	N/A	1065	IC 16	1
EPA 6020	EPA 3020A Total	598	ICP/MS 03	1
EPA 8260B	EPA 5030C	316	GC/MS L	2
EPA 8260B	EPA 5030C	823	GC/MS FFF	2
EPA 8260B SIM	EPA 5030C	486	GC/MS M	2
EPA 8260B SIM	EPA 5030C	867	GC/MS M	2
EPA 8270C (M) Isotope Dilution	EPA 3510C	928	GC/MS DDD	1

SG

Glossary of Terms and Qualifiers

Work Order: 17-04-0454 Page 1 of 1

Qualifiers	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
CI	See case narrative.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.

- Χ % Recovery and/or RPD out-of-range. Ζ
 - Analyte presence was not confirmed by second column or GC/MS analysis.

The sample extract was subjected to Silica Gel treatment prior to analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

2016-04-01-Revision

SAMPLE RECEIPT CHECKLIST

COOLER	<u></u>	FL.

CLIENT:	letra	Tedn			_
				•	

LIENT: ICITA ICA	ATE: U4	10	/ 201/			
TEMPERATURE: (Criteria: 0.0°C – 6.0°C, not frozen except sediment/tissue) Thermometer tD: SC (CF: 0.0°C); Temperature (wio CF): 2 C (w/ CF); 2 C; E Blank Sample Sample(s) outside temperature criteria (PM/APM contacted by:)						
☐ Sample(s) outside temperature criteria but received on ice/chilled on same day of sampling						
☐ Sample(s) received at ambient temperature; placed on ice for transport by courier Ambient Temperature: ☐ Air ☐ Fifter	Check	ed by: _	1091			
CUSTODY SEAL:			60.			
Cooler ☐ Present and Intact ☐ Present but Not Intact ☐ N/A	Check	ed by: /	09/			
Sample(s) Present and Intact Present but Not Intact Not Present N/A		ed by: _	1017			
SAMPLE CONDITION:	Yes	No	N/A			
Chain-of-Custody (COC) document(s) received with samples	Æ					
COC document(s) received complete	a					
☐ Sampling date ☐ Sampling time ☐ Matrix ☐ Number of containers						
☐ No analysis requested ☐ Not relinquished ☐ No relinquished date ☐ No relinquished the	ne					
Sampler's name indicated on COC	_					
Sample container label(s) consistent with COC	🗀	2				
Sample container(s) intact and in good condition	🖵					
Proper containers for analyses requested	-					
Sufficient volume/mass for analyses requested	₹-					
Samples received within holding time	B					
Aqueous samples for certain analyses received within 15-minute holding time						
□ pH □ Residual Chlorine □ Dissolved Sulfide □ Dissolved Oxygen	🗆		JET .			
Proper preservation chemical(s) noted on COC and/or sample container						
Unpreserved aqueous sample(s) received for cartain analyses						
☐ Volatile Organics ☐ Total Metals ☐ Dissolved Metals						
Container(s) for certain analysis free of headspace	بر					
☑ Volatile Organics ☐ Dissolved Gases (RSK-175) ☐ Dissolved Oxygen (SM 4500)	*					
☐ Carbon Dioxide (SM 4500) ☐ Ferrous fron (SM 3500) ☐ Hydrogen Sulfide (Hach)						
Tediar™ bag(s) free of condensation	🗆		Æ			
CONTAINER TYPE: 10 (Trip Blank Lot Num	_{iber:} [:	70326	A ,			
Aqueous: DVOA DVOAh DVOAna, D100PJ D100PJna, D125AGB D125AGBh D125						
□ 125PBznna □ 250AGB □ 250CGB □ 250CGBs □ 250PB □ 250PBn □ 500AGB □ 500AGJ □ 500AGJs						
□ 500PB □ 1AGB □ 1AGBna₂ □ 1AGBs □ 1PB □ 1PBna □ □ □						
Solid: 🗆 4ozCGJ 🗆 8ozCGJ 🗀 16ozCGJ 🗀 Sleeve () 🗀 EnCores® () 🗀 TerraCores						
Air: □ Tedler™ □ Canister □ Scrbent Tube □ PUF □ Other Matrix ():						
Container: A = Amber, B = Bottle, C = Clear, E = Envelope, G = Glass, J = Jer, P = Plastic, and Z = Ziploc/Resealable Bag						
Preservative: $b = buffered$, $f = filtered$, $h = HCl$, $n = HNO_3$, $na = NaOH$, $na_2 = Na_2S_2O_3$, $p = H_3PO_4$. Labeled/Checked by:						
s = H_2SO_4 , $u = uitra-pure$, $x = Na_2SO_3+NaHSO_4$, H_2O , znna = Zn (CH ₃ CO ₂) ₂ + NaOH Reviewed by: $IIII$						

SAMPLE ANOMALY REPORT

DATE: 04 / @ / 2017

PAMEL E	PONTAIN	EDO AN	DIABEL	<u></u>		Comme	ata.					
	3, CONTAIN	-				Comme	165					
	s) NOT RECE											
	s) received bu				b ! \$							
-				le ID and anal								
				alysis (list ana	alysis)							
	r container(s)	•										
	r preservative	-										
			r label (list	analysis and r	notify lab)							
_	container(s) n											
				type and ana	ilyeis)	 						
-	imple label(s)		tch COC (c	omment)								
-	ct information					141	A 100.	أمصارته	9 containers			
	t sample ID					(-0)(79) 100	eived	9 container			
	pling date and					11111	<u>aa 4-</u>	12:	b = // (m)			
j z i Num	ber of contain	er(s)				- 1 X -	150ml	'lastic	3 4 111			
□ Requ	ested analysi	9				- / X *	 	mper				
☐ Sample	container(a) c	ompromise	ed (commer	nt)		1 x 250ml Plastic Bottle W/ Hills						
☐ Broke	en					QX I	MAIS W	7.11				
□ Wate	r present in sa	ample com	tainer				•					
□ Air samp	de container(s) compron	nised (comm	nent)								
☐ Flat						-						
□ Very	low in volume	i .										
□ Leak	ing (not transf	erred; dup	licate bag s	ubmitted)								
□ Leak	emetenst) pni	d into ECI	Fedlar™ b	aga*)								
□ Leak	ing (transferre	d into clier	nt's Tedlar™	* bags*)								
* Transfer	red et client's requ	uest.										
MISCELL	ANEOUS: (0	Describe)				Commer	its					
				•								
HEADSPA	ACE:											
(Containers wi	th bubble > 8 mm	or ¼ inch for	volatile organi	c or dissolved gas	analyelis)	(Containers w	2n bubble for othe	r analysis)				
ÇÇI Sample ID	ECI Container (D	Total Number ^{an}	ECI Sempte 'D	ECS Container (D	Total	EC: Sample ID	EGI Container ID	Total Number**	Requested Azalysis			
\vdash		 										
\vdash					 	ļ						
												
		j			:				<u></u>			
Commente					· • • · · · · · · · · · · · · · · · · ·							
DOM: NOTED									Reported by: 10/7			
** Record the	total grapher of co	ntsiners /i e	viels or bottle	i) for the affected :	sampie.			F	Reported by: 10/7 Reviewed by: 17/1			
record the	rawa siranipal os cu	iraniata (na.	Andrew At Driving	i) in the mincrett:	and signed:							

Calscience

WORK ORDER NUMBER: 17-04-0322

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: Tetra Tech, Inc.

Client Project Name: LMC BOU

Attention: Robert Sabater

301 E. Vanderbilt Way, Suite 450 San Bernardino, CA 92408-3562

Vikas Patel

Approved for release on 04/24/2017 by:

Vikas Patel Project Manager

ResultLink >

Email your PM >

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name: LMC BOU
Work Order Number: 17-04-0322

1	Work Order Narrative	3
2	Detections Summary	4
3	Client Sample Data. 3.1 EPA 218.6 Hexavalent Chromium Low Level (Aqueous). 3.2 EPA 6020 ICP/MS Metals (Aqueous). 3.3 1,4-Dioxane by EPA 8270C (M) Isotope Dilution (Aqueous). 3.4 EPA 8260B Volatile Organics (Aqueous). 3.5 EPA 8260B SIM Emergent Volatiles (Aqueous).	7 7 9 11 14 53
4	Quality Control Sample Data. 4.1 MS/MSD. 4.2 PDS/PDSD. 4.3 LCS/LCSD.	56 56 62 63
5	Sample Analysis Summary	69
6	Glossary of Terms and Qualifiers	70
7	Chain-of-Custody/Sample Receipt Form	71

Work Order Narrative

Work Order: 17-04-0322 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 04/05/17. They were assigned to Work Order 17-04-0322.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Detections Summary

Client: Tetra Tech, Inc.

Work Order: 17-04-0322

301 E. Vanderbilt Way, Suite 450 San Bernardino, CA 92408-3562 Project Name: LMC BOU Received: 04/05/17

Attn: Robert Sabater Page 1 of 3

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
B-1-CW34-N-17Q2 (17-04-0322-1)						
Chromium, Hexavalent	16		0.40	ug/L	EPA 218.6	N/A
Chromium	0.0321		0.00100	mg/L	EPA 6020	EPA 3020A Total
1,1-Dichloroethene	0.50		0.50	ug/L	EPA 8260B	EPA 5030C
Chloroform	1.4		0.50	ug/L	EPA 8260B	EPA 5030C
Tetrachloroethene	13		0.50	ug/L	EPA 8260B	EPA 5030C
Trichloroethene	22		0.50	ug/L	EPA 8260B	EPA 5030C
c-1,2-Dichloroethene	7.8		0.50	ug/L	EPA 8260B	EPA 5030C
Methyl-t-Butyl Ether (MTBE)	0.23	J	0.20*	ug/L	EPA 8260B	EPA 5030C
3-1-CW34-FD-17Q2 (17-04-0322-2)						
Chromium, Hexavalent	17		0.40	ug/L	EPA 218.6	N/A
Chromium	0.0296		0.00100	mg/L	EPA 6020	EPA 3020A Total
1,1-Dichloroethene	0.47	J	0.28*	ug/L	EPA 8260B	EPA 5030C
Chloroform	1.4		0.50	ug/L	EPA 8260B	EPA 5030C
Tetrachloroethene	13		0.50	ug/L	EPA 8260B	EPA 5030C
Trichloroethene	21		0.50	ug/L	EPA 8260B	EPA 5030C
c-1,2-Dichloroethene	7.6		0.50	ug/L	EPA 8260B	EPA 5030C
Methyl-t-Butyl Ether (MTBE)	0.24	J	0.20*	ug/L	EPA 8260B	EPA 5030C
3-1-CW32-N-17Q2 (17-04-0322-3)						
Chromium, Hexavalent	8.8		0.040	ug/L	EPA 218.6	N/A
Chromium	0.0474		0.00100	mg/L	EPA 6020	EPA 3020A Total
Chloroform	5.6		2.0	ug/L	EPA 8260B	EPA 5030C
Tetrachloroethene	14		2.0	ug/L	EPA 8260B	EPA 5030C
Trichloroethene	110		2.0	ug/L	EPA 8260B	EPA 5030C
c-1,2-Dichloroethene	4.1		2.0	ug/L	EPA 8260B	EPA 5030C
1,2,3-Trichloropropane	0.011		0.0050	ug/L	EPA 8260B SIM	EPA 5030C
3870D-N-17Q2 (17-04-0322-4)						
Chromium, Hexavalent	17		0.040	ug/L	EPA 218.6	N/A
Chromium	0.0186		0.00100	mg/L	EPA 6020	EPA 3020A Total
3880-N-17Q2 (17-04-0322-5)						
Chromium, Hexavalent	6.7		0.020	ug/L	EPA 218.6	N/A
Chromium	0.00794		0.00100	mg/L	EPA 6020	EPA 3020A Total

^{*} MDL is shown

Detections Summary

Client: Tetra Tech, Inc.

Work Order: 17-04-0322

301 E. Vanderbilt Way, Suite 450 San Bernardino, CA 92408-3562 Project Name: LMC BOU Received: 04/05/17

Attn: Robert Sabater Page 2 of 3

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	Method	Extraction
3852L-N-17Q2 (17-04-0322-7)						
Chromium, Hexavalent	1.8		0.020	ug/L	EPA 218.6	N/A
Chromium	0.00448		0.00100	mg/L	EPA 6020	EPA 3020A Total
Acetone	4.5	J	4.0*	ug/L	EPA 8260B	EPA 5030C
Carbon Tetrachloride	0.28	J	0.20*	ug/L	EPA 8260B	EPA 5030C
Chloroform	0.46	J	0.20*	ug/L	EPA 8260B	EPA 5030C
Trichloroethene	1.3		0.50	ug/L	EPA 8260B	EPA 5030C
1,2,3-Trichloropropane	0.032		0.0050	ug/L	EPA 8260B SIM	EPA 5030C
3872Q-N-17Q2 (17-04-0322-8)						
Chromium, Hexavalent	0.68		0.020	ug/L	EPA 218.6	N/A
Chromium	0.00126		0.00100	mg/L	EPA 6020	EPA 3020A Total
Tetrachloroethene	83		2.0	ug/L	EPA 8260B	EPA 5030C
Trichloroethene	30		2.0	ug/L	EPA 8260B	EPA 5030C
1,2,3-Trichloropropane	0.045		0.0050	ug/L	EPA 8260B SIM	EPA 5030C
3872S-N-17Q2 (17-04-0322-9)						
Chromium, Hexavalent	7.9		0.020	ug/L	EPA 218.6	N/A
Chromium	0.00785		0.00100	mg/L	EPA 6020	EPA 3020A Total
B-1-CW11-N-17Q2 (17-04-0322-10)						
Chromium, Hexavalent	2.7		0.020	ug/L	EPA 218.6	N/A
Chromium	0.00319		0.00100	mg/L	EPA 6020	EPA 3020A Total
1,2-Dichloroethane	0.21	J	0.20*	ug/L	EPA 8260B	EPA 5030C
Chloroform	0.48	J	0.20*	ug/L	EPA 8260B	EPA 5030C
Dichlorodifluoromethane	2.6		1.0	ug/L	EPA 8260B	EPA 5030C
Tetrachloroethene	2.3		0.50	ug/L	EPA 8260B	EPA 5030C
Trichloroethene	0.78		0.50	ug/L	EPA 8260B	EPA 5030C
Trichlorofluoromethane	0.29	J	0.20*	ug/L	EPA 8260B	EPA 5030C
c-1,2-Dichloroethene	0.95		0.50	ug/L	EPA 8260B	EPA 5030C
1,4-Dioxane	1.0		1.0	ug/L	EPA 8270C (M) Isotope Dilution	EPA 3510C
3862D-N-17Q2 (17-04-0322-11)						
Chromium, Hexavalent	8.5		0.020	ug/L	EPA 218.6	N/A
Chromium	0.00901		0.00100	mg/L	EPA 6020	EPA 3020A Total
Carbon Tetrachloride	1.1		1.0	ug/L	EPA 8260B	EPA 5030C
Chloroform	0.89	J	0.40*	ug/L	EPA 8260B	EPA 5030C
Dichlorodifluoromethane	1.5	J	0.80*	ug/L	EPA 8260B	EPA 5030C
Tetrachloroethene	14		1.0	ug/L	EPA 8260B	EPA 5030C
Trichloroethene	89		5.0	ug/L	EPA 8260B	EPA 5030C
1,2,3-Trichloropropane	0.023		0.0050	ug/L	EPA 8260B SIM	EPA 5030C

^{*} MDL is shown

Detections Summary

Client: Tetra Tech, Inc.

301 E. Vanderbilt Way, Suite 450 San Bernardino, CA 92408-3562 Work Order: Project Name: 17-04-0322

Received:

LMC BOU 04/05/17

Attn: Robert Sabater

Page 3 of 3

Client SampleID

Analyte Result Qualifiers RL Units Method Extraction

Subcontracted analyses, if any, are not included in this summary.

Comment(s):

Chromium, Hexavalent

Parameter

Analytical Report

Date Received: 04/05/17 Tetra Tech, Inc. Work Order: 17-04-0322 301 E. Vanderbilt Way, Suite 450 Preparation: N/A San Bernardino, CA 92408-3562 Method: EPA 218.6 Units: ug/L Project: LMC BOU Page 1 of 2 Client Sample Number Lab Sample Date/Time Matrix Instrument Date Date/Time QC Batch ID Number Collected Prepared Analyzed B-1-CW34-N-17Q2 17-04-0322-1-I 04/05/17 04/05/17 Aqueous IC 16 N/A 170405L01 14:38 21:54 - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. Comment(s): <u>Parameter</u> MDL <u>DF</u> Result <u>RL</u> Chromium, Hexavalent 16 0.40 0.20 20.0 B-1-CW34-FD-17Q2 04/05/17 IC 16 N/A 04/05/17 17-04-0322-2-I Aqueous 170405L01 14:38 22:05 - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. Comment(s): Qualifiers Parameter Result RL MDL DF Chromium, Hexavalent 17 0.40 0.20 20.0 B-1-CW32-N-17Q2 17-04-0322-3-M 04/05/17 Aqueous IC 16 N/A 04/05/17 170405L01 - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. Comment(s): <u>Parameter</u> RL MDL <u>DF</u> Qualifiers Result 8.8 0.040 0.020 2.00 Chromium. Hexavalent 3870D-N-17Q2 17-04-0322-4-M 04/05/17 Aqueous IC 16 N/A 04/05/17 170405L01 22:28 11:28 - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. Comment(s): MDL DF Parameter Result <u>RL</u> Qualifiers Chromium, Hexavalent 17 0.040 0.020 2.00 04/05/17 22:39 04/05/17 3880-N-17Q2 17-04-0322-5-M Aqueous IC 16 N/A 170405L01 - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. Comment(s): <u>DF</u> Qualifiers <u>Parameter</u> Result <u>RL</u> **MDL** 0.020 0.0099 1.00 Chromium. Hexavalent 67 04/05/17 15:03 04/05/17 22:50 3852L-N-17Q2 17-04-0322-7-M IC 16 N/A 170405L01 **Aqueous**

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Result

1.8

- Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

0.020

<u>DF</u>

1.00

MDL 0.0099

170405L01

Analytical Report

Date Received: 04/05/17 Tetra Tech, Inc. Work Order: 17-04-0322 301 E. Vanderbilt Way, Suite 450 Preparation: N/A San Bernardino, CA 92408-3562 Method: EPA 218.6 Units: ug/L

Project: LMC BOU Page 2 of 2

Client Sample Number	Lab Sample Number			Matrix Instrument		Date/Time Analyzed	QC Batch ID
3872Q-N-17Q2	17-04-0322-8-M	04/05/17 13:26	Aqueous	IC 16	N/A	04/05/17 23:01	170405L01
Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.							"J" flag.
<u>Parameter</u>	Resu	<u>ılt</u> <u>F</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
Chromium, Hexavalent	0.68	(0.020	0.0099	1.00		

3872S-N-17Q2	17-	-04-0322-9-M	04/05/17 12:10	Aqueous	IC 16	N/A	04/05/17 23:13	170405L01
Comment(s):	- Results were evaluated to the	MDL (DL), conce	entrations >= t	to the MDL (DL)	but < RL (LOC	(), if found, are	qualified with a "	J" flag.
<u>Parameter</u>		Result		<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qı</u>	<u>ualifiers</u>
Chromium, Hexa	avalent	7.9		0.020	0.0099	1.00		

B-1-CW11-N-17Q2	17-04-0322-10-R	04/05/17 09:25	Aqueous	IC 16	N/A	04/05/17 23:24	170405L01
Comment(s): - Results were evaluated to	o the MDL (DL), conc	entrations >	= to the MDL (DI) but < RL (LC	Q), if found, are	qualified with	a "J" flag.
<u>Parameter</u>	Resul	<u>t</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
Chromium, Hexavalent	2.7		0.020	0.0099	1.00		
2962D N 47O2	17 04 0222 11 M	04/05/47	Aguaque	IC 16	NI/A	04/05/47	17040EL 01

3862D-N-17Q2	17-04-0322-11-M	04/05/17 16:25	Aqueous	IC 16	N/A	04/05/17 23:35	170405L01		
Comment(s):	omment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.								
Parameter	Resu	lt F	RL	MDL	DF	Qu	alifiers		

		_			
Chromium, Hexavalent	8.5	0.020	0.0099	1.00	

Method Blank	099-14-567	7-231 N/A	Aqueous	s IC 16	N/A	04/05/17 20:22	17040
Comment(s):	- Results were evaluated to the MDL (D	L), concentrati	ions >= to the MDL (I	DL) but < RL (LC	DQ), if found, ar	e qualified with	a "J" flag.
<u>Parameter</u>		Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
Chromium, He	xavalent	ND	0.020	0.0099	1.00)	

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Tetra Tech, Inc.

Date Received:

04/05/17

301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-0322

San Bernardino, CA 92408-3562

Preparation:

Method:

EPA 3020A Total

Method:

		Units:				mg/
					F	Page 1 of 2
Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
17-04-0322-1-G	04/05/17 14:38	Aqueous	ICP/MS 05	04/14/17	04/18/17 00:31	170414LA5
ed to the MDL (DL), con-	centrations >=	to the MDL (DL) but < RL (LOC	Q), if found, are	qualified with	n a "J" flag.
Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
0.032	21	0.00100	0.000402	1.00		
17-04-0322-2-G	04/05/17 14:38	Aqueous	ICP/MS 05	04/14/17	04/18/17 00:34	170414LA5
ed to the MDL (DL), con-	centrations >=	to the MDL (DI	_) but < RL (LOC	Q), if found, are	qualified with	n a "J" flag.
Resu	<u>ılt</u>	<u>RL</u>	MDL	<u>DF</u>		Qualifiers
0.029	96	0.00100	0.000402	1.00		
17-04-0322-3-G	04/05/17 12:52	Aqueous	ICP/MS 05	04/14/17	04/18/17 00:38	170414LA5
ed to the MDL (DL), con-	centrations >=	to the MDL (DI	_) but < RL (LOC	Q), if found, are	qualified with	n a "J" flag.
Resu	<u>ılt</u>	<u>RL</u>	MDL	<u>DF</u>		Qualifiers
0.04	74	0.00100	0.000402	1.00		
17-04-0322-4-G	04/05/17 11:28	Aqueous	ICP/MS 05	04/14/17	04/18/17 00:42	170414LA5
	Number 17-04-0322-1-G ed to the MDL (DL), condition Results 0.032 17-04-0322-2-G ed to the MDL (DL), condition Results 0.029 17-04-0322-3-G ed to the MDL (DL), condition Results 0.043	Number Collected 17-04-0322-1-G 04/05/17 14:38 ed to the MDL (DL), concentrations >= Result 0.0321 17-04-0322-2-G 04/05/17 14:38 ed to the MDL (DL), concentrations >= Result 0.0296 17-04-0322-3-G 04/05/17 12:52 ed to the MDL (DL), concentrations >= Result 0.0474 17-04-0322-4-G 04/05/17 17-04-0322-4-G 17-04-0322-4-G 17-04-03	Lab Sample Date/Time Matrix	Lab Sample Number Collected 17-04-0322-1-G 04/05/17 14:38 ed to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOC Result 0.00100 0.000402 17-04-0322-2-G 04/05/17 14:38 ed to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOC Result 0.00100 0.000402 17-04-0322-2-G 04/05/17 14:38 ed to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOC Result RL MDL 0.0296 0.00100 0.000402 17-04-0322-3-G 04/05/17 12:52 ed to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOC Result RL MDL 0.00100 0.000402 17-04-0322-3-G 04/05/17 Aqueous ICP/MS 05 17-04-0322-4-G 04/05/17 Aqueous ICP/MS 05	Lab Sample Date/Time Matrix Instrument Date Prepared	Lab Sample Date/Time Matrix Instrument Date Prepared Analyzed

Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

Parameter Result RL MDL DF Qualifiers

Chromium 0.0186 0.00100 0.000402 1.00

3880-N-17Q2	17-04-0322-5-G	04/05/17 09:50	Aqueous	ICP/MS 05	04/14/17	04/18/17 00:45	170414LA5
Comment(s):	- Results were evaluated to the MDL (DL), cond	centrations >= to	the MDL (DL)) but < RL (LOQ), if found, are q	ualified with a "	J" flag.
<u>Parameter</u>	Resu	<u>lt RL</u>	=	MDL	DF	Qı	<u>ualifiers</u>

Chromium 0.00794 0.00100 0.000402 1.00

3852L-N-17Q2	17-04-0322-7-G	04/05/17 15:03	Aqueous	ICP/MS 05	04/14/17	04/18/17 00:49	170414LA5
Comment(s):	- Results were evaluated to the MDL (DL), cor	centrations >=	to the MDL (DL	.) but < RL (LOC	Q), if found, are q	ualified with a ".	J" flag.
<u>Parameter</u>	Res	<u>ult</u>	<u>RL</u>	MDL	<u>DF</u>	Qu	<u>alifiers</u>

Chromium 0.00448 0.00100 0.000402 1.00

170414LA5

Qualifiers

B-1-CW11-N-17Q2

Analytical Report

Tetra Tech, Inc.Date Received:04/05/17301 E. Vanderbilt Way, Suite 450Work Order:17-04-0322San Bernardino, CA 92408-3562Preparation:EPA 3020A Total

Method: EPA 6020 Units: mg/L

04/14/17

04/18/17

Project: LMC BOU Page 2 of 2

Client Sample N	Client Sample Number		Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
3872Q-N-17Q2		17-04-0322-8-G	04/05/17 13:26	Aqueous	ICP/MS 05	04/14/17	04/18/17 00:53	170414LA5
Comment(s):	- Results were evaluated t	o the MDL (DL), cond	centrations >= t	o the MDL (DI	L) but < RL (LO	Q), if found, are	e qualified with a	"J" flag.
Parameter		Resu	ılt	RI	MDI	DF	C)ualifiers

 Parameter
 Result
 RL
 MDL
 DF
 Qualifiers

 Chromium
 0.00126
 0.00100
 0.000402
 1.00

3872S-N-17Q2	17-04-0322-9-G	04/05/17 12:10	Aqueous	ICP/MS 05	04/14/17	04/18/17 00:56	170414LA5
Comment(s):	- Results were evaluated to the MDL (DL), con	centrations >= to	the MDL (DL)	but < RL (LOQ)	, if found, are q	ualified with a "	J" flag.
<u>Parameter</u>	Resi	<u>ult</u> <u>F</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Q</u> ı	<u>ualifiers</u>
Chromium	0.00	785 (0.00100	0.000402	1.00		

Aqueous ICP/MS 05

		09:25	•			00:27	
Comment(s):	- Results were evaluated to the MDL (DL), cor	centrations >:	to the MDL (DI	L) but < RL (LOC)), if found, are	qualified with	a "J" flag.
<u>Parameter</u>	Res	<u>ult</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
Chromium	0.00	319	0.00100	0.000402	1.00		
3862D-N-17Q2	17-04-0322-11-G	04/05/17 16:25	Aqueous	ICP/MS 05	04/14/17	04/18/17 01:52	170414LA5

04/05/17

Comment(s):	- Results were evaluated to the MDL (DL	.), concentrations >	= to the MDL (DL) b	out < RL (LOQ), if for	und, are qualified wit	th a "J" flag.
<u>Parameter</u>		Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Chromium		0.00901	0.00100	0.000402	1.00	

Method Blank		096-06-003-5529	N/A	Aqueous	ICP/MS 05	04/14/17	04/17/17 23:43	170414LA5
Comment(s):	- Results were evaluated to t	he MDL (DL), conce	entrations >= to	the MDL (DL) but < RL (LOQ), if found, are o	ualified with a "J	" flag.

 Parameter
 Result
 RL
 MDL
 DF

 Chromium
 ND
 0.00100
 0.00402
 1.00

17-04-0322-10-G

Tetra Tech, Inc.

Date Received: 04/05/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0322

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 3510C

Method: EPA 8270C (M) Isotope Dilution

Units: ug/L

Project: LMC BOU Page 1 of 3

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-1-CW34-N-17Q2	17-04-0322-1-H	04/05/17 14:38	Aqueous	GC/MS DDD	04/06/17	04/07/17 00:57	170406L13
Comment(s): - Results were evaluated	d to the MDL (DL), con	centrations >= t	to the MDL (DL	.) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
1,4-Dioxane	ND		1.0	0.28	1.00		
Surrogate	Rec.	(%)	Control Limits	Qualifiers			
Nitrobenzene-d5	90	:	56-123				
1,4-Dioxane-d8(IDS-IS)	39	:	30-120				

B-1-CW34-FD-1	7Q2	17-04-0322-2-H	04/05/17 14:38	Aqueous	GC/MS DDD	04/06/17	04/07/17 01:13	170406L13
Comment(s):	- Results were evaluated to	the MDL (DL), cond	entrations >=	to the MDL (DL) but < RL (LOC)), if found, are	qualified with a	"J" flag.
<u>Parameter</u>		Resul	<u>It</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
1,4-Dioxane		ND		1.0	0.28	1.00		
		_						
<u>Surrogate</u>		Rec.	<u>(%)</u>	Control Limits	<u>Qualifiers</u>			
Nitrobenzene-d5	5	96		56-123				
1,4-Dioxane-d8(IDS-IS)	41		30-120				

B-1-CW32-N-17	Q2	17-04-0322-3-H	04/05/17 12:52	Aqueous	GC/MS DDD	04/06/17	04/07/17 01:29	170406L13
Comment(s):	- Results were evaluated to	the MDL (DL), conc	entrations >=	to the MDL (DL	.) but < RL (LOC	(), if found, are	qualified with	a "J" flag.
<u>Parameter</u>		Resul	<u>t</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
1,4-Dioxane		ND		1.0	0.28	1.00		
<u>Surrogate</u>		Rec. (<u>(%)</u>	Control Limits	<u>Qualifiers</u>			
Nitrobenzene-d5	5	89		56-123				
1,4-Dioxane-d8(IDS-IS)	41		30-120				

3870D-N-17Q2		04/05/17 A 11:28	Aqueous GC/MS	DDD 04/06/17	04/07/17 17040 01:45	06L13
Comment(s): - Results were evaluated t	o the MDL (DL), conce	ntrations >= to the	e MDL (DL) but < R	L (LOQ), if found, ar	e qualified with a "J" flag.	
<u>Parameter</u>	Result	<u>RL</u>	<u>MDI</u>	<u>DF</u>	Qualifiers	
1,4-Dioxane	ND	1.0	0.28	1.00)	
Surrogate	Rec. (%	<u>Con</u>	trol Limits Qua	llifiers		
Nitrobenzene-d5	87	56-1	23			
1,4-Dioxane-d8(IDS-IS)	39	30-1	20			

Tetra Tech, Inc. Date Received: 04/05/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0322

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 3510C

Method: EPA 8270C (M) Isotope Dilution

Units: ug/L

Project: LMC BOU Page 2 of 3

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
3880-N-17Q2	17-04-0322-5-H	04/05/17 09:50	Aqueous	GC/MS DDD	04/06/17	04/07/17 02:00	170406L13
Comment(s): - Results were evalu	uated to the MDL (DL), con	centrations >= t	o the MDL (DL) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>ılt</u> <u>!</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	Qualifiers
1,4-Dioxane	ND		1.0	0.28	1.00		
Surrogate	Rec.	(%)	Control Limits	Qualifiers			
Nitrobenzene-d5	90		56-123				
1,4-Dioxane-d8(IDS-IS)	38	;	30-120				

3852L-N-17Q2		17-04-0322-7-H	04/05/17 15:03	Aqueous	GC/MS DDD	04/06/17	04/07/17 02:16	170406L13
Comment(s):	- Results were evaluated to	the MDL (DL), conc	entrations >=	to the MDL (DL	.) but < RL (LOC	(), if found, are	qualified with a	"J" flag.
<u>Parameter</u>		Resul	<u>t</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>(</u>	<u>Qualifiers</u>
1,4-Dioxane		ND		1.0	0.28	1.00		
<u>Surrogate</u>		Rec.	<u>(%)</u>	Control Limits	<u>Qualifiers</u>			
Nitrobenzene-d5	j	85		56-123				
1,4-Dioxane-d8(IDS-IS)	38		30-120				

3872Q-N-17Q2		17-04-0322-8-H	04/05/17 13:26	Aqueous	GC/MS DDD	04/06/17	04/07/17 02:32	170406L13
Comment(s):	- Results were evaluated to	the MDL (DL), cond	entrations >	= to the MDL (DL	.) but < RL (LOC	Q), if found, are	qualified with a	a "J" flag.
<u>Parameter</u>		Resul	<u> t</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	9	<u>Qualifiers</u>
1,4-Dioxane		ND		1.0	0.28	1.00		
<u>Surrogate</u>		Rec.	(%)	Control Limits	Qualifiers			
Nitrobenzene-d5	;	83		56-123				
1,4-Dioxane-d8(I	IDS-IS)	38		30-120				

3872S-N-17Q2		04/05/17 12:10	Aqueous G	C/MS DDD	04/06/17	04/07/17 02:48	170406L13
Comment(s): - Results were evaluated	to the MDL (DL), concer	ntrations >= to th	ne MDL (DL) b	out < RL (LOQ)	, if found, are q	ualified with a "	'J" flag.
<u>Parameter</u>	<u>Result</u>	<u>RL</u>		<u>MDL</u>	<u>DF</u>	Qı	<u>ualifiers</u>
1,4-Dioxane	ND	1.0		0.28	1.00		
<u>Surrogate</u>	Rec. (%	<u>6)</u> <u>Cor</u>	ntrol Limits	Qualifiers			
Nitrobenzene-d5	102	56-	123				
1,4-Dioxane-d8(IDS-IS)	39	30-	120				

Tetra Tech, Inc.

Date Received: 04/05/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0322

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 3510C

Method: EPA 8270C (M) Isotope Dilution

Units: ug/L

Project: LMC BOU Page 3 of 3

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-1-CW11-N-17Q2	17-04-0322-10-H	04/05/17 09:25	Aqueous	GC/MS DDD	04/06/17	04/07/17 03:04	170406L13
Comment(s): - Results were evaluated	to the MDL (DL), cond	centrations >= 1	to the MDL (DL	_) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
1,4-Dioxane	1.0		1.0	0.28	1.00		
Surrogate	Rec.	(%)	Control Limits	Qualifiers			
Nitrobenzene-d5	87		56-123				
1,4-Dioxane-d8(IDS-IS)	38		30-120				

3862D-N-17Q2	17-04-0322-11-H	04/05/17 16:25	Aqueous	GC/MS DDD	04/06/17	04/07/17 03:20	170406L13
Comment(s): - Results were	evaluated to the MDL (DL), conce	entrations >= to	the MDL (DL) but < RL (LOQ), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Result	<u>t</u> RI	<u>L</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
1,4-Dioxane	ND	1.	0	0.28	1.00		
<u>Surrogate</u>	<u>Rec. (</u>	<u>%)</u> <u>Co</u>	ontrol Limits	<u>Qualifiers</u>			
Nitrobenzene-d5	92	56	5-123				
1,4-Dioxane-d8(IDS-IS)	38	30	0-120				

Method Blank	099-16-21	6-998	N/A	Aqueous	GC/MS DDD	04/06/17	04/06/17 23:54	170406L13
Comment(s):	- Results were evaluated to the MDL (D	L), conc	entrations >=	to the MDL (DL) but < RL (LOC)), if found, are	qualified with a	a "J" flag.
<u>Parameter</u>		Resul	<u>t</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	9	<u>Qualifiers</u>
1,4-Dioxane		ND		1.0	0.28	1.00		
<u>Surrogate</u>		<u>Rec. (</u>	<u>(%)</u>	Control Limits	<u>Qualifiers</u>			
Nitrobenzene-d5	5	105		56-123				
1,4-Dioxane-d8(IDS-IS)	44		30-120				

04/05/17

17-04-0322

EPA 5030C

Analytical Report

Tetra Tech, Inc.

301 E. Vanderbilt Way, Suite 450

San Bernardino, CA 92408-3562

Date Received:

Work Order:

Preparation:

Method: EPA 8260B

Units: ug/L

Project: LMC BOU Page 1 of 39

Parameter Par	Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Parameter Result BL MDL DF Qualifiers 1,1,1,2-Tertachloroethane ND 0.50 0.20 1,00 1.10 1,1,1,2-Trichloroethane ND 0.50 0.20 1,00 1.10 1,1,2-Trichloroethane ND 0.50 0.24 1,00 1.10 1,1,2-Trichloroethane ND 0.50 0.20 1,00 1.10 1,1-Dichloroethane ND 0.50 0.20 1,00 1.20 1,2,3-Trichlorobenzene ND 0.50 0.20 1,00 1.20 1,2,2-Trichlorobenzene ND 0.50 0.20 1,00 1.20 1,2-Dichlorobenzene ND 0.50 0.20 1,00 1.20 1,2-Dichlorobenzene ND <th>B-1-CW34-N-17Q2</th> <th>17-04-0322-1-B</th> <th></th> <th>Aqueous</th> <th>GC/MS L</th> <th>04/17/17</th> <th></th> <th>170417L025</th>	B-1-CW34-N-17Q2	17-04-0322-1-B		Aqueous	GC/MS L	04/17/17		170417L025
1,1,1,2-Tetrachloroethane ND 0.50 0.20 1.00 1,1,1-Trichioroethane ND 0.50 0.20 1.00 1,1,2-Trichioroethane ND 0.50 0.20 1.00 1,1,2-Trichioroethane ND 0.50 0.24 1.00 1,1-Dichioroethane ND 0.50 0.20 1.00 1,1-Dichioroethane 0.50 0.50 0.20 1.00 1,1-Dichioroethane ND 0.50 0.20 1.00 1,1-Dichioroethane ND 0.50 0.20 1.00 1,1-Dichioroethane ND 0.50 0.20 1.00 1,2,3-Trichiorobenzene ND 0.50 0.20 1.00 1,2,3-Trichioropopane ND 0.50 0.20 1.00 1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2-Dichioroepapane ND 0.50 0.20 1.00 1,2-Dichioroepapane ND 0.50 0.20 1.00 1,2-Dichioroepapane ND 0.50 0.20 1.00 1,3-5-Trimethylben	Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.							
1,1,1-Trichloroethane ND 0.50 0.20 1.00 1,1,2,2-Terkachloroethane ND 0.50 0.20 1.00 1,1,2-Trichloro-1,2,2-Trifluorethane ND 0.50 0.24 1.00 1,1,2-Trichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethane ND 0.50 0.28 1.00 1,1-Dichloropropene ND 0.50 0.30 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trichloropropane ND 0.50 0.20 1.00 1,2,4-Trichlorobrazene ND 0.50 0.20 1.00 1,2-Libromo-3-Chloropropane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00	<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
1,1,2,2-Tetrachloroethane ND 0.50 0.20 1.00 1,1,2-Trichloro-1,2,2-Trifluoroethane ND 0.50 0.24 1.00 1,1,2-Trichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethane ND 0.50 0.20 1.00 1,1-Dichloropropene ND 0.50 0.28 1.00 1,1-Dichloropropene ND 0.50 0.30 1.00 1,1-Dichloropropane ND 0.50 0.20 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2-Dichrosebrane ND 0.50 0.20 1.00 1,2-Dichloroethane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.28 1.00 1,3-	1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane ND 0.50 0.24 1.00 1,1,2-Trichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethene 0.50 0.50 0.28 1.00 1,1-Dichloropropene ND 0.50 0.28 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,3-Trichlorobenzene ND 1.0 0.40 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2,2-Dirhoro-3-Chloropropane ND 0.50 0.20 1.00 1,2-Dirhoro-3-Chloropropane ND 0.50 0.20 1.00 1,2-Dirhoro-3-Chloropropane ND 0.50 0.20 1.00 1,2-Dirhorobenzene ND 0.50 0.20 1.00 1,2-Dirhorobropane ND 0.50 0.28 1.00	1,1,1-Trichloroethane	ND		0.50	0.20	1.00		
1,1,2-Trichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethane 0.50 0.50 0.28 1.00 1,1-Dichloropropene ND 0.50 0.30 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,3-Trichloropropane ND 0.50 0.20 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.20 1.00 1,4-Dichloropropane ND 0.50 0.20 1.00 1,4-Dichlorop	1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethene 0.50 0.50 0.28 1.00 1,1-Dichloroepropene ND 0.50 0.20 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,2-Trichlorobenzene ND 0.50 0.20 1.00 1,2-Dichromes-3-Chloropropane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,4-Dichlorobenzene ND 0.50 0.28 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2-Butanone </td <td>1,1,2-Trichloro-1,2,2-Trifluoroethane</td> <td>ND</td> <td></td> <td>0.50</td> <td>0.24</td> <td>1.00</td> <td></td> <td></td>	1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		0.50	0.24	1.00		
1,1-Dichloroethene 0.50 0.50 0.28 1.00 1,1-Dichloropropene ND 0.50 0.30 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,3-Trichlorobenzene ND 1.0 0.40 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dic	1,1,2-Trichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloropropene ND 0.50 0.30 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,3-Trichloropropane ND 1.0 0.40 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trinethylbenzene ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 0.50 0.20 1.00 1,2-Dibromoethane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloroptopane ND 0.50 0.20 1.00 1,2-Dichloroptopane ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.20 1.00 1,3-Dichloroptopane ND 0.50 0.28 1.00 1,4-Dichloroptopane ND 0.50 0.20 1.00 2,2-Dichloroptopane ND 0.50 0.20 1.00 2,2-Dichloroptopane ND 0.50 0.20 1.00 2-Hexanone	1,1-Dichloroethane	ND		0.50	0.20	1.00		
1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,3-Trichloropropane ND 1.0 0.40 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 2.0 1.00 1,2-Dibromoethane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.28 1.00 1,3-Dichloropropane ND 0.50 0.20 1.00 1,4-Dichloropropane ND 0.50 0.20 1.00 2,2-Dichloropropane ND 0.50 0.20 1.00 2-Dichloropropane <td>1,1-Dichloroethene</td> <td>0.50</td> <td></td> <td>0.50</td> <td>0.28</td> <td>1.00</td> <td></td> <td></td>	1,1-Dichloroethene	0.50		0.50	0.28	1.00		
1,2,3-Trichloropropane ND 1.0 0.40 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2-Dibriomo-3-Chloropropane ND 0.50 0.20 1.00 1,2-Dibriomoethane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloropenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-Frimethylbenzene ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 0.50 0.20 1.00 2-Hexanone N	1,1-Dichloropropene	ND		0.50	0.30	1.00		
1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 2.0 1.00 1,2-Dibromoethane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.20 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 1,4-Dichloropropane ND 0.50 0.20 1.00 1,4-Dichloropropane ND 0.50 0.20 1.00 2,2-Dichloropropane ND 0.50 0.20 1.00 2-Butanone ND 0.50 0.20 1.00 2-Hexanone ND	1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 2.0 1.00 1,2-Dibromoethane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-5-Trimethylbenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2,2-Dichloropropane ND 5.0 0.20 1.00 2,2-Dichloropropane ND 5.0 0.20 1.00 2-Butanone ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.20 1.00 4-Methyl-2-Pentanone ND	1,2,3-Trichloropropane	ND		1.0	0.40	1.00		
1,2-Dibromo-3-Chloropropane ND 5.0 2.0 1.00 1,2-Dibromoethane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloroptopane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-5-Trimethylbenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.20 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichloroptopane ND 0.50 0.20 1.00 2,2-Dichloropropane ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 0.20 1.00 2-Butanone ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.20 1.00 4-Methyl-2-Pentanone ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 0.5	1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2-Dibromoethane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloroethane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-5-Trimethylbenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 1.0 0.40 1.00 2-Butanone ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.20 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 4-Wethyl-2-Pentanone ND 0.50 <	1,2,4-Trimethylbenzene	ND		0.50	0.20	1.00		
1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloroethane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-Frimethylbenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 0.20 1.00 Acetone ND 5.0 0.20 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromobenzene ND 0.50 0.20 1.00 <td>1,2-Dibromo-3-Chloropropane</td> <td>ND</td> <td></td> <td>5.0</td> <td>2.0</td> <td>1.00</td> <td></td> <td></td>	1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00		
1,2-Dichloroethane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3,5-Trimethylbenzene ND 0.50 0.28 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 5.0 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 0.50 0.20 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromobenzene ND 0.50 0.20 1.00	1,2-Dibromoethane	ND		0.50	0.20	1.00		
1,2-Dichloropropane ND 0.50 0.20 1.00 1,3,5-Trimethylbenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Hexanone ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.20 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 0.50 0.20 1.00 Bromodichloromethane ND 0.50 0.20 1.00	1,2-Dichlorobenzene	ND		0.50	0.20	1.00		
1,3,5-Trimethylbenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Hexanone ND 0.50 0.20 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Benzene ND 0.50 0.20 1.00 Bromochloromethane ND 0.50 0.32 1.00 Bromochloromethane ND 0.50 0.32 1.00 Bromoform ND 0.50 0.20 1.00	1,2-Dichloroethane	ND		0.50	0.20	1.00		
1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.20 1.00	1,2-Dichloropropane	ND		0.50	0.20	1.00		
1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.36 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 0.50 0.32 1.00 Bromoform ND 0.50 0.20 1.00	1,3,5-Trimethylbenzene	ND		0.50	0.20	1.00		
1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.20 1.00	1,3-Dichlorobenzene	ND		0.50	0.28	1.00		
2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 0.50 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.20 1.00	1,3-Dichloropropane	ND		1.0	0.40	1.00		
2-Butanone	1,4-Dichlorobenzene	ND		0.50	0.20	1.00		
2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.20 1.00	2,2-Dichloropropane	ND		1.0	0.40	1.00		
2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	2-Butanone	ND		5.0	2.0	1.00		
4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	2-Chlorotoluene	ND		0.50	0.20	1.00		
4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	2-Hexanone	ND		10	4.0	1.00		
Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	4-Chlorotoluene	ND		0.50	0.36	1.00		
Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	4-Methyl-2-Pentanone	ND		5.0	2.0	1.00		
Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	Acetone	ND		10	4.0	1.00		
Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	Benzene	ND		0.50	0.20	1.00		
Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	Bromobenzene	ND		0.50	0.32	1.00		
Bromoform ND 0.50 0.25 1.00	Bromochloromethane	ND		1.0	0.40	1.00		
	Bromodichloromethane			0.50	0.20			
	Bromoform	ND		0.50	0.25	1.00		
	Bromomethane			1.0				

 Tetra Tech, Inc.
 Date Received:
 04/05/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0322

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 2 of 39

110,000. 2.1110 200					. ago 2 o. oo
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Carbon Disulfide	ND	1.0	0.40	1.00	
Carbon Tetrachloride	ND	0.50	0.20	1.00	
Chlorobenzene	ND	0.50	0.20	1.00	
Chloroethane	ND	0.50	0.32	1.00	
Chloroform	1.4	0.50	0.20	1.00	
Chloromethane	ND	0.50	0.29	1.00	
Dibromochloromethane	ND	0.50	0.20	1.00	
Dibromomethane	ND	0.50	0.20	1.00	
Dichlorodifluoromethane	ND	1.0	0.40	1.00	
Ethylbenzene	ND	0.50	0.20	1.00	
Isopropylbenzene	ND	0.50	0.20	1.00	
Methylene Chloride	ND	1.0	0.80	1.00	
Naphthalene	ND	1.0	0.40	1.00	
Styrene	ND	0.50	0.20	1.00	
Tetrachloroethene	13	0.50	0.20	1.00	
Toluene	ND	0.50	0.20	1.00	
t-1,2-Dichloroethene	ND	0.50	0.20	1.00	
Trichloroethene	22	0.50	0.29	1.00	
Trichlorofluoromethane	ND	0.50	0.20	1.00	
Vinyl Acetate	ND	5.0	2.0	1.00	
Vinyl Chloride	ND	0.50	0.20	1.00	
c-1,3-Dichloropropene	ND	0.50	0.20	1.00	
c-1,2-Dichloroethene	7.8	0.50	0.20	1.00	
n-Butylbenzene	ND	0.50	0.20	1.00	
n-Propylbenzene	ND	0.50	0.20	1.00	
o-Xylene	ND	0.50	0.32	1.00	
p-Isopropyltoluene	ND	0.50	0.20	1.00	
sec-Butylbenzene	ND	0.50	0.20	1.00	
t-1,3-Dichloropropene	ND	0.50	0.20	1.00	
tert-Butylbenzene	ND	0.50	0.20	1.00	
p/m-Xylene	ND	0.50	0.20	1.00	
Methyl-t-Butyl Ether (MTBE)	0.23	0.50	0.20	1.00	J
2-Chloroethyl Vinyl Ether	ND	5.0	4.2	1.00	
Hexachloro-1,3-Butadiene	ND	2.0	0.80	1.00	
Iodomethane	ND	10	5.0	1.00	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	84	68-120			
Dibromofluoromethane	113	80-127			

Tetra Tech, Inc.	Date Received:	04/05/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0322
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOU		Page 3 of 39

<u>Surrogate</u>	Rec. (%)	Control Limits	<u>Qualifiers</u>
1,2-Dichloroethane-d4	118	80-128	
Toluene-d8	101	80-120	

 Tetra Tech, Inc.
 Date Received:
 04/05/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0322

San Bernardino, CA 92408-3562 Preparation: EPA 5030C

Method: EPA 8260B Units: ug/L

Project: LMC BOU Page 4 of 39

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-1-CW34-FD-17Q2	17-04-0322-2-B	04/05/17 14:38	Aqueous	GC/MS L	04/17/17	04/18/17 01:26	170417L025
Comment(s): - Results were evaluated to	the MDL (DL), cond	centrations >=	to the MDL (D	L) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>(ualifiers</u>
1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,1-Trichloroethane	ND		0.50	0.20	1.00		
1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		0.50	0.24	1.00		
1,1,2-Trichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethene	0.47		0.50	0.28	1.00	J	
1,1-Dichloropropene	ND		0.50	0.30	1.00		
1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,3-Trichloropropane	ND		1.0	0.40	1.00		
1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,4-Trimethylbenzene	ND		0.50	0.20	1.00		
1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00		
1,2-Dibromoethane	ND		0.50	0.20	1.00		
1,2-Dichlorobenzene	ND		0.50	0.20	1.00		
1,2-Dichloroethane	ND		0.50	0.20	1.00		
1,2-Dichloropropane	ND		0.50	0.20	1.00		
1,3,5-Trimethylbenzene	ND		0.50	0.20	1.00		
1,3-Dichlorobenzene	ND		0.50	0.28	1.00		
1,3-Dichloropropane	ND		1.0	0.40	1.00		
1,4-Dichlorobenzene	ND		0.50	0.20	1.00		
2,2-Dichloropropane	ND		1.0	0.40	1.00		
2-Butanone	ND		5.0	2.0	1.00		
2-Chlorotoluene	ND		0.50	0.20	1.00		
2-Hexanone	ND		10	4.0	1.00		
4-Chlorotoluene	ND		0.50	0.36	1.00		
4-Methyl-2-Pentanone	ND		5.0	2.0	1.00		
Acetone	ND		10	4.0	1.00		
Benzene	ND		0.50	0.20	1.00		
Bromobenzene	ND		0.50	0.32	1.00		
Bromochloromethane	ND		1.0	0.40	1.00		
Bromodichloromethane	ND		0.50	0.20	1.00		
Bromoform	ND		0.50	0.25	1.00		
Bromomethane	ND		1.0	0.40	1.00		

 Tetra Tech, Inc.
 Date Received:
 04/05/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0322

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 5 of 39

				1 age e er ee
Result	<u>RL</u>	<u>MDL</u>	DF	<u>Qualifiers</u>
ND	1.0	0.40	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.32	1.00	
1.4	0.50	0.20	1.00	
ND	0.50	0.29	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	1.0	0.40	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	1.0	0.80	1.00	
ND	1.0	0.40	1.00	
ND	0.50	0.20	1.00	
13	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
21	0.50	0.29	1.00	
ND	0.50	0.20	1.00	
ND	5.0	2.0	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
7.6	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.32	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
0.24	0.50	0.20	1.00	J
ND	5.0	4.2	1.00	
ND	2.0	0.80	1.00	
ND	10	5.0	1.00	
Rec. (%)	Control Limits	<u>Qualifiers</u>		
87	68-120			
110	80-127			
	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND 1.0 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 1.0 ND 0.50 ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 0.50 <td>ND 1.0 0.40 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.29 ND 0.50 0.29 ND 0.50 0.20 ND 0.50 0.20 ND 1.0 0.40 ND 0.50 0.20 ND 1.0 0.40 ND 0.50 0.20 ND 1.0 0.40 ND 0.50 0.20 ND 1.0 0.40 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND</td> <td>ND 1.0 0.50 0.20 1.00 ND 0.50</td>	ND 1.0 0.40 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.29 ND 0.50 0.29 ND 0.50 0.20 ND 0.50 0.20 ND 1.0 0.40 ND 0.50 0.20 ND 1.0 0.40 ND 0.50 0.20 ND 1.0 0.40 ND 0.50 0.20 ND 1.0 0.40 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND	ND 1.0 0.50 0.20 1.00 ND 0.50

Tetra Tech, Inc.	Date Received:	04/05/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0322
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOU		Page 6 of 39

SurrogateRec. (%)Control LimitsQualifiers1,2-Dichloroethane-d411080-128Toluene-d89880-120

Tetra Tech, Inc. 301 E. Vanderbilt Way, Suite 450 San Bernardino, CA 92408-3562 Date Received:
Work Order:
Preparation:
Method:

Units:

EPA 5030C EPA 8260B ug/L

04/05/17

17-04-0322

Project: LMC BOU

Page 7 of 39

B-1-CW32-N-17Q2 17-04-0322-3-B 04/05/17 12:52 Aqueous GC/MS L 04/17/17 01:57 17(01:57) 17(01:57	
Parameter Result RL MDL DF Qualified 1,1,1,2-Tetrachloroethane ND 2.0 0.80 4.00 1,1,1-Trichloroethane ND 2.0 0.80 4.00 1,1,2,2-Tetrachloroethane ND 2.0 0.80 4.00	0417L025
1,1,1,2-Tetrachloroethane ND 2.0 0.80 4.00 1,1,1-Trichloroethane ND 2.0 0.80 4.00 1,1,2,2-Tetrachloroethane ND 2.0 0.80 4.00	ag.
1,1,1-Trichloroethane ND 2.0 0.80 4.00 1,1,2,2-Tetrachloroethane ND 2.0 0.80 4.00	<u>ers</u>
1,1,2,2-Tetrachloroethane ND 2.0 0.80 4.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane ND 2.0 0.96 4.00	
1,1,2-Trichloroethane ND 2.0 0.80 4.00	
1,1-Dichloroethane ND 2.0 0.80 4.00	
1,1-Dichloroethene ND 2.0 1.1 4.00	
1,1-Dichloropropene ND 2.0 1.2 4.00	
1,2,3-Trichlorobenzene ND 2.0 0.80 4.00	
1,2,3-Trichloropropane ND 4.0 1.6 4.00	
1,2,4-Trichlorobenzene ND 2.0 0.80 4.00	
1,2,4-Trimethylbenzene ND 2.0 0.80 4.00	
1,2-Dibromo-3-Chloropropane ND 20 8.0 4.00	
1,2-Dibromoethane ND 2.0 0.80 4.00	
1,2-Dichlorobenzene ND 2.0 0.80 4.00	
1,2-Dichloroethane ND 2.0 0.80 4.00	
1,2-Dichloropropane ND 2.0 0.80 4.00	
1,3,5-Trimethylbenzene ND 2.0 0.80 4.00	
1,3-Dichlorobenzene ND 2.0 1.1 4.00	
1,3-Dichloropropane ND 4.0 1.6 4.00	
1,4-Dichlorobenzene ND 2.0 0.80 4.00	
2,2-Dichloropropane ND 4.0 1.6 4.00	
2-Butanone ND 20 8.0 4.00	
2-Chlorotoluene ND 2.0 0.80 4.00	
2-Hexanone ND 40 16 4.00	
4-Chlorotoluene ND 2.0 1.4 4.00	
4-Methyl-2-Pentanone ND 20 8.0 4.00	
Acetone ND 40 16 4.00	
Benzene ND 2.0 0.80 4.00	
Bromobenzene ND 2.0 1.3 4.00	
Bromochloromethane ND 4.0 1.6 4.00	
Bromodichloromethane ND 2.0 0.80 4.00	
Bromoform ND 2.0 0.99 4.00	
Bromomethane ND 4.0 1.6 4.00	

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

 Tetra Tech, Inc.
 Date Received:
 04/05/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0322

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 8 of 39

1 Tojoot: Livio Boo					1 ago o oi oo
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	MDL	DF	<u>Qualifiers</u>
Carbon Disulfide	ND	4.0	1.6	4.00	
Carbon Tetrachloride	ND	2.0	0.80	4.00	
Chlorobenzene	ND	2.0	0.80	4.00	
Chloroethane	ND	2.0	1.3	4.00	
Chloroform	5.6	2.0	0.80	4.00	
Chloromethane	ND	2.0	1.2	4.00	
Dibromochloromethane	ND	2.0	0.80	4.00	
Dibromomethane	ND	2.0	0.80	4.00	
Dichlorodifluoromethane	ND	4.0	1.6	4.00	
Ethylbenzene	ND	2.0	0.80	4.00	
Isopropylbenzene	ND	2.0	0.80	4.00	
Methylene Chloride	ND	4.0	3.2	4.00	
Naphthalene	ND	4.0	1.6	4.00	
Styrene	ND	2.0	0.80	4.00	
Tetrachloroethene	14	2.0	0.80	4.00	
Toluene	ND	2.0	0.80	4.00	
t-1,2-Dichloroethene	ND	2.0	0.80	4.00	
Trichloroethene	110	2.0	1.1	4.00	
Trichlorofluoromethane	ND	2.0	0.80	4.00	
Vinyl Acetate	ND	20	8.0	4.00	
Vinyl Chloride	ND	2.0	0.80	4.00	
c-1,3-Dichloropropene	ND	2.0	0.80	4.00	
c-1,2-Dichloroethene	4.1	2.0	0.80	4.00	
n-Butylbenzene	ND	2.0	0.80	4.00	
n-Propylbenzene	ND	2.0	0.80	4.00	
o-Xylene	ND	2.0	1.3	4.00	
p-Isopropyltoluene	ND	2.0	0.80	4.00	
sec-Butylbenzene	ND	2.0	0.80	4.00	
t-1,3-Dichloropropene	ND	2.0	0.80	4.00	
tert-Butylbenzene	ND	2.0	0.80	4.00	
p/m-Xylene	ND	2.0	0.80	4.00	
Methyl-t-Butyl Ether (MTBE)	ND	2.0	0.80	4.00	
2-Chloroethyl Vinyl Ether	ND	20	17	4.00	
Hexachloro-1,3-Butadiene	ND	8.0	3.2	4.00	
lodomethane	ND	40	20	4.00	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	88	68-120			
Dibromofluoromethane	108	80-127			

Tetra Tech, Inc.	Date Received:	04/05/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0322
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOU		Page 9 of 39

Surrogate	Rec. (%)	Control Limits	Qualifiers
1,2-Dichloroethane-d4	115	80-128	
Toluene-d8	101	80-120	

Tetra Tech, Inc.

Date Received:

04/05/17

301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-0322

San Bernardino, CA 92408-3562 Preparation: EPA 5030C

Method: EPA 8260B Units: ug/L

Project: LMC BOU Page 10 of 39

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
3870D-N-17Q2	17-04-0322-4-B	04/05/17 11:28	Aqueous	GC/MS L	04/17/17	04/18/17 02:28	170417L025
Comment(s): - Results were evaluated to	the MDL (DL), cond	centrations >= 1	to the MDL (DI	L) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>(</u>	Qualifiers
1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,1-Trichloroethane	ND		0.50	0.20	1.00		
1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		0.50	0.24	1.00		
1,1,2-Trichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethene	ND		0.50	0.28	1.00		
1,1-Dichloropropene	ND		0.50	0.30	1.00		
1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,3-Trichloropropane	ND		1.0	0.40	1.00		
1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,4-Trimethylbenzene	ND		0.50	0.20	1.00		
1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00		
1,2-Dibromoethane	ND		0.50	0.20	1.00		
1,2-Dichlorobenzene	ND		0.50	0.20	1.00		
1,2-Dichloroethane	ND		0.50	0.20	1.00		
1,2-Dichloropropane	ND		0.50	0.20	1.00		
1,3,5-Trimethylbenzene	ND		0.50	0.20	1.00		
1,3-Dichlorobenzene	ND		0.50	0.28	1.00		
1,3-Dichloropropane	ND		1.0	0.40	1.00		
1,4-Dichlorobenzene	ND		0.50	0.20	1.00		
2,2-Dichloropropane	ND		1.0	0.40	1.00		
2-Butanone	ND		5.0	2.0	1.00		
2-Chlorotoluene	ND		0.50	0.20	1.00		
2-Hexanone	ND		10	4.0	1.00		
4-Chlorotoluene	ND		0.50	0.36	1.00		
4-Methyl-2-Pentanone	ND		5.0	2.0	1.00		
Acetone	ND		10	4.0	1.00		
Benzene	ND		0.50	0.20	1.00		
Bromobenzene	ND		0.50	0.32	1.00		
Bromochloromethane	ND		1.0	0.40	1.00		
Bromodichloromethane	ND		0.50	0.20	1.00		
Bromoform	ND		0.50	0.25	1.00		
Bromomethane	ND		1.0	0.40	1.00		

 Tetra Tech, Inc.
 Date Received:
 04/05/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0322

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

Project: LMC BOU Page 11 of 39

Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
ND	1.0	0.40	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.32	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.29	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	1.0	0.40	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	1.0	0.80	1.00	
ND	1.0	0.40	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.29	1.00	
ND	0.50	0.20	1.00	
ND	5.0	2.0	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.32	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	5.0	4.2	1.00	
ND	2.0	0.80	1.00	
ND	10	5.0	1.00	
Rec. (%)	Control Limits	<u>Qualifiers</u>		
86	68-120			
115	80-127			
	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND 1.0 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 1.0 ND 0.50 ND 1.0 ND 1.0 ND 1.0 ND 0.50 <td>ND 1.0 0.40 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.32 ND 0.50 0.29 ND 0.50 0.29 ND 0.50 0.20 ND 0.50 0.20 ND 1.0 0.40 ND 0.50 0.20 ND 1.0 0.40 ND 0.50 0.20 ND 1.0 0.40 ND 0.50 0.20 ND 1.0 0.40 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND</td> <td>ND 1.0 0.50 0.20 1.00 ND 0.50</td>	ND 1.0 0.40 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.32 ND 0.50 0.29 ND 0.50 0.29 ND 0.50 0.20 ND 0.50 0.20 ND 1.0 0.40 ND 0.50 0.20 ND 1.0 0.40 ND 0.50 0.20 ND 1.0 0.40 ND 0.50 0.20 ND 1.0 0.40 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND	ND 1.0 0.50 0.20 1.00 ND 0.50

Tetra Tech, Inc.	Date Received:	04/05/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0322
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOU		Page 12 of 39

<u>Surrogate</u>	Rec. (%)	Control Limits	<u>Qualifiers</u>
1,2-Dichloroethane-d4	121	80-128	
Toluene-d8	98	80-120	

San Bernardino, CA 92408-3562

Analytical Report

Tetra Tech, Inc.

Date Received:

04/05/17

301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-0322

Preparation: EPA 5030C

Method: EPA 8260B Units: ug/L

Project: LMC BOU Page 13 of 39

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
3880-N-17Q2	17-04-0322-5-B	04/05/17 09:50	Aqueous	GC/MS L	04/17/17	04/18/17 02:58	170417L025
Comment(s): - Results were evaluated to	the MDL (DL), cond	centrations >= t	to the MDL (D	L) but < RL (LO	Q), if found, are	qualified with	a "J" flag.
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,1-Trichloroethane	ND		0.50	0.20	1.00		
1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		0.50	0.24	1.00		
1,1,2-Trichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethene	ND		0.50	0.28	1.00		
1,1-Dichloropropene	ND		0.50	0.30	1.00		
1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,3-Trichloropropane	ND		1.0	0.40	1.00		
1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,4-Trimethylbenzene	ND		0.50	0.20	1.00		
1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00		
1,2-Dibromoethane	ND		0.50	0.20	1.00		
1,2-Dichlorobenzene	ND		0.50	0.20	1.00		
1,2-Dichloroethane	ND		0.50	0.20	1.00		
1,2-Dichloropropane	ND		0.50	0.20	1.00		
1,3,5-Trimethylbenzene	ND		0.50	0.20	1.00		
1,3-Dichlorobenzene	ND		0.50	0.28	1.00		
1,3-Dichloropropane	ND		1.0	0.40	1.00		
1,4-Dichlorobenzene	ND		0.50	0.20	1.00		
2,2-Dichloropropane	ND		1.0	0.40	1.00		
2-Butanone	ND		5.0	2.0	1.00		
2-Chlorotoluene	ND		0.50	0.20	1.00		
2-Hexanone	ND		10	4.0	1.00		
4-Chlorotoluene	ND		0.50	0.36	1.00		
4-Methyl-2-Pentanone	ND		5.0	2.0	1.00		
Acetone	ND		10	4.0	1.00		
Benzene	ND		0.50	0.20	1.00		
Bromobenzene	ND		0.50	0.32	1.00		
Bromochloromethane	ND		1.0	0.40	1.00		
Bromodichloromethane	ND		0.50	0.20	1.00		
Bromoform	ND		0.50	0.25	1.00		
Bromomethane	ND		1.0	0.40	1.00		

 Tetra Tech, Inc.
 Date Received:
 04/05/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0322

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 14 of 39

				Fage 14 01 39
Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
ND	1.0	0.40	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.32	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.29	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	1.0	0.40	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	1.0	0.80	1.00	
ND	1.0	0.40	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.29	1.00	
ND	0.50	0.20	1.00	
ND	5.0	2.0	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.32	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	5.0	4.2	1.00	
ND	2.0	0.80	1.00	
ND	10	5.0	1.00	
Rec. (%)	Control Limits	<u>Qualifiers</u>		
85	68-120			
114	80-127			
	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND 1.0 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 1.0 ND 0.50 ND 1.0 ND 0.50 ND 1.0 ND 0.50 ND	ND 1.0 0.40 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.32 ND 0.50 0.29 ND 0.50 0.29 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 1.0 0.40 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND <	ND

Tetra Tech, Inc.	Date Received:	04/05/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0322
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOU		Page 15 of 39

Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>
1,2-Dichloroethane-d4	119	80-128	
Toluene-d8	100	80-120	

Tetra Tech, Inc.

Date Received:

04/05/17

301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-0322

San Bernardino, CA 92408-3562 Preparation: EPA 5030C

Method: EPA 8260B Units: ug/L

Project: LMC BOU Page 16 of 39

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
LTB-20170405	17-04-0322-6-B	04/05/17 07:00	Aqueous	GC/MS L	04/17/17	04/17/17 20:51	170417L008
Comment(s): - Results were evaluated to	the MDL (DL), cond	centrations >= t	to the MDL (D	L) but < RL (LO	Q), if found, are	qualified with a	a "J" flag.
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	9	<u>Qualifiers</u>
1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,1-Trichloroethane	ND		0.50	0.20	1.00		
1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		0.50	0.24	1.00		
1,1,2-Trichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethene	ND		0.50	0.28	1.00		
1,1-Dichloropropene	ND		0.50	0.30	1.00		
1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,3-Trichloropropane	ND		1.0	0.40	1.00		
1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,4-Trimethylbenzene	ND		0.50	0.20	1.00		
1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00		
1,2-Dibromoethane	ND		0.50	0.20	1.00		
1,2-Dichlorobenzene	ND		0.50	0.20	1.00		
1,2-Dichloroethane	ND		0.50	0.20	1.00		
1,2-Dichloropropane	ND		0.50	0.20	1.00		
1,3,5-Trimethylbenzene	ND		0.50	0.20	1.00		
1,3-Dichlorobenzene	ND		0.50	0.28	1.00		
1,3-Dichloropropane	ND		1.0	0.40	1.00		
1,4-Dichlorobenzene	ND		0.50	0.20	1.00		
2,2-Dichloropropane	ND		1.0	0.40	1.00		
2-Butanone	ND		5.0	2.0	1.00		
2-Chlorotoluene	ND		0.50	0.20	1.00		
2-Hexanone	ND		10	4.0	1.00		
4-Chlorotoluene	ND		0.50	0.36	1.00		
4-Methyl-2-Pentanone	ND		5.0	2.0	1.00		
Acetone	ND		10	4.0	1.00		
Benzene	ND		0.50	0.20	1.00		
Bromobenzene	ND		0.50	0.32	1.00		
Bromochloromethane	ND		1.0	0.40	1.00		
Bromodichloromethane	ND		0.50	0.20	1.00		
Bromoform	ND		0.50	0.25	1.00		

 Tetra Tech, Inc.
 Date Received:
 04/05/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0322

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 17 of 39

FTOJECI. LIVIC BOO					Fage 17 01 39
<u>Parameter</u>	<u>Result</u>	RL	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Carbon Disulfide	ND	1.0	0.40	1.00	
Carbon Tetrachloride	ND	0.50	0.20	1.00	
Chlorobenzene	ND	0.50	0.20	1.00	
Chloroethane	ND	0.50	0.32	1.00	
Chloroform	ND	0.50	0.20	1.00	
Chloromethane	ND	0.50	0.29	1.00	
Dibromochloromethane	ND	0.50	0.20	1.00	
Dibromomethane	ND	0.50	0.20	1.00	
Dichlorodifluoromethane	ND	1.0	0.40	1.00	
Ethylbenzene	ND	0.50	0.20	1.00	
Isopropylbenzene	ND	0.50	0.20	1.00	
Methylene Chloride	ND	1.0	0.80	1.00	
Naphthalene	ND	1.0	0.40	1.00	
Styrene	ND	0.50	0.20	1.00	
Tetrachloroethene	ND	0.50	0.20	1.00	
Toluene	ND	0.50	0.20	1.00	
t-1,2-Dichloroethene	ND	0.50	0.20	1.00	
Trichloroethene	ND	0.50	0.29	1.00	
Trichlorofluoromethane	ND	0.50	0.20	1.00	
Vinyl Acetate	ND	5.0	2.0	1.00	
Vinyl Chloride	ND	0.50	0.20	1.00	
c-1,3-Dichloropropene	ND	0.50	0.20	1.00	
c-1,2-Dichloroethene	ND	0.50	0.20	1.00	
n-Butylbenzene	ND	0.50	0.20	1.00	
n-Propylbenzene	ND	0.50	0.20	1.00	
o-Xylene	ND	0.50	0.32	1.00	
p-Isopropyltoluene	ND	0.50	0.20	1.00	
sec-Butylbenzene	ND	0.50	0.20	1.00	
t-1,3-Dichloropropene	ND	0.50	0.20	1.00	
tert-Butylbenzene	ND	0.50	0.20	1.00	
p/m-Xylene	ND	0.50	0.20	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	0.50	0.20	1.00	
2-Chloroethyl Vinyl Ether	ND	5.0	4.2	1.00	
Hexachloro-1,3-Butadiene	ND	2.0	0.80	1.00	
lodomethane	ND	10	5.0	1.00	
<u>Surrogate</u>	Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	85	68-120			
Dibromofluoromethane	115	80-127			

Tetra Tech, Inc.	Date Received:	04/05/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0322
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOU		Page 18 of 39

Surrogate	Rec. (%)	Control Limits	Qualifiers
1,2-Dichloroethane-d4	114	80-128	
Toluene-d8	99	80-120	

Tetra Tech, Inc.

Date Received:

04/05/17

301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-0322

San Bernardino, CA 92408-3562 Preparation: EPA 5030C

Method: EPA 8260B Units: ug/L

Project: LMC BOU Page 19 of 39

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
3852L-N-17Q2	17-04-0322-7-B	04/05/17 15:03	Aqueous	GC/MS L	04/17/17	04/18/17 03:29	170417L025
Comment(s): - Results were evaluated	to the MDL (DL), cond	centrations >=	to the MDL (D	L) but < RL (LO	Q), if found, are	qualified with a	ı "J" flag.
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>(</u>	Qualifiers
1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,1-Trichloroethane	ND		0.50	0.20	1.00		
1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		0.50	0.24	1.00		
1,1,2-Trichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethene	ND		0.50	0.28	1.00		
1,1-Dichloropropene	ND		0.50	0.30	1.00		
1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,3-Trichloropropane	ND		1.0	0.40	1.00		
1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,4-Trimethylbenzene	ND		0.50	0.20	1.00		
1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00		
1,2-Dibromoethane	ND		0.50	0.20	1.00		
1,2-Dichlorobenzene	ND		0.50	0.20	1.00		
1,2-Dichloroethane	ND		0.50	0.20	1.00		
1,2-Dichloropropane	ND		0.50	0.20	1.00		
1,3,5-Trimethylbenzene	ND		0.50	0.20	1.00		
1,3-Dichlorobenzene	ND		0.50	0.28	1.00		
1,3-Dichloropropane	ND		1.0	0.40	1.00		
1,4-Dichlorobenzene	ND		0.50	0.20	1.00		
2,2-Dichloropropane	ND		1.0	0.40	1.00		
2-Butanone	ND		5.0	2.0	1.00		
2-Chlorotoluene	ND		0.50	0.20	1.00		
2-Hexanone	ND		10	4.0	1.00		
4-Chlorotoluene	ND		0.50	0.36	1.00		
4-Methyl-2-Pentanone	ND		5.0	2.0	1.00		
Acetone	4.5		10	4.0	1.00		J
Benzene	ND		0.50	0.20	1.00		
Bromobenzene	ND		0.50	0.32	1.00		
Bromochloromethane	ND		1.0	0.40	1.00		
Bromodichloromethane	ND		0.50	0.20	1.00		
Bromoform	ND		0.50	0.25	1.00		
Bromomethane	ND		1.0	0.40	1.00		

 Tetra Tech, Inc.
 Date Received:
 04/05/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0322

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 20 of 39

<u> </u>					
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
Carbon Disulfide	ND	1.0	0.40	1.00	
Carbon Tetrachloride	0.28	0.50	0.20	1.00	J
Chlorobenzene	ND	0.50	0.20	1.00	
Chloroethane	ND	0.50	0.32	1.00	
Chloroform	0.46	0.50	0.20	1.00	J
Chloromethane	ND	0.50	0.29	1.00	
Dibromochloromethane	ND	0.50	0.20	1.00	
Dibromomethane	ND	0.50	0.20	1.00	
Dichlorodifluoromethane	ND	1.0	0.40	1.00	
Ethylbenzene	ND	0.50	0.20	1.00	
Isopropylbenzene	ND	0.50	0.20	1.00	
Methylene Chloride	ND	1.0	0.80	1.00	
Naphthalene	ND	1.0	0.40	1.00	
Styrene	ND	0.50	0.20	1.00	
Tetrachloroethene	ND	0.50	0.20	1.00	
Toluene	ND	0.50	0.20	1.00	
t-1,2-Dichloroethene	ND	0.50	0.20	1.00	
Trichloroethene	1.3	0.50	0.29	1.00	
Trichlorofluoromethane	ND	0.50	0.20	1.00	
Vinyl Acetate	ND	5.0	2.0	1.00	
Vinyl Chloride	ND	0.50	0.20	1.00	
c-1,3-Dichloropropene	ND	0.50	0.20	1.00	
c-1,2-Dichloroethene	ND	0.50	0.20	1.00	
n-Butylbenzene	ND	0.50	0.20	1.00	
n-Propylbenzene	ND	0.50	0.20	1.00	
o-Xylene	ND	0.50	0.32	1.00	
p-Isopropyltoluene	ND	0.50	0.20	1.00	
sec-Butylbenzene	ND	0.50	0.20	1.00	
t-1,3-Dichloropropene	ND	0.50	0.20	1.00	
tert-Butylbenzene	ND	0.50	0.20	1.00	
p/m-Xylene	ND	0.50	0.20	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	0.50	0.20	1.00	
2-Chloroethyl Vinyl Ether	ND	5.0	4.2	1.00	
Hexachloro-1,3-Butadiene	ND	2.0	0.80	1.00	
lodomethane	ND	10	5.0	1.00	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	85	68-120			
Dibromofluoromethane	114	80-127			

Tetra Tech, Inc.	Date Received:	04/05/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0322
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOU		Page 21 of 39

Surrogate	Rec. (%)	Control Limits	Qualifiers
1,2-Dichloroethane-d4	118	80-128	
Toluene-d8	101	80-120	

Project: LMC BOU

Analytical Report

Tetra Tech, Inc.

Date Received:

04/05/17

301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-0322

San Bernardino, CA 92408-3562

Preparation:

EPA 5030C

Method: EPA 8260B

Units: ug/L Page 22 of 39

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
3872Q-N-17Q2	17-04-0322-8-B	04/05/17 13:26	Aqueous	GC/MS L	04/17/17	04/18/17 04:00	170417L025
Comment(s): - Results were evaluate	ed to the MDL (DL), cond	entrations >= t	o the MDL (D	L) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>lt [</u>	<u> </u>	MDL	<u>DF</u>	<u>C</u>	Qualifiers
1,1,1,2-Tetrachloroethane	ND	2	2.0	0.80	4.00		
1,1,1-Trichloroethane	ND	2	2.0	0.80	4.00		
1,1,2,2-Tetrachloroethane	ND	2	2.0	0.80	4.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	2	2.0	0.96	4.00		
1,1,2-Trichloroethane	ND	2	2.0	0.80	4.00		
1,1-Dichloroethane	ND	2	2.0	0.80	4.00		
1,1-Dichloroethene	ND	2	2.0	1.1	4.00		
1,1-Dichloropropene	ND	2	2.0	1.2	4.00		
1,2,3-Trichlorobenzene	ND	2	2.0	0.80	4.00		
1,2,3-Trichloropropane	ND	4	4.0	1.6	4.00		
1,2,4-Trichlorobenzene	ND	2	2.0	0.80	4.00		
1,2,4-Trimethylbenzene	ND	2	2.0	0.80	4.00		
1,2-Dibromo-3-Chloropropane	ND	2	20	8.0	4.00		
1,2-Dibromoethane	ND	2	2.0	0.80	4.00		
1,2-Dichlorobenzene	ND	2	2.0	0.80	4.00		
1,2-Dichloroethane	ND	2	2.0	0.80	4.00		
1,2-Dichloropropane	ND	2	2.0	0.80	4.00		
1,3,5-Trimethylbenzene	ND	2	2.0	0.80	4.00		
1,3-Dichlorobenzene	ND	2	2.0	1.1	4.00		
1,3-Dichloropropane	ND	2	4.0	1.6	4.00		
1,4-Dichlorobenzene	ND	2	2.0	0.80	4.00		
2,2-Dichloropropane	ND	2	4.0	1.6	4.00		
2-Butanone	ND	2	20	8.0	4.00		
2-Chlorotoluene	ND	2	2.0	0.80	4.00		
2-Hexanone	ND	4	40	16	4.00		
4-Chlorotoluene	ND	2	2.0	1.4	4.00		
4-Methyl-2-Pentanone	ND	2	20	8.0	4.00		
Acetone	ND	4	40	16	4.00		
Benzene	ND	2	2.0	0.80	4.00		
Bromobenzene	ND	2	2.0	1.3	4.00		
Bromochloromethane	ND	4	4.0	1.6	4.00		
Bromodichloromethane	ND	2	2.0	0.80	4.00		
Bromoform	ND	2	2.0	0.99	4.00		
Bromomethane	ND	4	4.0	1.6	4.00		

 Tetra Tech, Inc.
 Date Received:
 04/05/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0322

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 23 of 39

FTOJECI. LIVIO BOO					Fage 23 01 39
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Carbon Disulfide	ND	4.0	1.6	4.00	
Carbon Tetrachloride	ND	2.0	0.80	4.00	
Chlorobenzene	ND	2.0	0.80	4.00	
Chloroethane	ND	2.0	1.3	4.00	
Chloroform	ND	2.0	0.80	4.00	
Chloromethane	ND	2.0	1.2	4.00	
Dibromochloromethane	ND	2.0	0.80	4.00	
Dibromomethane	ND	2.0	0.80	4.00	
Dichlorodifluoromethane	ND	4.0	1.6	4.00	
Ethylbenzene	ND	2.0	0.80	4.00	
Isopropylbenzene	ND	2.0	0.80	4.00	
Methylene Chloride	ND	4.0	3.2	4.00	
Naphthalene	ND	4.0	1.6	4.00	
Styrene	ND	2.0	0.80	4.00	
Tetrachloroethene	83	2.0	0.80	4.00	
Toluene	ND	2.0	0.80	4.00	
t-1,2-Dichloroethene	ND	2.0	0.80	4.00	
Trichloroethene	30	2.0	1.1	4.00	
Trichlorofluoromethane	ND	2.0	0.80	4.00	
Vinyl Acetate	ND	20	8.0	4.00	
Vinyl Chloride	ND	2.0	0.80	4.00	
c-1,3-Dichloropropene	ND	2.0	0.80	4.00	
c-1,2-Dichloroethene	ND	2.0	0.80	4.00	
n-Butylbenzene	ND	2.0	0.80	4.00	
n-Propylbenzene	ND	2.0	0.80	4.00	
o-Xylene	ND	2.0	1.3	4.00	
p-Isopropyltoluene	ND	2.0	0.80	4.00	
sec-Butylbenzene	ND	2.0	0.80	4.00	
t-1,3-Dichloropropene	ND	2.0	0.80	4.00	
tert-Butylbenzene	ND	2.0	0.80	4.00	
p/m-Xylene	ND	2.0	0.80	4.00	
Methyl-t-Butyl Ether (MTBE)	ND	2.0	0.80	4.00	
2-Chloroethyl Vinyl Ether	ND	20	17	4.00	
Hexachloro-1,3-Butadiene	ND	8.0	3.2	4.00	
lodomethane	ND	40	20	4.00	
<u>Surrogate</u>	Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	84	68-120			
Dibromofluoromethane	111	80-127			

Toluene-d8

Analytical Report

Tetra Tech, Inc.	Date Received:	04/05/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0322
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Proiect: LMC BOU		Page 24 of 39

80-120

<u>Surrogate</u>	Rec. (%)	Control Limits	<u>Qualifiers</u>
1,2-Dichloroethane-d4	116	80-128	

98

Project: LMC BOU

Analytical Report

Tetra Tech, Inc.

Date Received:

04/05/17

301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-0322

San Bernardino, CA 92408-3562

Preparation:

EPA 5030C

Method: EPA 8260B

Units: ug/L Page 25 of 39

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch II
3872S-N-17Q2	17-04-0322-9-B	04/05/17 12:10	Aqueous	GC/MS L	04/17/17	04/18/17 04:30	170417L02
Comment(s): - Results were evaluated	d to the MDL (DL), con-	centrations >=	to the MDL (DI	L) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,1-Trichloroethane	ND		0.50	0.20	1.00		
1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		0.50	0.24	1.00		
1,1,2-Trichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethene	ND		0.50	0.28	1.00		
1,1-Dichloropropene	ND		0.50	0.30	1.00		
1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,3-Trichloropropane	ND		1.0	0.40	1.00		
1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,4-Trimethylbenzene	ND		0.50	0.20	1.00		
1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00		
1,2-Dibromoethane	ND		0.50	0.20	1.00		
1,2-Dichlorobenzene	ND		0.50	0.20	1.00		
1,2-Dichloroethane	ND		0.50	0.20	1.00		
1,2-Dichloropropane	ND		0.50	0.20	1.00		
1,3,5-Trimethylbenzene	ND		0.50	0.20	1.00		
1,3-Dichlorobenzene	ND		0.50	0.28	1.00		
1,3-Dichloropropane	ND		1.0	0.40	1.00		
1,4-Dichlorobenzene	ND		0.50	0.20	1.00		
2,2-Dichloropropane	ND		1.0	0.40	1.00		
2-Butanone	ND		5.0	2.0	1.00		
2-Chlorotoluene	ND		0.50	0.20	1.00		
2-Hexanone	ND		10	4.0	1.00		
4-Chlorotoluene	ND		0.50	0.36	1.00		
4-Methyl-2-Pentanone	ND		5.0	2.0	1.00		
Acetone	ND		10	4.0	1.00		
Benzene	ND		0.50	0.20	1.00		
Bromobenzene	ND		0.50	0.32	1.00		
Bromochloromethane	ND		1.0	0.40	1.00		
Bromodichloromethane	ND		0.50	0.20	1.00		
Bromoform	ND		0.50	0.25	1.00		
Bromomethane	ND		1.0	0.40	1.00		

 Tetra Tech, Inc.
 Date Received:
 04/05/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0322

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

Project: LMC BOU Page 26 of 39

Floject. Livio Boo					Fage 20 01 39
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	MDL	<u>DF</u>	<u>Qualifiers</u>
Carbon Disulfide	ND	1.0	0.40	1.00	
Carbon Tetrachloride	ND	0.50	0.20	1.00	
Chlorobenzene	ND	0.50	0.20	1.00	
Chloroethane	ND	0.50	0.32	1.00	
Chloroform	ND	0.50	0.20	1.00	
Chloromethane	ND	0.50	0.29	1.00	
Dibromochloromethane	ND	0.50	0.20	1.00	
Dibromomethane	ND	0.50	0.20	1.00	
Dichlorodifluoromethane	ND	1.0	0.40	1.00	
Ethylbenzene	ND	0.50	0.20	1.00	
Isopropylbenzene	ND	0.50	0.20	1.00	
Methylene Chloride	ND	1.0	0.80	1.00	
Naphthalene	ND	1.0	0.40	1.00	
Styrene	ND	0.50	0.20	1.00	
Tetrachloroethene	ND	0.50	0.20	1.00	
Toluene	ND	0.50	0.20	1.00	
t-1,2-Dichloroethene	ND	0.50	0.20	1.00	
Trichloroethene	ND	0.50	0.29	1.00	
Trichlorofluoromethane	ND	0.50	0.20	1.00	
Vinyl Acetate	ND	5.0	2.0	1.00	
Vinyl Chloride	ND	0.50	0.20	1.00	
c-1,3-Dichloropropene	ND	0.50	0.20	1.00	
c-1,2-Dichloroethene	ND	0.50	0.20	1.00	
n-Butylbenzene	ND	0.50	0.20	1.00	
n-Propylbenzene	ND	0.50	0.20	1.00	
o-Xylene	ND	0.50	0.32	1.00	
p-Isopropyltoluene	ND	0.50	0.20	1.00	
sec-Butylbenzene	ND	0.50	0.20	1.00	
t-1,3-Dichloropropene	ND	0.50	0.20	1.00	
tert-Butylbenzene	ND	0.50	0.20	1.00	
p/m-Xylene	ND	0.50	0.20	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	0.50	0.20	1.00	
2-Chloroethyl Vinyl Ether	ND	5.0	4.2	1.00	
Hexachloro-1,3-Butadiene	ND	2.0	0.80	1.00	
lodomethane	ND	10	5.0	1.00	
Surrogate	Rec. (%)	Control Limits	Qualifiers		
1,4-Bromofluorobenzene	89	68-120			
Dibromofluoromethane	114	80-127			

Tetra Tech, Inc.	Date Received:	04/05/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0322
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOU		Page 27 of 39

Surrogate	Rec. (%)	Control Limits	Qualifiers
1.2-Dichloroethane-d/	116	80_128	

1,2-Dichloroethane-d4 Toluene-d8 99 80-120

Tetra Tech, Inc.

Date Received:

04/05/17

301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-0322

San Bernardino, CA 92408-3562 Preparation: EPA 5030C

Method: EPA 8260B Units: ug/L

Project: LMC BOU Page 28 of 39

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-1-CW11-N-17Q2	17-04-0322-10-B	04/05/17 09:25	Aqueous	GC/MS L	04/17/17	04/17/17 23:24	170417L025
Comment(s): - Results were evaluated to	the MDL (DL), cond	entrations >= t	to the MDL (D	L) but < RL (LO	Q), if found, are	qualified with	a "J" flag.
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,1-Trichloroethane	ND		0.50	0.20	1.00		
1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		0.50	0.24	1.00		
1,1,2-Trichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethene	ND		0.50	0.28	1.00		
1,1-Dichloropropene	ND		0.50	0.30	1.00		
1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,3-Trichloropropane	ND		1.0	0.40	1.00		
1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,4-Trimethylbenzene	ND		0.50	0.20	1.00		
1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00		
1,2-Dibromoethane	ND		0.50	0.20	1.00		
1,2-Dichlorobenzene	ND		0.50	0.20	1.00		
1,2-Dichloroethane	0.21		0.50	0.20	1.00		J
1,2-Dichloropropane	ND		0.50	0.20	1.00		
1,3,5-Trimethylbenzene	ND		0.50	0.20	1.00		
1,3-Dichlorobenzene	ND		0.50	0.28	1.00		
1,3-Dichloropropane	ND		1.0	0.40	1.00		
1,4-Dichlorobenzene	ND		0.50	0.20	1.00		
2,2-Dichloropropane	ND		1.0	0.40	1.00		
2-Butanone	ND		5.0	2.0	1.00		
2-Chlorotoluene	ND		0.50	0.20	1.00		
2-Hexanone	ND		10	4.0	1.00		
4-Chlorotoluene	ND		0.50	0.36	1.00		
4-Methyl-2-Pentanone	ND		5.0	2.0	1.00		
Acetone	ND		10	4.0	1.00		
Benzene	ND		0.50	0.20	1.00		
Bromobenzene	ND		0.50	0.32	1.00		
Bromochloromethane	ND		1.0	0.40	1.00		
Bromodichloromethane	ND		0.50	0.20	1.00		
Bromoform	ND		0.50	0.25	1.00		
Bromomethane	ND		1.0	0.40	1.00		

 Tetra Tech, Inc.
 Date Received:
 04/05/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0322

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 29 of 39

1 Tojout: EMO BOO					1 age 20 01 00
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Carbon Disulfide	ND	1.0	0.40	1.00	
Carbon Tetrachloride	ND	0.50	0.20	1.00	
Chlorobenzene	ND	0.50	0.20	1.00	
Chloroethane	ND	0.50	0.32	1.00	
Chloroform	0.48	0.50	0.20	1.00	J
Chloromethane	ND	0.50	0.29	1.00	
Dibromochloromethane	ND	0.50	0.20	1.00	
Dibromomethane	ND	0.50	0.20	1.00	
Dichlorodifluoromethane	2.6	1.0	0.40	1.00	
Ethylbenzene	ND	0.50	0.20	1.00	
Isopropylbenzene	ND	0.50	0.20	1.00	
Methylene Chloride	ND	1.0	0.80	1.00	
Naphthalene	ND	1.0	0.40	1.00	
Styrene	ND	0.50	0.20	1.00	
Tetrachloroethene	2.3	0.50	0.20	1.00	
Toluene	ND	0.50	0.20	1.00	
t-1,2-Dichloroethene	ND	0.50	0.20	1.00	
Trichloroethene	0.78	0.50	0.29	1.00	
Trichlorofluoromethane	0.29	0.50	0.20	1.00	J
Vinyl Acetate	ND	5.0	2.0	1.00	
Vinyl Chloride	ND	0.50	0.20	1.00	
c-1,3-Dichloropropene	ND	0.50	0.20	1.00	
c-1,2-Dichloroethene	0.95	0.50	0.20	1.00	
n-Butylbenzene	ND	0.50	0.20	1.00	
n-Propylbenzene	ND	0.50	0.20	1.00	
o-Xylene	ND	0.50	0.32	1.00	
p-Isopropyltoluene	ND	0.50	0.20	1.00	
sec-Butylbenzene	ND	0.50	0.20	1.00	
t-1,3-Dichloropropene	ND	0.50	0.20	1.00	
tert-Butylbenzene	ND	0.50	0.20	1.00	
p/m-Xylene	ND	0.50	0.20	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	0.50	0.20	1.00	
2-Chloroethyl Vinyl Ether	ND	5.0	4.2	1.00	
Hexachloro-1,3-Butadiene	ND	2.0	0.80	1.00	
lodomethane	ND	10	5.0	1.00	
<u>Surrogate</u>	Rec. (%)	Control Limits	Qualifiers		
1,4-Bromofluorobenzene	85	68-120			
Dibromofluoromethane	119	80-127			

Tetra Tech, Inc.	Date Received:	04/05/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0322
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Proiect: LMC BOU		Page 30 of 39

Surrogate	Rec. (%)	Control Limits	Qualifiers
1,2-Dichloroethane-d4	114	80-128	
Toluene-d8	99	80-120	

Project: LMC BOU

Analytical Report

Tetra Tech, Inc.

Date Received:

04/05/17

301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-0322

San Bernardino, CA 92408-3562

Preparation:

EPA 5030C

Method: EPA 8260B

Units: ug/L Page 31 of 39

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
3862D-N-17Q2	17-04-0322-11-A	04/05/17 16:25	Aqueous	GC/MS L	04/17/17	04/18/17 05:01	170417L025
Comment(s): - Results were evaluated	to the MDL (DL), cond	centrations >=	to the MDL (DI	L) but < RL (LO	Q), if found, are	qualified with a	ı "J" flag.
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>(</u>	<u>Qualifiers</u>
1,1,1,2-Tetrachloroethane	ND		1.0	0.40	2.00		
1,1,1-Trichloroethane	ND		1.0	0.40	2.00		
1,1,2,2-Tetrachloroethane	ND		1.0	0.40	2.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		1.0	0.48	2.00		
1,1,2-Trichloroethane	ND		1.0	0.40	2.00		
1,1-Dichloroethane	ND		1.0	0.40	2.00		
1,1-Dichloroethene	ND		1.0	0.56	2.00		
1,1-Dichloropropene	ND		1.0	0.60	2.00		
1,2,3-Trichlorobenzene	ND		1.0	0.40	2.00		
1,2,3-Trichloropropane	ND		2.0	0.80	2.00		
1,2,4-Trichlorobenzene	ND		1.0	0.40	2.00		
1,2,4-Trimethylbenzene	ND		1.0	0.40	2.00		
1,2-Dibromo-3-Chloropropane	ND		10	4.0	2.00		
1,2-Dibromoethane	ND		1.0	0.40	2.00		
1,2-Dichlorobenzene	ND		1.0	0.40	2.00		
1,2-Dichloroethane	ND		1.0	0.40	2.00		
1,2-Dichloropropane	ND		1.0	0.40	2.00		
1,3,5-Trimethylbenzene	ND		1.0	0.40	2.00		
1,3-Dichlorobenzene	ND		1.0	0.55	2.00		
1,3-Dichloropropane	ND		2.0	0.80	2.00		
1,4-Dichlorobenzene	ND		1.0	0.40	2.00		
2,2-Dichloropropane	ND		2.0	0.80	2.00		
2-Butanone	ND		10	4.0	2.00		
2-Chlorotoluene	ND		1.0	0.40	2.00		
2-Hexanone	ND		20	8.0	2.00		
4-Chlorotoluene	ND		1.0	0.71	2.00		
4-Methyl-2-Pentanone	ND		10	4.0	2.00		
Acetone	ND		20	8.0	2.00		
Benzene	ND		1.0	0.40	2.00		
Bromobenzene	ND		1.0	0.64	2.00		
Bromochloromethane	ND		2.0	0.80	2.00		
Bromodichloromethane	ND		1.0	0.40	2.00		
Bromoform	ND		1.0	0.49	2.00		
Bromomethane	ND		2.0	0.80	2.00		

 Tetra Tech, Inc.
 Date Received:
 04/05/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0322

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 32 of 39

Froject. Livio Boo					Fage 32 01 39
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Carbon Disulfide	ND	2.0	0.80	2.00	
Carbon Tetrachloride	1.1	1.0	0.40	2.00	
Chlorobenzene	ND	1.0	0.40	2.00	
Chloroethane	ND	1.0	0.63	2.00	
Chloroform	0.89	1.0	0.40	2.00	J
Chloromethane	ND	1.0	0.59	2.00	
Dibromochloromethane	ND	1.0	0.40	2.00	
Dibromomethane	ND	1.0	0.40	2.00	
Dichlorodifluoromethane	1.5	2.0	0.80	2.00	J
Ethylbenzene	ND	1.0	0.40	2.00	
Isopropylbenzene	ND	1.0	0.40	2.00	
Methylene Chloride	ND	2.0	1.6	2.00	
Naphthalene	ND	2.0	0.80	2.00	
Styrene	ND	1.0	0.40	2.00	
Tetrachloroethene	14	1.0	0.40	2.00	
Toluene	ND	1.0	0.40	2.00	
t-1,2-Dichloroethene	ND	1.0	0.40	2.00	
Trichlorofluoromethane	ND	1.0	0.40	2.00	
Vinyl Acetate	ND	10	4.0	2.00	
Vinyl Chloride	ND	1.0	0.40	2.00	
c-1,3-Dichloropropene	ND	1.0	0.40	2.00	
c-1,2-Dichloroethene	ND	1.0	0.40	2.00	
n-Butylbenzene	ND	1.0	0.40	2.00	
n-Propylbenzene	ND	1.0	0.40	2.00	
o-Xylene	ND	1.0	0.63	2.00	
p-Isopropyltoluene	ND	1.0	0.40	2.00	
sec-Butylbenzene	ND	1.0	0.40	2.00	
t-1,3-Dichloropropene	ND	1.0	0.40	2.00	
tert-Butylbenzene	ND	1.0	0.40	2.00	
p/m-Xylene	ND	1.0	0.40	2.00	
Methyl-t-Butyl Ether (MTBE)	ND	1.0	0.40	2.00	
2-Chloroethyl Vinyl Ether	ND	10	8.4	2.00	
Hexachloro-1,3-Butadiene	ND	4.0	1.6	2.00	
lodomethane	ND	20	10	2.00	
Surrogate	Rec. (%)	Control Limits	Qualifiers		
1,4-Bromofluorobenzene	84	68-120			
Dibromofluoromethane	113	80-127			
1,2-Dichloroethane-d4	121	80-128			

Date Received: 04/05/17 Tetra Tech, Inc. Work Order: 17-04-0322 301 E. Vanderbilt Way, Suite 450 Preparation: **EPA 5030C** San Bernardino, CA 92408-3562 Method: **EPA 8260B** Units: ug/L

Page 33 of 39 Project: LMC BOU

Surrogate Rec. (%) **Control Limits** Qualifiers Toluene-d8 102 80-120

3862D-N-17Q2	17-04-0322-11-A	04/05/17	Aqueous	GC/MS L	04/17/17	04/18/17	170417L025
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID

Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. <u>Parameter</u> Result <u>RL</u> **MDL** <u>DF</u> Qualifiers Trichloroethene 89 5.0 2.9 10.0

<u>Surrogate</u>	Rec. (%)	Control Limits	Qualifiers
1,4-Bromofluorobenzene	86	68-120	
Dibromofluoromethane	111	80-127	
1,2-Dichloroethane-d4	123	80-128	
Toluene-d8	101	80-120	

Tetra Tech, Inc.

Date Received:

04/05/17

301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-0322

San Bernardino, CA 92408-3562

Preparation:

EPA 5030C

Method: EPA 8260B

Units: ug/L

Project: LMC BOU Page 34 of 39

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-10-025-4622	N/A	Aqueous	GC/MS L	04/17/17	04/17/17 11:00	170417L008
Comment(s): - Results were evaluated to	the MDL (DL), cond	entrations >= t	o the MDL (DI	L) but < RL (LO	Q), if found, are	qualified with	a "J" flag.
<u>Parameter</u>	<u>Resu</u>	<u>lt</u> .	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,1-Trichloroethane	ND		0.50	0.20	1.00		
1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		0.50	0.24	1.00		
1,1,2-Trichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethene	ND		0.50	0.28	1.00		
1,1-Dichloropropene	ND		0.50	0.30	1.00		
1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,3-Trichloropropane	ND		1.0	0.40	1.00		
1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,4-Trimethylbenzene	ND		0.50	0.20	1.00		
1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00		
1,2-Dibromoethane	ND		0.50	0.20	1.00		
1,2-Dichlorobenzene	ND		0.50	0.20	1.00		
1,2-Dichloroethane	ND		0.50	0.20	1.00		
1,2-Dichloropropane	ND		0.50	0.20	1.00		
1,3,5-Trimethylbenzene	ND		0.50	0.20	1.00		
1,3-Dichlorobenzene	ND		0.50	0.28	1.00		
1,3-Dichloropropane	ND		1.0	0.40	1.00		
1,4-Dichlorobenzene	ND		0.50	0.20	1.00		
2,2-Dichloropropane	ND		1.0	0.40	1.00		
2-Butanone	ND		5.0	2.0	1.00		
2-Chlorotoluene	ND		0.50	0.20	1.00		
2-Hexanone	ND		10	4.0	1.00		
4-Chlorotoluene	ND		0.50	0.36	1.00		
4-Methyl-2-Pentanone	ND		5.0	2.0	1.00		
Acetone	ND		10	4.0	1.00		
Benzene	ND		0.50	0.20	1.00		
Bromobenzene	ND		0.50	0.32	1.00		
Bromochloromethane	ND		1.0	0.40	1.00		
Bromodichloromethane	ND		0.50	0.20	1.00		
Bromoform	ND		0.50	0.25	1.00		
Bromomethane	ND		1.0	0.40	1.00		

 Tetra Tech, Inc.
 Date Received:
 04/05/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0322

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 35 of 39

FTOJECI. LIVIC BOO					Fage 33 01 39
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Carbon Disulfide	ND	1.0	0.40	1.00	
Carbon Tetrachloride	ND	0.50	0.20	1.00	
Chlorobenzene	ND	0.50	0.20	1.00	
Chloroethane	ND	0.50	0.32	1.00	
Chloroform	ND	0.50	0.20	1.00	
Chloromethane	ND	0.50	0.29	1.00	
Dibromochloromethane	ND	0.50	0.20	1.00	
Dibromomethane	ND	0.50	0.20	1.00	
Dichlorodifluoromethane	ND	1.0	0.40	1.00	
Ethylbenzene	ND	0.50	0.20	1.00	
Isopropylbenzene	ND	0.50	0.20	1.00	
Methylene Chloride	ND	1.0	0.80	1.00	
Naphthalene	ND	1.0	0.40	1.00	
Styrene	ND	0.50	0.20	1.00	
Tetrachloroethene	ND	0.50	0.20	1.00	
Toluene	ND	0.50	0.20	1.00	
t-1,2-Dichloroethene	ND	0.50	0.20	1.00	
Trichloroethene	ND	0.50	0.29	1.00	
Trichlorofluoromethane	ND	0.50	0.20	1.00	
Vinyl Acetate	ND	5.0	2.0	1.00	
Vinyl Chloride	ND	0.50	0.20	1.00	
c-1,3-Dichloropropene	ND	0.50	0.20	1.00	
c-1,2-Dichloroethene	ND	0.50	0.20	1.00	
n-Butylbenzene	ND	0.50	0.20	1.00	
n-Propylbenzene	ND	0.50	0.20	1.00	
o-Xylene	ND	0.50	0.32	1.00	
p-Isopropyltoluene	ND	0.50	0.20	1.00	
sec-Butylbenzene	ND	0.50	0.20	1.00	
t-1,3-Dichloropropene	ND	0.50	0.20	1.00	
tert-Butylbenzene	ND	0.50	0.20	1.00	
p/m-Xylene	ND	0.50	0.20	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	0.50	0.20	1.00	
2-Chloroethyl Vinyl Ether	ND	5.0	4.2	1.00	
Hexachloro-1,3-Butadiene	ND	2.0	0.80	1.00	
lodomethane	ND	10	5.0	1.00	
<u>Surrogate</u>	Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	86	68-120			
Dibromofluoromethane	104	80-127			

Tetra Tech, Inc.	Date Received:	04/05/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0322
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOU		Page 36 of 39

Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>
1,2-Dichloroethane-d4	101	80-128	
Toluene-d8	97	80-120	

San Bernardino, CA 92408-3562

Analytical Report

 Tetra Tech, Inc.
 Date Received:
 04/05/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0322

Preparation: EPA 5030C Method: EPA 8260B

Units: ug/L

Project: LMC BOU Page 37 of 39

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-10-025-4623	N/A	Aqueous	GC/MS L	04/17/17	04/17/17 22:53	170417L025
Comment(s): - Results were evaluated	d to the MDL (DL), cond	centrations >= 1	to the MDL (D	L) but < RL (LO	Q), if found, are	qualified with	a "J" flag.
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,1-Trichloroethane	ND		0.50	0.20	1.00		
1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		0.50	0.24	1.00		
1,1,2-Trichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethene	ND		0.50	0.28	1.00		
1,1-Dichloropropene	ND		0.50	0.30	1.00		
1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,3-Trichloropropane	ND		1.0	0.40	1.00		
1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,4-Trimethylbenzene	ND		0.50	0.20	1.00		
1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00		
1,2-Dibromoethane	ND		0.50	0.20	1.00		
1,2-Dichlorobenzene	ND		0.50	0.20	1.00		
1,2-Dichloroethane	ND		0.50	0.20	1.00		
1,2-Dichloropropane	ND		0.50	0.20	1.00		
1,3,5-Trimethylbenzene	ND		0.50	0.20	1.00		
1,3-Dichlorobenzene	ND		0.50	0.28	1.00		
1,3-Dichloropropane	ND		1.0	0.40	1.00		
1,4-Dichlorobenzene	ND		0.50	0.20	1.00		
2,2-Dichloropropane	ND		1.0	0.40	1.00		
2-Butanone	ND		5.0	2.0	1.00		
2-Chlorotoluene	ND		0.50	0.20	1.00		
2-Hexanone	ND		10	4.0	1.00		
4-Chlorotoluene	ND		0.50	0.36	1.00		
4-Methyl-2-Pentanone	ND		5.0	2.0	1.00		
Acetone	ND		10	4.0	1.00		
Benzene	ND		0.50	0.20	1.00		
Bromobenzene	ND		0.50	0.32	1.00		
Bromochloromethane	ND		1.0	0.40	1.00		
Bromodichloromethane	ND		0.50	0.20	1.00		
Bromoform	ND		0.50	0.25	1.00		
Bromomethane	ND		1.0	0.40	1.00		

 Tetra Tech, Inc.
 Date Received:
 04/05/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0322

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

Project: LMC BOU Page 38 of 39

Project: LIMC BOU					Page 38 of 39
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
Carbon Disulfide	ND	1.0	0.40	1.00	
Carbon Tetrachloride	ND	0.50	0.20	1.00	
Chlorobenzene	ND	0.50	0.20	1.00	
Chloroethane	ND	0.50	0.32	1.00	
Chloroform	ND	0.50	0.20	1.00	
Chloromethane	ND	0.50	0.29	1.00	
Dibromochloromethane	ND	0.50	0.20	1.00	
Dibromomethane	ND	0.50	0.20	1.00	
Dichlorodifluoromethane	ND	1.0	0.40	1.00	
Ethylbenzene	ND	0.50	0.20	1.00	
Isopropylbenzene	ND	0.50	0.20	1.00	
Methylene Chloride	ND	1.0	0.80	1.00	
Naphthalene	ND	1.0	0.40	1.00	
Styrene	ND	0.50	0.20	1.00	
Tetrachloroethene	ND	0.50	0.20	1.00	
Toluene	ND	0.50	0.20	1.00	
t-1,2-Dichloroethene	ND	0.50	0.20	1.00	
Trichloroethene	ND	0.50	0.29	1.00	
Trichlorofluoromethane	ND	0.50	0.20	1.00	
Vinyl Acetate	ND	5.0	2.0	1.00	
Vinyl Chloride	ND	0.50	0.20	1.00	
c-1,3-Dichloropropene	ND	0.50	0.20	1.00	
c-1,2-Dichloroethene	ND	0.50	0.20	1.00	
n-Butylbenzene	ND	0.50	0.20	1.00	
n-Propylbenzene	ND	0.50	0.20	1.00	
o-Xylene	ND	0.50	0.32	1.00	
p-Isopropyltoluene	ND	0.50	0.20	1.00	
sec-Butylbenzene	ND	0.50	0.20	1.00	
t-1,3-Dichloropropene	ND	0.50	0.20	1.00	
tert-Butylbenzene	ND	0.50	0.20	1.00	
p/m-Xylene	ND	0.50	0.20	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	0.50	0.20	1.00	
2-Chloroethyl Vinyl Ether	ND	5.0	4.2	1.00	
Hexachloro-1,3-Butadiene	ND	2.0	0.80	1.00	
Iodomethane	ND	10	5.0	1.00	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	87	68-120			
Dibromofluoromethane	108	80-127			

Tetra Tech, Inc.	Date Received:	04/05/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0322
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOU		Page 39 of 39

Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>
1,2-Dichloroethane-d4	114	80-128	
Toluene-d8	97	80-120	

Comment(s):

Analytical Report

Date Received: 04/05/17 Tetra Tech, Inc. Work Order: 17-04-0322 301 E. Vanderbilt Way, Suite 450 Preparation: **EPA 5030C** San Bernardino, CA 92408-3562

> Method: **EPA 8260B SIM** Units: ug/L

Project: LMC BOU Page 1 of 3

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-1-CW34-N-17Q2	17-04-0322-1-F	04/05/17 14:38	Aqueous	GC/MS M	04/10/17	04/10/17 16:39	170410L035

- Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. <u>Parameter</u> <u>MDL</u> DF Qualifiers Result <u>RL</u>

1,2,3-Trichloropropane ND 0.0050 0.0025 1.00

Surrogate Rec. (%) **Control Limits** Qualifiers

116 80-120 1,4-Dichlorobutane

B-1-CW34-FD-	-17Q2	17-04-0322-2-F	04/05/17 14:38	Aqueous	GC/MS M	04/10/17	04/10/17 17:09	170410L035
Comment(s):	- Results were evaluated t	o the MDL (DL), con	centrations >=	to the MDL (DI	_) but < RL (L0	OQ), if found, ar	e qualified with a	a "J" flag.

Parameter Result <u>RL</u> **MDL** <u>DF</u> Qualifiers

1,2,3-Trichloropropane ND 0.0050 0.0025 1.00

Surrogate Rec. (%) **Control Limits** Qualifiers

1,4-Dichlorobutane 80-120

B-1-CW32-N-17Q2	17-04-0322-3-F	04/05/17 12:52	Aqueous	GC/MS M	04/10/17	04/10/17 17:39	170410L035
Comment(s): - Results were evaluated to	the MDL (DL), con	centrations >=	to the MDL (DL) but < RL (LC	Q), if found, are	e qualified with a	a "J" flag.
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	!	<u>Qualifiers</u>
1,2,3-Trichloropropane	0.01	1	0.0050	0.0025	1.00		

Rec. (%) **Control Limits** Qualifiers Surrogate

1,4-Dichlorobutane 99 80-120

3870D-N-17Q2	17-04-0322-4-F	04/05/17 11:28	Aqueous	GC/MS M	04/10/17	04/10/17 18:09	170410L035
Comment(s):	- Results were evaluated to the MDL (DL), cor	ncentrations >= to	the MDL (DL)	but < RL (LOQ)	, if found, are q	ualified with a ".	J" flag.
<u>Parameter</u>	Res	<u>ult</u> <u>F</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qu</u>	alifiers

0.0050 0.0025 1.00 1,2,3-Trichloropropane ND

Surrogate Rec. (%) **Control Limits** Qualifiers

1,4-Dichlorobutane 80-120

170410L035

LTB-20170405

Analytical Report

Tetra Tech, Inc. Date Received: 04/05/17
301 E. Vanderbilt Way, Suite 450 Work Order: 17-04-0322
San Bernardino, CA 92408-3562 Preparation: EPA 5030C
Method: EPA 8260B SIM
Units: ug/L

Project: LMC BOU Page 2 of 3

Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
3880-N-17Q2		17-04-0322-5-F	04/05/17 09:50	Aqueous	GC/MS M	04/10/17	04/10/17 18:39	170410L035
Comment(s):	- Results were evaluated	to the MDL (DL), con	centrations >= 1	to the MDL (DI	L) but < RL (LC	Q), if found, are	e qualified with a	a "J" flag.
<u>Parameter</u>		Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>(</u>	<u>Qualifiers</u>
1,2,3-Trichlorop	oropane	ND		0.0050	0.0025	1.00		

Surrogate Rec. (%) Control Limits Qualifiers

17-04-0322-6-C

1,4-Dichlorobutane 93 80-120

	07:00			13:1	10	
Comment(s): - Results were evaluate	ed to the MDL (DL), concentrations >	= to the MDL (DL)	out < RL (LOQ),	if found, are qualifi	ed with a "J" flag.	
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>	
1,2,3-Trichloropropane	ND	0.0050	0.0025	1.00		
<u>Surrogate</u>	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>			
1,4-Dichlorobutane	98	80-120				

Aqueous GC/MS M

04/10/17

04/10/17

04/05/17

3852L-N-17Q2		17-04-0322-7-F	04/05/17 15:03	Aqueous	GC/MS M	04/10/17	04/10/17 19:09	170410L035
Comment(s):	- Results were evaluated to	the MDL (DL), conc	entrations >=	to the MDL (DL	.) but < RL (LO	Q), if found, are	qualified with	a "J" flag.
<u>Parameter</u>		Resul	<u> t</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
1,2,3-Trichloropr	ropane	0.032		0.0050	0.0025	1.00		
Surrogate 1,4-Dichlorobuta	ne	<u>Rec. (</u> 95	(%)	Control Limits 80-120	Qualifiers	<u>5</u>		

3872Q-N-17Q2		17-04-0322-8-F	04/05/17 13:26	Aqueous	GC/MS M	04/10/17	04/10/17 19:39	170410L035
Comment(s):	- Results were evaluated to	the MDL (DL), cond	entrations >=	to the MDL (DL) but < RL (LOC	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>		<u>Resu</u>	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>(</u>	<u>Qualifiers</u>
1,2,3-Trichlorop	ropane	0.045	5	0.0050	0.0025	1.00		
Surragata		Poo	(0/.)	Control Limits	Qualifiers			
<u>Surrogate</u>		Rec.	(70)	CONTROL LITTIES	Qualifiers			
1,4-Dichlorobuta	ane	94		80-120				

Tetra Tech, Inc.

Date Received:

04/05/17

301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-0322

San Bernardino, CA 92408-3562

Preparation:

EPA 5030C

Method:

EPA 8260B SIM

Units: ug/L

Project: LMC BOU Page 3 of 3

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
3872S-N-17Q2	17-04-0322-9-F	04/05/17 12:10	Aqueous	GC/MS M	04/10/17	04/10/17 20:09	170410L035

Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

Parameter Result RL MDL DF Qualifiers

1,2,3-Trichloropropane ND 0.0050 0.0025 1.00

<u>Surrogate</u> <u>Rec. (%)</u> <u>Control Limits</u> <u>Qualifiers</u>

1,4-Dichlorobutane 96 80-120

B-1-CW11-N-17	Q2 17-04	·0322-10-F 04/ 09:	05/17 Aqueou 25	is GC/MS M	04/10/17	04/10/17 13:40	170410L035
Comment(s):	- Results were evaluated to the MI	DL (DL), concentra	tions >= to the MDL	(DL) but < RL (LO	Q), if found, are	qualified with	a "J" flag.

Parameter Result RL MDL DF Qualifiers

1,2,3-Trichloropropane ND 0.0050 0.0025 1.00

Surrogate Rec. (%) Control Limits Qualifiers

1,4-Dichlorobutane 103 80-120

3862D-N-17Q2	17-04-0322-11-F	04/05/17 Ac 16:25	queous GC/MS M	04/10/17	04/10/17 20:39	170410L035
Comment(s): - Results	s were evaluated to the MDL (DL), cond	centrations >= to the	MDL (DL) but < RL	(LOQ), if found, are o	ualified with a "J"	flag.
<u>Parameter</u>	Resu	<u>It</u> <u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qual</u>	<u>ifiers</u>
1,2,3-Trichloropropane	0.023	0.005	0.002	5 1.00		
Surrogate	Rec	(%) Contr	rol Limits Qualif	iers		

Surrogate Nec. (70) Control Limits Quanties

1,4-Dichlorobutane 97 80-120

Method Blank	099-15-118-478	N/A	Aqueous G	C/MS M 04/	10/17 04/ 12:		70410L035
Comment(s):	- Results were evaluated to the MDL (DL), co	ncentrations >= to	the MDL (DL) b	out < RL (LOQ), if t	found, are qualif	fied with a "J" t	ilag.
<u>Parameter</u>	Res	sult RI	<u>L</u>	MDL	<u>DF</u>	<u>Quali</u>	<u>fiers</u>

1,2,3-Trichloropropane ND 0.0050 0.0025 1.00

Surrogate Rec. (%) Control Limits Qualifiers

1,4-Dichlorobutane 95 80-120

 Tetra Tech, Inc.
 Date Received:
 04/05/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0322

 San Bernardino, CA 92408-3562
 Preparation:
 N/A

 Method:
 EPA 218.6

 Project: LMC BOU
 Page 1 of 6

Quality Control Sample ID	Туре		Matrix	Ins	trument	Date Prepared	d Date Ana	lyzed	MS/MSD Ba	tch Number
B-1-CW11-N-17Q2	Sample		Aqueou	s IC	16	N/A	04/05/17	23:24	170405S01	
B-1-CW11-N-17Q2	Matrix Spike		Aqueou	s IC	16	N/A	04/05/17	23:46	170405S01	
B-1-CW11-N-17Q2	Matrix Spike	Duplicate	Aqueou	s IC	16	N/A	04/05/17	23:58	170405S01	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Chromium, Hexavalent	2.726	10.00	13.27	105	13.57	108	85-121	2	0-25	

Tetra Tech, Inc.

Date Received:

04/05/17

301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-0322

San Bernardino, CA 92408-3562

Preparation:

Method:

EPA 3020A Total

Method:

EPA 6020

Project: LMC BOU Page 2 of 6

Quality Control Sample ID	Туре	Matrix	Inst	rument	Date Prepared	Date Anal	yzed	MS/MSD Bat	ch Number
B-1-CW11-N-17Q2	Sample	Aque	ous ICP	/MS 05	04/14/17	04/18/17 (00:27	170414SA5	
B-1-CW11-N-17Q2	Matrix Spike	Aque	ous ICP	/MS 05	04/14/17	04/18/17 (00:01	170414SA5	
B-1-CW11-N-17Q2	Matrix Spike Dupl	licate Aque	ous ICP	/MS 05	04/14/17	04/18/17 (0:05	170414SA5	
<u>Parameter</u>	Sample Sp Conc. Ad	oike <u>MS</u> Ided <u>Conc.</u>	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Chromium	0.003187 0.1	1000 0.1053	102	0.1031	100	73-133	2	0-11	

 Tetra Tech, Inc.
 Date Received:
 04/05/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0322

San Bernardino, CA 92408-3562 Preparation: EPA 3510C

Method: EPA 8270C (M) Isotope Dilution
Project: LMC BOU Page 3 of 6

Quality Control Sample ID	Туре		Matrix	1	nstrument	Date Prepared	Date Ana	lyzed	MS/MSD Ba	tch Number
B-1-CW11-N-17Q2	Sample		Aqueou	ıs (GC/MS DDD	04/06/17	04/07/17	03:04	170406S13	
B-1-CW11-N-17Q2	Matrix Spike		Aqueou	ıs (GC/MS DDD	04/06/17	04/07/17	00:25	170406S13	
B-1-CW11-N-17Q2	Matrix Spike I	Duplicate	Aqueou	ıs (GC/MS DDD	04/06/17	04/07/17	00:42	170406S13	
Parameter	<u>Sample</u> <u>Conc.</u>	Spike Added	MS Conc.	MS %Rec	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,4-Dioxane	1.004	20.00	22.23	106	20.56	98	50-130	8	0-20	

 Tetra Tech, Inc.
 Date Received:
 04/05/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0322

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

Project: LMC BOU Page 4 of 6

Quality Control Sample ID	Туре		Matrix	lı	nstrument	Date Prepare	d Date Ana	lyzed	MS/MSD Bat	ch Number
17-04-0812-10	Sample		Aqueou	s G	GC/MS L	04/17/17	04/17/17	11:38	170417S004	
17-04-0812-10	Matrix Spike		Aqueou	s G	GC/MS L	04/17/17	04/17/17	12:09	170417S004	
17-04-0812-10	Matrix Spike	Duplicate	Aqueou	s G	GC/MS L	04/17/17	04/17/17	12:40	170417S004	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,1-Dichloroethene	ND	40.00	40.89	102	37.31	93	66-126	9	0-20	
1,2-Dibromoethane	ND	40.00	40.09	100	38.95	97	75-126	3	0-20	
1,2-Dichlorobenzene	ND	40.00	39.39	98	38.17	95	75-125	3	0-20	
1,2-Dichloroethane	ND	40.00	39.67	99	36.93	92	75-127	7	0-20	
Benzene	ND	40.00	42.71	107	39.64	99	75-125	7	0-20	
Carbon Tetrachloride	ND	40.00	48.18	120	45.49	114	69-135	6	0-20	
Chlorobenzene	ND	40.00	41.49	104	38.79	97	75-125	7	0-20	
Ethylbenzene	ND	40.00	44.13	110	41.07	103	75-125	7	0-20	
Toluene	ND	40.00	42.59	106	39.56	99	75-125	7	0-20	
Trichloroethene	ND	40.00	42.88	107	39.37	98	75-125	9	0-20	
Vinyl Chloride	129.4	40.00	173.5	110	175.2	115	52-142	1	0-20	
o-Xylene	ND	40.00	44.32	111	40.85	102	75-127	8	0-20	
p/m-Xylene	ND	80.00	88.99	111	82.77	103	75-125	7	0-20	
Methyl-t-Butyl Ether (MTBE)	ND	40.00	35.80	90	33.94	85	71-131	5	0-20	

 Tetra Tech, Inc.
 Date Received:
 04/05/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0322

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

Project: LMC BOU Page 5 of 6

Quality Control Sample ID	Туре		Matrix	In	strument	Date Prepare	d Date Ana	lyzed	MS/MSD Ba	tch Number
B-1-CW11-N-17Q2	Sample		Aqueou	s G	C/MS L	04/17/17	04/17/17	23:24	170417S011	
B-1-CW11-N-17Q2	Matrix Spike		Aqueou	s G	C/MS L	04/17/17	04/18/17	00:25	170417S011	
B-1-CW11-N-17Q2	Matrix Spike	Duplicate	Aqueou	s G	C/MS L	04/17/17	04/18/17	00:56	170417S011	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,1-Dichloroethene	ND	10.00	8.527	85	9.028	90	66-126	6	0-20	
1,2-Dibromoethane	ND	10.00	9.232	92	9.860	99	75-126	7	0-20	
1,2-Dichlorobenzene	ND	10.00	8.880	89	9.253	93	75-125	4	0-20	
1,2-Dichloroethane	ND	10.00	9.325	93	9.685	97	75-127	4	0-20	
Benzene	ND	10.00	9.007	90	9.657	97	75-125	7	0-20	
Carbon Tetrachloride	ND	10.00	10.06	101	11.21	112	69-135	11	0-20	
Chlorobenzene	ND	10.00	9.006	90	9.636	96	75-125	7	0-20	
Ethylbenzene	ND	10.00	9.365	94	10.14	101	75-125	8	0-20	
Toluene	ND	10.00	9.258	93	9.875	99	75-125	6	0-20	
Trichloroethene	0.7838	10.00	9.781	90	10.54	98	75-125	7	0-20	
Vinyl Chloride	ND	10.00	11.31	113	11.74	117	52-142	4	0-20	
o-Xylene	ND	10.00	9.618	96	10.34	103	75-127	7	0-20	
p/m-Xylene	ND	20.00	19.27	96	20.59	103	75-125	7	0-20	
Methyl-t-Butyl Ether (MTBE)	ND	10.00	7.873	79	8.250	83	71-131	5	0-20	

Date Received: 04/05/17 Tetra Tech, Inc. Work Order: 17-04-0322 301 E. Vanderbilt Way, Suite 450 Preparation: **EPA 5030C** San Bernardino, CA 92408-3562 Method: **EPA 8260B SIM** Project: LMC BOU Page 6 of 6

Quality Control Sample ID	Туре		Matrix	Ins	strument	Date Prepared	I Date Ana	lyzed	MS/MSD Bat	ch Number
B-1-CW11-N-17Q2	Sample		Aqueous	s GC	C/MS M	04/10/17	04/10/17	13:40	170410S020	
B-1-CW11-N-17Q2	Matrix Spike		Aqueous	s GO	C/MS M	04/10/17	04/10/17	15:10	170410S020	
B-1-CW11-N-17Q2	Matrix Spike	Duplicate	Aqueous	s GC	C/MS M	04/10/17	04/10/17	15:40	170410S020	
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,2,3-Trichloropropane	ND	0.02000	0.01940	97	0.02180	109	80-120	12	0-20	

Date Received: 04/05/17 Tetra Tech, Inc. Work Order: 17-04-0322 301 E. Vanderbilt Way, Suite 450 Preparation: EPA 3020A Total San Bernardino, CA 92408-3562

Method: EPA 6020

Project: LMC BOU Page 1 of 1

Quality Control Sample ID Matrix Instrument Date Prepared Date Analyzed PDS/PDSD Batch Туре Number B-1-CW11-N-17Q2 Sample Aqueous ICP/MS 05 04/14/17 00:00 04/18/17 00:27 170414SA5 B-1-CW11-N-17Q2 PDS Aqueous ICP/MS 05 04/14/17 00:00 04/18/17 00:09 170414SA5

Sample Conc. %Rec. CL <u>Parameter</u> Spike Added PDS Conc. PDS %Rec. Chromium 0.003187 0.1000 0.1038 101 75-125

Date Received: 04/05/17 Tetra Tech, Inc. Work Order: 17-04-0322 301 E. Vanderbilt Way, Suite 450 Preparation: N/A San Bernardino, CA 92408-3562

> Method: EPA 218.6

Project: LMC BOU Page 1 of 6

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-14-567-231	LCS	Aqueous	IC 16	N/A	04/05/17 20:33	170405L01
<u>Parameter</u>		Spike Added	Conc. Recove	ered LCS %Re	ec. %Rec	. CL Qualifiers
Chromium, Hexavalent		10.00	9.989	100	95-107	7

04/05/17

17-04-0322

EPA 3020A Total

Quality Control - LCS

Tetra Tech, Inc.

301 E. Vanderbilt Way, Suite 450

San Bernardino, CA 92408-3562

Date Received:

Work Order:

Preparation:

Method: EPA 6020

Project: LMC BOU Page 2 of 6

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
096-06-003-5529	LCS	Aqueous	ICP/MS 05	04/14/17	04/17/17 23:58	170414LA5
<u>Parameter</u>		Spike Added	Conc. Recovere	ed LCS %Re	ec. %Rec	. CL Qualifiers
Chromium		0.1000	0.09935	99	80-120	0

04/05/17

17-04-0322

Quality Control - LCS

Tetra Tech, Inc.

301 E. Vanderbilt Way, Suite 450

San Bernardino, CA 92408-3562

Date Received:

Work Order:

Preparation:

Preparation: EPA 3510C Method: EPA 8270C (M) Isotope Dilution

Project: LMC BOU Page 3 of 6

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-16-216-998	LCS	Aqueous	GC/MS DDD	04/06/17	04/07/17 00:10	170406L13
<u>Parameter</u>		Spike Added	Conc. Recover	red LCS %R	ec. %Rec	. CL Qualifiers
1,4-Dioxane		20.00	19.04	95	50-130	0

Tetra Tech, Inc. 301 E. Vanderbilt Way, Suite 450 San Bernardino, CA 92408-3562 Date Received: Work Order: Preparation: Method: 04/05/17 17-04-0322 EPA 5030C EPA 8260B

Project: LMC BOU Page 4 of 6

Quality Control Sample ID	Туре	Matrix	Instrumen	t Date Prep	ared Date Anal	lyzed LCS Bato	ch Number
099-10-025-4622	LCS	Aqueo	ous GC/MS L	04/17/17	04/17/17	10:08 170417L	008
<u>Parameter</u>	·	Spike Added	Conc. Recovered	LCS %Rec.	%Rec. CL	ME CL	Qualifiers
1,1-Dichloroethene		10.00	8.719	87	77-120	70-127	
1,2-Dibromoethane		10.00	10.64	106	80-120	73-127	
1,2-Dichlorobenzene		10.00	10.17	102	80-120	73-127	
1,2-Dichloroethane		10.00	9.858	99	80-122	73-129	
Benzene		10.00	10.16	102	80-120	73-127	
Carbon Tetrachloride		10.00	10.82	108	80-129	72-137	
Chlorobenzene		10.00	10.40	104	80-120	73-127	
Ethylbenzene		10.00	10.70	107	80-120	73-127	
Toluene		10.00	10.38	104	80-120	73-127	
Trichloroethene		10.00	10.25	103	80-120	73-127	
Vinyl Chloride		10.00	10.36	104	63-135	51-147	
o-Xylene		10.00	10.96	110	80-120	73-127	
p/m-Xylene		20.00	21.84	109	80-120	73-127	
Methyl-t-Butyl Ether (MTBE)		10.00	8.641	86	75-123	67-131	

Total number of LCS compounds: 14 Total number of ME compounds: 0

Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass

Tetra Tech, Inc. 301 E. Vanderbilt Way, Suite 450 San Bernardino, CA 92408-3562

Date Received: Work Order: Preparation: Method:

04/05/17 17-04-0322 **EPA 5030C EPA 8260B**

Project: LMC BOU Page 5 of 6

Quality Control Sample ID	Туре	Matrix	Instrumen	t Date Prep	ared Date Anal	yzed LCS Batch N	Number
099-10-025-4623	LCS	Aqueo	ous GC/MS L	04/17/17	04/17/17 2	22:22 170417L025	5
<u>Parameter</u>		Spike Added	Conc. Recovered	LCS %Rec.	%Rec. CL	ME CL	Qualifiers
1,1-Dichloroethene		10.00	7.665	77	77-120	70-127	
1,2-Dibromoethane		10.00	10.44	104	80-120	73-127	
1,2-Dichlorobenzene		10.00	9.786	98	80-120	73-127	
1,2-Dichloroethane		10.00	10.11	101	80-122	73-129	
Benzene		10.00	10.10	101	80-120	73-127	
Carbon Tetrachloride		10.00	8.520	85	80-129	72-137	
Chlorobenzene		10.00	10.08	101	80-120	73-127	
Ethylbenzene		10.00	10.23	102	80-120	73-127	
Toluene		10.00	10.20	102	80-120	73-127	
Trichloroethene		10.00	9.781	98	80-120	73-127	
Vinyl Chloride		10.00	9.647	96	63-135	51-147	
o-Xylene		10.00	10.61	106	80-120	73-127	
p/m-Xylene		20.00	20.81	104	80-120	73-127	
Methyl-t-Butyl Ether (MTBE)		10.00	8.738	87	75-123	67-131	

Total number of LCS compounds: 14 Total number of ME compounds: 0

Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass

RPD: Relative Percent Difference. CL: Control Limits

 Tetra Tech, Inc.
 Date Received:
 04/05/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0322

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B SIM

Project: LMC BOU Page 6 of 6

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-15-118-478	LCS	Aqueous	GC/MS M	04/10/17	04/10/17 11:04	170410L035
<u>Parameter</u>		Spike Added	Conc. Recovere	ed LCS %Re	ec. %Rec	. CL Qualifiers
1,2,3-Trichloropropane		0.02000	0.02250	112	80-120)

Sample Analysis Summary Report

Work Order: 17-04-0322				Page 1 of 1
Method	<u>Extraction</u>	Chemist ID	Instrument	Analytical Location
EPA 218.6	N/A	1065	IC 16	1
EPA 6020	EPA 3020A Total	598	ICP/MS 05	1
EPA 8260B	EPA 5030C	316	GC/MS L	2
EPA 8260B SIM	EPA 5030C	486	GC/MS M	2
EPA 8270C (M) Isotope Dilution	EPA 3510C	907	GC/MS DDD	1

Glossary of Terms and Qualifiers

Work Order: 17-04-0322 Page 1 of 1

Qualifiers	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
CI	See case narrative.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
SG	The sample extract was subjected to Silica Gel treatment prior to analysis.

- X % Recovery and/or RPD out-of-range.
- Z Analyte presence was not confirmed by second column or GC/MS analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

2018-34-01-Revision

eurofins		Calscience
----------	--	------------

WORK ORDER NUMBER: 17-04-

CABADI	-	DECEMBE		ICT
SAMPL	.E	RECEIPT	CHECKL	.1 & 1.

Tala Tech	ATE: 04 /		047
CLIENT: JETA ITCA	ATE: 04 /	<u> </u>	.U17
TEMPERATURE: (Criteria: 0.0°C – 6.0°C, not frozen except sediment/tissue) Thermometer ID: SC3B (CF: 0.0°C); Temperature (w/o CF); 2.0 °C (w/ CF); 2.0 °C D Sample(s) outside temperature criteria (PM/APM contacted by:)	; te Blank E	3 Sample	;
☐ Sample(s) outside temperature criteria but received on loe/chilled on same day of sampling			_
Sample(s) received at ambient temperature; placed on ice for transport by courier	A	by: 10	91
Ambient Temperature: Air Filter	Спескес	by. / D	<u></u>
CUSTODY SEAL:		B	91
Cooler ☐ Present and Intact ☐ Present but Not Intact ☐ Not Present ☐ N/A	Checked	by: 10	<u> </u>
Sample(s) ☐ Present and Intact ☐ Present but Not Intact ☑ Not Present ☐ N/A	Checked	by: <u>10</u> 1	4
SAMPLE CONDITION:	Yes	No	N/A
Chain-of-Custody (COC) document(s) received with samples	/ 2		
COC document(s) received complete	ø		
☐ Sampling date ☐ Sampling time ☐ Matrix ☐ Number of containers	•		
☐ No analysis requested ☐ Not relinquished ☐ No relinquished date ☐ No relinquished tir	ne		
Sampler's name indicated on COC	_		
		·E7	
Sample container label(s) consistent with COC Sample container(s) intact and in good condition	977		
Proper containers for analyses requested			
Sufficient volume/mass for analyses requested			\Box
Samples received within holding time	,		
Aqueous samples for certain analyses received within 15-minute holding time			
□ pH □ Residual Chlorine □ Dissolved Sulfide □ Dissolved Oxygen	🗖 🛒		
Proper preservation chemical(s) noted on COC and/or sample container	<u>p</u>		
Unpreserved aqueous sample(s) received for certain analyses	•		
□ Volatile Organics □ Total Metals □ Dissolved Metals		/	
Container(s) for certain analysis free of headspace	🛮	z	
Voletile Organics Dissolved Gases (RSK-175) Dissolved Oxygen (SM 4500)			
☐ Carbon Dioxide (SM 4500) ☐ Ferrous Iron (SM 3500) ☐ Hydrogen Sulfide (Hach)			
Tedlar TM bag(s) free of condensation	🗆		尸
CONTAINER TYPE: / (Trip Blank Lot Num	nber: <u>/70</u>	1328A	}
Aqueous: UVOA ZIVOAh UVOAna, U100PJ U100PJna, U125AG8 U125AG8h U12	5AGBp □ 1	25PB	
□ 125PBznna □ 250AGB □ 250CGB □ 250CGBs Ø 250PB Ø 250PBn Ø 500AGB □ 500A	kGJ □ 500A0	GJs	
□ 500PB □ 1AGB □ 1AGBna₂ □ 1AGBs □ 1PB □ 1PBna □ □ □ □			
Solid: ☐ 4ozCGJ ☐ 8ozCGJ ☐ 16ozCGJ ☐ Sleeve () ☐ EnCores® () ☐ TerraCore			_
Air: □ Tedlar™ □ Canister □ Scribent Tube □ PUF □ Other Matrix ()	: 🗆		
Container: A = Amber, B = Bottle, C = Clear, E = Envelope, G = Glass, J = Jar, P = Plastic, and Z = Ziploc/i	Resealable Ba	9 5-	<i>,</i>
Preservative: b ≈ buffered, f ≈ filtered, h = HCl, n = HNO₃, na = NaOH, na₂ = Na₂S₂O₃, p = H₃PO₄, Lab	eled/Checkex	by: 284	1017
$\mathbf{s} = H_2 SO_4$, $\mathbf{u} = \text{ultra-pure}$, $\mathbf{x} = N\mathbf{s}_2 SO_3 + N\mathbf{a}HSO_4$, H_2O_5 anna $= Zn (CH_3CO_2)_2 + N\mathbf{a}OH$	Reviewed	। by: 6⊠\^/	1057

WORK ORDER NUMBER: 17-04-

Calscience S

			ALC: 4	N. 1.57 E	LOT
SAMP	ĿE	RECEIPT	CHE	ぶんし	121

coo	LER	2	OF 2	
	Λ4	, <	- (nn4'	

CLIENT:	letra lech			DA	TE: 04 :	<u> 121</u>	2017
Thermometer Sample Sample Sample(s)	ID: SC3B (CF: 0.0°C); 1 (s) outside temperature ((s) outside temperature (O°C, not frozen except sedir remperature (w/o CF):, oritoria (PM/APM contacted to criteria but received on ice/cliperature; placed on ice for tree	8°C (w/ CF): 4 by:) hilled on same day o		Blank	□ Samı	
CUSTODY S							201
Cooler Sample(s)	☐ Present and Intact ☐ Present and Intact	☐ Present but Not Intact ☐ Present but Not Intact	Not Present Not Present	□ N/A □ N/A	Checks	ed by: <u>l</u> ed by: <u>l</u>	017
SAMPLE CO	NDITION:				Yes	No	N/A
Chain-of-Cus	tody (COC) document(s)	received with samples				□	

		e 🗅 Matrix 🗖 Number of d					
□ No ana	lysis requested 🛮 Not r	latupniler oN 🗆 berhatupnite	hed date 🖽 No relir	quished time	l		
		,			_		
		with COC					
1		d condition					
		sted					
		equested					
					. 🗹		
	•	ses received within 15-minu					
		ssolved Suifide Dissolve			-		2
		d on COC and/or sample cor	ntainer		, par		
Unpreserv	ed aqueous sample(s) r	eceived for certain analyses					
	Organics D Total Meta						
, .		of headspace			. 🗖		<i>/22/</i>
ė.		Gases (RSK-175) 🗆 Disso					
		Ferrous Iron (SM 3500) 🗆 E			_	_	
Tedlar™ bag	(a) free of condensation	,	• • • • • • • • • • • • • • • • • • • •	*************	. 🗆		JA
CONTAINER				k Lot Numbe)
Aquecus: 🛘	VOA □ VOAh □ VOAr	na₂ □ 100PJ □ 100PJna₂	□ 125AG8 □ 125A	GBh □ 125A	GBp □	125PB	
		B □ 250CGBs 🗷 250PB (
		AGBs 🗆 1PB 🖸 1PBna 🖺					
		ZCGJ □ Sleeve () □ I					
1		nt Tube DPUF D					
1		aar, E = Envelope, G = Glass, J					4
		= HCl, π = HNO ₃ , na = NaOH, n					
1 .	s = H₂SO₄, u = ultra-pure, ×	$t = Na_2SO_3 + NaHSO_4.H_2O_1$ znna	$a = Zn (CH_3CO_2)_2 + Na$	OH	Review	ed by:/	<u> </u>

Calscience

SAMPLE ANOMALY REPORT

DATE: 04 / 05 / 2017

SAMPLES, COI	ERS, AN	D LABEL	Commer	Comments					
☐ Sample(s) NOT	recei	IVED but I	listed on CC	OC					****
☐ Sample(s) rece	ived but	NOT LIS	TED on CC	C				· .	
☐ Holding time ex	xpired (li	ist client o	r ECI samp	le ID and ana	lysis)				
☐ Insufficient sam	npte ame	ount for re	equested an	alysis (list ana	alysis)				
☐ Improper conta	iner(a) u	sail) beau	anelysis)						
☐ Improper preservative used (list analysis)									
☐ No preservative	e noted	on COC o	r label (list	analysis and r	notify lab)				
☐ Sample contain	ner(s) no	t labeled							
🗀 Çlient sample la	abel(s) i	llegible (ii	st container	type and ana	lysis)				
Client sample is	abel(s) o	do not ma	tch COC (c	omment)					
C Project infor	mation					$\underline{(\cdot\mathcal{U})}$	7ef 13 6	on fair	vers labeled as
 ∫∕Client samp	ole ID					3878	14-N-17	7Q2	
☐ Sampling da	abe and/	or time				Date		<u>Nafetea</u>	
□ Number of a	containe	r(s)				_ + Yia	IS ABCO),E,Fan	e correct #
☐ Requested analysis									
☐ Sample container(s) compromised (comment)									
□ Broken									
□ Water press	ent in sa	mple cont	tainer						
☐ Air sample conf	teiner(s)	compran	nised (come	nent)					
☐ Flat						<u></u>			
Very low in *	valume								
🗖 Leaking (no	d transfe	rræd; dupl	licate bag s	ubmitted)					
🗆 Leaking (tra	ıns ferre c	l inta ECi	Tedlar™ ba	9g6*)					
🗆 Leaking (tra	រានចែកទ	into clier	nt's Tedlar™	bags*)					
*Transferred at all	lent'a recas	6SL							
MISCELLANEO	JUS: (D	escribe)				Commer	its		
HEADSPACE:									
(Containers with bubble	e > 8 mm c	or Minch for	volatile organi	c or dissiplyed gas	amalysis)	(Containers wi	th bubble for othe	r analysis)	
551 5	iči imer ID	Yotel Number**	ECI Sample ID	IBC: Centainer 40	Tota!	ECI Ole icane z	EÇI Contaîner (D	Tetal Numher**	Requested Artalysis
Sample ID Conta	eneriu	10	Secripie IU	CONTOL-ER 40	HUMBS**	DESCRIBE	Container to	Numites	Netheralist Analysia
201 1	۳.	i V			<u> </u>				
						<u></u>			
Commonte									
Comments.	Comments:								
** Dannel the total	nhar of	utninner G.s.	uinle nahowica	d torolog affacted	nameria.				Reported by: <u>\$02-</u> Reviewed by: <u>1053</u>
** Record the total num	eder of col		Media Di DOTUES	d vo nie sucemp	adiigo¢.			,	

Contents

Vikas Patel

From: Calder, Vanessa <Vanessa.Calder@tetratech.com>

Sent: Thursday, April 06, 2017 10:41 AM **To:** Vikas Patel; Sabater, Robert

Cc: Erick Ovalle

Subject: Re: Sample receipt confirmation / 17-04-0322 / LMC BOU

Hey Vik,

My apologies. All bottles are for sample 3852L, not 3872L. Feel free to call me if you have any further questions.

Thank you, Vanessa

909-844-7277

From: Vikas Patel < Vikas Patel @eurofins US.com >

Sent: Thursday, April 6, 2017 9:40:08 AM **To:** Sabater, Robert; Calder, Vanessa

Cc: Erick Ovalle; Vikas Patel

Subject: Sample receipt confirmation / 17-04-0322 / LMC BOU

Sample receipt confirmation(s) attached. Please review and advise of any changes required.

Please confirm the sample ID for sample 3852L-N-17Q2, some of the containers are labeled as 3872L-N-17Q2.

Thank you for using Eurofins Calscience.

Regards,

Vik Patel Project Manager

Eurofins Calscience, Inc. 7440 Lincoln Way Garden Grove, CA 92841-1427 USA

Phone: +1 714 895 5494 Fax: +1 714 894 7501

VikasPatel@EurofinsUS.com www.EurofinsUS.com/Env

The information transmitted is intended only for the person or entity to which it is addressed and may contain confidential and/or privileged material. Any review, retransmission, dissemination or other use of, or taking of any action in reliance upon this information by persons or entities other than the intended recipient is

Calscience

Supplemental Report 1

The original report has been revised/corrected.

WORK ORDER NUMBER: 17-04-0177

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: Tetra Tech, Inc.

Client Project Name: LMC BOU

Attention: Robert Sabater

301 E. Vanderbilt Way, Suite 450 San Bernardino, CA 92408-3562

Test Och for

Approved for release on 05/03/2017 by: Vikas Patel Project Manager

ResultLink >

Email your PM >

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name: LMC BOU
Work Order Number: 17-04-0177

1	Work Order Narrative	3
2	Detections Summary	4
3	Client Sample Data. 3.1 EPA 218.6 Hexavalent Chromium Low Level (Aqueous). 3.2 EPA 6020 ICP/MS Metals (Aqueous). 3.3 1,4-Dioxane by EPA 8270C (M) Isotope Dilution (Aqueous). 3.4 EPA 8260B Volatile Organics (Aqueous). 3.5 EPA 8260B SIM Emergent Volatiles (Aqueous).	6 8 10 12 45
4	Quality Control Sample Data. 4.1 MS/MSD. 4.2 PDS/PDSD. 4.3 LCS/LCSD.	48 48 57 58
5	Sample Analysis Summary	67
6	Glossary of Terms and Qualifiers	68
7	Chain-of-Custody/Sample Receipt Form	69

Work Order Narrative

Work Order: 17-04-0177 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 04/04/17. They were assigned to Work Order 17-04-0177.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Detections Summary

Client: Tetra Tech, Inc.

Work Order: 17-04-0177

301 E. Vanderbilt Way, Suite 450 San Bernardino, CA 92408-3562 Project Name: LMC BOU Received: 04/04/17

Attn: Robert Sabater Page 1 of 2

Client SampleID						
<u>Analyte</u>	Result	<u>Qualifiers</u>	<u>RL</u>	<u>Units</u>	Method	Extraction
B-1-CW12-N-17Q2 (17-04-0177-1)						
Chromium, Hexavalent	11		0.020	ug/L	EPA 218.6	N/A
Chromium	0.0115		0.00100	mg/L	EPA 6020	EPA 3020A Total
1,1-Dichloroethene	1.9		0.50	ug/L	EPA 8260B	EPA 5030C
Chloroform	1.5		0.50	ug/L	EPA 8260B	EPA 5030C
Dichlorodifluoromethane	2.5		1.0	ug/L	EPA 8260B	EPA 5030C
Tetrachloroethene	5.5		0.50	ug/L	EPA 8260B	EPA 5030C
Trichloroethene	14		0.50	ug/L	EPA 8260B	EPA 5030C
c-1,2-Dichloroethene	1.1		0.50	ug/L	EPA 8260B	EPA 5030C
3860K-N-17Q2 (17-04-0177-2)						
Chromium, Hexavalent	1.9		0.020	ug/L	EPA 218.6	N/A
Chromium	0.00344		0.00100	mg/L	EPA 6020	EPA 3020A Total
1,1,2-Trichloro-1,2,2-Trifluoroethane	8.5		5.0	ug/L	EPA 8260B	EPA 5030C
1,1-Dichloroethene	17		5.0	ug/L	EPA 8260B	EPA 5030C
1,2,3-Trichloropropane	29		10	ug/L	EPA 8260B	EPA 5030C
Tetrachloroethene	200		5.0	ug/L	EPA 8260B	EPA 5030C
Trichloroethene	210		5.0	ug/L	EPA 8260B	EPA 5030C
c-1,2-Dichloroethene	2.3	J	2.0*	ug/L	EPA 8260B	EPA 5030C
1,2,3-Trichloropropane	32		2.5	ug/L	EPA 8260B SIM	EPA 5030C
B1-CW17-N-17Q2 (17-04-0177-3)						
Chromium, Hexavalent	20		0.020	ug/L	EPA 218.6	N/A
Chromium	0.0246		0.00100	mg/L	EPA 6020	EPA 3020A Total
1,1-Dichloroethene	2.9		2.0	ug/L	EPA 8260B	EPA 5030C
Chloroform	4.3		2.0	ug/L	EPA 8260B	EPA 5030C
Tetrachloroethene	70		2.0	ug/L	EPA 8260B	EPA 5030C
Trichloroethene	94		2.0	ug/L	EPA 8260B	EPA 5030C
c-1,2-Dichloroethene	3.2		2.0	ug/L	EPA 8260B	EPA 5030C
1,4-Dioxane	2.9		1.0	ug/L	EPA 8270C (M) Isotope Dilution	EPA 3510C
3831Q-N-17Q2 (17-04-0177-4)						
Chromium	0.0213		0.00100	mg/L	EPA 6020	EPA 3020A Total
1,1-Dichloroethane	0.21	J	0.20*	ug/L	EPA 8260B	EPA 5030C
Carbon Tetrachloride	0.28	J	0.20*	ug/L	EPA 8260B	EPA 5030C
Chloroform	0.66		0.50	ug/L	EPA 8260B	EPA 5030C
Tetrachloroethene	1.2		0.50	ug/L	EPA 8260B	EPA 5030C
Trichloroethene	9.2		0.50	ug/L	EPA 8260B	EPA 5030C
c-1,2-Dichloroethene	0.40	J	0.20*	ug/L	EPA 8260B	EPA 5030C
1,2,3-Trichloropropane	0.011		0.0050	ug/L	EPA 8260B SIM	EPA 5030C

^{*} MDL is shown

Detections Summary

Client: Tetra Tech, Inc.

301 E. Vanderbilt Way, Suite 450 San Bernardino, CA 92408-3562 Work Order: 17-04-0177

Project Name: LMC BOU Received: 04/04/17

Attn: Robert Sabater Page 2 of 2

Result	Qualifiers	<u>RL</u>	<u>Units</u>	Method	Extraction
0.19		0.020	ug/L	EPA 218.6	N/A
0.000770	J	0.000402*	mg/L	EPA 6020	EPA 3020A Total
0.62		0.50	ug/L	EPA 8260B	EPA 5030C
0.78	J	0.40*	ug/L	EPA 8260B	EPA 5030C
0.50		0.50	ug/L	EPA 8260B	EPA 5030C
0.51		0.50	ug/L	EPA 8260B	EPA 5030C
0.93		0.020	ug/L	EPA 218.6	N/A
0.00403		0.00100	mg/L	EPA 6020	EPA 3020A Total
1.4	J	0.80*	ug/L	EPA 8260B	EPA 5030C
2.9		2.0	ug/L	EPA 8260B	EPA 5030C
85		2.0	ug/L	EPA 8260B	EPA 5030C
1.6	J	0.80*	ug/L	EPA 8260B	EPA 5030C
1.2		0.020	ug/L	EPA 218.6	N/A
0.00172		0.00100	mg/L	EPA 6020	EPA 3020A Total
0.28	J	0.20*	ug/L	EPA 8260B	EPA 5030C
5.7	J	4.0*	ug/L	EPA 8260B	EPA 5030C
1.2		1.0	ug/L	EPA 8260B	EPA 5030C
0.67		0.50	ug/L	EPA 8260B	EPA 5030C
0.56		0.50	ug/L	EPA 8260B	EPA 5030C
	0.19 0.000770 0.62 0.78 0.50 0.51 0.93 0.00403 1.4 2.9 85 1.6 1.2 0.00172 0.28 5.7 1.2 0.67	0.19 0.000770 J 0.62 0.78 J 0.50 0.51 0.93 0.00403 1.4 J 2.9 85 1.6 J 1.2 0.00172 0.28 J 5.7 J 1.2 0.67	0.19 0.020 0.000770 J 0.000402* 0.62 0.50 0.78 J 0.40* 0.50 0.50 0.51 0.50 0.93 0.020 0.00403 0.00100 1.4 J 0.80* 2.9 2.0 85 2.0 1.6 J 0.80* 1.2 0.020 0.00172 0.00100 0.28 J 0.20* 5.7 J 4.0* 1.2 1.0 0.50	0.19 0.020 ug/L 0.000770 J 0.000402* mg/L 0.62 0.50 ug/L 0.78 J 0.40* ug/L 0.50 0.50 ug/L 0.51 0.50 ug/L 0.93 0.020 ug/L 0.00403 0.00100 mg/L 1.4 J 0.80* ug/L 2.9 2.0 ug/L 85 2.0 ug/L 1.6 J 0.80* ug/L 1.2 0.020 ug/L 0.00172 0.00100 mg/L 0.28 J 0.20* ug/L 5.7 J 4.0* ug/L 1.2 1.0 ug/L 0.67 0.50 ug/L	0.19 0.020 ug/L EPA 218.6 0.000770 J 0.000402* mg/L EPA 6020 0.62 0.50 ug/L EPA 8260B 0.78 J 0.40* ug/L EPA 8260B 0.50 ug/L EPA 8260B 0.51 0.50 ug/L EPA 8260B 0.93 0.020 ug/L EPA 8260B 0.00403 0.00100 mg/L EPA 6020 1.4 J 0.80* ug/L EPA 8260B 85 2.0 ug/L EPA 8260B 1.6 J 0.80* ug/L EPA 8260B 1.2 0.020 ug/L EPA 8260B 1.2 0.00100 mg/L EPA 6020 0.28 J 0.20* ug/L EPA 8260B 5.7 J 4.0* ug/L EPA 8260B 1.2 1.0 ug/L EPA 8260B 0.67 0.50 ug/L EPA 8260B

Subcontracted analyses, if any, are not included in this summary.

^{*} MDL is shown

04/04/17

Qualifiers

170404L01

170404L01

Tetra Tech, Inc.

<u>Parameter</u>

3830Q-N-17Q2

Analytical Report

Date Received:

Work Order: 17-04-0177 301 E. Vanderbilt Way, Suite 450 Preparation: N/A San Bernardino, CA 92408-3562 Method: EPA 218.6 Units: ug/L Project: LMC BOU Page 1 of 2 Client Sample Number Lab Sample Date/Time Matrix Instrument Date Date/Time QC Batch ID Number Collected Prepared Analyzed 17-04-0177-1-K 04/04/17 04/04/17 B-1-CW12-N-17Q2 Aqueous IC 16 N/A 170404L01 15:00 22:10 - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. Comment(s): <u>Parameter</u> <u>RL</u> MDL <u>DF</u> Qualifiers Result Chromium, Hexavalent 11 0.020 0.0099 1.00 17-04-0177-2-K 3860K-N-17Q2 04/04/17 IC 16 N/A 04/04/17 170404L01 Aqueous 11:36 22:21 - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. Comment(s): Qualifiers Parameter Result RL MDL DF Chromium, Hexavalent 1.9 0.020 0.0099 1.00 B1-CW17-N-17Q2 17-04-0177-3-K 04/04/17 Aqueous IC 16 N/A 04/04/17 170404L01 - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. Comment(s):

Chromium, Hexavalent	20		0.020	0.0099	1.00	
3831Q-N-17Q2	17-04-0177-4-K	04/04/17 10:14	Aqueous	IC 16	N/A	04/04/17 170404L01 22:44
Comment(s): - Results were evaluated to	the MDL (DL), conc	entrations >=	to the MDL (DL	_) but < RL (L0	DQ), if found, are	qualified with a "J" flag.
<u>Parameter</u>	Resul	<u>t</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Chromium, Hexavalent	ND		0.020	0.0099	1.00	

Aqueous

RL

MDL

IC 16

<u>DF</u>

04/04/17 22:55

N/A

Comment(s): - Results were evaluated to	the MDL (DL), conce	entrations >:	= to the MDL (DI) but < RL (LO	Q), if found, are	qualified with	a "J" flag.
<u>Parameter</u>	Result		<u>RL</u>	<u>MDL</u>	<u>DF</u>		Qualifiers
Chromium, Hexavalent	0.19		0.020	0.0099	1.00		
3830S-N-17Q2	17-04-0177-6-K	04/04/17	Aqueous	IC 16	N/A	04/04/17	1704041 (

04/04/17 12:29

		14:13	7.40000		23:0	06
Comment(s):	- Results were evaluated to the MDL (DL),	concentrations >=	to the MDL (D	L) but < RL (LOQ), if found, are qualifi	ed with a "J" flag.
<u>Parameter</u>	!	Result	<u>RL</u>	MDL	<u>DF</u>	<u>Qualifiers</u>

0.93 0.020 0.0099 1.00 Chromium, Hexavalent

17-04-0177-5-K

Result

Date Received: 04/04/17 Tetra Tech, Inc. Work Order: 17-04-0177 301 E. Vanderbilt Way, Suite 450 Preparation: N/A San Bernardino, CA 92408-3562 Method: EPA 218.6 Units: ug/L

Page 2 of 2 Project: LMC BOU

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
3851N-N-17Q2	17-04-0177-7-K	04/04/17 16:37	Aqueous	IC 16	N/A	04/04/17 23:18	170404L01

Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. <u>Parameter</u> Result <u>RL</u> <u>MDL</u> Qualifiers 1.00 Chromium, Hexavalent 1.2 0.020 0.0099

Method Blank	099-14-5	67-230 N/A	Aqueous	IC 16	N/A	04/04/17 18:36	170404L01
Comment(s):	- Results were evaluated to the MDL	(DL), concentration	ns >= to the MDL (DI	L) but < RL (LO	Q), if found, are	e qualified with a	a "J" flag.
<u>Parameter</u>		Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
Chromium, Hexa	avalent	ND	0.020	0.0099	1.00		

Comment(s): Parameter

Chromium

Analytical Report

Date Received: 04/04/17 Tetra Tech, Inc. Work Order: 17-04-0177 301 E. Vanderbilt Way, Suite 450 Preparation: EPA 3020A Total San Bernardino, CA 92408-3562 Method: EPA 6020 Units: mg/L Project: LMC BOU Page 1 of 2 Client Sample Number Lab Sample Date/Time Matrix Instrument Date Date/Time QC Batch ID Number Collected Prepared Analyzed 17-04-0177-1-L 04/04/17 04/15/17 B-1-CW12-N-17Q2 Aqueous ICP/MS 05 04/13/17 170413LA3 15:00 00:32 - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. Comment(s): <u>Parameter</u> <u>DF</u> Result <u>RL</u> **MDL** Qualifiers Chromium 0.0115 0.00100 0.000402 1.00 3860K-N-17Q2 17-04-0177-2-L 04/04/17 04/15/17 Aqueous ICP/MS 05 04/13/17 170413LA3 11:36 00:36 - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. Comment(s): Parameter Result MDL DF Qualifiers Chromium 0.00344 0.00100 0.000402 1.00 B1-CW17-N-17Q2 17-04-0177-3-L 04/04/17 Aqueous ICP/MS 05 04/13/17 04/15/17 170413LA3 - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. Comment(s): <u>Parameter</u> MDL <u>DF</u> Qualifiers Result <u>RL</u> Chromium 0.0246 0.00100 0.000402 1.00 3831Q-N-17Q2 17-04-0177-4-L 04/04/17 Aqueous ICP/MS 05 04/13/17 04/15/17 170413LA3 00:43 10:14 Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. MDL DF Parameter Result Qualifiers Chromium 0.0213 0.00100 0.000402 1.00 04/15/17 01:39 3830Q-N-17Q2 17-04-0177-5-L 04/04/17 Aqueous ICP/MS 05 04/13/17 170413LA3 - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. Comment(s): <u>Parameter</u> <u>DF</u> Qualifiers Result <u>RL</u> **MDL** Chromium 0.000770 0.00100 0.000402 1.00 J 04/15/17 01:43 3830S-N-17Q2 17-04-0177-6-L 04/04/17 ICP/MS 05 04/13/17 170413LA3 Aqueous 14:13

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Result

0.00403

- Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

0.00100

MDL

0.000402

<u>DF</u>

1.00

Date Received: 04/04/17 Tetra Tech, Inc. Work Order: 17-04-0177 301 E. Vanderbilt Way, Suite 450

Preparation: EPA 3020A Total San Bernardino, CA 92408-3562 Method: EPA 6020

Units: mg/L

Project: LMC BOU Page 2 of 2

Date Prepared QC Batch ID Client Sample Number Lab Sample Date/Time Matrix Instrument Date/Time Number Collected Analyzed 04/04/17 3851N-N-17Q2 17-04-0177-7-L 04/13/17 04/15/17 **Aqueous** ICP/MS 05 170413LA3 16:37 01:46

Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. <u>Parameter</u> Result <u>RL</u> <u>MDL</u> <u>DF</u> Qualifiers

0.00100 Chromium 0.00172 0.000402 1.00

Method Blank	096-06-003-5524 N	N/A Aqueous	ICP/MS 05	04/13/17	04/14/17 21:31	170413LA3	
Comment(s):	- Results were evaluated to the MDL (DL), concen	ntrations >= to the MDL (DI	L) but < RL (LO	Q), if found, are	e qualified with	a "J" flag.	_
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>	
Chromium	ND	0.00100	0.000402	1 00			

Tetra Tech, Inc. Date Received: 04/04/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0177

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 3510C

Method: EPA 8270C (M) Isotope Dilution

Units: ug/L

Project: LMC BOU Page 1 of 2

Client Sample Number	Lab Sample Number			Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-1-CW12-N-17Q2	17-04-0177-1-M	04/04/17 15:00	Aqueous	GC/MS DDD	04/08/17	04/08/17 19:40	170408L10
Comment(s): - Results were eval	uated to the MDL (DL), con	centrations >= t	to the MDL (DL) but < RL (LO	Q), if found, are	qualified with a	a "J" flag.
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>(</u>	<u>Qualifiers</u>
1,4-Dioxane	ND		1.0	0.28	1.00		
Surrogate	Rec.	(%)	Control Limits	Qualifiers			
Nitrobenzene-d5	107		56-123				
1,4-Dioxane-d8(IDS-IS)	42		30-120				

3860K-N-17Q2	17-04-017	7-2-M	04/04/17 11:36	Aqueous	GC/MS DDD	04/08/17	04/08/17 19:56	170408L10
Comment(s): - Res	sults were evaluated to the MDL ([DL), conce	entrations >=	to the MDL (DL) but < RL (LOC), if found, are	qualified with a ".	J" flag.
<u>Parameter</u>		Result		<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qu</u>	<u>alifiers</u>
1,4-Dioxane		ND		1.0	0.28	1.00		
<u>Surrogate</u>		Rec. (<u>%)</u>	Control Limits	<u>Qualifiers</u>			
Nitrobenzene-d5		104		56-123				
1,4-Dioxane-d8(IDS-IS	5)	43		30-120				

B1-CW17-N-17Q2	17-04-0177-3-M	04/04/17 08:31	Aqueous	GC/MS DDD	04/08/17	04/08/17 20:12	170408L10
Comment(s): - Results were evaluated to	the MDL (DL), conce	entrations >=	to the MDL (DL	.) but < RL (LOC), if found, are	qualified with a	a "J" flag.
<u>Parameter</u>	Result	<u>t</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	9	<u>Qualifiers</u>
1,4-Dioxane	2.9		1.0	0.28	1.00		
<u>Surrogate</u>	<u>Rec. (</u>	<u>(%)</u>	Control Limits	<u>Qualifiers</u>			
Nitrobenzene-d5	105		56-123				
1,4-Dioxane-d8(IDS-IS)	41		30-120				

3831Q-N-17Q2	17-04-0177-4-M 04/04 10:14		GC/MS DDD	04/08/17	04/08/17 20:28	170408L10
Comment(s): - Results were evaluated to	the MDL (DL), concentration	ons >= to the MDL (D	L) but < RL (LOC	Q), if found, are	qualified with a	a "J" flag.
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>(</u>	<u>Qualifiers</u>
1,4-Dioxane	ND	1.0	0.28	1.00		
Surrogate	Rec. (%)	Control Limits	Qualifiers			
Nitrobenzene-d5	104	56-123				
1,4-Dioxane-d8(IDS-IS)	39	30-120				

Tetra Tech, Inc. Date Received: 04/04/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0177

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 3510C

Method: EPA 8270C (M) Isotope Dilution

Units: ug/L

Project: LMC BOU Page 2 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
3830Q-N-17Q2	17-04-0177-5-M	04/04/17 12:29	Aqueous	GC/MS DDD	04/08/17	04/08/17 20:44	170408L10
Comment(s): - Results were evalua	ated to the MDL (DL), con	centrations >= t	o the MDL (DL	.) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	Qualifiers
1,4-Dioxane	ND		1.0	0.28	1.00		
Surrogate	Rec.	(%)	Control Limits	Qualifiers			
Nitrobenzene-d5	110		56-123				
1,4-Dioxane-d8(IDS-IS)	40	;	30-120				

3830S-N-17Q2		17-04-0177-6-M	04/04/17 14:13	Aqueous	GC/MS DDD	04/08/17	04/08/17 21:00	170408L10
Comment(s):	- Results were evaluated to	the MDL (DL), cond	entrations >=	to the MDL (DL	.) but < RL (LOC	Q), if found, are	e qualified with	a "J" flag.
<u>Parameter</u>		Resul	<u>t</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
1,4-Dioxane		ND		1.0	0.28	1.00		
<u>Surrogate</u>		Rec.	(%)	Control Limits	Qualifiers			
Nitrobenzene-d5	i	105		56-123				
1,4-Dioxane-d8(IDS-IS)	40		30-120				

3851N-N-17Q2	17-04-	0177-7-M	04/04/17 16:37	Aqueous	GC/MS DDD	04/08/17	04/08/17 21:16	170408L10
Comment(s):	- Results were evaluated to the MD	L (DL), conce	entrations >=	to the MDL (DL) but < RL (LOQ), if found, are	qualified with	a "J" flag.
<u>Parameter</u>		Result	<u> </u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
1,4-Dioxane		ND		1.0	0.28	1.00		
<u>Surrogate</u>		Rec. (<u>%)</u>	Control Limits	<u>Qualifiers</u>			
Nitrobenzene-d5		106		56-123				
1,4-Dioxane-d8(I	IDS-IS)	39		30-120				

Method Blank		099-16-216-1001	N/A	Aqueous	GC/MS DDD	04/08/17	04/08/17 16:16	170408L10
Comment(s):	- Results were evaluated to t	he MDL (DL), conce	entrations >= to	the MDL (DL)) but < RL (LOQ), if found, are	qualified with a	"J" flag.
<u>Parameter</u>		Result	<u>R</u>	<u>L</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
1,4-Dioxane		ND	1.	0	0.28	1.00		
Surrogate		<u>Rec. (</u> '	<u>%)</u> <u>C</u>	ontrol Limits	Qualifiers			
Nitrobenzene-d5		111	56	5-123				
1,4-Dioxane-d8(II	DS-IS)	44	30)-120				

San Bernardino, CA 92408-3562

Analytical Report

 Tetra Tech, Inc.
 Date Received:
 04/04/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0177

Preparation: EPA 5030C Method: EPA 8260B

Units: ug/L

Project: LMC BOU Page 1 of 33

15:00 01:08	0413L043							
Parameter Result RL MDL DF Qualified 1,1,1,2-Tetrachloroethane ND 0.50 0.20 1.00 1,1,1-Trichloroethane ND 0.50 0.20 1.00	q.							
1,1,1,2-Tetrachloroethane ND 0.50 0.20 1.00 1,1,1-Trichloroethane ND 0.50 0.20 1.00	Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.							
1,1,1-Trichloroethane ND 0.50 0.20 1.00	ers							
1,1,2,2-Tetrachloroethane ND 0.50 0.20 1.00								
1,1,2-Trichloro-1,2,2-Trifluoroethane ND 0.50 0.24 1.00								
1,1,2-Trichloroethane ND 0.50 0.20 1.00								
1,1-Dichloroethane ND 0.50 0.20 1.00								
1,1-Dichloroethene 1.9 0.50 0.28 1.00								
1,1-Dichloropropene ND 0.50 0.30 1.00								
1,2,3-Trichlorobenzene ND 0.50 0.20 1.00								
1,2,3-Trichloropropane ND 1.0 0.40 1.00								
1,2,4-Trichlorobenzene ND 0.50 0.20 1.00								
1,2,4-Trimethylbenzene ND 0.50 0.20 1.00								
1,2-Dibromo-3-Chloropropane ND 5.0 2.0 1.00								
1,2-Dibromoethane ND 0.50 0.20 1.00								
1,2-Dichlorobenzene ND 0.50 0.20 1.00								
1,2-Dichloroethane ND 0.50 0.20 1.00								
1,2-Dichloropropane ND 0.50 0.20 1.00								
1,3,5-Trimethylbenzene ND 0.50 0.20 1.00								
1,3-Dichlorobenzene ND 0.50 0.28 1.00								
1,3-Dichloropropane ND 1.0 0.40 1.00								
1,4-Dichlorobenzene ND 0.50 0.20 1.00								
2,2-Dichloropropane ND 1.0 0.40 1.00								
2-Butanone ND 5.0 2.0 1.00								
2-Chlorotoluene ND 0.50 0.20 1.00								
2-Hexanone ND 10 4.0 1.00								
4-Chlorotoluene ND 0.50 0.36 1.00								
4-Methyl-2-Pentanone ND 5.0 2.0 1.00								
Acetone ND 10 4.0 1.00								
Benzene ND 0.50 0.20 1.00								
Bromobenzene ND 0.50 0.32 1.00								
Bromochloromethane ND 1.0 0.40 1.00								
Bromodichloromethane ND 0.50 0.20 1.00								
Bromoform ND 0.50 0.25 1.00								
Bromomethane ND 1.0 0.40 1.00								

 Tetra Tech, Inc.
 Date Received:
 04/04/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0177

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 2 of 33

<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
Carbon Disulfide	ND	1.0	0.40	1.00	
Carbon Tetrachloride	ND	0.50	0.20	1.00	
Chlorobenzene	ND	0.50	0.20	1.00	
Chloroethane	ND	0.50	0.32	1.00	
Chloroform	1.5	0.50	0.20	1.00	
Chloromethane	ND	0.50	0.29	1.00	
Dibromochloromethane	ND	0.50	0.20	1.00	
Dibromomethane	ND	0.50	0.20	1.00	
Dichlorodifluoromethane	2.5	1.0	0.40	1.00	
Ethylbenzene	ND	0.50	0.20	1.00	
Isopropylbenzene	ND	0.50	0.20	1.00	
Methylene Chloride	ND	1.0	0.80	1.00	
Naphthalene	ND	1.0	0.40	1.00	
Styrene	ND	0.50	0.20	1.00	
Tetrachloroethene	5.5	0.50	0.20	1.00	
Toluene	ND	0.50	0.20	1.00	
t-1,2-Dichloroethene	ND	0.50	0.20	1.00	
Trichloroethene	14	0.50	0.29	1.00	
Trichlorofluoromethane	ND	0.50	0.20	1.00	
Vinyl Acetate	ND	5.0	2.0	1.00	
Vinyl Chloride	ND	0.50	0.20	1.00	
c-1,3-Dichloropropene	ND	0.50	0.20	1.00	
c-1,2-Dichloroethene	1.1	0.50	0.20	1.00	
n-Butylbenzene	ND	0.50	0.20	1.00	
n-Propylbenzene	ND	0.50	0.20	1.00	
o-Xylene	ND	0.50	0.32	1.00	
p-Isopropyltoluene	ND	0.50	0.20	1.00	
sec-Butylbenzene	ND	0.50	0.20	1.00	
t-1,3-Dichloropropene	ND	0.50	0.20	1.00	
tert-Butylbenzene	ND	0.50	0.20	1.00	
p/m-Xylene	ND	0.50	0.20	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	0.50	0.20	1.00	
2-Chloroethyl Vinyl Ether	ND	5.0	4.2	1.00	
Hexachloro-1,3-Butadiene	ND	2.0	0.80	1.00	
lodomethane	ND	10	5.0	1.00	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	87	68-120			
Dibromofluoromethane	111	80-127			

Tetra Tech, Inc.	Date Received:	04/04/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0177
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Proiect: LMC BOU		Page 3 of 33

Surrogate	Rec. (%)	Control Limits	Qualifiers
1,2-Dichloroethane-d4	110	80-128	
Toluene-d8	99	80-120	

04/04/17

17-04-0177

Project: LMC BOU

Analytical Report

Tetra Tech, Inc.

301 E. Vanderbilt Way, Suite 450

San Bernardino, CA 92408-3562

Date Received:

Work Order:

Preparation:

Preparation: EPA 5030C Method: EPA 8260B Units: ug/L

Page 4 of 33

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
3860K-N-17Q2	17-04-0177-2-A	04/04/17 11:36	Aqueous	GC/MS L	04/13/17	04/14/17 01:38	170413L043
Comment(s): - Results were evaluated	d to the MDL (DL), con	centrations >=	to the MDL (D	L) but < RL (LO	Q), if found, are	qualified with	a "J" flag.
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
1,1,1,2-Tetrachloroethane	ND		5.0	2.0	10.0		
1,1,1-Trichloroethane	ND		5.0	2.0	10.0		
1,1,2,2-Tetrachloroethane	ND		5.0	2.0	10.0		
1,1,2-Trichloro-1,2,2-Trifluoroethane	8.5		5.0	2.4	10.0		
1,1,2-Trichloroethane	ND		5.0	2.0	10.0		
1,1-Dichloroethane	ND		5.0	2.0	10.0		
1,1-Dichloroethene	17		5.0	2.8	10.0		
1,1-Dichloropropene	ND		5.0	3.0	10.0		
1,2,3-Trichlorobenzene	ND		5.0	2.0	10.0		
1,2,3-Trichloropropane	29		10	4.0	10.0		
1,2,4-Trichlorobenzene	ND		5.0	2.0	10.0		
1,2,4-Trimethylbenzene	ND		5.0	2.0	10.0		
1,2-Dibromo-3-Chloropropane	ND		50	20	10.0		
1,2-Dibromoethane	ND		5.0	2.0	10.0		
1,2-Dichlorobenzene	ND		5.0	2.0	10.0		
1,2-Dichloroethane	ND		5.0	2.0	10.0		
1,2-Dichloropropane	ND		5.0	2.0	10.0		
1,3,5-Trimethylbenzene	ND		5.0	2.0	10.0		
1,3-Dichlorobenzene	ND		5.0	2.8	10.0		
1,3-Dichloropropane	ND		10	4.0	10.0		
1,4-Dichlorobenzene	ND		5.0	2.0	10.0		
2,2-Dichloropropane	ND		10	4.0	10.0		
2-Butanone	ND		50	20	10.0		
2-Chlorotoluene	ND		5.0	2.0	10.0		
2-Hexanone	ND		100	40	10.0		
4-Chlorotoluene	ND		5.0	3.6	10.0		
4-Methyl-2-Pentanone	ND		50	20	10.0		
Acetone	ND		100	40	10.0		
Benzene	ND		5.0	2.0	10.0		
Bromobenzene	ND		5.0	3.2	10.0		
Bromochloromethane	ND		10	4.0	10.0		
Bromodichloromethane	ND		5.0	2.0	10.0		
Bromoform	ND		5.0	2.5	10.0		
Bromomethane	ND		10	4.0	10.0		

 Tetra Tech, Inc.
 Date Received:
 04/04/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0177

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 5 of 33

<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
ND	10	4.0	10.0	
ND	5.0	2.0	10.0	
ND	5.0	2.0	10.0	
ND	5.0	3.2	10.0	
ND	5.0	2.0	10.0	
ND	5.0	2.9	10.0	
ND	5.0	2.0	10.0	
ND	5.0	2.0	10.0	
ND	10	4.0	10.0	
ND	5.0	2.0	10.0	
ND	5.0	2.0	10.0	
ND	10	8.0	10.0	
ND	10	4.0	10.0	
ND	5.0	2.0	10.0	
200	5.0	2.0	10.0	
ND	5.0	2.0	10.0	
ND	5.0	2.0	10.0	
210	5.0	2.9	10.0	
ND	5.0	2.0	10.0	
ND	50	20	10.0	
ND	5.0	2.0	10.0	
ND	5.0	2.0	10.0	
2.3	5.0	2.0	10.0	J
ND	5.0	2.0	10.0	
ND	5.0	2.0	10.0	
ND	5.0	3.2	10.0	
ND	5.0	2.0	10.0	
ND	5.0	2.0	10.0	
ND	5.0	2.0	10.0	
ND	5.0	2.0	10.0	
ND	5.0	2.0	10.0	
ND	5.0	2.0	10.0	
ND	50	42	10.0	
ND	20	8.0	10.0	
ND	100	50	10.0	
<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>		
86	68-120			
105	80-127			
	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND 10 ND 5.0 ND 5.0 ND 5.0 ND 5.0 ND 5.0 ND 5.0 ND 5.0 ND 5.0 ND 5.0 ND 10 ND 5.0 ND 10 ND 10 ND 10 ND 10 ND 10 ND 5.0 ND 10 ND 5.0 ND	ND 10 4.0 ND 5.0 2.0 ND 5.0 2.0 ND 5.0 3.2 ND 5.0 2.9 ND 5.0 2.9 ND 5.0 2.0 ND 10 4.0 ND 5.0 2.0 ND 10 4.0 ND 10 8.0 ND 10 4.0 ND 10 4.0 ND 10 4.0 ND 5.0 2.0 ND 10 4.0 ND 5.0 2.0 ND 5.0 2.0 ND 5.0 2.0 ND 5.0 2.0 ND 5.0 2.0 ND 5.0 2.0 ND 5.0 2.0 ND 5.0 2.0 ND 5.0 2.0 ND 5.0 2.0 ND 5.0 2.0 <t< td=""><td>ND 10 4.0 10.0 ND 5.0 2.0 10.0 ND 5.0 2.0 10.0 ND 5.0 ND 5.0 2.0 10.0 ND 5.0 ND 5.0 2.9 10.0 ND 5.0 ND 5.0 2.9 10.0 ND 5.0 ND 5.0 2.0 10.0 ND 5.0 ND 10 4.0 10.0 ND 10 8.0 10.0 ND ND 5.0 2.0 10.0 ND ND 5.0 2.0 10.0 ND ND 5.0 2.0 10.0 ND ND 5.0 2.0 10.0 ND ND 5.0 2.0 10.0 ND ND 5.0 2.0 10.0 ND ND 5.0 2.0 10.0 ND ND 5.0 2.0 10.0 ND ND 5.0 2.0 10.0 ND ND 5.0 2.0 10.0 ND ND 5.0 2.0 10.0 ND 5.0 10.0 N</td></t<>	ND 10 4.0 10.0 ND 5.0 2.0 10.0 ND 5.0 2.0 10.0 ND 5.0 ND 5.0 2.0 10.0 ND 5.0 ND 5.0 2.9 10.0 ND 5.0 ND 5.0 2.9 10.0 ND 5.0 ND 5.0 2.0 10.0 ND 5.0 ND 10 4.0 10.0 ND 10 8.0 10.0 ND ND 5.0 2.0 10.0 ND ND 5.0 2.0 10.0 ND ND 5.0 2.0 10.0 ND ND 5.0 2.0 10.0 ND ND 5.0 2.0 10.0 ND ND 5.0 2.0 10.0 ND ND 5.0 2.0 10.0 ND ND 5.0 2.0 10.0 ND ND 5.0 2.0 10.0 ND ND 5.0 2.0 10.0 ND ND 5.0 2.0 10.0 ND 5.0 10.0 N

Tetra Tech, Inc.	Date Received:	04/04/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0177
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOU		Page 6 of 33

<u>Surrogate</u>	Rec. (%)	Control Limits	Qualifiers
1,2-Dichloroethane-d4	117	80-128	
Toluene-d8	99	80-120	

04/04/17

17-04-0177

EPA 8260B

ug/L

Analytical Report

Date Received: Tetra Tech, Inc. Work Order: 301 E. Vanderbilt Way, Suite 450 San Bernardino, CA 92408-3562

Preparation: **EPA 5030C** Method:

Units:

Page 7 of 33 Project: LMC BOU

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B1-CW17-N-17Q2	17-04-0177-3-C	04/04/17 08:31	Aqueous	GC/MS L	04/17/17	04/17/17 13:41	170417L008
Comment(s): - Results were evaluated	to the MDL (DL), con	centrations >=	to the MDL (D	L) but < RL (LO	Q), if found, are	qualified with	a "J" flag.
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
1,1,1,2-Tetrachloroethane	ND		2.0	0.80	4.00		
1,1,1-Trichloroethane	ND		2.0	0.80	4.00		
1,1,2,2-Tetrachloroethane	ND		2.0	0.80	4.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		2.0	0.96	4.00		
1,1,2-Trichloroethane	ND		2.0	0.80	4.00		
1,1-Dichloroethane	ND		2.0	0.80	4.00		
1,1-Dichloroethene	2.9		2.0	1.1	4.00		
1,1-Dichloropropene	ND		2.0	1.2	4.00		
1,2,3-Trichlorobenzene	ND		2.0	0.80	4.00		
1,2,3-Trichloropropane	ND		4.0	1.6	4.00		
1,2,4-Trichlorobenzene	ND		2.0	0.80	4.00		
1,2,4-Trimethylbenzene	ND		2.0	0.80	4.00		
1,2-Dibromo-3-Chloropropane	ND		20	8.0	4.00		
1,2-Dibromoethane	ND		2.0	0.80	4.00		
1,2-Dichlorobenzene	ND		2.0	0.80	4.00		
1,2-Dichloroethane	ND		2.0	0.80	4.00		
1,2-Dichloropropane	ND		2.0	0.80	4.00		
1,3,5-Trimethylbenzene	ND		2.0	0.80	4.00		
1,3-Dichlorobenzene	ND		2.0	1.1	4.00		
1,3-Dichloropropane	ND		4.0	1.6	4.00		
1,4-Dichlorobenzene	ND		2.0	0.80	4.00		
2,2-Dichloropropane	ND		4.0	1.6	4.00		
2-Butanone	ND		20	8.0	4.00		
2-Chlorotoluene	ND		2.0	0.80	4.00		
2-Hexanone	ND		40	16	4.00		
4-Chlorotoluene	ND		2.0	1.4	4.00		
4-Methyl-2-Pentanone	ND		20	8.0	4.00		
Acetone	ND		40	16	4.00		
Benzene	ND		2.0	0.80	4.00		
Bromobenzene	ND		2.0	1.3	4.00		
Bromochloromethane	ND		4.0	1.6	4.00		
Bromodichloromethane	ND		2.0	0.80	4.00		
Bromoform	ND		2.0	0.99	4.00		
Bromomethane	ND		4.0	1.6	4.00		

 Tetra Tech, Inc.
 Date Received:
 04/04/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0177

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 8 of 33

Froject. LING BOO					rage o or 55
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Carbon Disulfide	ND	4.0	1.6	4.00	
Carbon Tetrachloride	ND	2.0	0.80	4.00	
Chlorobenzene	ND	2.0	0.80	4.00	
Chloroethane	ND	2.0	1.3	4.00	
Chloroform	4.3	2.0	0.80	4.00	
Chloromethane	ND	2.0	1.2	4.00	
Dibromochloromethane	ND	2.0	0.80	4.00	
Dibromomethane	ND	2.0	0.80	4.00	
Dichlorodifluoromethane	ND	4.0	1.6	4.00	
Ethylbenzene	ND	2.0	0.80	4.00	
Isopropylbenzene	ND	2.0	0.80	4.00	
Methylene Chloride	ND	4.0	3.2	4.00	
Naphthalene	ND	4.0	1.6	4.00	
Styrene	ND	2.0	0.80	4.00	
Tetrachloroethene	70	2.0	0.80	4.00	
Toluene	ND	2.0	0.80	4.00	
t-1,2-Dichloroethene	ND	2.0	0.80	4.00	
Trichloroethene	94	2.0	1.1	4.00	
Trichlorofluoromethane	ND	2.0	0.80	4.00	
Vinyl Acetate	ND	20	8.0	4.00	
Vinyl Chloride	ND	2.0	0.80	4.00	
c-1,3-Dichloropropene	ND	2.0	0.80	4.00	
c-1,2-Dichloroethene	3.2	2.0	0.80	4.00	
n-Butylbenzene	ND	2.0	0.80	4.00	
n-Propylbenzene	ND	2.0	0.80	4.00	
o-Xylene	ND	2.0	1.3	4.00	
p-Isopropyltoluene	ND	2.0	0.80	4.00	
sec-Butylbenzene	ND	2.0	0.80	4.00	
t-1,3-Dichloropropene	ND	2.0	0.80	4.00	
tert-Butylbenzene	ND	2.0	0.80	4.00	
p/m-Xylene	ND	2.0	0.80	4.00	
Methyl-t-Butyl Ether (MTBE)	ND	2.0	0.80	4.00	
2-Chloroethyl Vinyl Ether	ND	20	17	4.00	
Hexachloro-1,3-Butadiene	ND	8.0	3.2	4.00	
lodomethane	ND	40	20	4.00	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	86	68-120			
Dibromofluoromethane	108	80-127			

Tetra Tech, Inc.	Date Received:	04/04/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0177
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOU		Page 9 of 33

Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>
1,2-Dichloroethane-d4	110	80-128	
Toluene-d8	100	80-120	

San Bernardino, CA 92408-3562

Analytical Report

 Tetra Tech, Inc.
 Date Received:
 04/04/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0177

Preparation: EPA 5030C Method: EPA 8260B

Units: ug/L

Project: LMC BOU Page 10 of 33

17-04-0177-4-N 10-04-0177-4-N 10-	Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Parameter Result RL MDL DE Qualifiers 1,1,1,2-Fetrachloroethane ND 0.50 0.20 1.00 1.10 1,1,1,2-Frichloroethane ND 0.50 0.20 1.00 1.10 1,1,2-Frichloroethane ND 0.50 0.24 1.00 1.10 1,1,2-Frichloroethane 0.21 0.50 0.20 1.00 1.10 1,1-Dichloroethane 0.21 0.50 0.20 1.00 J 1,1-Dichloroethane 0.21 0.50 0.20 1.00 J 1,1-Dichloroethane ND 0.50 0.20 1.00 J 1,1-Dichloroethane ND 0.50 0.20 1.00 J 1,2-Bridioropropane ND 0.50 0.20 1.00 J 1,2-A-Trinethylbenzene ND 0.50 0.20 1.00 J 1,2-Dichloroebazene ND 0.50 0.20 1.00 J 1,2-Dichloroebazene ND 0.50<	3831Q-N-17Q2	17-04-0177-4-A		Aqueous	GC/MS L	04/14/17		170414L018
1,1,1,2-Tetrachloroethane ND 0,50 0,20 1,00 1,1,1-Tichichoroethane ND 0,50 0,20 1,00 1,1,2-Tichichoroethane ND 0,50 0,20 1,00 1,1,2-Trichioro-1,2,2-Trifluoroethane ND 0,50 0,20 1,00 1,1-Dichloroethane ND 0,50 0,20 1,00 1,2,3-Trichlorobenzene ND 0,50 0,20 1,00 1,2,4-Trimethylbenzene ND 0,50 0,20 1,00 1,2-Dichloroethane ND 0,50 0,20 1,00 1,2-Dichloroethane ND 0,50 0,20 1,00 1,2-Dichloroethane ND 0,50 0,20 1,00 1,2-Dich	Comment(s): - Results were evaluated	d to the MDL (DL), con	centrations >=	to the MDL (D	L) but < RL (LO	Q), if found, are	qualified with a	a "J" flag.
1,1,1-Trichloroethane ND 0.50 0.20 1.00 1,1,2-Trichloroethane ND 0.50 0.20 1.00 1,1,2-Trichloroethane ND 0.50 0.24 1.00 1,1-Dichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethane ND 0.50 0.20 1.00 1,1-Dichloropropene ND 0.50 0.28 1.00 1,1-Dichloropropene ND 0.50 0.30 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,3-Trichloropropane ND 0.50 0.20 1.00 1,2,4-Trinklorobenzene ND 0.50 0.20 1.00 1,2,4-Trinklytbenzene ND 0.50 0.20 1.00 1,2-Dichloromo-3-Chloropropane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichl	<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	9	<u>Qualifiers</u>
1,1,2,2-Tetrachloroethane ND 0.50 0.20 1.00 1,1,2-Trichloro-1,2,2-Trifluoroethane ND 0.50 0.24 1.00 1,1,2-Trichloroethane ND 0.50 0.20 1.00 J 1,1-Dichloroethane 0.21 0.50 0.28 1.00 J 1,1-Dichloropropene ND 0.50 0.28 1.00 J 1,1-Dichloropropene ND 0.50 0.30 1.00 J 1,1-Dichloropropene ND 0.50 0.20 1.00 J 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 J 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 J 1,2-Hrimethylbenzene ND 0.50 0.20 1.00 J 1,2-Dichloroethane ND 0.50 0.20 1.00 J 1,2-Dichloropropane ND 0.50 0.20 1.00 J 1,3-Dichloropropane ND 0.50 0.20	1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,2-Trichloro-1,2,2-Triffuoroethane ND 0.50 0.24 1.00 1,1,2-Trichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethane 0.21 0.50 0.28 1.00 1,1-Dichloroptoethene ND 0.50 0.28 1.00 1,1-Dichloropropene ND 0.50 0.20 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,3-Trichloropropane ND 1.0 0.40 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,2-Dirhoro-3-Chloropropane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.20 1.00 <tr< td=""><td>1,1,1-Trichloroethane</td><td>ND</td><td></td><td>0.50</td><td>0.20</td><td>1.00</td><td></td><td></td></tr<>	1,1,1-Trichloroethane	ND		0.50	0.20	1.00		
1,1,2-Trichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethane 0,21 0.50 0.20 1.00 1,1-Dichloroethane ND 0.50 0.28 1.00 1,1-Dichloropropene ND 0.50 0.30 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,3-Sirimethylbenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.20 1.00 1,4-Dichlor	1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethane 0.21 0.50 0.20 1.00 J 1,1-Dichloroethene ND 0.50 0.28 1.00 1,1-Dichloroepropene ND 0.50 0.20 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2,2-Trichlorobenzene ND 0.50 0.20 1.00 1,2-Dibromoethane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloroethane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.28 1.00 1,4-Dichlorobenzene ND 0.50 0.28 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2-Elutan	1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		0.50	0.24	1.00		
1,1-Dichloroethene ND 0.50 0.28 1.00 1,1-Dichloropropene ND 0.50 0.30 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,3-Trichlorobenzene ND 1.0 0.40 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2-Librome-3-Chloropropane ND 0.50 0.20 1.00 1,2-Dibrome-3-Chloropropane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloro	1,1,2-Trichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloropropene ND 0.50 0.30 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,3-Trichloroptropane ND 0.50 0.20 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trinchtylbenzene ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 0.50 0.20 1.00 1,2-Dibromeethane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.28 1.00 1,4-Dichloropropane ND 0.50 0.20 1.00 2,2-Dichloropropane ND 0.50 0.20 1.00 2,2-Dichloropropane ND 0.50 0.20 1.00 2-Hexanone	1,1-Dichloroethane	0.21		0.50	0.20	1.00	,	J
1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,3-Trichloropropane ND 1.0 0.40 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 2.0 1.00 1,2-Dibromoethane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichlorobenzene ND 0.50 0.20 1.00 2-Dickloropopane <td>1,1-Dichloroethene</td> <td>ND</td> <td></td> <td>0.50</td> <td>0.28</td> <td>1.00</td> <td></td> <td></td>	1,1-Dichloroethene	ND		0.50	0.28	1.00		
1,2,3-Trichloropropane ND 1,0 0.40 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 2.0 1.00 1,2-Dibromoethane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichloropropane ND 0.50 0.20 1.00 2,2-Dichloropropane ND 0.50 0.20 1.00 2-Butanone ND 0.50 0.20 1.00 2-Hexanone ND <td>1,1-Dichloropropene</td> <td>ND</td> <td></td> <td>0.50</td> <td>0.30</td> <td>1.00</td> <td></td> <td></td>	1,1-Dichloropropene	ND		0.50	0.30	1.00		
1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 2.0 1.00 1,2-Dibromoethane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.28 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 1,4-Dichloropropane ND 0.50 0.20 1.00 2,2-Dichloropropane ND 0.50 0.20 1.00 2,2-Dichloropropane ND 0.50 0.20 1.00 2-Butanone ND 0.50 0.20 1.00 2-Hexanone ND	1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 2.0 1.00 1,2-Dibromoethane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-5-Trimethylbenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2,2-Dichloropropane ND 5.0 0.20 1.00 2,2-Dichloropropane ND 5.0 0.20 1.00 2-Butanone ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.20 1.00 4-Hexanone ND 0.5	1,2,3-Trichloropropane	ND		1.0	0.40	1.00		
1,2-Dibromo-3-Chloropropane ND 5.0 2.0 1.00 1,2-Dibromoethane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloroptopane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.28 1.00 1,3-Dichloropropane ND 0.50 0.28 1.00 1,4-Dichloropenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.20 1.00 4-Hexanone ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 0.50 </td <td>1,2,4-Trichlorobenzene</td> <td>ND</td> <td></td> <td>0.50</td> <td>0.20</td> <td>1.00</td> <td></td> <td></td>	1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2-Dibromoethane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloroethane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3,5-Trimethylbenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.28 1.00 1,4-Dichloropropane ND 1.0 0.40 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 1.0 0.40 1.00 2-Butanone ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.20 1.00 4-Methyl-2-Pentanone ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 0.50	1,2,4-Trimethylbenzene	ND		0.50	0.20	1.00		
1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloroethane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-Frimethylbenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.20 1.00 4-Methyl-2-Pentanone ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Benzene ND 0.50 0.20 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.20 <td< td=""><td>1,2-Dibromo-3-Chloropropane</td><td>ND</td><td></td><td>5.0</td><td>2.0</td><td>1.00</td><td></td><td></td></td<>	1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00		
1,2-Dichloroethane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3,5-Trimethylbenzene ND 0.50 0.28 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Butanone ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 0.50 0.20 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromobenzene ND 0.50 0.20 1.00	1,2-Dibromoethane	ND		0.50	0.20	1.00		
1,2-Dichloropropane ND 0.50 0.20 1.00 1,3,5-Trimethylbenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Hexanone ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 0.50 0.20 1.00 Bromodichloromethane ND 0.50 0.20 1.00	1,2-Dichlorobenzene	ND		0.50	0.20	1.00		
1,3,5-Trimethylbenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromoblerzene ND 0.50 0.32 1.00 Bromochloromethane ND 0.50 0.32 1.00 Bromoform ND 0.50 0.20 1.00	1,2-Dichloroethane	ND		0.50	0.20	1.00		
1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.20 1.00	1,2-Dichloropropane	ND		0.50	0.20	1.00		
1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.36 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.20 1.00	1,3,5-Trimethylbenzene	ND		0.50	0.20	1.00		
1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.20 1.00	1,3-Dichlorobenzene	ND		0.50	0.28	1.00		
2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	1,3-Dichloropropane	ND		1.0	0.40	1.00		
2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	1,4-Dichlorobenzene	ND		0.50	0.20	1.00		
2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.20 1.00	2,2-Dichloropropane	ND		1.0	0.40	1.00		
2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	2-Butanone	ND		5.0	2.0	1.00		
4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	2-Chlorotoluene	ND		0.50	0.20	1.00		
4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	2-Hexanone	ND		10	4.0	1.00		
Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	4-Chlorotoluene	ND		0.50	0.36	1.00		
Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	4-Methyl-2-Pentanone	ND		5.0	2.0	1.00		
Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	•							
Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	Benzene	ND		0.50	0.20	1.00		
Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	Bromobenzene			0.50	0.32	1.00		
Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	Bromochloromethane	ND		1.0	0.40	1.00		
Bromoform ND 0.50 0.25 1.00	Bromodichloromethane							
	Bromomethane				0.40			

 Tetra Tech, Inc.
 Date Received:
 04/04/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0177

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

Project: LMC BOU Page 11 of 33

Carbon Disulfide ND 1.0 0.40 1.00 Carbon Tetrachloride 0.28 0.50 0.20 1.00 J Chlorobenzene ND 0.50 0.20 1.00 C Chloroethane ND 0.50 0.20 1.00 C Chloromethane ND 0.50 0.29 1.00 C D </th <th>e 11 01 33</th>	e 11 01 33
Carbon Tetrachloride 0.28 0.50 0.20 1.00 John Chlorobenzene ND 0.50 0.20 1.00 John Chlorobenzene ND 0.50 0.20 1.00 John Chlorobenzene ND 0.50 0.32 1.00 John Chlorobenzene ND 0.50 0.20 1.00 John Chlorobenzene ND 0.50 0.20 1.00 John Chlorobenzene ND 0.50 0.20 1.00 John Chlorobenzene ND 0.50 0.20 1.00 John Chlorobenzene ND 0.50 0.20 1.00 John Chlorobenzene ND 1.0 0.40 1.00 John Chlorobenzene ND 0.50 0.20 1.00 John Chlorobenzene ND 0.50 0.20 1.00 John Chlorobenzene ND 0.50 0.20 1.00 John Chlorobenzene ND 0.50 0.20 1.00 John Chlorobenzene ND 1.00 0.80 1.00 John Chlorobenzene ND 1.00 ND 1.00 ND 1.00 ND 1.00 <th>Qualifiers</th>	Qualifiers
Chlorobenzene ND 0.50 0.20 1.00 Chloroethane ND 0.50 0.32 1.00 Chloroform 0.66 0.50 0.20 1.00 Chloromethane ND 0.50 0.29 1.00 Dibromochloromethane ND 0.50 0.20 1.00 Dibromomethane ND 0.50 0.20 1.00 Ethylbenzene ND 0.50 0.20 1.00 Isopropylbenzene ND 0.50 0.20 1.00 Methylene Chloride ND 0.50 0.20 1.00 Naphthalene ND 1.0 0.80 1.00	
Chloroethane ND 0.50 0.32 1.00 Chloroform 0.66 0.50 0.20 1.00 Chloromethane ND 0.50 0.29 1.00 Dibromochloromethane ND 0.50 0.20 1.00 Dibromomethane ND 0.50 0.20 1.00 Dichlorodifluoromethane ND 1.0 0.40 1.00 Ethylbenzene ND 0.50 0.20 1.00 Isopropylbenzene ND 0.50 0.20 1.00 Methylene Chloride ND 1.0 0.80 1.00 Naphthalene ND 1.0 0.40 1.00	
Chloroform 0.66 0.50 0.20 1.00 Chloromethane ND 0.50 0.29 1.00 Dibromochloromethane ND 0.50 0.20 1.00 Dibromomethane ND 0.50 0.20 1.00 Dichlorodifluoromethane ND 1.0 0.40 1.00 Ethylbenzene ND 0.50 0.20 1.00 Isopropylbenzene ND 0.50 0.20 1.00 Methylene Chloride ND 1.0 0.80 1.00 Naphthalene ND 1.0 0.40 1.00	
Chloromethane ND 0.50 0.29 1.00 Dibromochloromethane ND 0.50 0.20 1.00 Dibromomethane ND 0.50 0.20 1.00 Dichlorodifluoromethane ND 1.0 0.40 1.00 Ethylbenzene ND 0.50 0.20 1.00 Isopropylbenzene ND 0.50 0.20 1.00 Methylene Chloride ND 1.0 0.80 1.00 Naphthalene ND 1.0 0.40 1.00	
Dibromochloromethane ND 0.50 0.20 1.00 Dibromomethane ND 0.50 0.20 1.00 Dichlorodifluoromethane ND 1.0 0.40 1.00 Ethylbenzene ND 0.50 0.20 1.00 Isopropylbenzene ND 0.50 0.20 1.00 Methylene Chloride ND 1.0 0.80 1.00 Naphthalene ND 1.0 0.40 1.00	
Dibromomethane ND 0.50 0.20 1.00 Dichlorodifluoromethane ND 1.0 0.40 1.00 Ethylbenzene ND 0.50 0.20 1.00 Isopropylbenzene ND 0.50 0.20 1.00 Methylene Chloride ND 1.0 0.80 1.00 Naphthalene ND 1.0 0.40 1.00	
Dichlorodifluoromethane ND 1.0 0.40 1.00 Ethylbenzene ND 0.50 0.20 1.00 Isopropylbenzene ND 0.50 0.20 1.00 Methylene Chloride ND 1.0 0.80 1.00 Naphthalene ND 1.0 0.40 1.00	
Ethylbenzene ND 0.50 0.20 1.00 Isopropylbenzene ND 0.50 0.20 1.00 Methylene Chloride ND 1.0 0.80 1.00 Naphthalene ND 1.0 0.40 1.00	
Isopropylbenzene ND 0.50 0.20 1.00 Methylene Chloride ND 1.0 0.80 1.00 Naphthalene ND 1.0 0.40 1.00	
Methylene Chloride ND 1.0 0.80 1.00 Naphthalene ND 1.0 0.40 1.00	
Naphthalene ND 1.0 0.40 1.00	
Styrene ND 0.50 0.20 1.00	
Tetrachloroethene 1.2 0.50 0.20 1.00	
Toluene ND 0.50 0.20 1.00	
t-1,2-Dichloroethene ND 0.50 0.20 1.00	
Trichloroethene 9.2 0.50 0.29 1.00	
Trichlorofluoromethane ND 0.50 0.20 1.00	
Vinyl Acetate ND 5.0 2.0 1.00	
Vinyl Chloride ND 0.50 0.20 1.00	
c-1,3-Dichloropropene ND 0.50 0.20 1.00	
c-1,2-Dichloroethene 0.40 0.50 0.20 1.00 J	
n-Butylbenzene ND 0.50 0.20 1.00	
n-Propylbenzene ND 0.50 0.20 1.00	
o-Xylene ND 0.50 0.32 1.00	
p-Isopropyltoluene ND 0.50 0.20 1.00	
sec-Butylbenzene ND 0.50 0.20 1.00	
t-1,3-Dichloropropene ND 0.50 0.20 1.00	
tert-Butylbenzene ND 0.50 0.20 1.00	
p/m-Xylene ND 0.50 0.20 1.00	
Methyl-t-Butyl Ether (MTBE) ND 0.50 0.20 1.00	
2-Chloroethyl Vinyl Ether ND 5.0 4.2 1.00	
Hexachloro-1,3-Butadiene ND 2.0 0.80 1.00	
lodomethane ND 10 5.0 1.00	
Surrogate Rec. (%) Control Limits Qualifiers	
1,4-Bromofluorobenzene 88 68-120	
Dibromofluoromethane 113 80-127	

Tetra Tech, Inc.	Date Received:	04/04/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0177
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOU		Page 12 of 33

Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>
1,2-Dichloroethane-d4	116	80-128	
Toluene-d8	101	80-120	

Tetra Tech, Inc. 301 E. Vanderbilt Way, Suite 450 San Bernardino, CA 92408-3562 Date Received:
Work Order:
Preparation:
Method:

17-04-0177 EPA 5030C EPA 8260B

04/04/17

Units:

ug/L

Project: LMC BOU

Page 13 of 33

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
3830Q-N-17Q2	17-04-0177-5-A	04/04/17 12:29	Aqueous	GC/MS L	04/14/17	04/14/17 18:56	170414L018
Comment(s): - Results were evaluated to	the MDL (DL), cond	centrations >=	to the MDL (DI	L) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	<u>Resu</u>	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>(</u>	<u>Qualifiers</u>
1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,1-Trichloroethane	ND		0.50	0.20	1.00		
1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		0.50	0.24	1.00		
1,1,2-Trichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethane	0.62		0.50	0.20	1.00		
1,1-Dichloroethene	ND		0.50	0.28	1.00		
1,1-Dichloropropene	ND		0.50	0.30	1.00		
1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,3-Trichloropropane	ND		1.0	0.40	1.00		
1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,4-Trimethylbenzene	ND		0.50	0.20	1.00		
1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00		
1,2-Dibromoethane	ND		0.50	0.20	1.00		
1,2-Dichlorobenzene	ND		0.50	0.20	1.00		
1,2-Dichloroethane	ND		0.50	0.20	1.00		
1,2-Dichloropropane	ND		0.50	0.20	1.00		
1,3,5-Trimethylbenzene	ND		0.50	0.20	1.00		
1,3-Dichlorobenzene	ND		0.50	0.28	1.00		
1,3-Dichloropropane	ND		1.0	0.40	1.00		
1,4-Dichlorobenzene	ND		0.50	0.20	1.00		
2,2-Dichloropropane	ND		1.0	0.40	1.00		
2-Butanone	ND		5.0	2.0	1.00		
2-Chlorotoluene	ND		0.50	0.20	1.00		
2-Hexanone	ND		10	4.0	1.00		
4-Chlorotoluene	ND		0.50	0.36	1.00		
4-Methyl-2-Pentanone	ND		5.0	2.0	1.00		
Acetone	ND		10	4.0	1.00		
Benzene	ND		0.50	0.20	1.00		
Bromobenzene	ND		0.50	0.32	1.00		
Bromochloromethane	ND		1.0	0.40	1.00		
Bromodichloromethane	ND		0.50	0.20	1.00		
Bromoform	ND		0.50	0.25	1.00		
Bromomethane	ND		1.0	0.40	1.00		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

 Tetra Tech, Inc.
 Date Received:
 04/04/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0177

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 14 of 33

F TOJECI. LIVIC BOO					Fage 14 01 33
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Carbon Disulfide	ND	1.0	0.40	1.00	
Carbon Tetrachloride	ND	0.50	0.20	1.00	
Chlorobenzene	ND	0.50	0.20	1.00	
Chloroethane	ND	0.50	0.32	1.00	
Chloroform	ND	0.50	0.20	1.00	
Chloromethane	ND	0.50	0.29	1.00	
Dibromochloromethane	ND	0.50	0.20	1.00	
Dibromomethane	ND	0.50	0.20	1.00	
Dichlorodifluoromethane	0.78	1.0	0.40	1.00	J
Ethylbenzene	ND	0.50	0.20	1.00	
Isopropylbenzene	ND	0.50	0.20	1.00	
Methylene Chloride	ND	1.0	0.80	1.00	
Naphthalene	ND	1.0	0.40	1.00	
Styrene	ND	0.50	0.20	1.00	
Tetrachloroethene	0.50	0.50	0.20	1.00	
Toluene	ND	0.50	0.20	1.00	
t-1,2-Dichloroethene	ND	0.50	0.20	1.00	
Trichloroethene	ND	0.50	0.29	1.00	
Trichlorofluoromethane	ND	0.50	0.20	1.00	
Vinyl Acetate	ND	5.0	2.0	1.00	
Vinyl Chloride	ND	0.50	0.20	1.00	
c-1,3-Dichloropropene	ND	0.50	0.20	1.00	
c-1,2-Dichloroethene	0.51	0.50	0.20	1.00	
n-Butylbenzene	ND	0.50	0.20	1.00	
n-Propylbenzene	ND	0.50	0.20	1.00	
o-Xylene	ND	0.50	0.32	1.00	
p-Isopropyltoluene	ND	0.50	0.20	1.00	
sec-Butylbenzene	ND	0.50	0.20	1.00	
t-1,3-Dichloropropene	ND	0.50	0.20	1.00	
tert-Butylbenzene	ND	0.50	0.20	1.00	
p/m-Xylene	ND	0.50	0.20	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	0.50	0.20	1.00	
2-Chloroethyl Vinyl Ether	ND	5.0	4.2	1.00	
Hexachloro-1,3-Butadiene	ND	2.0	0.80	1.00	
lodomethane	ND	10	5.0	1.00	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	87	68-120			
Dibromofluoromethane	114	80-127			

Tetra Tech, Inc.	Date Received:	04/04/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0177
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOLL		Page 15 of 33

Surrogate	Rec. (%)	Control Limits	Qualifiers
1,2-Dichloroethane-d4	118	80-128	
Toluene-d8	98	80-120	

Project: LMC BOU

Analytical Report

 Tetra Tech, Inc.
 Date Received:
 04/04/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0177

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

Method: EPA 8260B

Units: ug/L Page 16 of 33

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
3830S-N-17Q2	17-04-0177-6-A	04/04/17 14:13	Aqueous	GC/MS L	04/14/17	04/14/17 19:26	170414L018
Comment(s): - Results were evaluated	to the MDL (DL), conc	entrations >= to	the MDL (DI	_) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resul	<u>t</u> R	<u>L</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	Qualifiers
1,1,1,2-Tetrachloroethane	ND	2	.0	0.80	4.00		
1,1,1-Trichloroethane	ND	2	.0	0.80	4.00		
1,1,2,2-Tetrachloroethane	ND	2	.0	0.80	4.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	2	.0	0.96	4.00		
1,1,2-Trichloroethane	ND	2	.0	0.80	4.00		
1,1-Dichloroethane	ND	2	.0	0.80	4.00		
1,1-Dichloroethene	ND	2	.0	1.1	4.00		
1,1-Dichloropropene	ND	2	.0	1.2	4.00		
1,2,3-Trichlorobenzene	ND	2	.0	0.80	4.00		
1,2,3-Trichloropropane	ND	4	.0	1.6	4.00		
1,2,4-Trichlorobenzene	ND	2	.0	0.80	4.00		
1,2,4-Trimethylbenzene	ND	2	.0	0.80	4.00		
1,2-Dibromo-3-Chloropropane	ND	2	0	8.0	4.00		
1,2-Dibromoethane	ND	2	.0	0.80	4.00		
1,2-Dichlorobenzene	ND	2	.0	0.80	4.00		
1,2-Dichloroethane	ND	2	.0	0.80	4.00		
1,2-Dichloropropane	ND	2	.0	0.80	4.00		
1,3,5-Trimethylbenzene	ND	2	.0	0.80	4.00		
1,3-Dichlorobenzene	ND	2	.0	1.1	4.00		
1,3-Dichloropropane	ND	4	.0	1.6	4.00		
1,4-Dichlorobenzene	ND	2	.0	0.80	4.00		
2,2-Dichloropropane	ND	4	.0	1.6	4.00		
2-Butanone	ND	2	0	8.0	4.00		
2-Chlorotoluene	ND	2	.0	0.80	4.00		
2-Hexanone	ND	4	0	16	4.00		
4-Chlorotoluene	ND	2	.0	1.4	4.00		
4-Methyl-2-Pentanone	ND	2	0	8.0	4.00		
Acetone	ND	4	0	16	4.00		
Benzene	ND	2	.0	0.80	4.00		
Bromobenzene	ND	2	.0	1.3	4.00		
Bromochloromethane	ND	4	.0	1.6	4.00		
Bromodichloromethane	ND	2	.0	0.80	4.00		
Bromoform	ND	2	.0	0.99	4.00		
Bromomethane	ND	4	.0	1.6	4.00		

 Tetra Tech, Inc.
 Date Received:
 04/04/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0177

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 17 of 33

				1 ago 17 ol oo
Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
ND	4.0	1.6	4.00	
ND	2.0	0.80	4.00	
ND	2.0	0.80	4.00	
ND	2.0	1.3	4.00	
1.4	2.0	0.80	4.00	J
ND	2.0	1.2	4.00	
ND	2.0	0.80	4.00	
ND	2.0	0.80	4.00	
ND	4.0	1.6	4.00	
ND	2.0	0.80	4.00	
ND	2.0	0.80	4.00	
ND	4.0	3.2	4.00	
ND	4.0	1.6	4.00	
ND	2.0	0.80	4.00	
2.9	2.0	0.80	4.00	
ND	2.0	0.80	4.00	
ND	2.0	0.80	4.00	
85	2.0	1.1	4.00	
ND	2.0	0.80	4.00	
ND	20	8.0	4.00	
ND	2.0	0.80	4.00	
ND	2.0	0.80	4.00	
ND	2.0	0.80	4.00	
ND	2.0	0.80	4.00	
ND	2.0	0.80	4.00	
ND	2.0	1.3	4.00	
ND	2.0	0.80	4.00	
ND	2.0	0.80	4.00	
ND	2.0	0.80	4.00	
ND	2.0	0.80	4.00	
ND	2.0	0.80	4.00	
1.6	2.0	0.80	4.00	J
ND	20	17	4.00	
ND	8.0	3.2	4.00	
ND	40	20	4.00	
Rec. (%)	Control Limits	<u>Qualifiers</u>		
86	68-120			
109	80-127			
	ND ND ND ND 1.4 ND ND ND ND ND ND ND ND ND ND ND ND ND	ND 4.0 ND 2.0 ND 2.0 ND 2.0 1.4 2.0 ND 2.0 ND 2.0 ND 4.0 ND 2.0 ND 4.0 ND 4.0 ND 2.0 <t< td=""><td>ND 4.0 1.6 ND 2.0 0.80 ND 2.0 0.80 ND 2.0 1.3 1.4 2.0 0.80 ND 2.0 1.2 ND 2.0 0.80 ND 2.0 0.80 ND 2.0 1.2 ND 2.0 0.80 ND 2.0 0.80 ND 2.0 0.80 ND 2.0 0.80 ND 4.0 1.6 ND 2.0 0.80 ND 4.0 1.6 ND 2.0 0.80 ND 4.0 1.6 ND 2.0 0.80 ND 4.0 1.6 ND 2.0 0.80 ND 4.0 1.6 ND 2.0 0.80 ND 4.0 1.6 ND 2.0 0.80 ND</td><td>ND</td></t<>	ND 4.0 1.6 ND 2.0 0.80 ND 2.0 0.80 ND 2.0 1.3 1.4 2.0 0.80 ND 2.0 1.2 ND 2.0 0.80 ND 2.0 0.80 ND 2.0 1.2 ND 2.0 0.80 ND 2.0 0.80 ND 2.0 0.80 ND 2.0 0.80 ND 4.0 1.6 ND 2.0 0.80 ND 4.0 1.6 ND 2.0 0.80 ND 4.0 1.6 ND 2.0 0.80 ND 4.0 1.6 ND 2.0 0.80 ND 4.0 1.6 ND 2.0 0.80 ND 4.0 1.6 ND 2.0 0.80 ND	ND

Tetra Tech, Inc.	Date Received:	04/04/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0177
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOU		Page 18 of 33

<u>Surrogate</u>	Rec. (%)	Control Limits	<u>Qualifiers</u>
1,2-Dichloroethane-d4	114	80-128	
Toluene-d8	101	80-120	

San Bernardino, CA 92408-3562

Analytical Report

 Tetra Tech, Inc.
 Date Received:
 04/04/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0177

Preparation: EPA 5030C Method: EPA 8260B

Units: ug/L

Project: LMC BOU Page 19 of 33

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
3851N-N-17Q2	17-04-0177-7-A	04/04/17 16:37	Aqueous	GC/MS L	04/14/17	04/14/17 19:57	170414L018
Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.							
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,1-Trichloroethane	ND		0.50	0.20	1.00		
1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		0.50	0.24	1.00		
1,1,2-Trichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethane	0.28		0.50	0.20	1.00	J	
1,1-Dichloroethene	ND		0.50	0.28	1.00		
1,1-Dichloropropene	ND		0.50	0.30	1.00		
1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,3-Trichloropropane	ND		1.0	0.40	1.00		
1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,4-Trimethylbenzene	ND		0.50	0.20	1.00		
1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00		
1,2-Dibromoethane	ND		0.50	0.20	1.00		
1,2-Dichlorobenzene	ND		0.50	0.20	1.00		
1,2-Dichloroethane	ND		0.50	0.20	1.00		
1,2-Dichloropropane	ND		0.50	0.20	1.00		
1,3,5-Trimethylbenzene	ND		0.50	0.20	1.00		
1,3-Dichlorobenzene	ND		0.50	0.28	1.00		
1,3-Dichloropropane	ND		1.0	0.40	1.00		
1,4-Dichlorobenzene	ND		0.50	0.20	1.00		
2,2-Dichloropropane	ND		1.0	0.40	1.00		
2-Butanone	ND		5.0	2.0	1.00		
2-Chlorotoluene	ND		0.50	0.20	1.00		
2-Hexanone	ND		10	4.0	1.00		
4-Chlorotoluene	ND		0.50	0.36	1.00		
4-Methyl-2-Pentanone	ND		5.0	2.0	1.00		
Acetone	5.7		10		1.00	J	
Benzene	ND		0.50	0.20	1.00		
Bromobenzene	ND		0.50	0.32	1.00		
Bromochloromethane	ND		1.0	0.40	1.00		
Bromodichloromethane	ND		0.50				
Bromoform			0.50	0.25			
Bromomethane							
Acetone Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform	5.7 ND ND ND		10 0.50 0.50 1.0 0.50	0.32 0.40 0.20	1.00 1.00 1.00	J	

 Tetra Tech, Inc.
 Date Received:
 04/04/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0177

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 20 of 33

Froject. Livio Boo					Fage 20 01 33
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Carbon Disulfide	ND	1.0	0.40	1.00	
Carbon Tetrachloride	ND	0.50	0.20	1.00	
Chlorobenzene	ND	0.50	0.20	1.00	
Chloroethane	ND	0.50	0.32	1.00	
Chloroform	ND	0.50	0.20	1.00	
Chloromethane	ND	0.50	0.29	1.00	
Dibromochloromethane	ND	0.50	0.20	1.00	
Dibromomethane	ND	0.50	0.20	1.00	
Dichlorodifluoromethane	1.2	1.0	0.40	1.00	
Ethylbenzene	ND	0.50	0.20	1.00	
Isopropylbenzene	ND	0.50	0.20	1.00	
Methylene Chloride	ND	1.0	0.80	1.00	
Naphthalene	ND	1.0	0.40	1.00	
Styrene	ND	0.50	0.20	1.00	
Tetrachloroethene	0.67	0.50	0.20	1.00	
Toluene	ND	0.50	0.20	1.00	
t-1,2-Dichloroethene	ND	0.50	0.20	1.00	
Trichloroethene	0.56	0.50	0.29	1.00	
Trichlorofluoromethane	ND	0.50	0.20	1.00	
Vinyl Acetate	ND	5.0	2.0	1.00	
Vinyl Chloride	ND	0.50	0.20	1.00	
c-1,3-Dichloropropene	ND	0.50	0.20	1.00	
c-1,2-Dichloroethene	ND	0.50	0.20	1.00	
n-Butylbenzene	ND	0.50	0.20	1.00	
n-Propylbenzene	ND	0.50	0.20	1.00	
o-Xylene	ND	0.50	0.32	1.00	
p-Isopropyltoluene	ND	0.50	0.20	1.00	
sec-Butylbenzene	ND	0.50	0.20	1.00	
t-1,3-Dichloropropene	ND	0.50	0.20	1.00	
tert-Butylbenzene	ND	0.50	0.20	1.00	
p/m-Xylene	ND	0.50	0.20	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	0.50	0.20	1.00	
2-Chloroethyl Vinyl Ether	ND	5.0	4.2	1.00	
Hexachloro-1,3-Butadiene	ND	2.0	0.80	1.00	
Iodomethane	ND	10	5.0	1.00	
<u>Surrogate</u>	Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	86	68-120			
Dibromofluoromethane	110	80-127			

Tetra Tech, Inc.	Date Received:	04/04/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0177
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOU		Page 21 of 33

<u>Surrogate</u>	Rec. (%)	Control Limits	Qualifiers
1,2-Dichloroethane-d4	116	80-128	
Toluene-d8	100	80-120	

ug/L

Analytical Report

 Tetra Tech, Inc.
 Date Received:
 04/04/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0177

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

Method: EPA 8260B

Project: LMC BOU Page 22 of 33

Units:

Parameter Result BL MDL DE Qualifiers 1.1.1.2-Tetrachloroethane ND 0.50 0.20 1.00 1.10 1.1.1.2-Trichloroethane ND 0.50 0.20 1.00 1.10 1.1.2-Trichloroethane ND 0.50 0.24 1.00 1.10 1.1.2-Trichloroethane ND 0.50 0.20 1.00 1.10 1.1.2-Trichloroethane ND 0.50 0.20 1.00 1.10 1.1-Dichloroethane ND 0.50 0.20 1.00 1.10 1.1-Dichloroethane ND 0.50 0.20 1.00 1.10 1.1-Dichloroptropane ND 0.50 0.20 1.00 1.10 1.1-Dichloroptropane ND 0.50 0.20 1.00 1.20 1.2-A-Trinethylberzene ND 0.50 0.20 1.00 1.20 1.2-Dichloroptane ND 0.50 0.20 1.00 1.20 1.2-Dichlorobenzene ND <th>Client Sample Number</th> <th>Lab Sample Number</th> <th>Date/Time Collected</th> <th>Matrix</th> <th>Instrument</th> <th>Date Prepared</th> <th>Date/Time Analyzed</th> <th>QC Batch ID</th>	Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Parameter Result BL MDL DE Qualifiers 1,1,1,2-Trichloroethane ND 0.50 0.20 1.00 1.10 1.11,1-Trichloroethane ND 0.50 0.20 1.00 1.12,1-Trichloroethane ND 0.50 0.20 1.00 1.12,1-Trichloroethane ND 0.50 0.24 1.00 1.12,1-Trichloroethane ND 0.50 0.20 1.00 1.12,1-Trichloroethane ND 0.50 0.20 1.00 1.12,1-Trichloroethane ND 0.50 0.20 1.00 1.14-Dichloroethane ND 0.50 0.20 1.00 1.22-Dichloroethane ND 0.50 0.20 <	LTB-20170404	17-04-0177-8-A		Aqueous	GC/MS L	04/14/17		170414L018
1,1,1,2-Tetrachloroethane ND 0.50 0.20 1.00 1,1,1-Tichloroethane ND 0.50 0.20 1.00 1,1,2-Trichloroethane ND 0.50 0.20 1.00 1,1,2-Trichloroethane ND 0.50 0.24 1.00 1,1,2-Trichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethane ND 0.50 0.30 1.00 1,1-Dichlorobenzene ND 0.50 0.30 1.00 1,1-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Brithlorobenzene ND 0.50 0.20 1.00 1,2-Brithloropropane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,3-Dichloropropane <td>Comment(s): - Results were evaluated</td> <td>to the MDL (DL), cond</td> <td>centrations >=</td> <td>to the MDL (D</td> <td>L) but < RL (LO</td> <td>Q), if found, are</td> <td>qualified with a</td> <td>"J" flag.</td>	Comment(s): - Results were evaluated	to the MDL (DL), cond	centrations >=	to the MDL (D	L) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
1,1,1-Trichloroethane ND 0.50 0.20 1.00 1,1,2,2-Tertachloroethane ND 0.50 0.20 1.00 1,1,2-Trichloro-1,2,2-Trifluoroethane ND 0.50 0.24 1.00 1,1,2-Trichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethane ND 0.50 0.28 1.00 1,1-Dichloroethane ND 0.50 0.28 1.00 1,1-Dichloroethane ND 0.50 0.28 1.00 1,1-Dichloropropene ND 0.50 0.30 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trintellybenzene ND 0.50 0.20 1.00 1,2,4-Trintellybenzene ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 <t< td=""><td><u>Parameter</u></td><td>Resu</td><td>ı<u>lt</u></td><td><u>RL</u></td><td><u>MDL</u></td><td><u>DF</u></td><td><u>(</u></td><td>Qualifiers</td></t<>	<u>Parameter</u>	Resu	ı <u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>(</u>	Qualifiers
1,1,2,2-Tetrachloroethane ND 0.50 0.20 1.00 1,1,2-Trichloro-1,2,2-Trifluroethane ND 0.50 0.24 1.00 1,1,2-Trichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethane ND 0.50 0.28 1.00 1,1-Dichloropropene ND 0.50 0.28 1.00 1,1-Dichloropropene ND 0.50 0.28 1.00 1,1-Dichloropropene ND 0.50 0.20 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 <tr< td=""><td>1,1,1,2-Tetrachloroethane</td><td>ND</td><td></td><td>0.50</td><td>0.20</td><td>1.00</td><td></td><td></td></tr<>	1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,2-Trichloro-1,2,2-Triffluoroethane ND 0.50 0.24 1.00 1,1,2-Trichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethene ND 0.50 0.28 1.00 1,1-Dichloroptoethene ND 0.50 0.28 1.00 1,1-Dichloropropene ND 0.50 0.20 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,2-Dichloroeropapane ND 0.50 0.20 1.00 1,2-Dichloroerbane ND 0.50 0.20 1.00 1,2-Dichloroerbane ND 0.50 0.20 1.00 1,3-Dichloroerbane ND 0.50 0.20 1.00 1,3-Dichloroerbane ND 0.50 0.28 1.00 <t< td=""><td>1,1,1-Trichloroethane</td><td>ND</td><td></td><td>0.50</td><td>0.20</td><td>1.00</td><td></td><td></td></t<>	1,1,1-Trichloroethane	ND		0.50	0.20	1.00		
1,1,2-Trichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethane ND 0.50 0.28 1.00 1,1-Dichloroptropene ND 0.50 0.30 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,3-Trichloroptropane ND 1.0 0.40 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,2-Dibromo-3-Chloropropane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.20 1.00 1,4-Dichloro	1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethene ND 0.50 0.28 1.00 1,1-Dichloroethene ND 0.50 0.28 1.00 1,2,3-Trichloropene ND 0.50 0.20 1.00 1,2,3-Trichloropenae ND 1.0 0.40 1.00 1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2-Dichromoethane ND 0.50 0.20 1.00 1,2-Dichloroethane ND 0.50 0.20 1.00 1,2-Dichloroethane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.28 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2-Dichloropropane	1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		0.50	0.24	1.00		
1,1-Dichloroethene ND 0.50 0.28 1.00 1,1-Dichloropropene ND 0.50 0.30 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,3-Trichlorobenzene ND 1.0 0.40 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2-Libromo-3-Chloropropane ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloro	1,1,2-Trichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloropropene ND 0.50 0.30 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,3-Trichloropropane ND 1.0 0.40 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trindtylbenzene ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.20 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichloropropane ND 1.0 0.40 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone <td>1,1-Dichloroethane</td> <td>ND</td> <td></td> <td>0.50</td> <td>0.20</td> <td>1.00</td> <td></td> <td></td>	1,1-Dichloroethane	ND		0.50	0.20	1.00		
1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,3-Trichloropropane ND 1.0 0.40 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 0.50 0.20 1.00 1,2-Dibromoethane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichloropropane ND 0.50 0.28 1.00 1,4-Dichloropropane ND 1.0 0.40 1.00 2-Dichloropropane <td>1,1-Dichloroethene</td> <td>ND</td> <td></td> <td>0.50</td> <td>0.28</td> <td>1.00</td> <td></td> <td></td>	1,1-Dichloroethene	ND		0.50	0.28	1.00		
1,2,3-Trichloropropane ND 1.0 0.40 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 2.0 1.00 1,2-Dibromoethane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloroptopane ND 0.50 0.20 1.00 1,2-Dichloroptopane ND 0.50 0.20 1.00 1,2-Dichloroptopane ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.20 1.00 1,3-Dichloroptopane ND 0.50 0.28 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 0.50 0.20 1.00 2-Butanone ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND <td>1,1-Dichloropropene</td> <td>ND</td> <td></td> <td>0.50</td> <td>0.30</td> <td>1.00</td> <td></td> <td></td>	1,1-Dichloropropene	ND		0.50	0.30	1.00		
1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 2.0 1.00 1,2-Dibromoethane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-Trimethylbenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.28 1.00 1,3-Dichloropropane ND 0.50 0.28 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 1,4-Dichloropropane ND 0.50 0.20 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 0.50 0.20 1.00 2,2-Dichloropropane ND 0.50 0.20 1.00 2-Hexanone <t< td=""><td>1,2,3-Trichlorobenzene</td><td>ND</td><td></td><td>0.50</td><td>0.20</td><td>1.00</td><td></td><td></td></t<>	1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 2.0 1.00 1,2-Dibromoethane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-5-Trimethylbenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 0.20 1.00 2-Hexanone ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 0.	1,2,3-Trichloropropane	ND		1.0	0.40	1.00		
1,2-Dibromo-3-Chloropropane ND 5.0 2.0 1.00 1,2-Dibromoethane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloroptopane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.28 1.00 1,3-Dichloropropane ND 0.50 0.28 1.00 1,4-Dichloropropane ND 0.50 0.20 1.00 2,2-Dichloropropane ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 0.50 0.20 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 0	1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2-Dibromoethane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloroethane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3,5-Trimethylbenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 1,4-Dichloropropane ND 1.0 0.40 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Butanone ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 0.50	1,2,4-Trimethylbenzene	ND		0.50	0.20	1.00		
1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloroethane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-5-Trimethylbenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 1.0 0.40 1.00 2-Butanone ND 0.50 0.20 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 0.50 0.20 1.00 Acetone ND 0.50 0.20 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00	1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00		
1,2-Dichloroethane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3,5-Trimethylbenzene ND 0.50 0.28 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 0.20 1.00 2-Butanone ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 0.50 0.20 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromobiloromethane ND 0.50 0.20 1.00	1,2-Dibromoethane	ND		0.50	0.20	1.00		
1,2-Dichloropropane ND 0.50 0.20 1.00 1,3,5-Trimethylbenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Hexanone ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 0.50 0.20 1.00 Bromodichloromethane ND 0.50 0.20 1.00	1,2-Dichlorobenzene	ND		0.50	0.20	1.00		
1,3,5-Trimethylbenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.20 1.00	1,2-Dichloroethane	ND		0.50	0.20	1.00		
1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	1,2-Dichloropropane	ND		0.50	0.20	1.00		
1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	1,3,5-Trimethylbenzene	ND		0.50	0.20	1.00		
1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	1,3-Dichlorobenzene	ND		0.50	0.28	1.00		
2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.20 1.00	1,3-Dichloropropane	ND		1.0	0.40	1.00		
2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	1,4-Dichlorobenzene	ND		0.50	0.20	1.00		
2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.20 1.00	2,2-Dichloropropane	ND		1.0	0.40	1.00		
2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	2-Butanone	ND		5.0	2.0	1.00		
4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	2-Chlorotoluene	ND		0.50	0.20	1.00		
4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	2-Hexanone	ND		10	4.0	1.00		
Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	4-Chlorotoluene	ND		0.50	0.36	1.00		
Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	4-Methyl-2-Pentanone	ND		5.0	2.0	1.00		
Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	Acetone	ND		10	4.0	1.00		
Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	Benzene	ND		0.50	0.20	1.00		
Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	Bromobenzene	ND		0.50	0.32			
Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	Bromochloromethane	ND		1.0	0.40			
Bromoform ND 0.50 0.25 1.00	Bromodichloromethane							
	Bromoform							
	Bromomethane							

 Tetra Tech, Inc.
 Date Received:
 04/04/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0177

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 23 of 33

Project: LIMC BOU					Page 23 of 33
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Carbon Disulfide	ND	1.0	0.40	1.00	
Carbon Tetrachloride	ND	0.50	0.20	1.00	
Chlorobenzene	ND	0.50	0.20	1.00	
Chloroethane	ND	0.50	0.32	1.00	
Chloroform	ND	0.50	0.20	1.00	
Chloromethane	ND	0.50	0.29	1.00	
Dibromochloromethane	ND	0.50	0.20	1.00	
Dibromomethane	ND	0.50	0.20	1.00	
Dichlorodifluoromethane	ND	1.0	0.40	1.00	
Ethylbenzene	ND	0.50	0.20	1.00	
Isopropylbenzene	ND	0.50	0.20	1.00	
Methylene Chloride	ND	1.0	0.80	1.00	
Naphthalene	ND	1.0	0.40	1.00	
Styrene	ND	0.50	0.20	1.00	
Tetrachloroethene	ND	0.50	0.20	1.00	
Toluene	ND	0.50	0.20	1.00	
t-1,2-Dichloroethene	ND	0.50	0.20	1.00	
Trichloroethene	ND	0.50	0.29	1.00	
Trichlorofluoromethane	ND	0.50	0.20	1.00	
Vinyl Acetate	ND	5.0	2.0	1.00	
Vinyl Chloride	ND	0.50	0.20	1.00	
c-1,3-Dichloropropene	ND	0.50	0.20	1.00	
c-1,2-Dichloroethene	ND	0.50	0.20	1.00	
n-Butylbenzene	ND	0.50	0.20	1.00	
n-Propylbenzene	ND	0.50	0.20	1.00	
o-Xylene	ND	0.50	0.32	1.00	
p-Isopropyltoluene	ND	0.50	0.20	1.00	
sec-Butylbenzene	ND	0.50	0.20	1.00	
t-1,3-Dichloropropene	ND	0.50	0.20	1.00	
tert-Butylbenzene	ND	0.50	0.20	1.00	
p/m-Xylene	ND	0.50	0.20	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	0.50	0.20	1.00	
2-Chloroethyl Vinyl Ether	ND	5.0	4.2	1.00	
Hexachloro-1,3-Butadiene	ND	2.0	0.80	1.00	
lodomethane	ND	10	5.0	1.00	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	88	68-120			
Dibromofluoromethane	114	80-127			

Tetra Tech, Inc.	Date Received:	04/04/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0177
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOU		Page 24 of 33

Surrogate	Rec. (%)	Control Limits	Qualifiers
1,2-Dichloroethane-d4	115	80-128	
Toluene-d8	99	80-120	

04/04/17

17-04-0177

EPA 5030C

Analytical Report

Tetra Tech, Inc.

301 E. Vanderbilt Way, Suite 450

San Bernardino, CA 92408-3562

Date Received:

Work Order:

Preparation:

Method: EPA 8260B Units: ug/L

Project: LMC BOU Page 25 of 33

Method Blank 099-10-025-4617 N/A Aqueous GC/MS L 04/13/17 04/13/17 170413L083 Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a *J* flag. Qualifiers Parameter Result RL MDL DE Qualifiers 1,11,2-Trachionoethane ND 0.50 0.20 1.00 1.10 1,11,2-Trichioroethane ND 0.50 0.20 1.00 1.10 1,12-Trichioroethane ND 0.50 0.20 1.00 1.10 1,1-Dichioroethane ND 0.50 0.20 1.00 1.23-Trichioroethane ND 0.50 0.20 1.00 1.23-Trichioroethane ND 0.50 0.20 1.00 1.24-Triniethylbenzene ND 0.5	Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Parameter Result RL MDL DE Qualifiers 1.1.1,2-Tertachloroethane ND 0.50 0.20 1.00 1.1,1-Trichloroethane ND 0.50 0.20 1.00 1.1,2-Tertachloroethane ND 0.50 0.20 1.00 1.1,2-Trichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethane ND 0.50 0.20 1.00 1,1-Dichlorophane ND 0.50 0.20 1.00 1,1-Dichlorophane ND 0.50 0.30 1.00 1,2,3-Trichloropenae ND 0.50 0.20 1.00 1,2,3-Trichloropropane ND 0.50 0.20 1.00 1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,	Method Blank	099-10-025-4617	N/A	Aqueous	GC/MS L	04/13/17		170413L043
1,1,1,2-Tetrachloroethane ND 0,50 0,20 1,00 1,1,1-Trichloroethane ND 0,50 0,20 1,00 1,1,2-Trichloroethane ND 0,50 0,20 1,00 1,1,2-Trichloroethane ND 0,50 0,24 1,00 1,1-Dichloroethane ND 0,50 0,20 1,00 1,1-Dichloroethene ND 0,50 0,20 1,00 1,1-Dichloropropene ND 0,50 0,20 1,00 1,1-Dichloropropene ND 0,50 0,20 1,00 1,2,3-Trichlorobenzene ND 0,50 0,20 1,00 1,2,3-Trichlorobenzene ND 0,50 0,20 1,00 1,2,4-Trimethylbenzene ND 0,50 0,20 1,00 1,2,4-Trimethylbenzene ND 0,50 0,20 1,00 1,2-Dichloroebrachane ND 0,50 0,20 1,00 1,2-Dichloroebrachene ND 0,50 0,20 1,00 1,3-Dichl	Comment(s): - Results were evaluated	to the MDL (DL), cond	entrations >= 1	to the MDL (DI	L) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
1,1,1-Trichloroethane ND 0,50 0,20 1,00 1,1,2,2-Tethachloroethane ND 0,50 0,20 1,00 1,1,2-Trichloro-1,2,2-Trifhuorethane ND 0,50 0,20 1,00 1,1-Dichloroethane ND 0,50 0,20 1,00 1,1-Dichloropene ND 0,50 0,28 1,00 1,1-Dichloropene ND 0,50 0,28 1,00 1,2-Dichloropene ND 0,50 0,30 1,00 1,2-S-Trichlorobenzene ND 0,50 0,20 1,00 1,2,3-Trichlorobenzene ND 0,50 0,20 1,00 1,2,4-Trichlorobenzene ND 0,50 0,20 1,00 1,2,4-Trichloropropane ND 0,50 0,20 1,00 1,2-Dichlorobenzene ND 0,50 0,20 1,00 1,2-Dichlorobenzene ND 0,50 0,20 1,00 1,2-Dichlorobenzene ND 0,50 0,20 1,00 1,3-Dich	<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>(</u>	<u>Qualifiers</u>
1,1,2,2-Tetrachloroethane ND 0.50 0.20 1.00 1,1,2-Trichloroe-1,2,2-Trifluoroethane ND 0.50 0.24 1,00 1,1-Dichloroethane ND 0.50 0.20 1,00 1,1-Dichloroethane ND 0.50 0.28 1,00 1,1-Dichloroethane ND 0.50 0.28 1,00 1,1-Dichloropropene ND 0.50 0.20 1,00 1,2,3-Trichlorobenzene ND 0.50 0.20 1,00 1,2,3-Trichloropropane ND 0.50 0.20 1,00 1,2,4-Trimethylbenzene ND 0.50 0.20 1,00 1,2,4-Trimethylbenzene ND 0.50 0.20 1,00 1,2-Dichlorobenzene ND 0.50 0.20 1,00 1,2-Dichlorobenzene ND 0.50 0.20 1,00 1,2-Dichlorobenzene ND 0.50 0.20 1,00 1,3-Dichlorobenzene ND 0.50 0.20 1,00 1	1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane ND 0.50 0.24 1.00 1,1,2-Trichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethane ND 0.50 0.28 1.00 1,1-Dichloroethane ND 0.50 0.28 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,3-Trichloroptopropane ND 1.0 0.40 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 0.50 0.20 1.00 1,2-Dibrhoroethane ND 0.50 0.20 1.00 1,2-Dibrhoroethane ND 0.50 0.20 1.00 1,3-Dichloroethane ND 0.50 0.20 1.00 1,3-Dichloroethane ND 0.50 0.28 1.00	1,1,1-Trichloroethane	ND		0.50	0.20	1.00		
1,1,2-Trichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethene ND 0.50 0.28 1.00 1,1-Dichloroptropene ND 0.50 0.30 1.00 1,2,3-Trichloroptropane ND 0.50 0.20 1.00 1,2,3-Trichloroptropane ND 0.50 0.20 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trinithylbenzene ND 0.50 0.20 1.00 1,2-Dichloroptropane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.20 1.00 1,3-Dichloroptropane ND 0.50 0.20 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 1,4-Dichloropto	1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethene ND 0.50 0.28 1.00 1,1-Dichloropropene ND 0.50 0.20 1.00 1,2-3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2-4-Trichlorobenzene ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.28 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2-Dichloropropane	1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		0.50	0.24	1.00		
1,1-Dichloroethene ND 0.50 0.28 1.00 1,1-Dichloropropene ND 0.50 0.30 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,3-Trichloropropane ND 1.0 0.40 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,4-Dichlorobenzene	1,1,2-Trichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloropropene ND 0.50 0.30 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,3-Trichloropropane ND 1.0 0.40 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trindhylbenzene ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichlorobenzene ND 1.0 0.40 1.00 1,4-Dichloropropane ND 1.0 0.40 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone	1,1-Dichloroethane	ND		0.50	0.20	1.00		
1.2,3-Trichlorobenzene ND 0.50 0.20 1.00 1.2,3-Trichloropropane ND 1.0 0.40 1.00 1.2,4-Trichlorobenzene ND 0.50 0.20 1.00 1.2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 2.0 1.00 1,2-Dibromo-4-Chloropropane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.28 1.00 1,3-Dichloropropane ND 0.50 0.20 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 0.50 0.20 1.00 2-Butanone	1,1-Dichloroethene	ND		0.50	0.28	1.00		
1,2,3-Trichloropropane ND 1.0 0.40 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 2.0 1.00 1,2-Dibromo-3-Chloropropane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.20 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 0.50 0.20 1.00 2-Butanone ND 0.50 0.20 1.00 2-Hexanone	1,1-Dichloropropene	ND		0.50	0.30	1.00		
1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 2.0 1.00 1,2-Dibromoethane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloroptopane ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 0.50 0.20 1.00 2-Butanone ND 0.50 0.20 1.00 2-Hexanone ND <td>1,2,3-Trichlorobenzene</td> <td>ND</td> <td></td> <td>0.50</td> <td>0.20</td> <td>1.00</td> <td></td> <td></td>	1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 2.0 1.00 1,2-Dibromoethane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloropthane ND 0.50 0.20 1.00 1,3-Dichloroptopane ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloroptopane ND 0.50 0.28 1.00 1,3-Dichloroptopane ND 0.50 0.28 1.00 1,3-Dichloroptopane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2,2-Dichloropropane ND 5.0 0.20 1.00 2-Butanone ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.20 1.00 4-Methyl-2-Pentanone ND	1,2,3-Trichloropropane	ND		1.0	0.40	1.00		
1,2-Dibromo-3-Chloropropane ND 5.0 2.0 1.00 1,2-Dibromoethane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloroptopane ND 0.50 0.20 1.00 1,2-Dichloroptopane ND 0.50 0.20 1.00 1,3-5-Trimethylbenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 0.50 0.28 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 1,4-Dichloropropane ND 0.50 0.20 1.00 2,2-Dichloropropane ND 0.50 0.20 1.00 2,2-Dichloropropane ND 0.50 0.20 1.00 2-Dichloropropane ND 0.50 0.20 1.00 2-Lesarone ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND	1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2-Dibromoethane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloroethane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-5-Trimethylbenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 1.0 0.40 1.00 2-Butanone ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 0.50 <td>1,2,4-Trimethylbenzene</td> <td>ND</td> <td></td> <td>0.50</td> <td>0.20</td> <td>1.00</td> <td></td> <td></td>	1,2,4-Trimethylbenzene	ND		0.50	0.20	1.00		
1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloroethane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3,5-Trimethylbenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.36 1.00 4-Chlorotoluene ND 5.0 2.0 1.00 Acetone ND 5.0 0.20 1.00 Benzene ND 0.50 0.20	1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00		
1,2-Dichloroethane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3,5-Trimethylbenzene ND 0.50 0.28 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Buanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 5.0 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 0.50 0.20 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 0.50 0.20 1.00 <td>1,2-Dibromoethane</td> <td>ND</td> <td></td> <td>0.50</td> <td>0.20</td> <td>1.00</td> <td></td> <td></td>	1,2-Dibromoethane	ND		0.50	0.20	1.00		
1,2-Dichloropropane ND 0.50 0.20 1.00 1,3,5-Trimethylbenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2,2-Dichloropropane ND 5.0 2.0 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 0.50 0.20 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromodichloromethane ND 0.50 0.20 <td>1,2-Dichlorobenzene</td> <td>ND</td> <td></td> <td>0.50</td> <td>0.20</td> <td>1.00</td> <td></td> <td></td>	1,2-Dichlorobenzene	ND		0.50	0.20	1.00		
1,3,5-Trimethylbenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 0.50 0.20 1.00 Bromodichloromethane ND 0.50 0.20 <th< td=""><td>1,2-Dichloroethane</td><td>ND</td><td></td><td>0.50</td><td>0.20</td><td>1.00</td><td></td><td></td></th<>	1,2-Dichloroethane	ND		0.50	0.20	1.00		
1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.20 1.00	1,2-Dichloropropane	ND		0.50	0.20	1.00		
1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.36 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.20 1.00	1,3,5-Trimethylbenzene	ND		0.50	0.20	1.00		
1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 0.50 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.20 1.00	1,3-Dichlorobenzene	ND		0.50	0.28	1.00		
2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 0.50 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.20 1.00	1,3-Dichloropropane	ND		1.0	0.40	1.00		
2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	1,4-Dichlorobenzene	ND		0.50	0.20	1.00		
2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	2,2-Dichloropropane	ND		1.0	0.40	1.00		
2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	2-Butanone	ND		5.0	2.0	1.00		
4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	2-Chlorotoluene	ND		0.50	0.20	1.00		
4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	2-Hexanone	ND		10	4.0	1.00		
Acetone ND 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	4-Chlorotoluene	ND		0.50				
Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	4-Methyl-2-Pentanone	ND		5.0	2.0	1.00		
Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	Acetone	ND		10	4.0	1.00		
Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	Benzene	ND		0.50	0.20	1.00		
Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	Bromobenzene	ND		0.50				
Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00								
Bromoform ND 0.50 0.25 1.00								

 Tetra Tech, Inc.
 Date Received:
 04/04/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0177

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 26 of 33

<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
ND	1.0	0.40	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.32	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.29	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	1.0	0.40	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	1.0	0.80	1.00	
ND	1.0	0.40	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.29	1.00	
ND	0.50	0.20	1.00	
ND	5.0	2.0	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.32	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	5.0	4.2	1.00	
ND	2.0	0.80	1.00	
ND	10	5.0	1.00	
Rec. (%)	Control Limits	<u>Qualifiers</u>		
88	68-120			
100	80-127			
	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND 1.0 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 1.0 ND 0.50	ND 1.0 0.40 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.32 ND 0.50 0.20 ND 0.50 0.29 ND 0.50 0.20 ND 0.50 0.20 ND 1.0 0.40 ND 0.50 0.20 ND 1.0 0.40 ND 0.50 0.20 ND 1.0 0.40 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND <td< td=""><td>ND</td></td<>	ND

Tetra Tech, Inc.	Date Received:	04/04/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0177
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOLL		Page 27 of 33

Surrogate	Rec. (%)	Control Limits	Qualifiers
1,2-Dichloroethane-d4	109	80-128	
Toluene-d8	97	80-120	

Project: LMC BOU

Analytical Report

 Tetra Tech, Inc.
 Date Received:
 04/04/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0177

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

Method: EPA 8260B

Units: ug/L Page 28 of 33

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-10-025-4618	N/A	Aqueous	GC/MS L	04/14/17	04/14/17 12:40	170414L018

Method Blank	099-10-025-4618 N/A	Aqueous	GC/MS L	04/14/17	04/14/17 12:40	170414L018
Comment(s): - Results were evaluated	to the MDL (DL), concentrati	ions >= to the MDL (DL) but < RL (LC	DQ), if found, are	qualified with	a "J" flag.
<u>Parameter</u>	Result	<u>RL</u>	MDL	<u>DF</u>		Qualifiers
1,1,1,2-Tetrachloroethane	ND	0.50	0.20	1.00		
1,1,1-Trichloroethane	ND	0.50	0.20	1.00		
1,1,2,2-Tetrachloroethane	ND	0.50	0.20	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.50	0.24	1.00		
1,1,2-Trichloroethane	ND	0.50	0.20	1.00		
1,1-Dichloroethane	ND	0.50	0.20	1.00		
1,1-Dichloroethene	ND	0.50	0.28	1.00		
1,1-Dichloropropene	ND	0.50	0.30	1.00		
1,2,3-Trichlorobenzene	ND	0.50	0.20	1.00		
1,2,3-Trichloropropane	ND	1.0	0.40	1.00		
1,2,4-Trichlorobenzene	ND	0.50	0.20	1.00		
1,2,4-Trimethylbenzene	ND	0.50	0.20	1.00		
1,2-Dibromo-3-Chloropropane	ND	5.0	2.0	1.00		
1,2-Dibromoethane	ND	0.50	0.20	1.00		
1,2-Dichlorobenzene	ND	0.50	0.20	1.00		
1,2-Dichloroethane	ND	0.50	0.20	1.00		
1,2-Dichloropropane	ND	0.50	0.20	1.00		
1,3,5-Trimethylbenzene	ND	0.50	0.20	1.00		
1,3-Dichlorobenzene	ND	0.50	0.28	1.00		
1,3-Dichloropropane	ND	1.0	0.40	1.00		
1,4-Dichlorobenzene	ND	0.50	0.20	1.00		
2,2-Dichloropropane	ND	1.0	0.40	1.00		
2-Butanone	ND	5.0	2.0	1.00		
2-Chlorotoluene	ND	0.50	0.20	1.00		
2-Hexanone	ND	10	4.0	1.00		
4-Chlorotoluene	ND	0.50	0.36	1.00		
4-Methyl-2-Pentanone	ND	5.0	2.0	1.00		
Acetone	ND	10	4.0	1.00		
Benzene	ND	0.50	0.20	1.00		
Bromobenzene	ND	0.50	0.32	1.00		
Bromochloromethane	ND	1.0	0.40	1.00		
Bromodichloromethane	ND	0.50	0.20	1.00		
Bromoform	ND	0.50	0.25	1.00		
Bromomethane	ND	1.0	0.40	1.00		

 Tetra Tech, Inc.
 Date Received:
 04/04/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0177

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 29 of 33

FTOJECI. LIVIC BOO					Fage 29 01 33
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Carbon Disulfide	ND	1.0	0.40	1.00	
Carbon Tetrachloride	ND	0.50	0.20	1.00	
Chlorobenzene	ND	0.50	0.20	1.00	
Chloroethane	ND	0.50	0.32	1.00	
Chloroform	ND	0.50	0.20	1.00	
Chloromethane	ND	0.50	0.29	1.00	
Dibromochloromethane	ND	0.50	0.20	1.00	
Dibromomethane	ND	0.50	0.20	1.00	
Dichlorodifluoromethane	ND	1.0	0.40	1.00	
Ethylbenzene	ND	0.50	0.20	1.00	
Isopropylbenzene	ND	0.50	0.20	1.00	
Methylene Chloride	ND	1.0	0.80	1.00	
Naphthalene	ND	1.0	0.40	1.00	
Styrene	ND	0.50	0.20	1.00	
Tetrachloroethene	ND	0.50	0.20	1.00	
Toluene	ND	0.50	0.20	1.00	
t-1,2-Dichloroethene	ND	0.50	0.20	1.00	
Trichloroethene	ND	0.50	0.29	1.00	
Trichlorofluoromethane	ND	0.50	0.20	1.00	
Vinyl Acetate	ND	5.0	2.0	1.00	
Vinyl Chloride	ND	0.50	0.20	1.00	
c-1,3-Dichloropropene	ND	0.50	0.20	1.00	
c-1,2-Dichloroethene	ND	0.50	0.20	1.00	
n-Butylbenzene	ND	0.50	0.20	1.00	
n-Propylbenzene	ND	0.50	0.20	1.00	
o-Xylene	ND	0.50	0.32	1.00	
p-Isopropyltoluene	ND	0.50	0.20	1.00	
sec-Butylbenzene	ND	0.50	0.20	1.00	
t-1,3-Dichloropropene	ND	0.50	0.20	1.00	
tert-Butylbenzene	ND	0.50	0.20	1.00	
p/m-Xylene	ND	0.50	0.20	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	0.50	0.20	1.00	
2-Chloroethyl Vinyl Ether	ND	5.0	4.2	1.00	
Hexachloro-1,3-Butadiene	ND	2.0	0.80	1.00	
lodomethane	ND	10	5.0	1.00	
<u>Surrogate</u>	Rec. (%)	Control Limits	Qualifiers		
1,4-Bromofluorobenzene	85	68-120			
Dibromofluoromethane	98	80-127			

Tetra Tech, Inc.	Date Received:	04/04/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0177
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOU		Page 30 of 33

<u>Surrogate</u>	Rec. (%)	Control Limits	Qualifiers
1,2-Dichloroethane-d4	99	80-128	
Toluene-d8	95	80-120	

Project: LMC BOU

Analytical Report

 Tetra Tech, Inc.
 Date Received:
 04/04/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0177

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

Method: EPA 8260B

Units: ug/L Page 31 of 33

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-10-025-4622	N/A	Aqueous	GC/MS L	04/17/17	04/17/17 11:00	170417L008
Comment(s): - Results were evaluated	d to the MDL (DL), cond	centrations >=	to the MDL (D	L) but < RL (LO	Q), if found, are	qualified with a	a "J" flag.
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	9	<u>Qualifiers</u>
1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,1-Trichloroethane	ND		0.50	0.20	1.00		
1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		0.50	0.24	1.00		
1,1,2-Trichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethene	ND		0.50	0.28	1.00		
1,1-Dichloropropene	ND		0.50	0.30	1.00		
1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,3-Trichloropropane	ND		1.0	0.40	1.00		
1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,4-Trimethylbenzene	ND		0.50	0.20	1.00		
1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00		
1,2-Dibromoethane	ND		0.50	0.20	1.00		
1,2-Dichlorobenzene	ND		0.50	0.20	1.00		
1,2-Dichloroethane	ND		0.50	0.20	1.00		
1,2-Dichloropropane	ND		0.50	0.20	1.00		
1,3,5-Trimethylbenzene	ND		0.50	0.20	1.00		
1,3-Dichlorobenzene	ND		0.50	0.28	1.00		
1,3-Dichloropropane	ND		1.0	0.40	1.00		
1,4-Dichlorobenzene	ND		0.50	0.20	1.00		
2,2-Dichloropropane	ND		1.0	0.40	1.00		
2-Butanone	ND		5.0	2.0	1.00		
2-Chlorotoluene	ND		0.50	0.20	1.00		
2-Hexanone	ND		10	4.0	1.00		
4-Chlorotoluene	ND		0.50	0.36	1.00		
4-Methyl-2-Pentanone	ND		5.0	2.0	1.00		
Acetone	ND		10	4.0	1.00		
Benzene	ND		0.50	0.20	1.00		
Bromobenzene	ND		0.50	0.32	1.00		
Bromochloromethane	ND ND		1.0	0.40	1.00		
Bromodichloromethane	ND ND		0.50	0.40	1.00		
Bromoform	ND ND		0.50	0.25	1.00		
Bromomethane	ND ND		1.0	0.40	1.00		
Diomoniemane	ND		1.0	0.40	1.00		

 Tetra Tech, Inc.
 Date Received:
 04/04/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0177

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 32 of 33

Project: LMC BOU					Page 32 of 33
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Carbon Disulfide	ND	1.0	0.40	1.00	
Carbon Tetrachloride	ND	0.50	0.20	1.00	
Chlorobenzene	ND	0.50	0.20	1.00	
Chloroethane	ND	0.50	0.32	1.00	
Chloroform	ND	0.50	0.20	1.00	
Chloromethane	ND	0.50	0.29	1.00	
Dibromochloromethane	ND	0.50	0.20	1.00	
Dibromomethane	ND	0.50	0.20	1.00	
Dichlorodifluoromethane	ND	1.0	0.40	1.00	
Ethylbenzene	ND	0.50	0.20	1.00	
Isopropylbenzene	ND	0.50	0.20	1.00	
Methylene Chloride	ND	1.0	0.80	1.00	
Naphthalene	ND	1.0	0.40	1.00	
Styrene	ND	0.50	0.20	1.00	
Tetrachloroethene	ND	0.50	0.20	1.00	
Toluene	ND	0.50	0.20	1.00	
t-1,2-Dichloroethene	ND	0.50	0.20	1.00	
Trichloroethene	ND	0.50	0.29	1.00	
Trichlorofluoromethane	ND	0.50	0.20	1.00	
Vinyl Acetate	ND	5.0	2.0	1.00	
Vinyl Chloride	ND	0.50	0.20	1.00	
c-1,3-Dichloropropene	ND	0.50	0.20	1.00	
c-1,2-Dichloroethene	ND	0.50	0.20	1.00	
n-Butylbenzene	ND	0.50	0.20	1.00	
n-Propylbenzene	ND	0.50	0.20	1.00	
o-Xylene	ND	0.50	0.32	1.00	
p-Isopropyltoluene	ND	0.50	0.20	1.00	
sec-Butylbenzene	ND	0.50	0.20	1.00	
t-1,3-Dichloropropene	ND	0.50	0.20	1.00	
tert-Butylbenzene	ND	0.50	0.20	1.00	
p/m-Xylene	ND	0.50	0.20	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	0.50	0.20	1.00	
2-Chloroethyl Vinyl Ether	ND	5.0	4.2	1.00	
Hexachloro-1,3-Butadiene	ND	2.0	0.80	1.00	
lodomethane	ND	10	5.0	1.00	
Surrogate	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	86	68-120			
Dibromofluoromethane	104	80-127			

Tetra Tech, Inc.	Date Received:	04/04/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0177
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOU		Page 33 of 33

<u>Surrogate</u>	Rec. (%)	Control Limits	<u>Qualifiers</u>
1,2-Dichloroethane-d4	101	80-128	
Toluene-d8	97	80-120	

Tetra Tech, Inc.

Date Received:

04/04/17

301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-0177

San Bernardino, CA 92408-3562

Preparation:

EPA 5030C

Method:

EPA 8260B SIM

Units: ug/L

Project: LMC BOU Page 1 of 3

Client Sample N	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-1-CW12-N-1	7Q2	17-04-0177-1-F	04/04/17 15:00	Aqueous	GC/MS M	04/07/17	04/08/17 01:35	170407L045
Comment(s):	- Results were evaluated	to the MDL (DL), con	centrations >= t	o the MDL (D	L) but < RL (LC	Q), if found, are	e qualified with a	"J" flag.

<u>Parameter</u> <u>Result</u> <u>RL</u> <u>MDL</u> <u>DF</u> <u>Qualifiers</u>

1,2,3-Trichloropropane ND 0.0050 0.0025 1.00

<u>Surrogate</u> <u>Rec. (%)</u> <u>Control Limits</u> <u>Qualifiers</u>

1,4-Dichlorobutane 100 67-133

3860K-N-17Q2	17-0	04-0177-2-H	04/04/17 11:36	Aqueous	GC/MS M	04/08/17	04/08/17 14:40	170408L018
Comment(s):	- Results were evaluated to the l	MDL (DL), conce	entrations >= to	the MDL (DL	.) but < RL (LOC	(), if found, are o	qualified with a "	J" flag.
<u>Parameter</u>		Result	<u>R</u>	<u>L</u>	MDL	<u>DF</u>	Qu	alifiers

1,2,3-Trichloropropane 32 2.5 1.2 500

<u>Surrogate</u> <u>Rec. (%)</u> <u>Control Limits</u> <u>Qualifiers</u>

1,4-Dichlorobutane 90 67-133

B1-CW17-N-17Q2	17-04-0177-3-G	04/04/17 A 08:31	queous GC/MS M	04/10/17	04/10/17 12:41	170410L035
Comment(s): - Results were eva	luated to the MDL (DL), cond	entrations >= to the	MDL (DL) but < RL (Le	OQ), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>t</u> <u>RL</u>	<u>MDL</u>	<u>DF</u>	Q	<u>ualifiers</u>
1,2,3-Trichloropropane	ND	0.005	0.0025	1.00		
Surrogate	Rec	(%) Conti	ol Limits Qualifie	rs		

Surrogate Nec. (70) Control Limits Qualifiers

1,4-Dichlorobutane 89 67-133

3831Q-N-17Q2		17-04-0177-4-H	04/04/17 10:14	Aqueous	GC/MS M	04/08/17	04/08/17 14:10	170408L018
Comment(s):	- Results were evaluated to	the MDL (DL), cond	centrations >=	to the MDL (DI	L) but < RL (LC	Q), if found, are	e qualified with a	a "J" flag.
Parameter		Resu	lt .	RI	MDI	DE	(Oualifiers

1,2,3-Trichloropropane 0.011 0.0050 0.0025 1.00

<u>Surrogate</u> <u>Rec. (%)</u> <u>Control Limits</u> <u>Qualifiers</u>

1,4-Dichlorobutane 101 67-133

Comment(s):

Analytical Report

Date Received: 04/04/17 Tetra Tech, Inc. Work Order: 17-04-0177 301 E. Vanderbilt Way, Suite 450 Preparation: **EPA 5030C** San Bernardino, CA 92408-3562 Method: **EPA 8260B SIM** Units: ug/L

Project: LMC BOU Page 2 of 3

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
3830Q-N-17Q2	17-04-0177-5-H	04/04/17 12:29	Aqueous	GC/MS M	04/08/17	04/08/17 17:11	170408L018

- Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

<u>Parameter</u> Result <u>MDL</u> DF Qualifiers <u>RL</u> 1,2,3-Trichloropropane ND 0.0050 0.0025 1.00

Surrogate Rec. (%) **Control Limits** Qualifiers

107 67-133 1,4-Dichlorobutane

3	830S-N-17Q2	17-04-0177-6-Н	04/04/17 14:13	Aqueous	GC/MS M	04/08/17	04/08/17 17:41	170408L018
(Comment(s)	- Results were evaluated to the MDL (DL) con	centrations >= to	the MDI (DI) but < RL (LOC)) if found are o	qualified with a ".	l" flag

<u>MD</u>L Parameter Result RL <u>DF</u> Qualifiers

1,2,3-Trichloropropane ND 0.0050 0.0025 1.00

Surrogate Rec. (%) **Control Limits** Qualifiers

1,4-Dichlorobutane 67-133

3851N-N-17Q2		17-04-0177-7-H	04/04/17 16:37	Aqueous	GC/MS M	04/08/17	04/08/17 18:11	170408L018
Comment(s):	- Results were evaluated t	o the MDL (DL), cond	centrations >=	to the MDL (DL) but < RL (LC	Q), if found, are	qualified with	a "J" flag.
<u>Parameter</u>		Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
1,2,3-Trichloropr	ropane	ND		0.0050	0.0025	1.00		
<u>Surrogate</u>		Rec.	(%)	Control Limits	Qualifiers	<u>i</u>		
1.4 Dichlorobuta	200	0.0		67 122				

1.4-Dichlorobutane 98 67-133

LTB-20170404	17-04-0177-8-B	04/04/17 07:00	Aqueous	GC/MS M	04/08/17	04/08/17 12:41	170408L018
Comment(s):	- Results were evaluated to the MDL (DL), con	centrations >= to	the MDL (DL)	but < RL (LOQ)	, if found, are q	ualified with a ".	J" flag.
<u>Parameter</u>	Resi	<u>ılt</u> R	<u>L</u>	<u>MDL</u>	<u>DF</u>	Qu	<u>ialifiers</u>

1,2,3-Trichloropropane ND 0.0050 0.0025 1.00

Surrogate Rec. (%) **Control Limits** Qualifiers

1,4-Dichlorobutane 67-133

Tetra Tech, Inc.

Date Received:

04/04/17

301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-0177

San Bernardino, CA 92408-3562

Preparation:

EPA 5030C

Method: EPA 8260B SIM

Units: ug/L

Project: LMC BOU Page 3 of 3

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-15-118-475	N/A	Aqueous	GC/MS M	04/07/17	04/07/17 22:36	170407L045

Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

Parameter Result RL MDL DF Qualifiers

1,2,3-Trichloropropane ND 0.0050 0.0025 1.00

<u>Surrogate</u> <u>Rec. (%)</u> <u>Control Limits</u> <u>Qualifiers</u>

1,4-Dichlorobutane 102 67-133

Method Blank	099-15-118-476	N/A	Aqueous	GC/MS M	04/08/17	04/08/17 17 11:41	70408L018
Comment(s):	- Results were evaluated to the MDL (DL), con-	centrations >= t	o the MDL (DI) but < RL (LO	Q), if found, are	qualified with a "J" fl	lag.
<u>Parameter</u>	Resu	<u>ılt</u> <u></u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualif</u>	<u>fiers</u>

1,2,3-Trichloropropane ND 0.0050 0.0025 1.00

<u>Surrogate</u> <u>Rec. (%)</u> <u>Control Limits</u> <u>Qualifiers</u>

1,4-Dichlorobutane 90 67-133

Method Blank		099-15-118-478 N/A	Aqueous	GC/MS M	04/10/17	04/10/17 12:11	170410L035
Comment(s):	- Results were evaluated to	the MDL (DL), concentration	ns >= to the MDL (DL) but < RL (LC	Q), if found, are	qualified with a	a "J" flag.
<u>Parameter</u>		<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
1,2,3-Trichloropr	ropane	ND	0.0050	0.0025	1.00		
Surrogate 1,4-Dichlorobuta	ane	<u>Rec. (%)</u> 95	Control Limits 67-133	Qualifiers	<u>5</u>		

 Tetra Tech, Inc.
 Date Received:
 04/04/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0177

 San Bernardino, CA 92408-3562
 Preparation:
 N/A

 Method:
 EPA 218.6

 Project: LMC BOU
 Page 1 of 9

Quality Control Sample ID	Туре		Matrix	lı	nstrument	Date Prepare	d Date An	alyzed	MS/MSD Ba	itch Number
3851N-N-17Q2	Sample		Aqueou	ıs l	C 16	N/A	04/04/17	23:18	170404S01	
3851N-N-17Q2	Matrix Spike		Aqueou	ıs lo	C 16	N/A	04/04/17	23:29	170404S01	
3851N-N-17Q2	Matrix Spike	Duplicate	Aqueou	ıs lo	C 16	N/A	04/04/17	23:40	170404S01	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	<u>RPD</u>	RPD CL	Qualifiers
Chromium, Hexavalent	1.220	10.00	11.60	104	11.81	106	85-121	2	0-25	

Date Received: 04/04/17 Tetra Tech, Inc. Work Order: 17-04-0177 301 E. Vanderbilt Way, Suite 450 Preparation: EPA 3020A Total San Bernardino, CA 92408-3562 Method: EPA 6020

Project: LMC BOU Page 2 of 9

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Batch Number
17-04-0732-1	Sample	Aqueous	ICP/MS 05	04/13/17	04/14/17 22:12	170413SA3
17-04-0732-1	Matrix Spike	Aqueous	ICP/MS 05	04/13/17	04/14/17 21:57	170413SA3
17-04-0732-1	Matrix Spike Duplicate	Aqueous	ICP/MS 05	04/13/17	04/14/17 22:01	170413SA3
<u>Parameter</u>	Sample Spike Conc. Added	MS MS Conc. %F	S MSD Rec. Conc.	MSD %Rec.	%Rec. CL RPD	RPD CL Qualifiers
Chromium	0.01372 0.1000	0.1169 103	3 0.1110	97	73-133 5	0-11

Date Received: 04/04/17 Tetra Tech, Inc. Work Order: 17-04-0177 301 E. Vanderbilt Way, Suite 450

Preparation: **EPA 3510C** San Bernardino, CA 92408-3562

Method: EPA 8270C (M) Isotope Dilution

Page 3 of 9 Project: LMC BOU

Quality Control Sample ID	Туре	Matri	x In:	strument	Date Prepared	Date Analy	/zed	MS/MSD Bat	ch Number
17-04-0178-3	Sample	Aque	eous G	C/MS DDD	04/08/17	04/08/17 1	7:35	170408S10	
17-04-0178-3	Matrix Spike	Aque	eous G	C/MS DDD	04/08/17	04/08/17 1	6:47	170408S10	
17-04-0178-3	Matrix Spike Du	olicate Aque	eous G	C/MS DDD	04/08/17	04/08/17 1	7:03	170408S10	
Parameter		pike <u>MS</u> dded <u>Conc.</u>	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,4-Dioxane	ND 2	0.00 18.78	94	19.14	96	50-130	2	0-20	

 Tetra Tech, Inc.
 Date Received:
 04/04/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0177

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

Project: LMC BOU Page 4 of 9

Quality Control Sample ID	Туре		Matrix	In	strument	Date Prepare	d Date Ana	lyzed	MS/MSD Bat	ch Number
B-1-CW12-N-17Q2	Sample		Aqueou	s G	C/MS L	04/13/17	04/14/17	01:08	170413S027	
B-1-CW12-N-17Q2	Matrix Spike		Aqueou	s G	C/MS L	04/13/17	04/14/17	02:09	170413S027	
B-1-CW12-N-17Q2	Matrix Spike	Duplicate	Aqueou	s G	C/MS L	04/13/17	04/14/17	02:40	170413S027	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,1-Dichloroethene	1.879	10.00	9.512	76	11.28	94	66-126	17	0-20	
1,2-Dibromoethane	ND	10.00	9.253	93	9.618	96	75-126	4	0-20	
1,2-Dichlorobenzene	ND	10.00	9.105	91	9.313	93	75-125	2	0-20	
1,2-Dichloroethane	ND	10.00	9.996	100	9.420	94	75-127	6	0-20	
Benzene	ND	10.00	9.667	97	9.322	93	75-125	4	0-20	
Carbon Tetrachloride	ND	10.00	9.433	94	9.899	99	69-135	5	0-20	
Chlorobenzene	ND	10.00	8.833	88	9.187	92	75-125	4	0-20	
Ethylbenzene	ND	10.00	9.192	92	9.538	95	75-125	4	0-20	
Toluene	ND	10.00	9.113	91	9.343	93	75-125	2	0-20	
Trichloroethene	13.54	10.00	21.27	77	22.03	85	75-125	4	0-20	
Vinyl Chloride	ND	10.00	10.77	108	11.59	116	52-142	7	0-20	
o-Xylene	ND	10.00	9.426	94	9.768	98	75-127	4	0-20	
p/m-Xylene	ND	20.00	18.26	91	19.14	96	75-125	5	0-20	
Methyl-t-Butyl Ether (MTBE)	ND	10.00	8.774	88	8.967	90	71-131	2	0-20	

 Tetra Tech, Inc.
 Date Received:
 04/04/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0177

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

Project: LMC BOU Page 5 of 9

Quality Control Sample ID	Туре		Matrix	In	strument	Date Prepare	d Date Ana	lyzed	MS/MSD Bat	ch Number
17-04-0719-2	Sample		Aqueou	s G	C/MS L	04/14/17	04/14/17	14:20	170414S008	
17-04-0719-2	Matrix Spike		Aqueou	s G	C/MS L	04/14/17	04/14/17	14:51	170414S008	
17-04-0719-2	Matrix Spike	Duplicate	Aqueou	s G	C/MS L	04/14/17	04/14/17	15:21	170414S008	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> <u>Added</u>	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	<u>RPD</u>	RPD CL	Qualifiers
1,1-Dichloroethene	11.26	80.00	76.22	81	75.22	80	66-126	1	0-20	
1,2-Dibromoethane	ND	80.00	71.28	89	72.41	91	75-126	2	0-20	
1,2-Dichlorobenzene	ND	80.00	68.63	86	70.62	88	75-125	3	0-20	
1,2-Dichloroethane	ND	80.00	68.47	86	69.62	87	75-127	2	0-20	
Benzene	ND	80.00	69.04	86	68.75	86	75-125	0	0-20	
Carbon Tetrachloride	ND	80.00	72.94	91	74.00	92	69-135	1	0-20	
Chlorobenzene	ND	80.00	71.82	90	71.80	90	75-125	0	0-20	
Ethylbenzene	ND	80.00	73.13	91	71.87	90	75-125	2	0-20	
Toluene	ND	80.00	68.98	86	69.76	87	75-125	1	0-20	
Trichloroethene	ND	80.00	68.40	85	67.92	85	75-125	1	0-20	
Vinyl Chloride	5.784	80.00	78.97	91	75.75	87	52-142	4	0-20	
o-Xylene	ND	80.00	73.69	92	73.36	92	75-127	0	0-20	
p/m-Xylene	ND	160.0	147.5	92	144.5	90	75-125	2	0-20	
Methyl-t-Butyl Ether (MTBE)	ND	80.00	68.22	85	65.20	81	71-131	5	0-20	

 Tetra Tech, Inc.
 Date Received:
 04/04/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0177

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

Project: LMC BOU Page 6 of 9

Quality Control Sample ID	Туре		Matrix	In	strument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
17-04-0812-10	Sample		Aqueou	is G	C/MS L	04/17/17	04/17/17	11:38	170417S004	
17-04-0812-10	Matrix Spike		Aqueou	ıs G	C/MS L	04/17/17	04/17/17	12:09	170417S004	
17-04-0812-10	Matrix Spike	Duplicate	Aqueou	ıs G	C/MS L	04/17/17	04/17/17	12:40	170417S004	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,1-Dichloroethene	ND	40.00	40.89	102	37.31	93	66-126	9	0-20	
1,2-Dibromoethane	ND	40.00	40.09	100	38.95	97	75-126	3	0-20	
1,2-Dichlorobenzene	ND	40.00	39.39	98	38.17	95	75-125	3	0-20	
1,2-Dichloroethane	ND	40.00	39.67	99	36.93	92	75-127	7	0-20	
Benzene	ND	40.00	42.71	107	39.64	99	75-125	7	0-20	
Carbon Tetrachloride	ND	40.00	48.18	120	45.49	114	69-135	6	0-20	
Chlorobenzene	ND	40.00	41.49	104	38.79	97	75-125	7	0-20	
Ethylbenzene	ND	40.00	44.13	110	41.07	103	75-125	7	0-20	
Toluene	ND	40.00	42.59	106	39.56	99	75-125	7	0-20	
Trichloroethene	ND	40.00	42.88	107	39.37	98	75-125	9	0-20	
Vinyl Chloride	129.4	40.00	173.5	110	175.2	115	52-142	1	0-20	
o-Xylene	ND	40.00	44.32	111	40.85	102	75-127	8	0-20	
p/m-Xylene	ND	80.00	88.99	111	82.77	103	75-125	7	0-20	
Methyl-t-Butyl Ether (MTBE)	ND	40.00	35.80	90	33.94	85	71-131	5	0-20	

 Tetra Tech, Inc.
 Date Received:
 04/04/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0177

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B SIM

 Project: LMC BOU
 Page 7 of 9

Quality Control Sample ID	Туре		Matrix	Ins	strument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
17-04-0173-3	Sample		Aqueous	s G	C/MS M	04/07/17	04/07/17	23:06	170407S025	
17-04-0173-3	Matrix Spike		Aqueous	s Go	C/MS M	04/07/17	04/08/17	00:06	170407S025	
17-04-0173-3	Matrix Spike	Duplicate	Aqueous	s G	C/MS M	04/07/17	04/08/17	00:36	170407S025	
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,2,3-Trichloropropane	ND	0.02000	0.02440	122	0.02370	118	72-132	3	0-20	3

 Tetra Tech, Inc.
 Date Received:
 04/04/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0177

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B SIM

 Project: LMC BOU
 Page 8 of 9

Quality Control Sample ID	Туре		Matrix	In	strument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
17-04-0186-1	Sample		Aqueous	s G	C/MS M	04/08/17	04/08/17	13:40	170408S010	
17-04-0186-1	Matrix Spike		Aqueous	s G	C/MS M	04/08/17	04/08/17	15:40	170408S010	
17-04-0186-1	Matrix Spike	Duplicate	Aqueous	s G	C/MS M	04/08/17	04/08/17	16:10	170408S010	
<u>Parameter</u>	Sample Conc.	<u>Spike</u> Added	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,2,3-Trichloropropane	ND	0.02000	0.02770	138	0.03130	156	70-130	12	0-20	3

 Tetra Tech, Inc.
 Date Received:
 04/04/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0177

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B SIM

 Project: LMC BOU
 Page 9 of 9

Quality Control Sample ID	Туре		Matrix	Ins	trument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
17-04-0322-10	Sample		Aqueous	G G C	MS M	04/10/17	04/10/17	13:40	170410S020	
17-04-0322-10	Matrix Spike		Aqueous	G G	MS M	04/10/17	04/10/17	15:10	170410S020	
17-04-0322-10	Matrix Spike	Duplicate	Aqueous	GC GC	MS M	04/10/17	04/10/17	15:40	170410S020	
<u>Parameter</u>	Sample Conc.	<u>Spike</u> Added	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,2,3-Trichloropropane	ND	0.02000	0.01940	97	0.02180	109	72-132	12	0-20	

Chromium

Quality Control - PDS

Date Received: 04/04/17 Tetra Tech, Inc. Work Order: 17-04-0177 301 E. Vanderbilt Way, Suite 450 Preparation: EPA 3020A Total San Bernardino, CA 92408-3562

Method: EPA 6020

75-125

Project: LMC BOU Page 1 of 1

Quality Control Sample ID Matrix Instrument Date Prepared Date Analyzed PDS/PDSD Batch Туре Number 17-04-0732-1 Sample Aqueous ICP/MS 05 04/13/17 00:00 04/14/17 22:12 170413SA3 17-04-0732-1 PDS Aqueous ICP/MS 05 04/13/17 00:00 04/14/17 22:05 170413SA3 Sample Conc. PDS Conc. %Rec. CL <u>Parameter</u> Spike Added PDS %Rec.

0.1189

105

0.1000

0.01372

Tetra Tech, Inc.

Date Received:

04/04/17
301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-0177

San Bernardino, CA 92408-3562

Preparation:

N/A

Method:

EPA 218.6

Project: LMC BOU Page 1 of 9

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-14-567-230	LCS	Aqueous	IC 16	N/A	04/04/17 18:48	170404L01
<u>Parameter</u>		Spike Added	Conc. Recove	red LCS %Re	ec. %Rec	. CL Qualifiers
Chromium, Hexavalent		10.00	10.03	100	95-107	7

Project: LMC BOU

Quality Control - LCS

Tetra Tech, Inc. 301 E. Vanderbilt Way, Suite 450 San Bernardino, CA 92408-3562 Date Received: Work Order: Preparation: Method:

17-04-0177 EPA 3020A Total EPA 6020

04/04/17

Page 2 of 9

Quality Control Sample ID	Type	Matrix	Instrument D	Date Prepared	Date Analyzed	LCS Batch Number
096-06-003-5524	LCS	Aqueous	ICP/MS 05 0	04/13/17	04/14/17 21:35	170413LA3
<u>Parameter</u>		Spike Added	Conc. Recovered	d LCS %Re	c. %Rec	. CL Qualifiers
Chromium		0.1000	0.1005	101	80-120	0

04/04/17

17-04-0177

EPA 3510C

Project: LMC BOU

Quality Control - LCS

Date Received: Tetra Tech, Inc. 301 E. Vanderbilt Way, Suite 450 San Bernardino, CA 92408-3562

Work Order: Preparation:

Method: EPA 8270C (M) Isotope Dilution Page 3 of 9

Quality Control Sample ID	Type	Matrix	Instrument	Date	e Prepared	Date Analy	zed LCS	S Batch Number
099-16-216-1001	LCS	Aqueous	GC/MS DDD	04/0	08/17	04/08/17 1	6:32 170	408L10
<u>Parameter</u>		Spike Added	Conc. Recove	ered	LCS %Re	ec. %	Rec. CL	<u>Qualifiers</u>
1,4-Dioxane		20.00	18.80		94	5	0-130	

RPD: Relative Percent Difference. CL: Control Limits

Quality Control - LCS/LCSD

Tetra Tech, Inc. 301 E. Vanderbilt Way, Suite 450 San Bernardino, CA 92408-3562 Date Received: Work Order: Preparation: Method: 04/04/17 17-04-0177 EPA 5030C

EPA 8260B

Project: LMC BOU Page 4 of 9

Quality Control Sample ID	Туре		Matrix		Instrument	Date Prepare	d Date A	nalyzed	LCS/LCSD Ba	tch Number
099-10-025-4617	LCS		Aqueous		GC/MS L	04/13/17	04/13/	17 22:04	170413L043	
099-10-025-4617	LCSD		Aqueous		GC/MS L	04/13/17	04/13/	17 22:34	170413L043	
Parameter	<u>Spike</u> <u>Added</u>	LCS Conc.	LCS %Rec.	LCSE Conc		%Rec. CL	ME CL	RPD	RPD CL	Qualifiers
1,1-Dichloroethene	10.00	10.07	101	10.22	102	77-120	70-127	2	0-26	
1,2-Dibromoethane	10.00	10.28	103	10.31	103	80-120	73-127	0	0-32	
1,2-Dichlorobenzene	10.00	9.886	99	10.02	100	80-120	73-127	1	0-30	
1,2-Dichloroethane	10.00	10.05	101	10.03	100	80-122	73-129	0	0-23	
Benzene	10.00	10.28	103	10.13	101	80-120	73-127	1	0-22	
Carbon Tetrachloride	10.00	10.46	105	10.37	104	80-129	72-137	1	0-36	
Chlorobenzene	10.00	10.24	102	10.13	101	80-120	73-127	1	0-29	
Ethylbenzene	10.00	10.57	106	10.59	106	80-120	73-127	0	0-25	
Toluene	10.00	10.37	104	10.12	101	80-120	73-127	2	0-28	
Trichloroethene	10.00	10.30	103	9.939	99	80-120	73-127	4	0-25	
Vinyl Chloride	10.00	11.06	111	10.41	104	63-135	51-147	6	0-30	
o-Xylene	10.00	10.81	108	10.83	108	80-120	73-127	0	0-30	
p/m-Xylene	20.00	21.49	107	21.26	106	80-120	73-127	1	0-30	
Methyl-t-Butyl Ether (MTBE)	10.00	9.519	95	9.337	93	75-123	67-131	2	0-27	

Total number of LCS compounds: 14

Total number of ME compounds: 0

Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass

Tetra Tech, Inc. 301 E. Vanderbilt Way, Suite 450 San Bernardino, CA 92408-3562 Date Received: Work Order: Preparation: Method: 04/04/17 17-04-0177 EPA 5030C

EPA 8260B

Project: LMC BOU Page 5 of 9

Quality Control Sample ID	Type	Matrix	t Inst	trument	Date Prepared	Date Analyzed	LCS Batch Nu	mber
099-10-025-4618	LCS	Aque	ous GC	/MS L	04/14/17	04/14/17 10:29	170414L018	
<u>Parameter</u>		Spike Added	Conc. Reco	overed LCS	8 %Rec. <u>%</u> F	Rec. CL M	E CL	<u>Qualifiers</u>
1,1-Dichloroethene		10.00	8.672	87	77-	-120 70)-127	
1,2-Dibromoethane		10.00	10.16	102	80-	-120 73	3-127	
1,2-Dichlorobenzene		10.00	9.625	96	80-	-120 73	3-127	
1,2-Dichloroethane		10.00	9.608	96	80-	-122 73	3-129	
Benzene		10.00	9.369	94	80-	-120 73	3-127	
Carbon Tetrachloride		10.00	9.910	99	80-	-129 72	2-137	
Chlorobenzene		10.00	9.337	93	80-	-120 73	3-127	
Ethylbenzene		10.00	9.554	96	80-	-120 73	3-127	
Toluene		10.00	9.437	94	80-	-120 73	3-127	
Trichloroethene		10.00	9.128	91	80-	-120 73	3-127	
Vinyl Chloride		10.00	9.740	97	63-	-135 51	1-147	
o-Xylene		10.00	9.880	99	80-	-120 73	3-127	
p/m-Xylene		20.00	19.30	96	80-	-120 73	3-127	
Methyl-t-Butyl Ether (MTBE)		10.00	9.550	95	75-	-123 67	7-131	

Total number of LCS compounds: 14 Total number of ME compounds: 0

Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass

Tetra Tech, Inc. 301 E. Vanderbilt Way, Suite 450 San Bernardino, CA 92408-3562

Date Received: Work Order: Preparation: Method:

04/04/17 17-04-0177 **EPA 5030C**

EPA 8260B

Project: LMC BOU Page 6 of 9

Quality Control Sample ID	Туре	Matrix	nstrumen	t Date Prep	ared Date Ana	lyzed LCS Bate	ch Number
099-10-025-4622	LCS	Aque	ous GC/MS L	04/17/17	04/17/17	10:08 170417L	008
<u>Parameter</u>		Spike Added	Conc. Recovered	LCS %Rec.	%Rec. CL	ME CL	Qualifiers
1,1-Dichloroethene		10.00	8.719	87	77-120	70-127	
1,2-Dibromoethane		10.00	10.64	106	80-120	73-127	
1,2-Dichlorobenzene		10.00	10.17	102	80-120	73-127	
1,2-Dichloroethane		10.00	9.858	99	80-122	73-129	
Benzene		10.00	10.16	102	80-120	73-127	
Carbon Tetrachloride		10.00	10.82	108	80-129	72-137	
Chlorobenzene		10.00	10.40	104	80-120	73-127	
Ethylbenzene		10.00	10.70	107	80-120	73-127	
Toluene		10.00	10.38	104	80-120	73-127	
Trichloroethene		10.00	10.25	103	80-120	73-127	
Vinyl Chloride		10.00	10.36	104	63-135	51-147	
o-Xylene		10.00	10.96	110	80-120	73-127	
p/m-Xylene		20.00	21.84	109	80-120	73-127	
Methyl-t-Butyl Ether (MTBE)		10.00	8.641	86	75-123	67-131	

Total number of LCS compounds: 14 Total number of ME compounds: 0

Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass

RPD: Relative Percent Difference. CL: Control Limits

 Tetra Tech, Inc.
 Date Received:
 04/04/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0177

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B SIM

 Project: LMC BOU
 Page 7 of 9

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-15-118-475	LCS	Aqueous	GC/MS M	04/07/17	04/07/17 21:07	170407L045
<u>Parameter</u>		Spike Added	Conc. Recover	red LCS %R	ec. %Rec	. CL Qualifiers
1,2,3-Trichloropropane		0.02000	0.02320	116	72-13	2

 Tetra Tech, Inc.
 Date Received:
 04/04/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0177

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B SIM

Project: LMC BOU Page 8 of 9

Quality Control Sample ID	Туре	Matrix	Instrument I	Date Prepared	Date Analyzed	LCS Batch Number
099-15-118-476	LCS	Aqueous	GC/MS M	04/08/17	04/08/17 10:42	170408L018
<u>Parameter</u>		Spike Added	Conc. Recovere	ed LCS %Re	ec. %Rec	. CL Qualifiers
1,2,3-Trichloropropane		0.02000	0.02380	119	72-13	2

 Tetra Tech, Inc.
 Date Received:
 04/04/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0177

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B SIM

Project: LMC BOU Page 9 of 9

Quality Control Sample ID	Type	Matrix	Instrument I	Date Prepared	Date Analyzed	LCS Batch Number
099-15-118-478	LCS	Aqueous	GC/MS M	04/10/17	04/10/17 11:04	170410L035
<u>Parameter</u>		Spike Added	Conc. Recovere	ed LCS %Re	ec. %Rec	. CL Qualifiers
1,2,3-Trichloropropane		0.02000	0.02250	112	72-13	2

Sample Analysis Summary Report

Work Order: 17-04-0177				Page 1 of 1
Method	Extraction	Chemist ID	<u>Instrument</u>	Analytical Location
EPA 218.6	N/A	1065	IC 16	1
EPA 6020	EPA 3020A Total	598	ICP/MS 05	1
EPA 8260B	EPA 5030C	316	GC/MS L	2
EPA 8260B	EPA 5030C	823	GC/MS L	2
EPA 8260B SIM	EPA 5030C	486	GC/MS M	2
EPA 8270C (M) Isotope Dilution	EPA 3510C	928	GC/MS DDD	1

Location 1: 7440 Lincoln Way, Garden Grove, CA 92841 Location 2: 7445 Lampson Avenue, Garden Grove, CA 92841

Χ

Ζ

% Recovery and/or RPD out-of-range.

Analyte presence was not confirmed by second column or GC/MS analysis.

Glossary of Terms and Qualifiers

Work Order: 17-04-0177 Page 1 of 1

Qualifiers	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
CI	See case narrative.
Е	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
SG	The sample extract was subjected to Silica Gel treatment prior to analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

WORK ORDER NUMBER: 17-04- 0177

Calscience S

AMPLE RECEIPT CHECKLIST	COOLER	_ OF	
	DATE: 04 / 4	£ /201	•

	- I - 1	SAMPLE RECEIPT	CHECKLIST	¢	COLER	: o	F_ <u>/</u> _
CLIENT: _	Tetra Tech			DA	TE: 04	141	2017
Thermome Samp	ter ID: SC3B (CF: 0.0°C); ila(a) outaide temperature	.0°C, not frozen except sedim Temperature (w/o CF): 2 C criteria (PM/APM contacted b criteria but received on ice/ch)°C (w/ CF): <u>@</u> y:)		M Blank	□ Sam	e elc
□ Sample(perature; placed on ice for tra	_		Check	ed by: <u>/</u> /	291
CUSTODY Cooler Sample(s)	SEAL: ☐ Present and Intact ☐ Present and Intact	Present but Not Intact Present but Not Intact	Not Present	□ N/A □ N/A		ed by: <u>//</u> ed by: <u>}[</u>	
SAMPLE	ONDITION:				Yes	No	N/A
Chain-of-C	ustody (COC) document(s) received with samples			. 2		
		·					
		ne 🗆 Matrix 🗀 Number of c					
1	•	relinquished 🗆 No relinquish		quished time	}		
Sampler's i	name indicated on COC .				. Æ		
Sample co	ntainer label(s) consistent	with COC			. 🗆	Æ	
		od condition					
		sted					
		requested					□
		· 					□.
1 '		yses received within 15-minute					
		issolved Sulfide 🏻 Dissolved			. 🗖	\Box	ø
		d on COC and/or sample coni					
		eceived for certain analyses			-		
	ile Organics □ Total Met	_					
	_	of headspace	85 5 -4 8 \$1 44 1 48 1 18 1 18 1 18 1 18 1 78 -	,			₽
		Gases (RSK-175) 🗆 Dissol					
		Ferrous Iron (SM 3500) 日日					
					. 🗆		æ
CONTAIN	_		(Trip Blar			YZZ BAY	
		na₂ □ 100PJ □ 100PJna₂ [1 125AG8 IT 125A	GBh 13 125/	AGBa 🖾	125PB	
□ 125DR++	ine El 250AGB El 250C6	6B □ 250CGBs 🗗 250PB .€	250PBn 2 500AG	8 D 500AG	J □ 500	AGJs	
		1AGBs 1PB 1PBne					
		zCGJ 🗆 Sleeve () 🗀 E					
		ent Tube DPUF D					
1		ear, E = Envelope, G = Glass, J :					
		ear, ⊵ = Envelope, G = Glæs, G : = HCl, п = HNO₃, па = NaOH, па					DIT
Preservativi		× = Ne₂SO₃+NaHSO₄.H₂O, znne			Review	red by: 💆	N N
I	a = m25/M, u = olitia-brus';	K - MEZOUSTMANDU(INZU, ZILIIB	- 231 (A) (20 A)3 3 14 HB	Sect 1	1.07107	~~ ~y. <u>~</u>	

WORK ORDER NUMBER: 17-04- 0177

SAMPLE ANOMALY REPORT

DATE: 04 / 4 / 2017

SAMPLES, CONTAINERS, AND LABELS:	Comments			
☐ Sample(s) NOT RECEIVED but listed on COC				
☐ Sample(s) received but NOT LISTED on COC				
☐ Holding time expired (list client or ECI sample ID and analysis)				
☐ Insufficient sample amount for requested analysis (list analysis)				
☐ improper container(s) used (list analysis)				
☐ Improper preservative used (list analysts)				
☐ No preservative noted on COC or label (list analysis and notify lab)				
☐ Sample container(s) not labeled				
☐ Client sample label(s) itlegible (list container type and analysis)	Labeled as:			
্রার্থ Client sample label(s) do not match COC (comment)	(-4) 38310-N-17Q2			
☐ Project information				
☑ Client sample ID	(-5) 3830Q-N-17Q2			
☐ Sampling date and/or time				
Number of container(s)	(6) 38305-N-17Q2			
☐ Requested analysis				
☐ Sample container(s) compromised (comment)	date and time matched.			
☐ Broken				
☐ Water present in sample container	(-8) Received 2 vials instead of 3.			
☐ Air sample container(s) compromised (comment)	2×Vials w/ HCL			
□ Flat				
☐ Very low in volume				
☐ Leaking (not transferred; duplicate bag submitted)				
☐ Leaking (transferred into ECI Tedlar™ bags*)	<u></u>			
☐ Leaking (transferred into client's Tedlar™ bags*)				
*Transferred et client's request.				
MISCELLANEOUS: (Describe)	Comments			
HEADSPACE:				
(Containers with bubble > 6 mm or ½ inch for valetile organic or disadved gas analysis)	(Confisioner with bubble for other analysis)			
ECI ECI Total ECI ECI Total 6semple ID Container ID Number** Sample ID Container ID Number**	ECI ECI Total Sample ID Container ID Number** Requested Analysis			
Comments:				
	Reported by: 1017			
Record the total number of containors (i.e., viets or bottles) for the affected sample.	Reported by: 101			
, ,	· · · · · · · · · · · · · · · · · · ·			

urn to Contents

Erick Ovalle

From: Calder, Vanessa < Vanessa.Calder@tetratech.com>

Sent: Thursday, April 06, 2017 5:22 PM

To: Erick Ovalle

Subject: Re: 04/04/2017 COC

Hi Erick,

In regards to lines 4,5 and 6 of the COC dated 04/04/2017. Please use the sample id's found on the bottles sample labels. The id's listed on the COC are incomplete.

For example, line 4 lists sample as 3831Q. This should be 3831Q-N-17Q2. The following lines 5 and 6 should be labeled following the same pattern.

Thank you for catching my mistake, apologies for the inconvenience.

Thank you, Vanessa

Notify us <u>here</u> to report this email as spam.

Calscience

WORK ORDER NUMBER: 17-04-0067

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: Tetra Tech, Inc.

Client Project Name: LMC BOU

Attention: Robert Sabater

301 E. Vanderbilt Way, Suite 450 San Bernardino, CA 92408-3562

Tes Och for

Approved for release on 04/19/2017 by: Vikas Patel Project Manager

ResultLink >

Email your PM >

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name: LMC BOU
Work Order Number: 17-04-0067

1	Work Order Narrative	3
2	Detections Summary	4
3	Client Sample Data. 3.1 EPA 218.6 Hexavalent Chromium Low Level (Aqueous). 3.2 EPA 6020 ICP/MS Metals (Aqueous). 3.3 1,4-Dioxane by EPA 8270C (M) Isotope Dilution (Aqueous). 3.4 EPA 8260B Volatile Organics (Aqueous). 3.5 EPA 8260B SIM Emergent Volatiles (Aqueous).	7 7 9 11 13 43
4	Quality Control Sample Data. 4.1 MS/MSD. 4.2 PDS/PDSD. 4.3 LCS/LCSD.	46 46 54 55
5	Sample Analysis Summary	63
6	Glossary of Terms and Qualifiers	64
7	Chain-of-Custody/Sample Receipt Form	65

Work Order Narrative

Work Order: 17-04-0067 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 04/03/17. They were assigned to Work Order 17-04-0067.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Robert Sabater

Detections Summary

Client: Tetra Tech, Inc.

Attn:

Work Order: Project Name: 17-04-0067

301 E. Vanderbilt Way, Suite 450 San Bernardino, CA 92408-3562 Project Name: LMC BOU Received: 04/03/17

Page 1 of 3

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	<u>Extraction</u>
3872M-N-17Q2 (17-04-0067-1)						
Chromium, Hexavalent	4.4		0.020	ug/L	EPA 218.6	N/A
Chromium	0.00487		0.00100	mg/L	EPA 6020	EPA 3020A Total
Acetone	4.7	J	4.0*	ug/L	EPA 8260B	EPA 5030C
Tetrachloroethene	3.9		0.50	ug/L	EPA 8260B	EPA 5030C
Trichloroethene	2.0		0.50	ug/L	EPA 8260B	EPA 5030C
3872L-N-17Q2 (17-04-0067-2)						
Chromium, Hexavalent	4.4		0.020	ug/L	EPA 218.6	N/A
Chromium	0.00590		0.00100	mg/L	EPA 6020	EPA 3020A Total
Chloroform	0.59		0.50	ug/L	EPA 8260B	EPA 5030C
c-1,2-Dichloroethene	0.23	J	0.20*	ug/L	EPA 8260B	EPA 5030C
Tetrachloroethene	300		10	ug/L	EPA 8260B	EPA 5030C
Trichloroethene	240		10	ug/L	EPA 8260B	EPA 5030C
1,2,3-Trichloropropane	0.095		0.0050	ug/L	EPA 8260B SIM	EPA 5030C
3872N-N-17Q2 (17-04-0067-3)						
Chromium, Hexavalent	6.7		0.020	ug/L	EPA 218.6	N/A
Chromium	0.00788		0.00100	mg/L	EPA 6020	EPA 3020A Total
Acetone	9.3	J	4.0*	ug/L	EPA 8260B	EPA 5030C
Chloroform	0.70		0.50	ug/L	EPA 8260B	EPA 5030C
Tetrachloroethene	310		10	ug/L	EPA 8260B	EPA 5030C
Trichloroethene	120		10	ug/L	EPA 8260B	EPA 5030C
1,2,3-Trichloropropane	0.31		0.025	ug/L	EPA 8260B SIM	EPA 5030C
3852N-N-17Q2 (17-04-0067-4)						
Chromium, Hexavalent	2.5		0.020	ug/L	EPA 218.6	N/A
Chromium	0.00322		0.00100	mg/L	EPA 6020	EPA 3020A Total
Acetone	7.4	J	4.0*	ug/L	EPA 8260B	EPA 5030C
Tetrachloroethene	3.8		0.50	ug/L	EPA 8260B	EPA 5030C
Trichloroethene	2.6		0.50	ug/L	EPA 8260B	EPA 5030C

^{*} MDL is shown

Detections Summary

Client: Tetra Tech, Inc.

Work Order: 17-04-0067

301 E. Vanderbilt Way, Suite 450 San Bernardino, CA 92408-3562 Project Name: LMC BOU Received: 04/03/17

Attn: Robert Sabater Page 2 of 3

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	Method	Extraction
3852M-N-17Q2 (17-04-0067-5)						
Chromium, Hexavalent	0.63		0.020	ug/L	EPA 218.6	N/A
Chromium	0.00153		0.00100	mg/L	EPA 6020	EPA 3020A Total
1,1,2-Trichloroethane	0.25	J	0.20*	ug/L	EPA 8260B	EPA 5030C
1,1-Dichloroethene	0.69		0.50	ug/L	EPA 8260B	EPA 5030C
1,2-Dichloroethane	1.0		0.50	ug/L	EPA 8260B	EPA 5030C
Acetone	5.4	J	4.0*	ug/L	EPA 8260B	EPA 5030C
Carbon Tetrachloride	1.2		0.50	ug/L	EPA 8260B	EPA 5030C
Chloroform	1.5		0.50	ug/L	EPA 8260B	EPA 5030C
Tetrachloroethene	8.8		0.50	ug/L	EPA 8260B	EPA 5030C
Trichloroethene	12		0.50	ug/L	EPA 8260B	EPA 5030C
1,2,3-Trichloropropane	0.21		0.025	ug/L	EPA 8260B SIM	EPA 5030C
3852M-FD-17Q2 (17-04-0067-6)						
Chromium, Hexavalent	0.60		0.020	ug/L	EPA 218.6	N/A
Chromium	0.00333		0.00100	mg/L	EPA 6020	EPA 3020A Total
1,1,2-Trichloroethane	0.26	J	0.20*	ug/L	EPA 8260B	EPA 5030C
1,1-Dichloroethene	0.70		0.50	ug/L	EPA 8260B	EPA 5030C
1,2-Dichloroethane	1.0		0.50	ug/L	EPA 8260B	EPA 5030C
Acetone	9.2	J	4.0*	ug/L	EPA 8260B	EPA 5030C
Carbon Tetrachloride	1.2		0.50	ug/L	EPA 8260B	EPA 5030C
Chloroform	1.5		0.50	ug/L	EPA 8260B	EPA 5030C
Tetrachloroethene	8.6		0.50	ug/L	EPA 8260B	EPA 5030C
Trichloroethene	12		0.50	ug/L	EPA 8260B	EPA 5030C
c-1,2-Dichloroethene	0.22	J	0.20*	ug/L	EPA 8260B	EPA 5030C
1,2,3-Trichloropropane	0.20		0.025	ug/L	EPA 8260B SIM	EPA 5030C
3851M-N-17Q2 (17-04-0067-7)						
Chromium, Hexavalent	1.9		0.020	ug/L	EPA 218.6	N/A
Chromium	0.00303		0.00100	mg/L	EPA 6020	EPA 3020A Total
1,1-Dichloroethene	0.57		0.50	ug/L	EPA 8260B	EPA 5030C
Acetone	9.2	J	4.0*	ug/L	EPA 8260B	EPA 5030C
Carbon Tetrachloride	0.53		0.50	ug/L	EPA 8260B	EPA 5030C
Chloroform	0.62		0.50	ug/L	EPA 8260B	EPA 5030C
Tetrachloroethene	2.2		0.50	ug/L	EPA 8260B	EPA 5030C
Toluene	0.35	J	0.20*	ug/L	EPA 8260B	EPA 5030C
Trichloroethene	12		0.50	ug/L	EPA 8260B	EPA 5030C
c-1,2-Dichloroethene	0.24	J	0.20*	ug/L	EPA 8260B	EPA 5030C
1,2,3-Trichloropropane	0.057		0.0050	ug/L	EPA 8260B SIM	EPA 5030C
LTB-20170403 (17-04-0067-8)				-		
Acetone	11		10	ug/L	EPA 8260B	EPA 5030C

^{*} MDL is shown

Detections Summary

Client: Tetra Tech, Inc.

301 E. Vanderbilt Way, Suite 450 San Bernardino, CA 92408-3562 Work Order:

17-04-0067

Project Name: Received:

LMC BOU 04/03/17

Attn: Robert Sabater

Page 3 of 3

Client SampleID

Analyte Result Qualifiers RL Units Method Extraction

Subcontracted analyses, if any, are not included in this summary.

04/03/17

Tetra Tech, Inc.

Chromium. Hexavalent

<u>Parameter</u>

Analytical Report

Date Received:

Work Order: 17-04-0067 301 E. Vanderbilt Way, Suite 450 Preparation: N/A San Bernardino, CA 92408-3562 Method: EPA 218.6 Units: ug/L Project: LMC BOU Page 1 of 2 Client Sample Number Lab Sample Date/Time Matrix Instrument Date Date/Time QC Batch ID Number Collected Prepared Analyzed 3872M-N-17Q2 17-04-0067-1-K 04/03/17 04/03/17 Aqueous IC 16 N/A 170403L01 15:32 21:20 - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. Comment(s): <u>Parameter</u> MDL <u>DF</u> Result <u>RL</u> Chromium, Hexavalent 4.4 0.020 0.0099 1.00 3872L-N-17Q2 17-04-0067-2-K 04/03/17 IC 16 N/A 04/03/17 Aqueous 170403L01 13:48 21:31 - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. Comment(s): Qualifiers Parameter Result RL MDL DF Chromium, Hexavalent 4.4 0.020 0.0099 1.00 3872N-N-17Q2 17-04-0067-3-K 04/03/17 Aqueous IC 16 N/A 04/03/17 170403L01 - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. Comment(s): RL MDL <u>DF</u> Qualifiers **Parameter** Result 0.020 0.0099 1.00

3852N-N-17Q2 17-04-0067-4-K 04/03/17 Aqueous IC 16 N/A 04/03/17 170403L01 21:54 11:58 - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. Comment(s):

MDL DF Parameter Result <u>RL</u> Qualifiers

Chromium, Hexavalent 2.5 0.020 0.0099 1.00

04/03/17 22:05 04/03/17 3852M-N-17Q2 17-04-0067-5-K Aqueous IC 16 N/A 170403L01

<u>RL</u>

<u>DF</u>

MDL

Qualifiers

- Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. Comment(s):

Result 0.020 0.0099 1.00 Chromium. Hexavalent 0.63

04/03/17 13:29 04/03/17 22:16 3852M-FD-17Q2 17-04-0067-6-K IC 16 N/A 170403L01 Aqueous

- Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. Comment(s): <u>DF</u> **Parameter** Result **MDL**

0.60 0.020 0.0099 1.00 Chromium, Hexavalent

Date Received: 04/03/17 Tetra Tech, Inc. Work Order: 17-04-0067 301 E. Vanderbilt Way, Suite 450 Preparation: N/A San Bernardino, CA 92408-3562 Method: EPA 218.6 Units: ug/L

Page 2 of 2 Project: LMC BOU

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
3851M-N-17Q2	17-04-0067-7-K	04/03/17 15:29	Aqueous	IC 16	N/A	04/03/17 22:28	170403L01

Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. <u>Parameter</u> Result <u>RL</u> <u>MDL</u> <u>DF</u> Qualifiers Chromium, Hexavalent 1.9 0.020 0.0099 1.00

Method Blank	099-14	-567-229 N/A	Aqueous	IC 16	N/A	04/03/17 15:43	170403L01
Comment(s):	- Results were evaluated to the MD	L (DL), concentratio	ns >= to the MDL (DI	_) but < RL (LOQ), if found, are	qualified with a	a "J" flag.
<u>Parameter</u>		Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>(</u>	<u>Qualifiers</u>
Chromium, Hexa	avalent	ND	0.020	0.0099	1.00		

Comment(s): Parameter

Chromium

Analytical Report

Date Received: 04/03/17 Tetra Tech, Inc. Work Order: 17-04-0067 301 E. Vanderbilt Way, Suite 450 Preparation: EPA 3020A Total San Bernardino, CA 92408-3562 Method: EPA 6020 Units: mg/L Project: LMC BOU Page 1 of 2 Client Sample Number Lab Sample Date/Time Matrix Instrument Date Date/Time QC Batch ID Number Collected Prepared Analyzed 17-04-0067-1-L 04/03/17 3872M-N-17Q2 Aqueous ICP/MS 05 04/13/17 04/14/17 170413LA3 15:32 23:55 - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. Comment(s): <u>Parameter</u> <u>DF</u> Result <u>RL</u> **MDL** Qualifiers Chromium 0.00487 0.00100 0.000402 1.00 3872L-N-17Q2 17-04-0067-2-L 04/03/17 04/15/17 Aqueous ICP/MS 05 04/13/17 170413LA3 13:48 00:10 - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. Comment(s): Parameter Result MDL DF Qualifiers Chromium 0.00590 0.00100 0.000402 1.00 3872N-N-17Q2 17-04-0067-3-L 04/03/17 Aqueous ICP/MS 05 04/13/17 04/15/17 170413LA3 - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. Comment(s): MDL <u>DF</u> Qualifiers **Parameter** Result <u>RL</u> 0.00788 0.00100 0.000402 1.00 Chromium 3852N-N-17Q2 17-04-0067-4-L 04/03/17 Aqueous ICP/MS 05 04/13/17 04/15/17 170413LA3 00:18 11:58 Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. MDL DF Parameter Result Qualifiers Chromium 0.00322 0.00100 0.000402 1.00 04/15/17 00:21 04/03/17 3852M-N-17Q2 17-04-0067-5-L Aqueous ICP/MS 05 04/13/17 170413LA3 - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. Comment(s): <u>Parameter</u> <u>DF</u> Qualifiers Result <u>RL</u> **MDL** Chromium 0.00153 0.00100 0.000402 1.00 04/03/17 13:29 04/15/17 00:25 3852M-FD-17Q2 17-04-0067-6-L ICP/MS 05 04/13/17 170413LA3 Aqueous

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Result

0.00333

- Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

0.00100

MDL

0.000402

<u>DF</u>

1.00

 Tetra Tech, Inc.
 Date Received:
 04/03/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0067

San Bernardino, CA 92408-3562

Preparation:

EPA 3020A Total

Method:

EPA 6020

Units: mg/L

Project: LMC BOU Page 2 of 2

Date Prepared QC Batch ID Client Sample Number Lab Sample Date/Time Matrix Instrument Date/Time Number Collected Analyzed 3851M-N-17Q2 17-04-0067-7-L 04/03/17 04/13/17 04/15/17 **Aqueous** ICP/MS 05 170413LA3 00:29 15:29

Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

Parameter Result RL MDL DF Qualifiers

Chromium 0.00303 0.00100 0.000402 1.00

Method Blank		096-06-003-5524	N/A	Aqueous	ICP/MS 05	04/13/17	04/14/17 21:31	170413LA3
Comment(s):	- Results were evaluated to t	he MDL (DL), conc	entrations >= t	to the MDL (DL	_) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>		Resul	<u>t</u>	<u>RL</u>	MDL	<u>DF</u>	<u>Q</u>	<u>ualifiers</u>
Chromium		ND		0.00100	0.000402	1.00		

Tetra Tech, Inc. Date Received: 04/03/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0067

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 3510C

Method: EPA 8270C (M) Isotope Dilution

Units: ug/L

Project: LMC BOU Page 1 of 2

Client Sample Number	Lab Sample Number			Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
3872M-N-17Q2	17-04-0067-1-M	04/03/17 15:32	Aqueous	GC/MS DDD	04/06/17	04/07/17 07:50	170406L12
Comment(s): - Results were eval	uated to the MDL (DL), con	centrations >= t	to the MDL (DL	.) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>(</u>	Qualifiers
1,4-Dioxane	ND		1.0	0.28	1.00		
Surrogate	Rec.	(%)	Control Limits	Qualifiers			
Nitrobenzene-d5	86		56-123				
1,4-Dioxane-d8(IDS-IS)	42		30-120				

3872L-N-17Q2		17-04-0067-2-M	04/03/17 13:48	Aqueous	GC/MS DDD	04/06/17	04/07/17 08:06	170406L12
Comment(s):	- Results were evaluated to t	he MDL (DL), conc	entrations >=	to the MDL (DL) but < RL (LOC	(), if found, are	qualified with a	"J" flag.
<u>Parameter</u>		Resul	<u>t</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
1,4-Dioxane		ND		1.0	0.28	1.00		
<u>Surrogate</u>		Rec. ((%)	Control Limits	<u>Qualifiers</u>			
Nitrobenzene-d5	5	90		56-123				
1,4-Dioxane-d8(IDS-IS)	40		30-120				

3872N-N-17Q2	17	7-04-0067-3-M	04/03/17 11:51	Aqueous	GC/MS DDD	04/06/17	04/07/17 08:22	170406L12
Comment(s):	- Results were evaluated to the	e MDL (DL), conce	entrations >=	to the MDL (DL)	but < RL (LOQ), if found, are	qualified with a '	'J" flag.
<u>Parameter</u>		<u>Result</u>	<u> </u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Q	<u>ualifiers</u>
1,4-Dioxane		ND		1.0	0.28	1.00		
<u>Surrogate</u>		Rec. (<u>%)</u>	Control Limits	<u>Qualifiers</u>			
Nitrobenzene-d5	i	90		56-123				
1,4-Dioxane-d8(I	IDS-IS)	44		30-120				

3852N-N-17Q2	17-04-0067-4-M 04/03/1 11:58	7 Aqueous	GC/MS DDD	04/06/17	04/07/17 08:38	170406L12
Comment(s): - Results were evaluated to	the MDL (DL), concentration	s >= to the MDL (DL	.) but < RL (LOC	Q), if found, are	qualified with a	a "J" flag.
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	9	<u>Qualifiers</u>
1,4-Dioxane	ND	1.0	0.28	1.00		
Surrogate	Rec. (%)	Control Limits	Qualifiers			
Nitrobenzene-d5	88	56-123				
1,4-Dioxane-d8(IDS-IS)	43	30-120				

Tetra Tech, Inc. Date Received: 04/03/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0067

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 3510C

Method: EPA 8270C (M) Isotope Dilution

Units: ug/L

Project: LMC BOU Page 2 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID		
3852M-N-17Q2	17-04-0067-5-M	04/03/17 13:29	Aqueous	GC/MS DDD	04/06/17	04/07/17 08:54	170406L12		
Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.									
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>		
1,4-Dioxane	ND		1.0	0.28	1.00				
Surrogate	Rec.	<u>(%)</u>	Control Limits	Qualifiers					
Nitrobenzene-d5	89		56-123						
1,4-Dioxane-d8(IDS-IS)	40		30-120						

3852M-FD-17Q2	17-04-0067-6-M	04/03/17 13:29	Aqueous	GC/MS DDD	04/06/17	04/07/17 09:10	170406L12
Comment(s): - Results were evaluated to	the MDL (DL), cond	entrations >=	to the MDL (DL	.) but < RL (LOC	(a), if found, are	qualified with a	a "J" flag.
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	9	<u>Qualifiers</u>
1,4-Dioxane	ND		1.0	0.28	1.00		
<u>Surrogate</u>	Rec.	<u>(%)</u>	Control Limits	<u>Qualifiers</u>			
Nitrobenzene-d5	89		56-123				
1,4-Dioxane-d8(IDS-IS)	40		30-120				

3851M-N-17Q2		17-04-0067-7-M	04/03/17 15:29	Aqueous	GC/MS DDD	04/06/17	04/07/17 09:26	170406L12
Comment(s):	- Results were evaluated to t	he MDL (DL), conc	entrations >=	to the MDL (DL	.) but < RL (LOC)), if found, are	qualified with	a "J" flag.
<u>Parameter</u>		Resul	<u>t</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
1,4-Dioxane		ND		1.0	0.28	1.00		
<u>Surrogate</u>		<u>Rec. (</u>	<u>%)</u>	Control Limits	<u>Qualifiers</u>			
Nitrobenzene-d5		88		56-123				
1,4-Dioxane-d8(IDS-IS)	37		30-120				

Method Blank	099-16-216-996 N/A	Aqueous	GC/MS DDD	04/06/17	04/07/17 06:15	170406L12		
Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.								
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>		
1,4-Dioxane	ND	1.0	0.28	1.00				
Surrogate	Rec. (%)	Control Limits	Qualifiers					
Nitrobenzene-d5	105	56-123						
1,4-Dioxane-d8(IDS-IS)	44	30-120						

Project: LMC BOU

Analytical Report

 Tetra Tech, Inc.
 Date Received:
 04/03/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0067

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

Method: EPA 8260B

Units: ug/L Page 1 of 30

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
3872M-N-17Q2	17-04-0067-1-A	04/03/17 15:32	Aqueous	GC/MS L	04/04/17	04/05/17 03:50	170404L041
Comment(s): - Results were evaluate	ed to the MDL (DL), cond	entrations >= 1	to the MDL (DI	L) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	MDL	<u>DF</u>	<u>C</u>	Qualifiers
1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,1-Trichloroethane	ND		0.50	0.20	1.00		
1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		0.50	0.24	1.00		
1,1,2-Trichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethene	ND		0.50	0.28	1.00		
1,1-Dichloropropene	ND		0.50	0.30	1.00		
1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,3-Trichloropropane	ND		1.0	0.40	1.00		
1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,4-Trimethylbenzene	ND		0.50	0.20	1.00		
1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00		
1,2-Dibromoethane	ND		0.50	0.20	1.00		
1,2-Dichlorobenzene	ND		0.50	0.20	1.00		
1,2-Dichloroethane	ND		0.50	0.20	1.00		
1,2-Dichloropropane	ND		0.50	0.20	1.00		
1,3,5-Trimethylbenzene	ND		0.50	0.20	1.00		
1,3-Dichlorobenzene	ND		0.50	0.28	1.00		
1,3-Dichloropropane	ND		1.0	0.40	1.00		
1,4-Dichlorobenzene	ND		0.50	0.20	1.00		
2,2-Dichloropropane	ND		1.0	0.40	1.00		
2-Butanone	ND		5.0	2.0	1.00		
2-Chlorotoluene	ND		0.50	0.20	1.00		
2-Hexanone	ND		10	4.0	1.00		
4-Chlorotoluene	ND		0.50	0.36	1.00		
4-Methyl-2-Pentanone	ND		5.0	2.0	1.00		
Acetone	4.7		10	4.0	1.00	J	ı
Benzene	ND		0.50	0.20	1.00		
Bromobenzene	ND		0.50	0.32	1.00		
Bromochloromethane	ND		1.0	0.40	1.00		
Bromodichloromethane	ND		0.50	0.20	1.00		
Bromoform	ND		0.50	0.25	1.00		
Bromomethane	ND		1.0	0.40	1.00		

 Tetra Tech, Inc.
 Date Received:
 04/03/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0067

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 2 of 30

F Toject. Livio Boo					rage 2 or 30
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
Carbon Disulfide	ND	1.0	0.40	1.00	
Carbon Tetrachloride	ND	0.50	0.20	1.00	
Chlorobenzene	ND	0.50	0.20	1.00	
Chloroethane	ND	0.50	0.32	1.00	
Chloroform	ND	0.50	0.20	1.00	
Chloromethane	ND	0.50	0.29	1.00	
Dibromochloromethane	ND	0.50	0.20	1.00	
Dibromomethane	ND	0.50	0.20	1.00	
Dichlorodifluoromethane	ND	1.0	0.40	1.00	
Ethylbenzene	ND	0.50	0.20	1.00	
Isopropylbenzene	ND	0.50	0.20	1.00	
Methylene Chloride	ND	1.0	0.80	1.00	
Naphthalene	ND	1.0	0.40	1.00	
Styrene	ND	0.50	0.20	1.00	
Tetrachloroethene	3.9	0.50	0.20	1.00	
Toluene	ND	0.50	0.20	1.00	
t-1,2-Dichloroethene	ND	0.50	0.20	1.00	
Trichloroethene	2.0	0.50	0.29	1.00	
Trichlorofluoromethane	ND	0.50	0.20	1.00	
Vinyl Acetate	ND	5.0	2.0	1.00	
Vinyl Chloride	ND	0.50	0.20	1.00	
c-1,3-Dichloropropene	ND	0.50	0.20	1.00	
c-1,2-Dichloroethene	ND	0.50	0.20	1.00	
n-Butylbenzene	ND	0.50	0.20	1.00	
n-Propylbenzene	ND	0.50	0.20	1.00	
o-Xylene	ND	0.50	0.32	1.00	
p-Isopropyltoluene	ND	0.50	0.20	1.00	
sec-Butylbenzene	ND	0.50	0.20	1.00	
t-1,3-Dichloropropene	ND	0.50	0.20	1.00	
tert-Butylbenzene	ND	0.50	0.20	1.00	
p/m-Xylene	ND	0.50	0.20	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	0.50	0.20	1.00	
2-Chloroethyl Vinyl Ether	ND	5.0	4.2	1.00	
Hexachloro-1,3-Butadiene	ND	2.0	0.80	1.00	
Iodomethane	ND	10	5.0	1.00	
<u>Surrogate</u>	Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	85	68-120			
Dibromofluoromethane	116	80-127			

Toluene-d8

Analytical Report

Tetra Tech, Inc.	Date Received:	04/03/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0067
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOU		Page 3 of 30

80-120

<u>Surrogate</u>	Rec. (%)	Control Limits	<u>Qualifiers</u>
1,2-Dichloroethane-d4	118	80-128	

95

04/03/17

17-04-0067

Analytical Report

Tetra Tech, Inc.

301 E. Vanderbilt Way, Suite 450

San Bernardino, CA 92408-3562

Date Received:

Work Order:

Preparation:

Preparation: EPA 5030C Method: EPA 8260B Units: ug/L

Project: LMC BOU Page 4 of 30

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
3872L-N-17Q2	17-04-0067-2-A	04/03/17 13:48	Aqueous	GC/MS L	04/04/17	04/05/17 04:21	170404L041
Comment(s): - Results were evaluated	to the MDL (DL), cond	centrations >=	to the MDL (D	L) but < RL (LO	Q), if found, are	qualified with a	ı "J" flag.
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>(</u>	Qualifiers
1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,1-Trichloroethane	ND		0.50	0.20	1.00		
1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		0.50	0.24	1.00		
1,1,2-Trichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethene	ND		0.50	0.28	1.00		
1,1-Dichloropropene	ND		0.50	0.30	1.00		
1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,3-Trichloropropane	ND		1.0	0.40	1.00		
1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,4-Trimethylbenzene	ND		0.50	0.20	1.00		
1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00		
1,2-Dibromoethane	ND		0.50	0.20	1.00		
1,2-Dichlorobenzene	ND		0.50	0.20	1.00		
1,2-Dichloroethane	ND		0.50	0.20	1.00		
1,2-Dichloropropane	ND		0.50	0.20	1.00		
1,3,5-Trimethylbenzene	ND		0.50	0.20	1.00		
1,3-Dichlorobenzene	ND		0.50	0.28	1.00		
1,3-Dichloropropane	ND		1.0	0.40	1.00		
1,4-Dichlorobenzene	ND		0.50	0.20	1.00		
2,2-Dichloropropane	ND		1.0	0.40	1.00		
2-Butanone	ND		5.0	2.0	1.00		
2-Chlorotoluene	ND		0.50	0.20	1.00		
2-Hexanone	ND		10	4.0	1.00		
4-Chlorotoluene	ND		0.50	0.36	1.00		
4-Methyl-2-Pentanone	ND		5.0	2.0	1.00		
Acetone	ND		10	4.0	1.00		
Benzene	ND		0.50	0.20	1.00		
Bromobenzene	ND		0.50	0.32	1.00		
Bromochloromethane	ND		1.0	0.40	1.00		
Bromodichloromethane	ND		0.50	0.20	1.00		
Bromoform	ND		0.50	0.25	1.00		
Bromomethane	ND		1.0	0.40	1.00		

 Tetra Tech, Inc.
 Date Received:
 04/03/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0067

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

Project: LMC BOU					Page 5 of 30
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Carbon Disulfide	ND	1.0	0.40	1.00	
Carbon Tetrachloride	ND	0.50	0.20	1.00	
Chlorobenzene	ND	0.50	0.20	1.00	
Chloroethane	ND	0.50	0.32	1.00	
Chloroform	0.59	0.50	0.20	1.00	
Chloromethane	ND	0.50	0.29	1.00	
Dibromochloromethane	ND	0.50	0.20	1.00	
Dibromomethane	ND	0.50	0.20	1.00	
Dichlorodifluoromethane	ND	1.0	0.40	1.00	
Ethylbenzene	ND	0.50	0.20	1.00	
Isopropylbenzene	ND	0.50	0.20	1.00	
Methylene Chloride	ND	1.0	0.80	1.00	
Naphthalene	ND	1.0	0.40	1.00	
Styrene	ND	0.50	0.20	1.00	
Toluene	ND	0.50	0.20	1.00	
t-1,2-Dichloroethene	ND	0.50	0.20	1.00	
Trichlorofluoromethane	ND	0.50	0.20	1.00	
Vinyl Acetate	ND	5.0	2.0	1.00	
Vinyl Chloride	ND	0.50	0.20	1.00	
c-1,3-Dichloropropene	ND	0.50	0.20	1.00	
c-1,2-Dichloroethene	0.23	0.50	0.20	1.00	J
n-Butylbenzene	ND	0.50	0.20	1.00	
n-Propylbenzene	ND	0.50	0.20	1.00	
o-Xylene	ND	0.50	0.32	1.00	
p-Isopropyltoluene	ND	0.50	0.20	1.00	
sec-Butylbenzene	ND	0.50	0.20	1.00	
t-1,3-Dichloropropene	ND	0.50	0.20	1.00	
tert-Butylbenzene	ND	0.50	0.20	1.00	
p/m-Xylene	ND	0.50	0.20	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	0.50	0.20	1.00	
2-Chloroethyl Vinyl Ether	ND	5.0	4.2	1.00	
Hexachloro-1,3-Butadiene	ND	2.0	0.80	1.00	
Iodomethane	ND	10	5.0	1.00	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	84	68-120			
Dibromofluoromethane	118	80-127			
1,2-Dichloroethane-d4	115	80-128			
Toluene-d8	108	80-120			

Project: LMC BOU

Analytical Report

 Tetra Tech, Inc.
 Date Received:
 04/03/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0067

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

Units: ug/L Page 6 of 30

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
3872L-N-17Q2	17-04-0067-2-B	04/03/17 13:48	Aqueous	GC/MS L	04/06/17	04/06/17 14:04	170406L008
Comment(s): - Results were evaluated	to the MDL (DL), cond	centrations >=	to the MDL (DL	.) but < RL (LO	Q), if found, are	qualified with a	ı "J" flag.
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	MDL	<u>DF</u>	<u>(</u>	Qualifiers
Tetrachloroethene	300		10	4.0	20.0		
Trichloroethene	240		10	5.7	20.0		
Surrogate	Rec.	<u>(%)</u>	Control Limits	<u>Qualifiers</u>			
1,4-Bromofluorobenzene	83		68-120				
Dibromofluoromethane	120		80-127				
1,2-Dichloroethane-d4	114		80-128				
Toluene-d8	99		80-120				

 Tetra Tech, Inc.
 Date Received:
 04/03/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0067

San Bernardino, CA 92408-3562 Preparation: EPA 5030C

Method: EPA 8260B Units: ug/L

Project: LMC BOU Page 7 of 30

17-04-0067-3-A 04/03/11 15-51 04/04/12 04/05/12 04/04/12 04/05/	Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Parameter Result BL MDL DF Qualifiers 1,1,1,2-Tetrachloroethane ND 0.50 0.20 1,0 1,1 1,1,1,2-Tetrachloroethane ND 0.50 0.20 1,0 1,1 1,1,2-Trichloroethane ND 0.50 0.24 1,00 1,10 1,1,2-Trichloroethane ND 0.50 0.20 1,00 1,10 1,1-Dichloroethane ND 0.50 0.20 1,00 1,10 1,2,3-Trichloropropane ND 0.50 0.20 1,00 1,12 1,2,4-Trimethylbenzene ND 0.50 0.20 1,00 1,12 1,2-Dichloroethane ND 0.50 0.20 1,00 1,12 1,2-Dichloroethane ND	3872N-N-17Q2	17-04-0067-3-A		Aqueous	GC/MS L	04/04/17		170404L041
1,1,1,2-Tetrachloroethane ND 0,50 0,20 1,00 1,1,1-Trichloroethane ND 0,50 0,20 1,00 1,1,2-Trichloroethane ND 0,50 0,20 1,00 1,1,2-Trichloroethane ND 0,50 0,24 1,00 1,1-Dichloroethane ND 0,50 0,20 1,00 1,1-Dichloroethene ND 0,50 0,20 1,00 1,1-Dichloropropene ND 0,50 0,20 1,00 1,1-Dichloropropene ND 0,50 0,20 1,00 1,2,3-Trichlorobenzene ND 0,50 0,20 1,00 1,2,3-Trichlorobenzene ND 0,50 0,20 1,00 1,2,4-Trimethylbenzene ND 0,50 0,20 1,00 1,2,4-Trimethylbenzene ND 0,50 0,20 1,00 1,2-Dichromoethane ND 0,50 0,20 1,00 1,2-Dichromoethane ND 0,50 0,20 1,00 1,2-Dichromoeth	Comment(s): - Results were evaluated	to the MDL (DL), cond	centrations >=	to the MDL (D	L) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
1,1,1-Trichloroethane ND 0.50 0.20 1.00 1,1,2,2-Terlachloroethane ND 0.50 0.20 1.00 1,1,2-Trichloro-1,2,2-Trifluorethane ND 0.50 0.24 1.00 1,1,2-Trichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethane ND 0.50 0.20 1.00 1,1-Dichloropene ND 0.50 0.28 1.00 1,2-Dichloropene ND 0.50 0.30 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,3-Trichloropropane ND 0.50 0.20 1.00 1,2,4-Trinchlorobenzene ND 0.50 0.20 1.00 1,2,4-Trinchloropropane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1	<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>(</u>	<u>Qualifiers</u>
1,1,2,2-Tetrachioroethane ND 0.50 0.20 1.00 1,1,2-Trichloroe-1,2,2-Trifludroethane ND 0.50 0.24 1.00 1,1-Dichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethane ND 0.50 0.28 1.00 1,1-Dichloroethane ND 0.50 0.28 1.00 1,1-Dichloroethane ND 0.50 0.30 1.00 1,1-Dichloropropene ND 0.50 0.30 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2-Dichloroebazene ND 0.50 0.20 1.00 1,2-Dichloroebazene ND 0.50 0.20 1.00 1,3-Dichloroebrazene ND 0.50 0.20 1.00 1,3-Dichloroebrazene ND 0.50 0.20 1.00 2,-	1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane ND 0.50 0.24 1.00 1,1,2-Trichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethane ND 0.50 0.28 1.00 1,1-Dichloroethane ND 0.50 0.28 1.00 1,1-Dichloropropene ND 0.50 0.30 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 0.50 0.20 1.00 1,2-Dibriomo-3-Chloropropane ND 0.50 0.20 1.00 1,2-Dibriomo-3-Chloropropane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 <td>1,1,1-Trichloroethane</td> <td>ND</td> <td></td> <td>0.50</td> <td>0.20</td> <td>1.00</td> <td></td> <td></td>	1,1,1-Trichloroethane	ND		0.50	0.20	1.00		
1,1,2-Trichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethene ND 0.50 0.28 1.00 1,2-Dichloroptene ND 0.50 0.30 1.00 1,2,3-Trichloroptenzene ND 0.50 0.20 1.00 1,2,3-Trichloroptenzene ND 0.50 0.20 1.00 1,2,3-Trichloroptenzene ND 0.50 0.20 1.00 1,2,4-Trinchlorobenzene ND 0.50 0.20 1.00 1,2,4-Trinchloroptenzene ND 0.50 0.20 1.00 1,2-Dichloroptenzene ND 0.50 0.20 1.00 1,2-Dichloroptenzene ND 0.50 0.20 1.00 1,3-S-Trimethylbenzene ND 0.50 0.20 1.00 1,3-Dichloroptenzene ND 0.50 0.20 1.00 1,4-Dichloroptenzene ND 0.50 0.20 1.00 1,4-Dichl	1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1.1-Dichloroethane ND 0.50 0.20 1.00 1.1-Dichloroethene ND 0.50 0.28 1.00 1.1-Dichloropropene ND 0.50 0.20 1.00 1.2.3-Trichlorobenzene ND 0.50 0.20 1.00 1.2.3-Trichlorobenzene ND 0.50 0.20 1.00 1.2.4-Trichlorobenzene ND 0.50 0.20 1.00 1.2.4-Trinethrylbenzene ND 0.50 0.20 1.00 1.2-Dichromo-3-Chloropropane ND 0.50 0.20 1.00 1.2-Dichlorobenzene ND 0.50 0.20 1.00 1.2-Dichlorobenzene ND 0.50 0.20 1.00 1.2-Dichloroptopane ND 0.50 0.20 1.00 1.3-Dichloroptopane ND 0.50 0.20 1.00 1.3-Dichloroptopane ND 0.50 0.28 1.00 1.4-Dichlorobenzene ND 0.50 0.20 1.00 2-Dichloroptopa	1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		0.50	0.24	1.00		
1,1-Dichloroethene ND 0.50 0.28 1.00 1,1-Dichloropropene ND 0.50 0.30 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,3-Trichloropropane ND 0.50 0.20 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 5.0 2.0 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichlorobrazene ND 0.50 0.28 1.00 1,3-Dichlorobrazene ND 0.50 0.28 1.00 1,4-Dichlorobrazene	1,1,2-Trichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloropropene ND 0.50 0.30 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,3-Trichloropropane ND 1.0 0.40 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trindhylbenzene ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 2.0 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.20 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichloropropane ND 1.0 0.40 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone	1,1-Dichloroethane	ND		0.50	0.20	1.00		
1,2,3-Trichlorobenzene ND 0,50 0,20 1,00 1,2,3-Trichloropropane ND 1,0 0,40 1,00 1,2,4-Trichlorobenzene ND 0,50 0,20 1,00 1,2,4-Trimethylbenzene ND 0,50 0,20 1,00 1,2-Dibromo-3-Chloropropane ND 5,0 2,0 1,00 1,2-Dibromo-3-Chloropropane ND 0,50 0,20 1,00 1,2-Dibromoethane ND 0,50 0,20 1,00 1,2-Dichlorobenzene ND 0,50 0,20 1,00 1,2-Dichloropropane ND 0,50 0,20 1,00 1,3-Dichloropropane ND 0,50 0,20 1,00 1,3-Dichloropropane ND 0,50 0,20 1,00 1,3-Dichloropropane ND 0,50 0,20 1,00 1,4-Dichlorobenzene ND 0,50 0,20 1,00 2,2-Dichloropropane ND 0,50 0,20 1,00 2-Eutanone </td <td>1,1-Dichloroethene</td> <td>ND</td> <td></td> <td>0.50</td> <td>0.28</td> <td>1.00</td> <td></td> <td></td>	1,1-Dichloroethene	ND		0.50	0.28	1.00		
1,2,3-Trichloropropane ND 1.0 0.40 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 0.20 1.00 1,2-Dibromoethane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.20 1.00 1,4-Dichloropropane ND 0.50 0.28 1.00 1,4-Dichloropropane ND 0.50 0.20 1.00 2,2-Dichloropropane ND 0.50 0.20 1.00 2-Butanone ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.36 1.00 4-Hesthyl-2-Pentanone ND<	1,1-Dichloropropene	ND		0.50	0.30	1.00		
1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 2.0 1.00 1,2-Dibromoethane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloroptopane ND 0.50 0.20 1.00 1,2-Dichloroptopane ND 0.50 0.20 1.00 1,3-Dichloroptopane ND 0.50 0.20 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloroptopane ND 5.0 0.20 1.00 2-Butanone ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.20 1.00 4-Methyl-2-Pentanone ND	1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 2.0 1.00 1,2-Dibromoethane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloropthane ND 0.50 0.20 1.00 1,2-Dichloroptopane ND 0.50 0.20 1.00 1,3-Trimethylbenzene ND 0.50 0.20 1.00 1,3-Dichloroptopane ND 0.50 0.28 1.00 1,3-Dichloroptopane ND 0.50 0.28 1.00 1,3-Dichloroptopane ND 0.50 0.20 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloroptopane ND 5.0 0.20 1.00 2-Butanone ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.20 1.00 4-Methyl-2-Pentanone ND 0.50 0.20 1.00 4-Methyl-2-Pentanone ND		ND		1.0	0.40	1.00		
1,2-Dibromo-3-Chloropropane ND 5.0 2.0 1.00 1,2-Dibromoethane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloroptopane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-5-Trimethylbenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 0.50 0.28 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 1,4-Dichloropropane ND 0.50 0.20 1.00 2,2-Dichloropropane ND 0.50 0.20 1.00 2,2-Dichloropropane ND 0.50 0.20 1.00 2-Petatone ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 0.50 0.20 1.00 4-Methyl-2-Pentanone ND	1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2-Dibromoethane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloroethane ND 0.50 0.20 1.00 1,2-Dichloroptopane ND 0.50 0.20 1.00 1,3-5-Trimethylbenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 1.0 0.40 1.00 2-Hexanone ND 0.50 0.20 1.00 4-Hexanone ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 0.50 0.30 1.00 4-Methyl-2-Pentanone ND 0.50	1,2,4-Trimethylbenzene	ND		0.50	0.20	1.00		
1,2-Dibromoethane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloroethane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-5-Trimethylbenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 1,4-Dichloropropane ND 1.0 0.40 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.20 1.00 4-Hokhyl-2-Pentanone ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 0.50 0.20 1.00 Benzene ND 0.50	1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00		
1,2-Dichloroethane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3,5-Trimethylbenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 0.20 1.00 2-Butanone ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.36 1.00 4-Chlorotoluene ND 5.0 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 0.20 1.00 Acetone 9.3 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 <td>1,2-Dibromoethane</td> <td>ND</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	1,2-Dibromoethane	ND						
1,2-Dichloroethane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3,5-Trimethylbenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 0.20 1.00 2-Butanone ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.36 1.00 4-Chlorotoluene ND 5.0 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 0.20 1.00 Acetone 9.3 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 <td>1,2-Dichlorobenzene</td> <td>ND</td> <td></td> <td>0.50</td> <td>0.20</td> <td>1.00</td> <td></td> <td></td>	1,2-Dichlorobenzene	ND		0.50	0.20	1.00		
1,3,5-Trimethylbenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone 9.3 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 0.50 0.32 1.00 Bromochloromethane ND 0.50 0.20 1.00 Bromochloromethane ND 0.50 0.20 1.00	1,2-Dichloroethane	ND		0.50	0.20	1.00		
1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone 9.3 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 0.50 0.20 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.20 1.00	1,2-Dichloropropane	ND		0.50	0.20	1.00		
1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.36 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone 9.3 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.20 1.00	1,3,5-Trimethylbenzene	ND		0.50	0.20	1.00		
1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.36 1.00 4-Chlorotoluene ND 5.0 2.0 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone 9.3 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 0.50 0.20 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	1,3-Dichlorobenzene	ND		0.50	0.28	1.00		
2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone 9.3 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 0.50 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.20 1.00	1,3-Dichloropropane	ND		1.0		1.00		
2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone 9.3 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	1,4-Dichlorobenzene	ND		0.50	0.20	1.00		
2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone 9.3 10 4.0 1.00 J Benzene ND 0.50 0.20 1.00 1.00 Bromobenzene ND 1.0 0.40 1.00 1.00 Bromodichloromethane ND 0.50 0.20 1.00 1.00 Bromoform ND 0.50 0.20 1.00 1.00	2,2-Dichloropropane	ND		1.0	0.40	1.00		
2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone 9.3 10 4.0 1.00 J Benzene ND 0.50 0.20 1.00 Bromobenzene ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.20 1.00	2-Butanone	ND		5.0	2.0	1.00		
4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone 9.3 10 4.0 1.00 J Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	2-Chlorotoluene	ND		0.50	0.20	1.00		
4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone 9.3 10 4.0 1.00 J Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	2-Hexanone	ND		10	4.0	1.00		
Acetone 9.3 10 4.0 1.00 J Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	4-Chlorotoluene	ND		0.50				
Acetone 9.3 10 4.0 1.00 J Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	4-Methyl-2-Pentanone	ND		5.0	2.0	1.00		
Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	Acetone			10		1.00		I
Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00								
Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00								
Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00								
Bromoform ND 0.50 0.25 1.00								

 Tetra Tech, Inc.
 Date Received:
 04/03/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0067

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 8 of 30

Project: LING BOU					Page 8 of 30
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Carbon Disulfide	ND	1.0	0.40	1.00	
Carbon Tetrachloride	ND	0.50	0.20	1.00	
Chlorobenzene	ND	0.50	0.20	1.00	
Chloroethane	ND	0.50	0.32	1.00	
Chloroform	0.70	0.50	0.20	1.00	
Chloromethane	ND	0.50	0.29	1.00	
Dibromochloromethane	ND	0.50	0.20	1.00	
Dibromomethane	ND	0.50	0.20	1.00	
Dichlorodifluoromethane	ND	1.0	0.40	1.00	
Ethylbenzene	ND	0.50	0.20	1.00	
Isopropylbenzene	ND	0.50	0.20	1.00	
Methylene Chloride	ND	1.0	0.80	1.00	
Naphthalene	ND	1.0	0.40	1.00	
Styrene	ND	0.50	0.20	1.00	
Toluene	ND	0.50	0.20	1.00	
t-1,2-Dichloroethene	ND	0.50	0.20	1.00	
Trichlorofluoromethane	ND	0.50	0.20	1.00	
Vinyl Acetate	ND	5.0	2.0	1.00	
Vinyl Chloride	ND	0.50	0.20	1.00	
c-1,3-Dichloropropene	ND	0.50	0.20	1.00	
c-1,2-Dichloroethene	ND	0.50	0.20	1.00	
n-Butylbenzene	ND	0.50	0.20	1.00	
n-Propylbenzene	ND	0.50	0.20	1.00	
o-Xylene	ND	0.50	0.32	1.00	
p-Isopropyltoluene	ND	0.50	0.20	1.00	
sec-Butylbenzene	ND	0.50	0.20	1.00	
t-1,3-Dichloropropene	ND	0.50	0.20	1.00	
tert-Butylbenzene	ND	0.50	0.20	1.00	
p/m-Xylene	ND	0.50	0.20	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	0.50	0.20	1.00	
2-Chloroethyl Vinyl Ether	ND	5.0	4.2	1.00	
Hexachloro-1,3-Butadiene	ND	2.0	0.80	1.00	
Iodomethane	ND	10	5.0	1.00	
<u>Surrogate</u>	Rec. (%)	Control Limits	Qualifiers		
1,4-Bromofluorobenzene	83	68-120			
Dibromofluoromethane	119	80-127			
1,2-Dichloroethane-d4	116	80-128			
Toluene-d8	106	80-120			

Date Received: 04/03/17 Tetra Tech, Inc. Work Order: 17-04-0067 301 E. Vanderbilt Way, Suite 450 Preparation: **EPA 5030C** San Bernardino, CA 92408-3562 Method: **EPA 8260B**

Units: ug/L

Project: LMC BOU Page 9 of 30

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
3872N-N-17Q2	17-04-0067-3-B	04/03/17 11:51	Aqueous	GC/MS L	04/06/17	04/06/17 14:35	170406L008
Comment(s): - Results were evaluate	d to the MDL (DL), con	centrations >=	to the MDL (DL) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
Tetrachloroethene	310		10	4.0	20.0		
Trichloroethene	120		10	5.7	20.0		
Surrogate	Rec.	<u>(%)</u>	Control Limits	Qualifiers			
1,4-Bromofluorobenzene	85		68-120				
Dibromofluoromethane	120		80-127				
1,2-Dichloroethane-d4	117		80-128				
Toluene-d8	99		80-120				

Tetra Tech, Inc.

Date Received:

04/03/17

301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-0067

San Bernardino, CA 92408-3562 Preparation: EPA 5030C

Method: EPA 8260B Units: ug/L

Project: LMC BOU Page 10 of 30

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
3852N-N-17Q2	17-04-0067-4-A	04/03/17 11:58	Aqueous	GC/MS L	04/04/17	04/05/17 05:22	170404L041
Comment(s): - Results were evaluated to	the MDL (DL), cond	centrations >= t	to the MDL (D	L) but < RL (LO	Q), if found, are	qualified with a	a "J" flag.
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	!	<u>Qualifiers</u>
1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,1-Trichloroethane	ND		0.50	0.20	1.00		
1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		0.50	0.24	1.00		
1,1,2-Trichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethene	ND		0.50	0.28	1.00		
1,1-Dichloropropene	ND		0.50	0.30	1.00		
1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,3-Trichloropropane	ND		1.0	0.40	1.00		
1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,4-Trimethylbenzene	ND		0.50	0.20	1.00		
1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00		
1,2-Dibromoethane	ND		0.50	0.20	1.00		
1,2-Dichlorobenzene	ND		0.50	0.20	1.00		
1,2-Dichloroethane	ND		0.50	0.20	1.00		
1,2-Dichloropropane	ND		0.50	0.20	1.00		
1,3,5-Trimethylbenzene	ND		0.50	0.20	1.00		
1,3-Dichlorobenzene	ND		0.50	0.28	1.00		
1,3-Dichloropropane	ND		1.0	0.40	1.00		
1,4-Dichlorobenzene	ND		0.50	0.20	1.00		
2,2-Dichloropropane	ND		1.0	0.40	1.00		
2-Butanone	ND		5.0	2.0	1.00		
2-Chlorotoluene	ND		0.50	0.20	1.00		
2-Hexanone	ND		10	4.0	1.00		
4-Chlorotoluene	ND		0.50	0.36	1.00		
4-Methyl-2-Pentanone	ND		5.0	2.0	1.00		
Acetone	7.4		10	4.0	1.00	,	J
Benzene	ND		0.50	0.20	1.00		
Bromobenzene	ND		0.50	0.32	1.00		
Bromochloromethane	ND		1.0	0.40	1.00		
Bromodichloromethane	ND		0.50	0.20	1.00		
Bromoform	ND		0.50	0.25	1.00		
Bromomethane	ND		1.0	0.40	1.00		

 Tetra Tech, Inc.
 Date Received:
 04/03/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0067

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 11 of 30

Parameter Result <u>RL</u> **MDL** <u>DF</u> Qualifiers Carbon Disulfide ND 1.0 0.40 1.00 Carbon Tetrachloride ND 0.50 0.20 1.00 Chlorobenzene ND 0.50 0.20 1.00 Chloroethane ND 0.50 0.32 1.00 Chloroform ND 0.50 0.20 1.00 Chloromethane ND 0.50 0.29 1.00 Dibromochloromethane ND 0.50 0.20 1.00 Dibromomethane ND 0.50 0.20 1.00 Dichlorodifluoromethane ND 1.0 0.40 1.00 ND 0.20 1.00 Ethylbenzene 0.50 0.20 Isopropylbenzene ND 0.50 1.00 Methylene Chloride ND 1.0 0.80 1.00 Naphthalene ND 0.40 1.00 1.0 Styrene ND 0.50 0.20 1.00 Tetrachloroethene 3.8 0.50 0.20 1.00 Toluene ND 0.20 0.50 1.00 t-1,2-Dichloroethene ND 0.20 0.50 1.00 Trichloroethene 2.6 0.50 0.29 1.00 Trichlorofluoromethane ND 0.50 0.20 1.00 Vinyl Acetate ND 2.0 1.00 5.0 Vinyl Chloride ND 0.50 0.20 1.00 c-1,3-Dichloropropene ND 0.20 0.50 1.00 0.20 c-1,2-Dichloroethene ND 0.50 1.00 n-Butylbenzene ND 0.50 0.20 1.00 n-Propylbenzene ND 0.50 0.20 1.00 o-Xylene ND 0.50 0.32 1.00 ND 0.20 1.00 p-Isopropyltoluene 0.50 sec-Butylbenzene ND 0.50 0.20 1.00 t-1,3-Dichloropropene ND 0.50 0.20 1.00 ND 0.20 tert-Butylbenzene 0.50 1.00 p/m-Xylene ND 0.50 0.20 1.00 0.20 Methyl-t-Butyl Ether (MTBE) ND 0.50 1.00 2-Chloroethyl Vinyl Ether ND 5.0 4.2 1.00 Hexachloro-1,3-Butadiene ND 2.0 0.80 1.00 Iodomethane ND 10 5.0 1.00 Rec. (%) Surrogate **Control Limits Qualifiers** 1,4-Bromofluorobenzene 84 68-120 80-127 Dibromofluoromethane 118

Tetra Tech, Inc.	Date Received:	04/03/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0067
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOU		Page 12 of 30

Surrogate	Rec. (%)	Control Limits	Qualifiers
1,2-Dichloroethane-d4	117	80-128	
Toluene-d8	100	80-120	

 Tetra Tech, Inc.
 Date Received:
 04/03/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0067

San Bernardino, CA 92408-3562 Preparation: EPA 5030C

Method: EPA 8260B Units: ug/L

Project: LMC BOU Page 13 of 30

Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J	" flag. alifiers
Parameter Result RL MDL DF Qua	•
	<u>alifiers</u>
1,1,1,2-Tetrachloroethane ND 0.50 0.20 1.00	
1,1,1-Trichloroethane ND 0.50 0.20 1.00	
1,1,2,2-Tetrachloroethane ND 0.50 0.20 1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane ND 0.50 0.24 1.00	
1,1,2-Trichloroethane 0.25 0.50 0.20 1.00 J	
1,1-Dichloroethane ND 0.50 0.20 1.00	
1,1-Dichloroethene 0.69 0.50 0.28 1.00	
1,1-Dichloropropene ND 0.50 0.30 1.00	
1,2,3-Trichlorobenzene ND 0.50 0.20 1.00	
1,2,3-Trichloropropane ND 1.0 0.40 1.00	
1,2,4-Trichlorobenzene ND 0.50 0.20 1.00	
1,2,4-Trimethylbenzene ND 0.50 0.20 1.00	
1,2-Dibromo-3-Chloropropane ND 5.0 2.0 1.00	
1,2-Dibromoethane ND 0.50 0.20 1.00	
1,2-Dichlorobenzene ND 0.50 0.20 1.00	
1,2-Dichloroethane 1.0 0.50 0.20 1.00	
1,2-Dichloropropane ND 0.50 0.20 1.00	
1,3,5-Trimethylbenzene ND 0.50 0.20 1.00	
1,3-Dichlorobenzene ND 0.50 0.28 1.00	
1,3-Dichloropropane ND 1.0 0.40 1.00	
1,4-Dichlorobenzene ND 0.50 0.20 1.00	
2,2-Dichloropropane ND 1.0 0.40 1.00	
2-Butanone ND 5.0 2.0 1.00	
2-Chlorotoluene ND 0.50 0.20 1.00	
2-Hexanone ND 10 4.0 1.00	
4-Chlorotoluene ND 0.50 0.36 1.00	
4-Methyl-2-Pentanone ND 5.0 2.0 1.00	
Acetone 5.4 10 4.0 1.00 J	
Benzene ND 0.50 0.20 1.00	
Bromobenzene ND 0.50 0.32 1.00	
Bromochloromethane ND 1.0 0.40 1.00	
Bromodichloromethane ND 0.50 0.20 1.00	
Bromoform ND 0.50 0.25 1.00	
Bromomethane ND 1.0 0.40 1.00	

 Tetra Tech, Inc.
 Date Received:
 04/03/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0067

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 14 of 30

FTOJECI. LIVIO BOO					Fage 14 01 30
<u>Parameter</u>	<u>Result</u>	RL	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Carbon Disulfide	ND	1.0	0.40	1.00	
Carbon Tetrachloride	1.2	0.50	0.20	1.00	
Chlorobenzene	ND	0.50	0.20	1.00	
Chloroethane	ND	0.50	0.32	1.00	
Chloroform	1.5	0.50	0.20	1.00	
Chloromethane	ND	0.50	0.29	1.00	
Dibromochloromethane	ND	0.50	0.20	1.00	
Dibromomethane	ND	0.50	0.20	1.00	
Dichlorodifluoromethane	ND	1.0	0.40	1.00	
Ethylbenzene	ND	0.50	0.20	1.00	
Isopropylbenzene	ND	0.50	0.20	1.00	
Methylene Chloride	ND	1.0	0.80	1.00	
Naphthalene	ND	1.0	0.40	1.00	
Styrene	ND	0.50	0.20	1.00	
Tetrachloroethene	8.8	0.50	0.20	1.00	
Toluene	ND	0.50	0.20	1.00	
t-1,2-Dichloroethene	ND	0.50	0.20	1.00	
Trichloroethene	12	0.50	0.29	1.00	
Trichlorofluoromethane	ND	0.50	0.20	1.00	
Vinyl Acetate	ND	5.0	2.0	1.00	
Vinyl Chloride	ND	0.50	0.20	1.00	
c-1,3-Dichloropropene	ND	0.50	0.20	1.00	
c-1,2-Dichloroethene	ND	0.50	0.20	1.00	
n-Butylbenzene	ND	0.50	0.20	1.00	
n-Propylbenzene	ND	0.50	0.20	1.00	
o-Xylene	ND	0.50	0.32	1.00	
p-Isopropyltoluene	ND	0.50	0.20	1.00	
sec-Butylbenzene	ND	0.50	0.20	1.00	
t-1,3-Dichloropropene	ND	0.50	0.20	1.00	
tert-Butylbenzene	ND	0.50	0.20	1.00	
p/m-Xylene	ND	0.50	0.20	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	0.50	0.20	1.00	
2-Chloroethyl Vinyl Ether	ND	5.0	4.2	1.00	
Hexachloro-1,3-Butadiene	ND	2.0	0.80	1.00	
lodomethane	ND	10	5.0	1.00	
<u>Surrogate</u>	Rec. (%)	Control Limits	Qualifiers		
1,4-Bromofluorobenzene	84	68-120			
Dibromofluoromethane	117	80-127			

Tetra Tech, Inc.	Date Received:	04/03/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0067
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOU		Page 15 of 30

Surrogate	Rec. (%)	Control Limits	Qualifiers
1,2-Dichloroethane-d4	116	80-128	
Toluene-d8	101	80-120	

Tetra Tech, Inc.

Date Received:

04/03/17

301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-0067

San Bernardino, CA 92408-3562 Preparation: EPA 5030C

Method: EPA 8260B Units: ug/L

Project: LMC BOU Page 16 of 30

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
3852M-FD-17Q2	17-04-0067-6-A	04/03/17 13:29	Aqueous	GC/MS L	04/04/17	04/05/17 06:24	170404L041
Comment(s): - Results were evaluated to	the MDL (DL), cond	centrations >= 1	to the MDL (D	L) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,1-Trichloroethane	ND		0.50	0.20	1.00		
1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		0.50	0.24	1.00		
1,1,2-Trichloroethane	0.26		0.50	0.20	1.00	J	
1,1-Dichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethene	0.70		0.50	0.28	1.00		
1,1-Dichloropropene	ND		0.50	0.30	1.00		
1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,3-Trichloropropane	ND		1.0	0.40	1.00		
1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,4-Trimethylbenzene	ND		0.50	0.20	1.00		
1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00		
1,2-Dibromoethane	ND		0.50	0.20	1.00		
1,2-Dichlorobenzene	ND		0.50	0.20	1.00		
1,2-Dichloroethane	1.0		0.50	0.20	1.00		
1,2-Dichloropropane	ND		0.50	0.20	1.00		
1,3,5-Trimethylbenzene	ND		0.50	0.20	1.00		
1,3-Dichlorobenzene	ND		0.50	0.28	1.00		
1,3-Dichloropropane	ND		1.0	0.40	1.00		
1,4-Dichlorobenzene	ND		0.50	0.20	1.00		
2,2-Dichloropropane	ND		1.0	0.40	1.00		
2-Butanone	ND		5.0	2.0	1.00		
2-Chlorotoluene	ND		0.50	0.20	1.00		
2-Hexanone	ND		10	4.0	1.00		
4-Chlorotoluene	ND		0.50	0.36	1.00		
4-Methyl-2-Pentanone	ND		5.0	2.0	1.00		
Acetone	9.2		10	4.0	1.00	J	
Benzene	ND		0.50	0.20	1.00		
Bromobenzene	ND		0.50	0.32	1.00		
Bromochloromethane	ND		1.0	0.40	1.00		
Bromodichloromethane	_						
	ND		0.50	0.20	1.00		
Bromoform	ND ND		0.50 0.50	0.20 0.25	1.00 1.00		

 Tetra Tech, Inc.
 Date Received:
 04/03/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0067

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 17 of 30

Project: LMC BOU					Page 17 of 30
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Carbon Disulfide	ND	1.0	0.40	1.00	
Carbon Tetrachloride	1.2	0.50	0.20	1.00	
Chlorobenzene	ND	0.50	0.20	1.00	
Chloroethane	ND	0.50	0.32	1.00	
Chloroform	1.5	0.50	0.20	1.00	
Chloromethane	ND	0.50	0.29	1.00	
Dibromochloromethane	ND	0.50	0.20	1.00	
Dibromomethane	ND	0.50	0.20	1.00	
Dichlorodifluoromethane	ND	1.0	0.40	1.00	
Ethylbenzene	ND	0.50	0.20	1.00	
Isopropylbenzene	ND	0.50	0.20	1.00	
Methylene Chloride	ND	1.0	0.80	1.00	
Naphthalene	ND	1.0	0.40	1.00	
Styrene	ND	0.50	0.20	1.00	
Tetrachloroethene	8.6	0.50	0.20	1.00	
Toluene	ND	0.50	0.20	1.00	
t-1,2-Dichloroethene	ND	0.50	0.20	1.00	
Trichloroethene	12	0.50	0.29	1.00	
Trichlorofluoromethane	ND	0.50	0.20	1.00	
Vinyl Acetate	ND	5.0	2.0	1.00	
Vinyl Chloride	ND	0.50	0.20	1.00	
c-1,3-Dichloropropene	ND	0.50	0.20	1.00	
c-1,2-Dichloroethene	0.22	0.50	0.20	1.00	J
n-Butylbenzene	ND	0.50	0.20	1.00	
n-Propylbenzene	ND	0.50	0.20	1.00	
o-Xylene	ND	0.50	0.32	1.00	
p-Isopropyltoluene	ND	0.50	0.20	1.00	
sec-Butylbenzene	ND	0.50	0.20	1.00	
t-1,3-Dichloropropene	ND	0.50	0.20	1.00	
tert-Butylbenzene	ND	0.50	0.20	1.00	
p/m-Xylene	ND	0.50	0.20	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	0.50	0.20	1.00	
2-Chloroethyl Vinyl Ether	ND	5.0	4.2	1.00	
Hexachloro-1,3-Butadiene	ND	2.0	0.80	1.00	
lodomethane	ND	10	5.0	1.00	
<u>Surrogate</u>	Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	85	68-120			
Dibromofluoromethane	120	80-127			

Tetra Tech, Inc.	Date Received:	04/03/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0067
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOU		Page 18 of 30

<u>Surrogate</u>	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>
1,2-Dichloroethane-d4	122	80-128	
Toluene-d8	92	80-120	

 Tetra Tech, Inc.
 Date Received:
 04/03/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0067

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

Method: EPA 8260B

Units: ug/L

Project: LMC BOU Page 19 of 30

Comment(s):	Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Parameter Result RL MDL DE Qualifiers 1,1,1,2-Trichloroethane ND 0.50 0.20 1.00 1.10 1,1,1,2-Trichloroethane ND 0.50 0.20 1.00 1.12 1,1,2-Trichloroethane ND 0.50 0.24 1.00 1.10 1,1,2-Trichloroethane ND 0.50 0.20 1.00 1.10 1,1-Dichloroethane ND 0.50 0.20 1.00 1.10 1,1-Dichloroethane ND 0.50 0.20 1.00 1.10 1,1-Dichloroethane ND 0.50 0.20 1.00 1.11 1,1-Dichloroptoethane ND 0.50 0.20 1.00 1.20 1,2-3-Trichloroptopane ND 0.50 0.20 1.00 1.20 1,2-3-Trichloroptopane ND 0.50 0.20 1.00 1.20 1,2-4-Trinethylberace ND 0.50 0.20 1.00 1.20 1,2-Dichloroptopane ND<	3851M-N-17Q2	17-04-0067-7-A		Aqueous	GC/MS L	04/04/17		170404L041
1,1,1,2-Tetrachloroethane ND 0.50 0.20 1.00 1,1,1-Tichloroethane ND 0.50 0.20 1.00 1,1,2-Tichloroethane ND 0.50 0.20 1.00 1,1,2-Tichloroethane ND 0.50 0.24 1.00 1,1,2-Tichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethane 0.57 0.50 0.20 1.00 1,1-Dichloroethane 0.57 0.50 0.20 1.00 1,1-Dichloroethane 0.57 0.50 0.28 1.00 1,1-Dichloroethane ND 0.50 0.30 1.00 1,1-Dichloroethane ND 0.50 0.20 1.00 1,2-Britchlorobenzene ND 0.50 0.20 1.00 1,2-Britchloropropane ND 0.50 0.20 1.00 1,2-Dichloroethane ND 0.50 0.20 1.00 1,2-Dichloroethane ND 0.50 0.20 1.00 1,2-Dichloroethane ND 0.50 0.20 1.00 1,2-Dichloroethane	Comment(s): - Results were evaluated	to the MDL (DL), cond	centrations >=	to the MDL (D	L) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
1,1,1-Trichloroethane ND 0.50 0.20 1.00 1,1,2,2-Tertachloroethane ND 0.50 0.20 1.00 1,1,2,2-Trichloro-1,2,2-Trifluoroethane ND 0.50 0.24 1.00 1,1,2-Trichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethane ND 0.50 0.28 1.00 1,1-Dichloroethane ND 0.50 0.28 1.00 1,1-Dichloroethane ND 0.50 0.30 1.00 1,1-Dichloropropane ND 0.50 0.30 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,3-Trichloropropane ND 1.0 0.40 1.00 1,2,4-Trinteflybenzene ND 0.50 0.20 1.00 1,2,4-Trinteflybenzene ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 <	<u>Parameter</u>	Resu	ı <u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>(</u>	Qualifiers
1,1,2,2-Tetrachloroethane ND 0.50 0.20 1.00 1,1,2-Trichloro-1,2,2-Trifluroethane ND 0.50 0.24 1.00 1,1,2-Trichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethane 0.57 0.50 0.28 1.00 1,1-Dichloropropene ND 0.50 0.30 1.00 1,1-Dichloropropane ND 0.50 0.20 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Triinethylbenzene ND 0.50 0.20 1.00 1,2,4-Triinethylbenzene ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.28 1.00	1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,2-Trichloro-1,2,2-Triffluoroethane ND 0.50 0.24 1.00 1,1,2-Trichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethane ND 0.50 0.28 1.00 1,1-Dichloroethene 0.57 0.50 0.28 1.00 1,1-Dichloropropene ND 0.50 0.30 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.28 1.00	1,1,1-Trichloroethane	ND		0.50	0.20	1.00		
1,1,2-Trichloroethane	1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethane ND 0.50 0.20 1.00 1,1-Dichloroethene 0.57 0.50 0.28 1.00 1,1-Dichloropropene ND 0.50 0.30 1.00 1,1-Dichloropropene ND 0.50 0.20 1.00 1,2,3-Trichlorobenzene ND 1.0 0.40 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trinethylbenzene ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-Trimethylbenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 0.50 0.28 1.00 1,4-Dichlo	1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		0.50	0.24	1.00		
1,1-Dichloroethene 0.57 0.50 0.28 1.00 1,1-Dichloropropene ND 0.50 0.30 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2-Libromo-3-Chloropropane ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1	1,1,2-Trichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloropropene ND 0.50 0.30 1.00 1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,3-Trichloropropane ND 1.0 0.40 1.00 1,2,4-Trichloropropane ND 0.50 0.20 1.00 1,2,4-Trinchlylbenzene ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.28 1.00 1,3-Dichloropropane ND 0.50 0.20 1.00 2,2-Dichloropropane ND 0.50 0.20 1.00 2,2-Dichloropropane ND 0.50 0.20 1.00 2-Butanone	1,1-Dichloroethane	ND		0.50	0.20	1.00		
1,2,3-Trichlorobenzene ND 0.50 0.20 1.00 1,2,3-Trichloropropane ND 1.0 0.40 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 2.0 1.00 1,2-Dibromoethane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.28 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 2,2-Dichlorobenzene ND 1.0 0.40 1.00 2,2-Dichloropopane <td>1,1-Dichloroethene</td> <td>0.57</td> <td></td> <td>0.50</td> <td>0.28</td> <td>1.00</td> <td></td> <td></td>	1,1-Dichloroethene	0.57		0.50	0.28	1.00		
1,2,3-Trichloropropane ND 1.0 0.40 1.00 1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 2.0 1.00 1,2-Dibromoethane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloroptopane ND 0.50 0.20 1.00 1,2-Dichloroptopane ND 0.50 0.20 1.00 1,2-Dichloroptopane ND 0.50 0.20 1.00 1,3-Dichloroptopane ND 0.50 0.20 1.00 1,3-Dichloroptopane ND 0.50 0.28 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 0.50 0.20 1.00 2-Butanone ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND <td>1,1-Dichloropropene</td> <td>ND</td> <td></td> <td>0.50</td> <td>0.30</td> <td>1.00</td> <td></td> <td></td>	1,1-Dichloropropene	ND		0.50	0.30	1.00		
1,2,4-Trichlorobenzene ND 0.50 0.20 1.00 1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 2.0 1.00 1,2-Dibromoethane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.20 1.00 1,3-Dichloropropane ND 0.50 0.28 1.00 1,3-Dichloropropane ND 0.50 0.20 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 0.50 0.20 1.00 2,2-Dichloropropane ND 0.50 0.20 1.00 2-Butanone ND 0.50 0.20 1.00 2-Hexanone ND	1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,4-Trimethylbenzene ND 0.50 0.20 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 2.0 1.00 1,2-Dibromoethane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-5-Trimethylbenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2,2-Dichloropropane ND 5.0 0.20 1.00 2-Butanone ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.20 1.00 4-Ketanone ND 0.5	1,2,3-Trichloropropane	ND		1.0	0.40	1.00		
1,2-Dibromo-3-Chloropropane ND 5.0 2.0 1.00 1,2-Dibromoethane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloroptopane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-Eichloropropane ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 0.50 0.28 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 0.50 0.20 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 0	1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2-Dibromoethane ND 0.50 0.20 1.00 1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloroethane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3,5-Trimethylbenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 1,4-Dichloropropane ND 1.0 0.40 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 1.0 0.40 1.00 2-Butanone ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.20 1.00 4-Khiyi-2-Pentanone ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 0.50	1,2,4-Trimethylbenzene	ND		0.50	0.20	1.00		
1,2-Dichlorobenzene ND 0.50 0.20 1.00 1,2-Dichloroethane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3-5-Trimethylbenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Butanone ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Benzene ND 0.50 0.20	1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00		
1,2-Dichloroethane ND 0.50 0.20 1.00 1,2-Dichloropropane ND 0.50 0.20 1.00 1,3,5-Trimethylbenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 1.0 0.40 1.00 2-Butanone ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Benzene ND 0.50 0.20 1.00 Benzene ND 0.50 0.32 1.00 Bromobenzene ND 0.50 0.20 1.00	1,2-Dibromoethane	ND		0.50	0.20	1.00		
1,2-Dichloropropane ND 0.50 0.20 1.00 1,3,5-Trimethylbenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Hexanone ND 0.50 0.20 1.00 2-Hexanone ND 0.50 0.36 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone 9.2 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 0.50 0.20 1.00 Bromodichloromethane ND 0.50 0.20 1.00 <td>1,2-Dichlorobenzene</td> <td>ND</td> <td></td> <td>0.50</td> <td>0.20</td> <td>1.00</td> <td></td> <td></td>	1,2-Dichlorobenzene	ND		0.50	0.20	1.00		
1,3,5-Trimethylbenzene ND 0.50 0.20 1.00 1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone 9.2 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 0.50 0.20 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00 </td <td>1,2-Dichloroethane</td> <td>ND</td> <td></td> <td>0.50</td> <td>0.20</td> <td>1.00</td> <td></td> <td></td>	1,2-Dichloroethane	ND		0.50	0.20	1.00		
1,3-Dichlorobenzene ND 0.50 0.28 1.00 1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone 9.2 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	1,2-Dichloropropane	ND		0.50	0.20	1.00		
1,3-Dichloropropane ND 1.0 0.40 1.00 1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone 9.2 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	1,3,5-Trimethylbenzene	ND		0.50	0.20	1.00		
1,4-Dichlorobenzene ND 0.50 0.20 1.00 2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone 9.2 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 0.50 0.20 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	1,3-Dichlorobenzene	ND		0.50	0.28	1.00		
2,2-Dichloropropane ND 1.0 0.40 1.00 2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone 9.2 10 4.0 1.00 Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 0.50 0.20 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	1,3-Dichloropropane	ND		1.0	0.40	1.00		
2-Butanone ND 5.0 2.0 1.00 2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone 9.2 10 4.0 1.00 J Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.20 1.00	1,4-Dichlorobenzene	ND		0.50	0.20	1.00		
2-Chlorotoluene ND 0.50 0.20 1.00 2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone 9.2 10 4.0 1.00 J Benzene ND 0.50 0.20 1.00 1.00 Bromobenzene ND 1.0 0.40 1.00 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	2,2-Dichloropropane	ND		1.0	0.40	1.00		
2-Hexanone ND 10 4.0 1.00 4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone 9.2 10 4.0 1.00 J Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	2-Butanone	ND		5.0	2.0	1.00		
4-Chlorotoluene ND 0.50 0.36 1.00 4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone 9.2 10 4.0 1.00 J Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	2-Chlorotoluene	ND		0.50	0.20	1.00		
4-Methyl-2-Pentanone ND 5.0 2.0 1.00 Acetone 9.2 10 4.0 1.00 J Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	2-Hexanone	ND		10	4.0	1.00		
Acetone 9.2 10 4.0 1.00 J Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	4-Chlorotoluene	ND		0.50	0.36	1.00		
Benzene ND 0.50 0.20 1.00 Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	4-Methyl-2-Pentanone	ND		5.0	2.0	1.00		
Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	Acetone	9.2		10	4.0	1.00		I
Bromobenzene ND 0.50 0.32 1.00 Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	Benzene	ND		0.50	0.20	1.00		
Bromochloromethane ND 1.0 0.40 1.00 Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	Bromobenzene	ND		0.50	0.32			
Bromodichloromethane ND 0.50 0.20 1.00 Bromoform ND 0.50 0.25 1.00	Bromochloromethane	ND		1.0	0.40			
	Bromodichloromethane	ND		0.50	0.20	1.00		
	Bromoform	ND		0.50	0.25	1.00		
	Bromomethane							

 Tetra Tech, Inc.
 Date Received:
 04/03/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0067

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 20 of 30

				1 age 20 01 00
<u>Result</u>	<u>RL</u>	MDL	<u>DF</u>	<u>Qualifiers</u>
ND	1.0	0.40	1.00	
0.53	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.32	1.00	
0.62	0.50	0.20	1.00	
ND	0.50	0.29	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	1.0	0.40	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	1.0	0.80	1.00	
ND	1.0	0.40	1.00	
ND	0.50	0.20	1.00	
2.2	0.50	0.20	1.00	
0.35	0.50	0.20	1.00	J
ND	0.50	0.20	1.00	
12	0.50	0.29	1.00	
ND	0.50	0.20	1.00	
ND	5.0	2.0	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
0.24	0.50	0.20	1.00	J
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.32	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	5.0	4.2	1.00	
ND	2.0	0.80	1.00	
ND	10	5.0	1.00	
Rec. (%)	Control Limits	<u>Qualifiers</u>		
84	68-120			
116	80-127			
	ND 0.53 ND ND 0.62 ND ND ND ND ND ND ND ND ND ND ND ND ND	ND 1.0 0.53 0.50 ND 0.50 ND 0.50 ND 0.50 0.62 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 1.0 ND 0.50 ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 0.50 2.2 0.50 0.35 0.50 ND 0.5	ND 1.0 0.40 0.53 0.50 0.20 ND 0.50 0.20 ND 0.50 0.32 0.62 0.50 0.20 ND 0.50 0.29 ND 0.50 0.29 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 1.0 0.50 0.20 ND 1.0 0.80 ND 1.0 0.50 0.20 ND 1.0 0.50 0.20 ND 1.0 0.50 0.20 ND 1.0 0.50 0.20 ND 1.0 0.50 0.20 ND 1.0 0.50 0.20 ND 1.0 0.50 0.20 ND 0.50 0.20 0.35 0.50 0.20 ND 0.50	ND

Tetra Tech, Inc.	Date Received:	04/03/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0067
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOU		Page 21 of 30

<u>Surrogate</u>	Rec. (%)	Control Limits	<u>Qualifiers</u>
1,2-Dichloroethane-d4	115	80-128	
Toluene-d8	101	80-120	

Project: LMC BOU

Analytical Report

Tetra Tech, Inc.

Date Received:

Work Order:

17-04-0067

San Bernardino, CA 92408-3562

Preparation:

Date Received:

Work Order:

17-04-0067

EPA 5030C

Method: EPA 8260B

Units: ug/L Page 22 of 30

Client Sample Number	Lab Sample Number	Date/Time M Collected	Matrix Instrume	ent Date Prepared	Date/Time Analyzed	QC Batch ID	
LTB-20170403	17-04-0067-8-A	04/03/17 A 08:00	aqueous GC/MS	L 04/04/17	04/05/17 03:20	170404L041	
Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.							
<u>Parameter</u>	Result	<u>RL</u>	MDL	<u>DF</u>	<u>(</u>	<u>Qualifiers</u>	
1,1,1,2-Tetrachloroethane	ND	0.50	0.20	1.00			
1,1,1-Trichloroethane	ND	0.50	0.20	1.00			
1,1,2,2-Tetrachloroethane	ND	0.50	0.20	1.00			
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.50	0.24	1.00			

 Tetra Tech, Inc.
 Date Received:
 04/03/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0067

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 23 of 30

Project: LMC BOU					Page 23 of 30
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Carbon Disulfide	ND	1.0	0.40	1.00	
Carbon Tetrachloride	ND	0.50	0.20	1.00	
Chlorobenzene	ND	0.50	0.20	1.00	
Chloroethane	ND	0.50	0.32	1.00	
Chloroform	ND	0.50	0.20	1.00	
Chloromethane	ND	0.50	0.29	1.00	
Dibromochloromethane	ND	0.50	0.20	1.00	
Dibromomethane	ND	0.50	0.20	1.00	
Dichlorodifluoromethane	ND	1.0	0.40	1.00	
Ethylbenzene	ND	0.50	0.20	1.00	
Isopropylbenzene	ND	0.50	0.20	1.00	
Methylene Chloride	ND	1.0	0.80	1.00	
Naphthalene	ND	1.0	0.40	1.00	
Styrene	ND	0.50	0.20	1.00	
Tetrachloroethene	ND	0.50	0.20	1.00	
Toluene	ND	0.50	0.20	1.00	
t-1,2-Dichloroethene	ND	0.50	0.20	1.00	
Trichloroethene	ND	0.50	0.29	1.00	
Trichlorofluoromethane	ND	0.50	0.20	1.00	
Vinyl Acetate	ND	5.0	2.0	1.00	
Vinyl Chloride	ND	0.50	0.20	1.00	
c-1,3-Dichloropropene	ND	0.50	0.20	1.00	
c-1,2-Dichloroethene	ND	0.50	0.20	1.00	
n-Butylbenzene	ND	0.50	0.20	1.00	
n-Propylbenzene	ND	0.50	0.20	1.00	
o-Xylene	ND	0.50	0.32	1.00	
p-Isopropyltoluene	ND	0.50	0.20	1.00	
sec-Butylbenzene	ND	0.50	0.20	1.00	
t-1,3-Dichloropropene	ND	0.50	0.20	1.00	
tert-Butylbenzene	ND	0.50	0.20	1.00	
p/m-Xylene	ND	0.50	0.20	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	0.50	0.20	1.00	
2-Chloroethyl Vinyl Ether	ND	5.0	4.2	1.00	
Hexachloro-1,3-Butadiene	ND	2.0	0.80	1.00	
lodomethane	ND	10	5.0	1.00	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	84	68-120			
Dibromofluoromethane	113	80-127			

Tetra Tech, Inc.	Date Received:	04/03/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0067
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOU		Page 24 of 30

<u>Surrogate</u>	Rec. (%)	Control Limits	Qualifiers
1,2-Dichloroethane-d4	116	80-128	
Toluene-d8	100	80-120	

 Tetra Tech, Inc.
 Date Received:
 04/03/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0067

San Bernardino, CA 92408-3562 Preparation: EPA 5030C

Method: EPA 8260B Units: ug/L

Project: LMC BOU Page 25 of 30

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-10-025-4606	N/A	Aqueous	GC/MS L	04/04/17	04/04/17 22:44	170404L041
Comment(s): - Results were evaluated to	the MDL (DL), cond	entrations >= t	o the MDL (DI	L) but < RL (LO	Q), if found, are	qualified with a	a "J" flag.
<u>Parameter</u>	<u>Resu</u>	<u>lt</u> .	<u>RL</u>	<u>MDL</u>	<u>DF</u>	9	<u>Qualifiers</u>
1,1,1,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,1-Trichloroethane	ND		0.50	0.20	1.00		
1,1,2,2-Tetrachloroethane	ND		0.50	0.20	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		0.50	0.24	1.00		
1,1,2-Trichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethene	ND		0.50	0.28	1.00		
1,1-Dichloropropene	ND		0.50	0.30	1.00		
1,2,3-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,3-Trichloropropane	ND		1.0	0.40	1.00		
1,2,4-Trichlorobenzene	ND		0.50	0.20	1.00		
1,2,4-Trimethylbenzene	ND		0.50	0.20	1.00		
1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00		
1,2-Dibromoethane	ND		0.50	0.20	1.00		
1,2-Dichlorobenzene	ND		0.50	0.20	1.00		
1,2-Dichloroethane	ND		0.50	0.20	1.00		
1,2-Dichloropropane	ND		0.50	0.20	1.00		
1,3,5-Trimethylbenzene	ND		0.50	0.20	1.00		
1,3-Dichlorobenzene	ND		0.50	0.28	1.00		
1,3-Dichloropropane	ND		1.0	0.40	1.00		
1,4-Dichlorobenzene	ND		0.50	0.20	1.00		
2,2-Dichloropropane	ND		1.0	0.40	1.00		
2-Butanone	ND		5.0	2.0	1.00		
2-Chlorotoluene	ND		0.50	0.20	1.00		
2-Hexanone	ND		10	4.0	1.00		
4-Chlorotoluene	ND		0.50	0.36	1.00		
4-Methyl-2-Pentanone	ND		5.0	2.0	1.00		
Acetone	ND		10	4.0	1.00		
Benzene	ND		0.50	0.20	1.00		
Bromobenzene	ND		0.50	0.32	1.00		
Bromochloromethane	ND		1.0	0.40	1.00		
Bromodichloromethane	ND		0.50	0.20	1.00		
Bromoform	ND		0.50	0.25	1.00		
Bromomethane	ND		1.0	0.40	1.00		

 Tetra Tech, Inc.
 Date Received:
 04/03/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0067

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 26 of 30

Project: LMC BOU					Page 26 01 30
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Carbon Disulfide	ND	1.0	0.40	1.00	
Carbon Tetrachloride	ND	0.50	0.20	1.00	
Chlorobenzene	ND	0.50	0.20	1.00	
Chloroethane	ND	0.50	0.32	1.00	
Chloroform	ND	0.50	0.20	1.00	
Chloromethane	ND	0.50	0.29	1.00	
Dibromochloromethane	ND	0.50	0.20	1.00	
Dibromomethane	ND	0.50	0.20	1.00	
Dichlorodifluoromethane	ND	1.0	0.40	1.00	
Ethylbenzene	ND	0.50	0.20	1.00	
Isopropylbenzene	ND	0.50	0.20	1.00	
Methylene Chloride	ND	1.0	0.80	1.00	
Naphthalene	ND	1.0	0.40	1.00	
Styrene	ND	0.50	0.20	1.00	
Tetrachloroethene	ND	0.50	0.20	1.00	
Toluene	ND	0.50	0.20	1.00	
t-1,2-Dichloroethene	ND	0.50	0.20	1.00	
Trichloroethene	ND	0.50	0.29	1.00	
Trichlorofluoromethane	ND	0.50	0.20	1.00	
Vinyl Acetate	ND	5.0	2.0	1.00	
Vinyl Chloride	ND	0.50	0.20	1.00	
c-1,3-Dichloropropene	ND	0.50	0.20	1.00	
c-1,2-Dichloroethene	ND	0.50	0.20	1.00	
n-Butylbenzene	ND	0.50	0.20	1.00	
n-Propylbenzene	ND	0.50	0.20	1.00	
o-Xylene	ND	0.50	0.32	1.00	
p-Isopropyltoluene	ND	0.50	0.20	1.00	
sec-Butylbenzene	ND	0.50	0.20	1.00	
t-1,3-Dichloropropene	ND	0.50	0.20	1.00	
tert-Butylbenzene	ND	0.50	0.20	1.00	
p/m-Xylene	ND	0.50	0.20	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	0.50	0.20	1.00	
2-Chloroethyl Vinyl Ether	ND	5.0	4.2	1.00	
Hexachloro-1,3-Butadiene	ND	2.0	0.80	1.00	
lodomethane	ND	10	5.0	1.00	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	84	68-120			
Dibromofluoromethane	107	80-127			

Tetra Tech, Inc.	Date Received:	04/03/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0067
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOLL		Page 27 of 30

Surrogate	Rec. (%)	Control Limits	Qualifiers
1,2-Dichloroethane-d4	113	80-128	
Toluene-d8	98	80-120	

San Bernardino, CA 92408-3562

Analytical Report

Tetra Tech, Inc.

Date Received:

04/03/17
301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-0067

Preparation: EPA 5030C

Method: EPA 8260B Units: ug/L

Project: LMC BOU Page 28 of 30

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-10-025-4608	N/A	Aqueous	GC/MS L	04/06/17	04/06/17 09:56	170406L008
Comment(s): - Results were evaluated to	the MDL (DL), conc	entrations >=	to the MDL (DL	_) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resul	<u> t</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
Tetrachloroethene	ND		0.50	0.20	1.00		
Trichloroethene	ND		0.50	0.29	1.00		
Acetone	ND		10	4.0	1.00		
Benzene	ND		0.50	0.20	1.00		
Bromobenzene	ND		0.50	0.32	1.00		
Bromochloromethane	ND		1.0	0.40	1.00		
Bromodichloromethane	ND		0.50	0.20	1.00		
Bromoform	ND		0.50	0.25	1.00		
Bromomethane	ND		1.0	0.40	1.00		
2-Butanone	ND		5.0	2.0	1.00		
n-Butylbenzene	ND		0.50	0.20	1.00		
sec-Butylbenzene	ND		0.50	0.20	1.00		
tert-Butylbenzene	ND		0.50	0.20	1.00		
Carbon Disulfide	ND		1.0	0.40	1.00		
Carbon Tetrachloride	ND		0.50	0.20	1.00		
Chlorobenzene	ND		0.50	0.20	1.00		
Chloroethane	ND		0.50	0.32	1.00		
2-Chloroethyl Vinyl Ether	ND		5.0	4.2	1.00		
Chloroform	ND		0.50	0.20	1.00		
Chloromethane	ND		0.50	0.29	1.00		
2-Chlorotoluene	ND		0.50	0.20	1.00		
4-Chlorotoluene	ND		0.50	0.36	1.00		
Dibromochloromethane	ND		0.50	0.20	1.00		
1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	1.00		
1,2-Dibromoethane	ND		0.50	0.20	1.00		
Dibromomethane	ND		0.50	0.20	1.00		
1,2-Dichlorobenzene	ND		0.50	0.20	1.00		
1,3-Dichlorobenzene	ND		0.50	0.28	1.00		
1,4-Dichlorobenzene	ND		0.50	0.20	1.00		
Dichlorodifluoromethane	ND		1.0	0.40	1.00		
1,1-Dichloroethane	ND		0.50	0.20	1.00		
1,2-Dichloroethane	ND		0.50	0.20	1.00		
1,1-Dichloroethene	ND		0.50	0.28	1.00		
c-1,2-Dichloroethene	ND		0.50	0.20	1.00		

 Tetra Tech, Inc.
 Date Received:
 04/03/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0067

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

 Project: LMC BOU
 Page 29 of 30

				Fage 29 01 30
Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	1.0	0.40	1.00	
ND	1.0	0.40	1.00	
ND	0.50	0.30	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	10	4.0	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	1.0	0.80	1.00	
ND	5.0	2.0	1.00	
ND	1.0	0.40	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	2.0	0.80	1.00	
ND	0.50	0.24	1.00	
ND	0.50	0.20	1.00	
ND	10	5.0	1.00	
ND	0.50	0.20	1.00	
ND	1.0	0.40	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	5.0	2.0	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.20	1.00	
ND	0.50	0.32	1.00	
ND	0.50	0.20	1.00	
Rec. (%)	Control Limits	Qualifiers		
86	68-120			
106	80-127			
	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND	ND 0.50 0.20 ND 0.50 0.20 ND 1.0 0.40 ND 1.0 0.40 ND 0.50 0.30 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 10 4.0 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND 0.50 0.20 ND	ND 0.50 0.20 1.00 ND 0.50 0.20 1.00 ND 1.0 0.40 1.00 ND 1.0 0.40 1.00 ND 1.0 0.40 1.00 ND 0.50 0.30 1.00 ND 0.50 0.20 1.00 ND 0.50 0.20 1.00 ND 0.50 0.20 1.00 ND 0.50 0.20 1.00 ND 10 4.0 1.00 ND 0.50 0.20 1.00 ND 0.50 0.20 1.00 ND 0.50 0.20 1.00 ND 0.50 0.20 1.00 ND 1.0 0.80 1.00 ND 1.0 0.80 1.00 ND 1.0 0.40 1.00 ND 1.0 0.40 1.00 ND 1.0 0.50 0.20 1.00 ND 1.0 0.50 0.20 1.00 ND 1.0 0.50 0.20 1.00 ND 1.0 0.50 0.20 1.00 ND 1.0 0.50 0.20 1.00 ND 1.0 0.50 0.20 1.00 ND 0.50 0.20 1.00

Tetra Tech, Inc.	Date Received:	04/03/17
301 E. Vanderbilt Way, Suite 450	Work Order:	17-04-0067
San Bernardino, CA 92408-3562	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: LMC BOU		Page 30 of 30

<u>Surrogate</u>	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>
1,2-Dichloroethane-d4	103	80-128	
Toluene-d8	97	80-120	

Page 1 of 3

Project: LMC BOU

Analytical Report

Tetra Tech, Inc.

Date Received: 04/03/17
301 E. Vanderbilt Way, Suite 450

Work Order: 17-04-0067

San Bernardino, CA 92408-3562

Preparation: EPA 5030C

Method: EPA 8260B SIM

Units: ug/L

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
3872M-N-17Q2	17-04-0067-1-F	04/03/17 15:32	Aqueous	GC/MS M	04/04/17	04/04/17 16:51	170404L035

Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. <u>Parameter</u> Result <u>MDL</u> DF Qualifiers <u>RL</u> 1,2,3-Trichloropropane ND 0.0050 0.0025 1.00 Surrogate Rec. (%) **Control Limits** Qualifiers

Surrogate Rec. (%) Control Limits Qualifiers

1,4-Dichlorobutane 101 80-120

3872L-N-17Q2	17-04-0067-2	-F 04/03/17 13:48	Aqueous	GC/MS M	04/04/17	04/04/17 19:51	170404L035
Comment(s):	- Results were evaluated to the MDL (DL),	concentrations >=	to the MDL (DL	.) but < RL (LC	Q), if found, are	qualified with a	a "J" flag.
<u>Parameter</u>		Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>(</u>	<u>Qualifiers</u>
1,2,3-Trichloropi	ropane	0.095	0.0050	0.0025	1.00		

Surrogate Rec. (%) Control Limits Qualifiers

1,4-Dichlorobutane 98 80-120

3872N-N-17Q2	17-04-0067-3-H	04/03/17 11:51	Aqueous	GC/MS M	04/06/17	04/06/17 15:52	170406L019
Comment(s): - Results	vere evaluated to the MDL (DL), co	ncentrations >= t	to the MDL (DL)) but < RL (LOC	Q), if found, are	qualified with a	ı "J" flag.
<u>Parameter</u>	Res	<u>sult</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>(</u>	<u>Qualifiers</u>
1,2,3-Trichloropropane	0.3	1	0.025	0.012	5.00		
Surrogate 1,4-Dichlorobutane	<u>Rec</u> 107		Control Limits 80-120	Qualifiers			

3852N-N-17Q2	17-04-0067-4-G	04/03/17 11:58	Aqueous	GC/MS M	04/08/17	04/08/17 12:11	170408L018
Comment(s): - Results were evaluated	to the MDL (DL), cond	centrations >=	to the MDL (DL	.) but < RL (LO	Q), if found, are	qualified with a	a "J" flag.
<u>Parameter</u>	<u>Resu</u>	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	9	<u>Qualifiers</u>
1,2,3-Trichloropropane	ND		0.0050	0.0025	1.00		
<u>Surrogate</u>	Rec.	<u>(%)</u>	Control Limits	Qualifiers			
1,4-Dichlorobutane	109		80-120				

1,4-Dichlorobutane

Analytical Report

 Tetra Tech, Inc.
 Date Received:
 04/03/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0067

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B SIM

 Units:
 ug/L

Project: LMC BOU Page 2 of 3

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
3852M-N-17Q2	17-04-0067-5-F	04/03/17 13:29	Aqueous	GC/MS M	04/06/17	04/06/17 16:52	170406L019
Comment(s): - Results were evaluated	I to the MDL (DL), con	centrations >=	to the MDL (DI	_) but < RL (LO	Q), if found, are	qualified with a	a "J" flag.
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>(</u>	<u>Qualifiers</u>
1,2,3-Trichloropropane	0.21		0.025	0.012	5.00		
Surrogate	Rec.	<u>(%)</u>	Control Limits	Qualifiers			

3852M-FD-17Q2 17-04-0067-6-F 04/03/17 Aqueous GC/MS M 04/06/17 04/06/17 17:22	70406L019
---	-----------

80-120

92

Comment(s):	- Results were evaluated to the MDL (D	L), concentrations	>= to the MDL (DL) b	out < RL (LOQ), if for	ound, are qualified	with a "J" flag.
<u>Parameter</u>		<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
1,2,3-Trichlorop	propane	0.20	0.025	0.012	5.00	
<u>Surrogate</u>		Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Dichlorobut	ane	108	80-120			

3	3851M-N-17Q2	17-04-0067-7-F	04/03/17 15:29	Aqueous	GC/MS M	04/06/17	04/06/17 17:52	170406L019	
_	Comment(s):	- Results were evaluated to the MDL (DL) con	centrations >=	to the MDL (DI) but < RL (L(OO) if found are	e qualified with a	a " l" flan	_

 Parameter
 Result
 RL
 MDL
 DF
 Qualifiers

 1,2,3-Trichloropropane
 0.057
 0.0050
 0.0025
 1.00

Surrogate Rec. (%) Control Limits Qualifiers

1,4-Dichlorobutane 97 80-120

LTB-20170403		17-04-0067-8-B	04/03/17 08:00	Aqueous	GC/MS M	04/06/17	04/06/17 14:52	170406L019
Comment(s):	- Results were evaluated	to the MDL (DL), cond	centrations >=	to the MDL (DL) but < RL (LC	Q), if found, are	e qualified with a	a "J" flag.
<u>Parameter</u>		Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	!	<u>Qualifiers</u>
1,2,3-Trichloropr	opane	ND		0.0050	0.0025	1.00		

SurrogateRec. (%)Control LimitsQualifiers1,4-Dichlorobutane10980-120

Mathad Blank

Analytical Report

Tetra Tech, Inc. Date Received: 04/03/17 301 E. Vanderbilt Way, Suite 450 Work Order: 17-04-0067

San Bernardino, CA 92408-3562 Preparation: EPA 5030C Method: EPA 8260B SIM

Units: ug/L

Project: LMC BOU Page 3 of 3

Client Sample Number Lab Sample Date/Time Matrix Instrument Date Date/Time QC Batch ID Prepared Number Collected Analyzed **Method Blank** 099-15-118-473 04/04/17 04/04/17 **Aqueous** GC/MS M 170404L035 16:21

Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

<u>Parameter</u> <u>Result</u> <u>RL</u> <u>MDL</u> <u>DF</u> <u>Qualifiers</u>

1,2,3-Trichloropropane ND 0.0050 0.0025 1.00

Surrogate Rec. (%) Control Limits Qualifiers

1,4-Dichlorobutane 104 80-120

Method Blank 099-15-118-474 N/A Aqueous GC/MS M 04/06/17 04/06/17 170406L019 11:53

Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

<u>Parameter</u> <u>Result</u> <u>RL</u> <u>MDL</u> <u>DF</u> <u>Qualifiers</u>

1,2,3-Trichloropropane ND 0.0050 0.0025 1.00

<u>Surrogate</u> <u>Rec. (%)</u> <u>Control Limits</u> <u>Qualifiers</u>

1,4-Dichlorobutane 104 80-120

Method Blank		099-15-118-476 N/A	Aqueous	GC/MS M	04/08/17	11:41	170408L018
Comment(s):	- Results were evaluated to	the MDL (DL), concentrations	>= to the MDL (DL)) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>		<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
1,2,3-Trichlorop	ropane	ND	0.0050	0.0025	1.00		
Surrogate 1,4-Dichlorobuta	ane	<u>Rec. (%)</u> 90	Control Limits 80-120	<u>Qualifiers</u>			

 Tetra Tech, Inc.
 Date Received:
 04/03/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0067

 San Bernardino, CA 92408-3562
 Preparation:
 N/A

 Method:
 EPA 218.6

Project: LMC BOU Page 1 of 8

Quality Control Sample ID	Туре		Matrix	Instru	ıment	Date Prepared	Date Anal	yzed	MS/MSD Bat	ch Number
3872M-N-17Q2	Sample		Aqueous	IC 16		N/A	04/03/17	21:20	170403S01	
3872M-N-17Q2	Matrix Spike		Aqueous	IC 16		N/A	04/03/17	22:39	170403S01	
3872M-N-17Q2	Matrix Spike Du	plicate	Aqueous	IC 16		N/A	04/03/17	22:50	170403S01	
Parameter		Spike Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Chromium, Hexavalent	4.357 1	10.00	15.00	106	15.18	108	85-121	1	0-25	

 Tetra Tech, Inc.
 Date Received:
 04/03/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0067

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 3020A Total

 Method:
 EPA 6020

Project: LMC BOU Page 2 of 8

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Batch Number
17-04-0732-1	Sample	Aqueous	ICP/MS 05	04/13/17	04/14/17 22:12	170413SA3
17-04-0732-1	Matrix Spike	Aqueous	ICP/MS 05	04/13/17	04/14/17 21:57	170413SA3
17-04-0732-1	Matrix Spike Duplicate	Aqueous	ICP/MS 05	04/13/17	04/14/17 22:01	170413SA3
<u>Parameter</u>	Sample Spike Conc. Added	MS MS Conc. %F	S MSD Rec. Conc.	MSD %Rec.	%Rec. CL RPD	RPD CL Qualifiers
Chromium	0.01372 0.1000	0.1169 103	3 0.1110	97	73-133 5	0-11

 Tetra Tech, Inc.
 Date Received:
 04/03/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0067

San Bernardino, CA 92408-3562 Preparation: EPA 3510C

Method: EPA 8270C (M) Isotope Dilution
Project: LMC BOU Page 3 of 8

Quality Control Sample ID	Туре		Matrix	Ir	nstrument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	tch Number
17-04-0251-4	Sample		Aqueous	; G	C/MS DDD	04/06/17	04/07/17	07:34	170406S12	
17-04-0251-4	Matrix Spike		Aqueous	. 0	SC/MS DDD	04/05/17	04/07/17	19:40	170406S12	
17-04-0251-4	Matrix Spike I	Duplicate	Aqueous	; G	SC/MS DDD	04/05/17	04/07/17	19:56	170406S12	
<u>Parameter</u>	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,4-Dioxane	ND	20.00	20.51	103	20.90	105	50-130	2	0-20	

 Tetra Tech, Inc.
 Date Received:
 04/03/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0067

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

Project: LMC BOU Page 4 of 8

Quality Control Sample ID	Type		Matrix	Ir	nstrument	Date Prepared	d Date Ana	lvzed	MS/MSD Ba	tch Number
17-03-2297-3	Sample		Aqueou	ıs G	C/MS L	04/04/17			170404S020	
17-03-2297-3	Matrix Spike)	Aqueou	ıs G	C/MS L	04/04/17	04/05/17	01:48	170404S020)
17-03-2297-3	Matrix Spike	Duplicate	Aqueou	ıs G	C/MS L	04/04/17	04/05/17	02:18	170404S020)
<u>Parameter</u>	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,1-Dichloroethene	4.909	10.00	16.15	112	13.86	90	66-126	15	0-20	
1,2-Dibromoethane	ND	10.00	9.642	96	9.099	91	75-126	6	0-20	
1,2-Dichlorobenzene	ND	10.00	8.946	89	8.386	84	75-125	6	0-20	
1,2-Dichloroethane	ND	10.00	9.170	92	8.735	87	75-127	5	0-20	
Benzene	ND	10.00	9.271	93	8.687	87	75-125	7	0-20	
Carbon Tetrachloride	ND	10.00	9.667	97	8.928	89	69-135	8	0-20	
Chlorobenzene	ND	10.00	9.194	92	8.416	84	75-125	9	0-20	
Ethylbenzene	ND	10.00	8.998	90	8.037	80	75-125	11	0-20	
Toluene	ND	10.00	9.409	94	7.952	80	75-125	17	0-20	
Trichloroethene	28.08	10.00	31.75	37	29.72	16	75-125	7	0-20	3
Vinyl Chloride	ND	10.00	12.20	122	11.63	116	52-142	5	0-20	
o-Xylene	ND	10.00	9.019	90	8.121	81	75-127	10	0-20	
p/m-Xylene	ND	20.00	18.21	91	16.26	81	75-125	11	0-20	
Methyl-t-Butyl Ether (MTBE)	ND	10.00	11.56	116	10.16	102	71-131	13	0-20	

 Tetra Tech, Inc.
 Date Received:
 04/03/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0067

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

Project: LMC BOU Page 5 of 8

Quality Control Sample ID	Type		Matrix	In	strument	Date Prepared	d Date Ana	lyzed	MS/MSD Ba	tch Number
17-04-0251-4	Sample		Aqueou		C/MS L	04/06/17			170406S007	
17-04-0251-4	Matrix Spike		Aqueou		C/MS L	04/06/17			170406S007	
17-04-0251-4	Matrix Spike	Duplicate	Aqueou	ıs G	C/MS L	04/06/17	04/06/17	13:03	170406S007	•
<u>Parameter</u>	Sample Conc.	Spike Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Trichloroethene	ND	10.00	8.965	90	7.920	79	75-125	12	0-20	
Benzene	ND	10.00	9.313	93	8.052	81	75-125	15	0-20	
Carbon Tetrachloride	ND	10.00	10.86	109	9.504	95	69-135	13	0-20	
Chlorobenzene	ND	10.00	9.535	95	8.685	87	75-125	9	0-20	
1,2-Dibromoethane	ND	10.00	9.689	97	9.005	90	75-126	7	0-20	
1,2-Dichlorobenzene	ND	10.00	9.310	93	8.592	86	75-125	8	0-20	
1,2-Dichloroethane	ND	10.00	9.091	91	8.216	82	75-127	10	0-20	
1,1-Dichloroethene	ND	10.00	10.03	100	9.973	100	66-126	1	0-20	
Ethylbenzene	ND	10.00	9.461	95	8.348	83	75-125	12	0-20	
Toluene	ND	10.00	9.275	93	8.418	84	75-125	10	0-20	
Vinyl Chloride	ND	10.00	9.435	94	10.28	103	52-142	9	0-20	
p/m-Xylene	ND	20.00	19.25	96	17.08	85	75-125	12	0-20	
o-Xylene	ND	10.00	9.707	97	8.675	87	75-127	11	0-20	
Methyl-t-Butyl Ether (MTBE)	ND	10.00	10.57	106	11.08	111	71-131	5	0-20	

 Tetra Tech, Inc.
 Date Received:
 04/03/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0067

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B SIM

 Project: LMC BOU
 Page 6 of 8

Quality Control Sample ID	Туре		Matrix	Ins	trument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
3872M-N-17Q2	Sample		Aqueous	G G C	MS M	04/04/17	04/04/17	16:51	170404S018	
3872M-N-17Q2	Matrix Spike		Aqueous	G G	MS M	04/04/17	04/04/17	17:21	170404S018	
3872M-N-17Q2	Matrix Spike	Duplicate	Aqueous	G G G	MS M	04/04/17	04/04/17	17:51	170404S018	
<u>Parameter</u>	Sample Conc.	<u>Spike</u> Added	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,2,3-Trichloropropane	ND	0.02000	0.02300	115	0.02110	106	80-120	9	0-20	

 Tetra Tech, Inc.
 Date Received:
 04/03/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0067

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B SIM

 Project: LMC BOU
 Page 7 of 8

Quality Control Sample ID	Туре		Matrix	Ins	strument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
17-04-0068-2	Sample		Aqueous	G G	C/MS M	04/06/17	04/06/17	12:23	170406S008	
17-04-0068-2	Matrix Spike		Aqueous	s GC	C/MS M	04/06/17	04/06/17	13:23	170406S008	
17-04-0068-2	Matrix Spike	Duplicate	Aqueous	G G	C/MS M	04/06/17	04/06/17	13:53	170406S008	
<u>Parameter</u>	Sample Conc.	<u>Spike</u> Added	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	<u>Qualifiers</u>
1,2,3-Trichloropropane	ND	0.02000	0.02360	118	0.02040	102	80-120	15	0-20	

 Tetra Tech, Inc.
 Date Received:
 04/03/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0067

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B SIM

 Project: LMC BOU
 Page 8 of 8

Quality Control Sample ID	Туре		Matrix	In	strument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
17-04-0186-1	Sample		Aqueous	s G	C/MS M	04/08/17	04/08/17	13:40	170408S010	
17-04-0186-1	Matrix Spike		Aqueous	s G	C/MS M	04/08/17	04/08/17	15:40	170408S010	
17-04-0186-1	Matrix Spike	Duplicate	Aqueous	s G	C/MS M	04/08/17	04/08/17	16:10	170408S010	
<u>Parameter</u>	Sample Conc.	<u>Spike</u> Added	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,2,3-Trichloropropane	ND	0.02000	0.02770	138	0.03130	156	70-130	12	0-20	3

Chromium

Quality Control - PDS

Tetra Tech, Inc.

Date Received:

04/03/17

301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-0067

San Bernardino, CA 92408-3562

Preparation:

EPA 3020A Total

Preparation: EPA 3020A Total Method: EPA 6020

75-125

Project: LMC BOU Page 1 of 1

Quality Control Sample ID	Туре	N	/latrix Ir	nstrument	Date Prepared	Date Analyzed	PDS/PDSD Batch Number	
17-04-0732-1	Sample	Α	Aqueous I	CP/MS 05	04/13/17 00:00	04/14/17 22:12	170413SA3	
17-04-0732-1	PDS	A	Aqueous I	CP/MS 05	04/13/17 00:00	04/14/17 22:05	170413SA3	
Parameter		Sample Conc.	Spike Added	PDS Conc.	PDS %Re	ec. %Rec. 0	CL Qualifiers	

0.1189

105

0.1000

0.01372

Tetra Tech, Inc.

Date Received:

04/03/17

301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-0067

San Bernardino, CA 92408-3562

Preparation:

N/A

Method:

EPA 218.6

Project: LMC BOU Page 1 of 8

Quality Control Sample ID	Туре	Matrix	Instrument	Date F	Prepared [Date Analyzed	LCS Batch Number	
099-14-567-229	LCS	Aqueous	IC 16	N/A	(04/03/17 15:54	170403L01	
<u>Parameter</u>		Spike Added	Conc. Recov	ered	LCS %Rec	<u>%Rec.</u>	. CL Qualifier	<u>s</u>
Chromium, Hexavalent		10.00	10.13		101	95-107	7	

04/03/17

17-04-0067

Quality Control - LCS

Tetra Tech, Inc.

301 E. Vanderbilt Way, Suite 450

San Bernardino, CA 92408-3562

Date Received:

Work Order:

Preparation:

Preparation: EPA 3020A Total Method: EPA 6020

Project: LMC BOU Page 2 of 8

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
096-06-003-5524	LCS	Aqueous	ICP/MS 05	04/13/17	04/14/17 21:35	170413LA3
<u>Parameter</u>		Spike Added	Conc. Recovere	ed LCS %Re	ec. %Rec	. CL Qualifiers
Chromium		0.1000	0.1005	101	80-120)

Date Received: 04/03/17 Tetra Tech, Inc. Work Order: 17-04-0067 301 E. Vanderbilt Way, Suite 450

Preparation: EPA 3510C San Bernardino, CA 92408-3562

Method: EPA 8270C (M) Isotope Dilution

Page 3 of 8 Project: LMC BOU

Quality Control Sample ID	Туре	Matrix	Instrument	Date	e Prepared	Date Analyzed	LCS Batch	Number
099-16-216-996	LCS	Aqueous	GC/MS DDD	04/0	06/17	04/07/17 06:31	170406L12	
<u>Parameter</u>		Spike Added	Conc. Recov	ered	LCS %Re	ec. %Rec	. CL	<u>Qualifiers</u>
1.4-Dioxane		20.00	18.58		93	50-13	0	

Tetra Tech, Inc. 301 E. Vanderbilt Way, Suite 450 San Bernardino, CA 92408-3562

Date Received: Work Order: Preparation: Method:

04/03/17 17-04-0067 **EPA 5030C**

EPA 8260B

Project: LMC BOU Page 4 of 8

Quality Control Sample ID	Туре	Matrix	Instrumen	t Date Prepa	ared Date Anal	yzed LCS Batch N	lumber
099-10-025-4606	LCS	Aqueo	us GC/MS L	04/04/17	04/04/17 2	22:13 170404L041	
<u>Parameter</u>		Spike Added	Conc. Recovered	LCS %Rec.	%Rec. CL	ME CL	<u>Qualifiers</u>
1,1-Dichloroethene		10.00	10.66	107	77-120	70-127	
1,2-Dibromoethane		10.00	10.30	103	80-120	73-127	
1,2-Dichlorobenzene		10.00	9.843	98	80-120	73-127	
1,2-Dichloroethane		10.00	9.825	98	80-122	73-129	
Benzene		10.00	9.825	98	80-120	73-127	
Carbon Tetrachloride		10.00	9.782	98	80-129	72-137	
Chlorobenzene		10.00	9.859	99	80-120	73-127	
Ethylbenzene		10.00	9.749	97	80-120	73-127	
Toluene		10.00	9.882	99	80-120	73-127	
Trichloroethene		10.00	9.307	93	80-120	73-127	
Vinyl Chloride		10.00	9.366	94	63-135	51-147	
o-Xylene		10.00	10.05	100	80-120	73-127	
p/m-Xylene		20.00	19.69	98	80-120	73-127	
Methyl-t-Butyl Ether (MTBE)		10.00	10.98	110	75-123	67-131	

Total number of LCS compounds: 14 Total number of ME compounds: 0

Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass

RPD: Relative Percent Difference. CL: Control Limits

Tetra Tech, Inc. 301 E. Vanderbilt Way, Suite 450 San Bernardino, CA 92408-3562

Project: LMC BOU

Date Received: Work Order: Preparation: Method:

95

95

97

127

63-135

80-120

80-120

75-123

51-147

73-127

73-127

67-131

17-04-0067 EPA 5030C EPA 8260B

04/03/17

Page 5 of 8

ME

Quality Control Sample ID	Туре	Matrix	x Instrumen	t Date Prep	pared Date Ana	lyzed LCS Bate	ch Number
099-10-025-4608	LCS	Aque	eous GC/MS L	04/06/17	04/06/17	09:15 170406L	008
Parameter		Spike Added	Conc. Recovered	LCS %Rec.	%Rec. CL	ME CL	Qualifiers
Trichloroethene		10.00	9.166	92	80-120	73-127	
Benzene		10.00	9.410	94	80-120	73-127	
Carbon Tetrachloride		10.00	9.768	98	80-129	72-137	
Chlorobenzene		10.00	9.737	97	80-120	73-127	
1,2-Dibromoethane		10.00	9.889	99	80-120	73-127	
1,2-Dichlorobenzene		10.00	9.457	95	80-120	73-127	
1,2-Dichloroethane		10.00	9.311	93	80-122	73-129	
1,1-Dichloroethene		10.00	10.56	106	77-120	70-127	
Ethylbenzene		10.00	9.373	94	80-120	73-127	
Toluene		10.00	9.597	96	80-120	73-127	

9.549

18.96

9.693

12.67

10.00

20.00

10.00

10.00

Total number of LCS compounds: 14 Total number of ME compounds: 1

Methyl-t-Butyl Ether (MTBE)

Vinyl Chloride

p/m-Xylene

o-Xylene

Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass

Quality Control - LCS/LCSD

Tetra Tech, Inc.

Date Received:

04/03/17

301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-0067

San Bernardino, CA 92408-3562

Preparation:

EPA 5030C

Method: EPA 8260B SIM

Project: LMC BOU Page 6 of 8

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Pre	pared Date	Analyzed	LCS/LCSD Ba	atch Number
099-15-118-473	LCS	Aqu	ieous	GC/MS M	04/04/17	04/04	4/17 14:52	170404L035	
099-15-118-473	LCSD	Aqu	ieous	GC/MS M	04/04/17	04/04	4/17 15:22	170404L035	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,2,3-Trichloropropane	0.02000	0.02350	118	0.02270	114	80-120	3	0-20	

Quality Control - LCS/LCSD

Tetra Tech, Inc.

Date Received:

04/03/17

301 E. Vanderbilt Way, Suite 450

Work Order:

17-04-0067

San Bernardino, CA 92408-3562

Preparation:

EPA 5030C

Method:

EPA 8260B SIM

Project: LMC BOU Page 7 of 8

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Pre	pared Date	Analyzed	LCS/LCSD Ba	atch Number
099-15-118-474	LCS	Aqı	ieous	GC/MS M	04/06/17	04/0	6/17 10:23	170406L019	
099-15-118-474	LCSD	Aqι	ieous	GC/MS M	04/06/17	04/0	6/17 10:53	170406L019	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
1,2,3-Trichloropropane	0.02000	0.02030	102	0.02330	116	80-120	14	0-20	

 Tetra Tech, Inc.
 Date Received:
 04/03/17

 301 E. Vanderbilt Way, Suite 450
 Work Order:
 17-04-0067

 San Bernardino, CA 92408-3562
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B SIM

 Project: LMC BOU
 Page 8 of 8

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-15-118-476	LCS	Aqueous	GC/MS M	04/08/17	04/08/17 10:42	170408L018
<u>Parameter</u>		Spike Added	Conc. Recover	red LCS %R	tec. %Rec	. CL Qualifiers
1,2,3-Trichloropropane		0.02000	0.02380	119	80-12	0

Sample Analysis Summary Report

Work Order: 17-04-0067	Page 1 of 1			
Method	Extraction	Chemist ID	<u>Instrument</u>	Analytical Location
EPA 218.6	N/A	1065	IC 16	1
EPA 6020	EPA 3020A Total	598	ICP/MS 05	1
EPA 8260B	EPA 5030C	316	GC/MS L	2
EPA 8260B SIM	EPA 5030C	486	GC/MS M	2
EPA 8270C (M) Isotope Dilution	EPA 3510C	907	GC/MS DDD	1

Location 1: 7440 Lincoln Way, Garden Grove, CA 92841 Location 2: 7445 Lampson Avenue, Garden Grove, CA 92841

Χ

Ζ

% Recovery and/or RPD out-of-range.

Analyte presence was not confirmed by second column or GC/MS analysis.

Glossary of Terms and Qualifiers

Work Order: 17-04-0067 Page 1 of 1

Qualifiers	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
CI	See case narrative.
Е	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
SG	The sample extract was subjected to Silica Gel treatment prior to analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

Calscience

Page 66 of 67
WORK ORDER NUMBER: 17-04-

SAMPLE RECEIPT CHECKLIST

COOLER	1	٥F	1
	<u> </u>		-

	A. A. 1	SAMPLE RECEIPT CHECKL	191 COOLEK OF
LIENT: _	Tetra Tech		DATE: 04 / 3 / 2017
_	,		<u></u>

CCIENT: JOYAC 1 OA	12.07	<u>,, </u>			
TEMPERATURE: (Criteria: 0.0°C – 6.0°C, not frozen except sediment/tissue) Thermometer ID: SC3B (CF: 0.0°C); Temperature (w/o CF): 1 - 8 °C; E Biank					
• • • • • • • • • • • • • • • • • • • •					
☐ Sample(s) outside temperature criteria but received on lca/chilled on same day of sampling			60		
☐ Sample(s) received at ambient temperature; placed on ice for transport by courier		<i>1</i>	191		
Ambient Temperature: Air Fifter	Check	ed by: 🥂			
CUSTODY SEAL:			-~		
	Chack	$_{ m ed~by:}$ / ℓ	991		
		ed by: <u>6</u>	2		
Sample(s) ☐ Present and Intact ☐ Present but Not Intact ☐/Not Present ☐ N/A	CHeck	ed by: O			
SAMPLE CONDITION:	Yes	No	N/A		
Chain-of-Custody (COC) document(s) received with samples	. z				
COC document(s) received complete					
☐ Sampling date ☐ Sampling time ☐ Matrix ☐ Number of containers					
☐ No analysis requested ☐ Not relinquished ☐ No relinquished time	,				
Sampler's name indicated on COC	_	p			
•	_		_		
Sample container label(s) consistent with COC					
Sample container(s) intact and in good condition		_			
Proper containers for analyses requested	_				
Sufficient volume/mass for analyses requested		_			
Samples received within holding time	. 12				
Aqueous samples for certain analyses received within 15-minute holding time					
☐ pH ☐ Residual Chlorine ☐ Dissolved Sulfide ☐ Dissolved Oxygen	_		Ø		
Proper preservation chemical(s) noted on COC and/or sample container	. a				
Unpreserved aqueous sample(s) received for certain analyses					
□ Volatile Organics □ Total Metals □ Dissolved Metals					
Container(s) for certain analysis free of headapace	. 🗹				
☑ Volatile Organics □ Dissolved Gases (RSK-175) □ Dissolved Oxygen (SM 4500)					
☐ Carbon Dioxida (SM 4500) ☐ Ferrous Iron (SM 3500) ☐ Hydrogen Sulfide (Hach)					
Tedlar™ bag(s) free of condensation	. 🏻		1		
CONTAINER TYPE: (Trip Blank Lot Numb	er: <u>170</u> 8	828A	}		
Aqueous: DVOA 12 VOAh DVOAns, D100PJ D100PJns, D125AGB D125AGBh D125AGBp D125PB					
☐ 125PBznna ☐ 250AGB ☐ 250CGB ☐ 250CGBs ☐ 250PB ☐ 250PBn ☐ 500AGB ☐ 500AG					
□ 500PB □ 1AGB □ 1AGBna₂ □ 1AGBs □ 1PB □ 1PBna □ □ □ □			_		
Solid: 🗆 4ozCGJ 🗆 8ozCGJ 🗀 16ozCGJ 🗀 Sleeve () 🗀 EnCores* () 🗀 TerraCores*					
Air: □ Tedlar™ □ Canister □ Sorbent Tube □ PUF □ Other Matrix (): □					
Container: A = Amber, B = Bottle, C = Clear, E = Envelope, G = Glass, J = Jar, P = Plastic, and Z = Ziploc/Re					
Container: A = Amber, B = Bottle, C = Clear, E = Envelope, G = Glass, J = Jar, P = Plastic, and Z = Zipioc/Researable Bag Preservative: b = buffered, f = filtered, h = HCl, n = HNO ₃ , na = NaOH, na ₂ = Na ₂ S ₂ O ₃ , p = H ₃ PO ₄ . Labeled/Checked by: <u>581</u>					
preservative: p = purered, r = mered, r = mod, r = mod, ra = maon, may = magozos, p = marod. Eabout					

Contents

Vikas Patel

From: Sabater, Robert < Robert.Sabater@tetratech.com>

Sent: Tuesday, April 04, 2017 11:37 AM

To: Vikas Patel

Cc: Erick Ovalle; Calder, Vanessa

Subject: Re: Sample receipt confirmation / 17-04-0067 / LMC BOU

Vik,

Yes. 1,2,3-TCP.

Robert

Sent from my iPhone

On Apr 4, 2017, at 11:21 AM, Vikas Patel <VikasPatel@eurofinsUS.com> wrote:

Hey Robert – I am assuming you meant 1,2,3-TCP. We will analyze sample for VOCs first. If we have enough sample remaining we will analyze sample for 1,2,3-TCP by 8260 SIM.

For future submittals, can you submit 3 vials for the trip blank sample?

Vik Patel

Eurofins Calscience, Inc. Phone: +1 714 895 5494

From: Sabater, Robert [mailto:Robert.Sabater@tetratech.com]

Sent: Tuesday, April 04, 2017 10:45 AM

To: Erick Ovalle **Cc:** Vikas Patel

Subject: Re: Sample receipt confirmation / 17-04-0067 / LMC BOU

Erick,

It looks good to me. I do have one question, is there enough sample in the VOC trip blank to run for 2,3,2-TCP also?

Robert

Sent from my iPhone

On Apr 4, 2017, at 9:49 AM, Erick Ovalle <ErickOvalle@eurofinsUS.com> wrote:

Sample receipt confirmation attached. Please review and advise of any changes required.

Please call with any questions or concerns.

Best Regards, Erick Ovalle Project Manager Assistant **ALTA Commitment for Title Insurance**

ISSUED BY

First American Title Insurance Company

File No: NCS-1009167-ONT1

COMMITMENT FOR TITLE INSURANCE

Issued By

FIRST AMERICAN TITLE INSURANCE COMPANY

NOTICE

IMPORTANT-READ CAREFULLY: THIS COMMITMENT IS AN OFFER TO ISSUE ONE OR MORE TITLE INSURANCE POLICIES. ALL CLAIMS OR REMEDIES SOUGHT AGAINST THE COMPANY INVOLVING THE CONTENT OF THIS COMMITMENT OR THE POLICY MUST BE BASED SOLELY IN CONTRACT.

THIS COMMITMENT IS NOT AN ABSTRACT OF TITLE, REPORT OF THE CONDITION OF TITLE, LEGAL OPINION, OPINION OF TITLE, OR OTHER REPRESENTATION OF THE STATUS OF TITLE. THE PROCEDURES USED BY THE COMPANY TO DETERMINE INSURABILITY OF THE TITLE, INCLUDING ANY SEARCH AND EXAMINATION, ARE PROPRIETARY TO THE COMPANY, WERE PERFORMED SOLELY FOR THE BENEFIT OF THE COMPANY, AND CREATE NO EXTRACONTRACTUAL LIABILITY TO ANY PERSON, INCLUDING A PROPOSED INSURED.

THE COMPANY'S OBLIGATION UNDER THIS COMMITMENT IS TO ISSUE A POLICY TO A PROPOSED INSURED IDENTIFIED IN SCHEDULE A IN ACCORDANCE WITH THE TERMS AND PROVISIONS OF THIS COMMITMENT. THE COMPANY HAS NO LIABILITY OR OBLIGATION INVOLVING THE CONTENT OF THIS COMMITMENT TO ANY OTHER PERSON.

COMMITMENT TO ISSUE POLICY

Subject to the Notice; Schedule B, Part I-Requirements; Schedule B, Part II-Exceptions; and the Commitment Conditions, *First American Title Insurance Company*, a Nebraska Corporation (the "Company"), commits to issue the Policy according to the terms and provisions of this Commitment. This Commitment is effective as of the Commitment Date shown in Schedule A for each Policy described in Schedule A, only when the Company has entered in Schedule A both the specified dollar amount as the Proposed Policy Amount and the name of the Proposed Insured.

If all of the Schedule B, Part I-Requirements have not been met within six months after the Commitment Date, this Commitment terminates and the Company's liability and obligation end.

First American Title Insurance Company

Hefman

Dennis J. Gilmore

President

Jeffrey S. Robinson Secretary

If this jacket was created electronically, it constitutes an original document.

This page is only a part of a 2016 ALTA® Commitment for Title Insurance issued by First American Title Insurance Company. This Commitment is not valid without the Notice; the Commitment to Issue Policy; the Commitment Conditions; Schedule A; Schedule B, Part I-Requirements; Schedule B, Part II-Exceptions.

Copyright 2006-2016 American Land Title Association. All rights reserved.

The use of this Form (or any derivative thereof) is restricted to ALTA licensees and ALTA members in good standing as of the date of use. All other uses are prohibited. Reprinted under license from the American Land Title Association.

Form 50003700 (8-23-18) Page 1 of 12 ALTA Commitment for Title Insurance (8-1-16)
California

COMMITMENT CONDITIONS

1. DEFINITIONS

- (a) "Knowledge" or "Known": Actual or imputed knowledge, but not constructive notice imparted by the Public Records.
- (b) "Land": The land described in Schedule A and affixed improvements that by law constitute real property. The term "Land" does not include any property beyond the lines of the area described in Schedule A, nor any right, title, interest, estate, or easement in abutting streets, roads, avenues, alleys, lanes, ways, or waterways, but this does not modify or limit the extent that a right of access to and from the Land is to be insured by the Policy.
- (c) "Mortgage": A mortgage, deed of trust, or other security instrument, including one evidenced by electronic means authorized by law.
- (d) "Policy": Each contract of title insurance, in a form adopted by the American Land Title Association, issued or to be issued by the Company pursuant to this Commitment.
- (e) "Proposed Insured": Each person identified in Schedule A as the Proposed Insured of each Policy to be issued pursuant to this Commitment.
- (f) "Proposed Policy Amount": Each dollar amount specified in Schedule A as the Proposed Policy Amount of each Policy to be issued pursuant to this Commitment.
- (g) "Public Records": Records established under state statutes at the Commitment Date for the purpose of imparting constructive notice of matters relating to real property to purchasers for value and without Knowledge.
- (h) "Title": The estate or interest described in Schedule A.
- 2. If all of the Schedule B, Part I—Requirements have not been met within the time period specified in the Commitment to Issue Policy, this Commitment terminates and the Company's liability and obligation end.
- 3. The Company's liability and obligation is limited by and this Commitment is not valid without:
 - (a) the Notice;
 - (b) the Commitment to Issue Policy;
 - (c) the Commitment Conditions;
 - (d) Schedule A;
 - (e) Schedule B, Part I-Requirements; and
 - (f) Schedule B, Part II—Exceptions.

4. COMPANY'S RIGHT TO AMEND

The Company may amend this Commitment at any time. If the Company amends this Commitment to add a defect, lien, encumbrance, adverse claim, or other matter recorded in the Public Records prior to the Commitment Date, any liability of the Company is limited by Commitment Condition 5. The Company shall not be liable for any other amendment to this Commitment.

5. LIMITATIONS OF LIABILITY

- (a) The Company's liability under Commitment Condition 4 is limited to the Proposed Insured's actual expense incurred in the interval between the Company's delivery to the Proposed Insured of the Commitment and the delivery of the amended Commitment, resulting from the Proposed Insured's good faith reliance to:
 - (i) comply with the Schedule B, Part I—Requirements;
 - (ii) eliminate, with the Company's written consent, any Schedule B, Part II—Exceptions; or
 - (iii) acquire the Title or create the Mortgage covered by this Commitment.
- (b) The Company shall not be liable under Commitment Condition 5(a) if the Proposed Insured requested the amendment or had Knowledge of the matter and did not notify the Company about it in writing.
- (c) The Company will only have liability under Commitment Condition 4 if the Proposed Insured would not have incurred the expense had the Commitment included the added matter when the Commitment was first delivered to the Proposed Insured.
- (d) The Company's liability shall not exceed the lesser of the Proposed Insured's actual expense incurred in good faith and described in Commitment Conditions 5(a)(i) through 5(a)(iii) or the Proposed Policy Amount.
- (e) The Company shall not be liable for the content of the Transaction Identification Data, if any.
- (f) In no event shall the Company be obligated to issue the Policy referred to in this Commitment unless all of the Schedule B, Part I—Requirements have been met to the satisfaction of the Company.
- (g) In any event, the Company's liability is limited by the terms and provisions of the Policy.

This page is only a part of a 2016 ALTA® Commitment for Title Insurance issued by First American Title Insurance Company. This Commitment is not valid without the Notice; the Commitment to Issue Policy; the Commitment Conditions; Schedule A; Schedule B, Part I-Requirements; Schedule B, Part II-Exceptions.

Copyright 2006-2016 American Land Title Association. All rights reserved.

The use of this Form (or any derivative thereof) is restricted to ALTA licensees and ALTA members in good standing as of the date of use. All other uses are prohibited. Reprinted under license from the American Land Title Association.

Form 50003700 (8-23-18)	Page 2 of 12	ALTA Commitment for Title Insurance (8-1-16)
		California

6. LIABILITY OF THE COMPANY MUST BE BASED ON THIS COMMITMENT

- (a) Only a Proposed Insured identified in Schedule A, and no other person, may make a claim under this Commitment.
- (b) Any claim must be based in contract and must be restricted solely to the terms and provisions of this Commitment.
- (c) Until the Policy is issued, this Commitment, as last revised, is the exclusive and entire agreement between the parties with respect to the subject matter of this Commitment and supersedes all prior commitment negotiations, representations, and proposals of any kind, whether written or oral, express or implied, relating to the subject matter of this Commitment.
- (d) The deletion or modification of any Schedule B, Part II—Exception does not constitute an agreement or obligation to provide coverage beyond the terms and provisions of this Commitment or the Policy.
- (e) Any amendment or endorsement to this Commitment must be in writing and authenticated by a person authorized by the Company.
- (f) When the Policy is issued, all liability and obligation under this Commitment will end and the Company's only liability will be under the Policy.

7. IF THIS COMMITMENT HAS BEEN ISSUED BY AN ISSUING AGENT

The issuing agent is the Company's agent only for the limited purpose of issuing title insurance commitments and policies. The issuing agent is not the Company's agent for the purpose of providing closing or settlement services.

8. PRO-FORMA POLICY

The Company may provide, at the request of a Proposed Insured, a pro-forma policy illustrating the coverage that the Company may provide. A pro-forma policy neither reflects the status of Title at the time that the pro-forma policy is delivered to a Proposed Insured, nor is it a commitment to insure.

9. ARBITRATION

Arbitration provision intentionally removed.

This page is only a part of a 2016 ALTA® Commitment for Title Insurance issued by First American Title Insurance Company. This Commitment is not valid without the Notice; the Commitment to Issue Policy; the Commitment Conditions; Schedule A; Schedule B, Part I-Requirements; Schedule B, Part II-Exceptions.

Copyright 2006-2016 American Land Title Association. All rights reserved.

The use of this Form (or any derivative thereof) is restricted to ALTA licensees and ALTA members in good standing as of the date of use. All other uses are prohibited. Reprinted under license from the American Land Title Association.

Form 50003700 (8-23-18)	Page 3 of 12	ALTA Commitment for Title Insurance (8-1-16)
101111 300037 00 (0 23 10)	1 age 5 01 12	7.E177 communication for the insurance (0 1 10)
		Californial

ALTA Commitment for Title Insurance

ISSUED BY

First American Title Insurance Company

File No: NCS-1009167-ONT1

Transaction Identification Data for reference only:

Issuing Agent: First American Title Insurance Company National Issuing Office: 3281 E Guasti Road, Suite 440, Ontario,

Commercial Services

CA 91761

Commitment No.: NCS-1009167-ONT1

Issuing Office File No.: NCS-1009167-ONT1

Property Address: 2311 North Hollywood Way, Burbank, CA

Escrow Officer/Assistant: /

91505

Revision No.:

Phone: / Email: /

Title Officer/Assistant: Wendy Hagen Bowen/Diane

Nesbit

Phone: (909)510-6225/(909)510-6230

Email: whagen@firstam.com/dnesbit@firstam.com

SCHEDULE A

1. Commitment Date: March 16, 2020 at 8:00 AM

2. Policy to be issued:

(a) ⊠ 2006 ALTA® Standard Owner Policy Proposed Insured: To Be Determined

Proposed Policy Amount: \$ To Be Determined

(b)

≥ 2006 ALTA® Extended Loan Policy Proposed Insured: To Be Determined Proposed Policy Amount: \$ To Be Determined

(c) ☐ 2006 ALTA® Policy Proposed Insured:

Proposed Policy Amount: \$

3. The estate or interest in the Land described or referred to in this Commitment is

Fee

4. The Title is, at the Commitment Date, vested in:

GORT, A CALIFORNIA LIMITED PARTNERSHIP

5. The Land is described as follows:

See Exhibit "A" attached hereto and made a part hereof

This page is only a part of a 2016 ALTA® Commitment for Title Insurance issued by First American Title Insurance Company. This Commitment is not valid without the Notice; the Commitment to Issue Policy; the Commitment Conditions; Schedule A; Schedule B, Part I-Requirements; Schedule B, Part II-Exceptions.

Copyright 2006-2016 American Land Title Association. All rights reserved.

The use of this Form (or any derivative thereof) is restricted to ALTA licensees and ALTA members in good standing as of the date of use. All other uses are prohibited. Reprinted under license from the American Land Title Association.

Form 50003700 (8-23-18) Page 4 of 12 ALTA Commitment for Title Insurance (8-1-16)
California

ALTA Commitment for Title Insurance

ISSUED BY

First American Title Insurance Company

File No: NCS-1009167-ONT1

Commitment No.: NCS-1009167-ONT1

SCHEDULE B, PART I

Requirements

All of the following Requirements must be met:

- A. The Proposed Insured must notify the Company in writing of the name of any party not referred to in this Commitment who will obtain an interest in the Land or who will make a loan on the Land. The Company may then make additional Requirements or Exceptions.
- B. Pay the agreed amount for the estate or interest to be insured.
- C. Pay the premiums, fees, and charges for the Policy to the Company.
- D. Documents satisfactory to the Company that convey the Title or create the Mortgage to be insured, or both, must be properly authorized, executed, delivered, and recorded in the Public Records.
- E. Releases(s) or Reconveyance(s) of Item(s): None
- F. Other: None
- G. You must give us the following information:
 - a. Any off record leases, surveys, etc.
 - b. Statement(s) of Identity, all parties.
 - c. Other:

Prior to closing, the Company must confirm whether the county recording office in which the Land is located has changed its access policies due to the COVID-19 outbreak. If recording has been restricted, specific underwriting approval is required; and, additional requirements or exceptions may be made.

The following additional requirements, as indicated by "X", must be met:

[X] H. Provide information regarding any off-record matters, which may include, but are not limited to: leases, recent works of improvement, or commitment statements in effect under the Environmental Responsibility Acceptance Act, Civil Code Section 850, et seq.

The Company's Owner's Affidavit form (as provided by the company) must be completed and submitted prior to close in order to satisfy this requirement. This Commitment will then be subject to such further exceptions and/or requirements as may be deemed necessary.

[] I. An ALTA/NSPS survey of recent date, which complies with the current minimum standard

This page is only a part of a 2016 ALTA® Commitment for Title Insurance issued by First American Title Insurance Company. This Commitment is not valid without the Notice; the Commitment to Issue Policy; the Commitment Conditions; Schedule A; Schedule B, Part I-Requirements; Schedule B, Part II-Exceptions.

Copyright 2006-2016 American Land Title Association. All rights reserved.

The use of this Form (or any derivative thereof) is restricted to ALTA licensees and ALTA members in good standing as of the date of use. All other uses are prohibited. Reprinted under license from the American Land Title Association.

Form 50003700 (8-23-18) Page 5 of 12 ALTA Commitment for Title Insurance (8-1-16)
California

detail requirements for ALTA/NSPS land title surveys, must be submitted to the Company for review. This Commitment will then be subject to such further exceptions and/or requirements as may be deemed necessary. J. The following LLC documentation is required from: П (i) a copy of the Articles of Organization (ii) a copy of the Operating Agreement, if applicable (iii) a Certificate of Good Standing and/or other evidence of current Authority to Conduct Business within the State (iv) express Company Consent to the current transaction [X]The following partnership documentation is required: (i) a copy of the partnership agreement, including all applicable amendments thereto (ii) a Certificate of Good Standing and/or other evidence of current Authority to Conduct Business within the State (iii) express Partnership Consent to the current transaction []L. The following corporation documentation is required: (i) a copy of the Articles of Incorporation (ii) a copy of the Bylaws, including all applicable Amendments thereto (iii) a Certificate of Good Standing and/or other evidence of current Authority to Conduct Business within the State (iv) express Corporate Resolution consenting to the current transaction M. Based upon the Company's review of that certain partnership/operating agreement dated **Not** [X] **disclosed** for the proposed insured herein, the following requirements must be met: Any further amendments to said agreement must be submitted to the Company, together with an affidavit from one of the general partners or members stating that it is a true copy, that said partnership or limited liability company is in full force and effect, and that there have been no further amendments to the agreement. This Commitment will then be subject to such further requirements as may be deemed necessary. []N. A copy of the complete lease, as referenced in Schedule A, #3 herein, together with any amendments and/or assignments thereto, must be submitted to the Company for review, along with an affidavit executed by the present lessee stating that it is a true copy, that the lease is in full force and effect, and that there have been no further amendments to the lease. This Commitment will then be subject to such further requirements as may be deemed necessary.

[X] O. Approval from the Company's Underwriting Department must be obtained for issuance of the policy contemplated herein and any endorsements requested thereunder. This Commitment will then be subject to such further requirements as may be required to obtain such approval.

P. Potential additional requirements, if ALTA Extended coverage is contemplated hereunder, and work on the land has commenced prior to close, some or all of the following requirements, and any other requirements which may be deemed necessary, may need to be met:

This page is only a part of a 2016 ALTA® Commitment for Title Insurance issued by First American Title Insurance Company. This Commitment is not valid without the Notice; the Commitment to Issue Policy; the Commitment Conditions; Schedule A; Schedule B, Part I-Requirements; Schedule B, Part II-Exceptions.

Copyright 2006-2016 American Land Title Association. All rights reserved.

The use of this Form (or any derivative thereof) is restricted to ALTA licensees and ALTA members in good standing as of the date of use. All other uses are prohibited. Reprinted under license from the American Land Title Association.

Form 50003700 (8-23-18) Page 6 of 12 ALTA Commitment for Title Insurance (8-1-16)
California

[]	Q.	The Company's "Indemnity Agreement I" must be executed by the appropriate parties.
[]	R.	Financial statements from the appropriate parties must be submitted to the Company for review.
[]	S.	A copy of the construction contract must be submitted to the Company for review.
[]	T.	An inspection of the Land must be performed by the Company for verification of the phase of construction.
[]	U.	The Company's "Mechanic's Lien Risk Addendum" form must be completed by a Company employee, based upon information furnished by the appropriate parties involved.

This page is only a part of a 2016 ALTA® Commitment for Title Insurance issued by First American Title Insurance Company. This Commitment is not valid without the Notice; the Commitment to Issue Policy; the Commitment Conditions; Schedule B, Part I-Requirements; Schedule B, Part II-Exceptions.

Copyright 2006-2016 American Land Title Association. All rights reserved.

The use of this Form (or any derivative thereof) is restricted to ALTA licensees and ALTA members in good standing as of the date of use. All other uses are prohibited. Reprinted under license from the American Land Title Association.

Schedule BI & BII (Cont.)

ALTA Commitment for Title Insurance

ISSUED BY

First American Title Insurance Company

File No: NCS-1009167-ONT1

Commitment No.: NCS-1009167-ONT1

SCHEDULE B, PART II

Exceptions

THIS COMMITMENT DOES NOT REPUBLISH ANY COVENANT, CONDITION, RESTRICTION, OR LIMITATION CONTAINED IN ANY DOCUMENT REFERRED TO IN THIS COMMITMENT TO THE EXTENT THAT THE SPECIFIC COVENANT, CONDITION, RESTRICTION, OR LIMITATION VIOLATES STATE OR FEDERAL LAW BASED ON RACE, COLOR, RELIGION, SEX, SEXUAL ORIENTATION, GENDER IDENTITY, HANDICAP, FAMILIAL STATUS, OR NATIONAL ORIGIN.

The Policy will not insure against loss or damage resulting from the terms and provisions of any lease or easement identified in Schedule A, and will include the following Exceptions unless cleared to the satisfaction of the Company:

- 1. Any defect, lien, encumbrance, adverse claim, or other matter that appears for the first time in the Public Records or is created, attaches, or is disclosed between the Commitment Date and the date on which all of the Schedule B, Part I-Requirements are met.
- 2. (a) Taxes or assessments that are not shown as existing liens by the records of any taxing authority that levies taxes or assessments on real property or by the Public Records; (b) proceedings by a public agency that may result in taxes or assessments, or notices of such proceedings, whether or not shown by the records of such agency or by the Public Records.
- 3. Any facts, rights, interests, or claims that are not shown by the Public Records but that could be ascertained by an inspection of the Land or that may be asserted by persons in possession of the Land.
- 4. Easements, liens or encumbrances, or claims thereof, not shown by the Public Records.
- 5. Any encroachment, encumbrance, violation, variation, or adverse circumstance affecting the Title that would be disclosed by an accurate and complete land survey of the Land and not shown by the Public Records.
- 6. (a) Unpatented mining claims; (b) reservations or exceptions in patents or in Acts authorizing the issuance thereof; (c) water rights, claims or title to water, whether or not the matters excepted under (a), (b), or (c) are shown by the Public Records.
- 7. General and special taxes and assessments for the fiscal year 2020-2021, a lien not yet due or payable.

This page is only a part of a 2016 ALTA® Commitment for Title Insurance issued by First American Title Insurance Company. This Commitment is not valid without the Notice; the Commitment to Issue Policy; the Commitment Conditions; Schedule A; Schedule B, Part I-Requirements; Schedule B, Part II-Exceptions.

Copyright 2006-2016 American Land Title Association. All rights reserved.

The use of this Form (or any derivative thereof) is restricted to ALTA licensees and ALTA members in good standing as of the date of use. All other uses are prohibited. Reprinted under license from the American Land Title Association.

Form 50003700 (8-23-18) Page 8 of 12 ALTA Commitment for Title Insurance (8-1-16)
California

8. General and special taxes and assessments for the fiscal year 2019-2020.

First Installment: \$78,119.95, PAID

Penalty: \$0.00

Second Installment: \$78,119.94, OPEN

Penalty: \$0.00 Tax Rate Area: 02530

A. P. No.: 2463-001-019

- 9. The lien of supplemental taxes, if any, assessed pursuant to Chapter 3.5 commencing with Section 75 of the California Revenue and Taxation Code.
- 10. An easement for aerial, underground telephone, telegraph, communication structures and incidental purposes in the document recorded March 28, 1944 as Instrument No. 1608 in <u>Book 20800, Page 152</u> of Official Records.

The location of the easement cannot be determined from record information.

- 11. An easement for pole lines and incidental purposes in the document recorded July 12, 1961 as Instrument No. 1417 in Book D1282, Page 987 of Official Records.
- 12. An easement for public utility, sewer and incidental purposes in the document recorded July 12, 1961 as Instrument No. 1418 in <u>Book D1282</u>, <u>Page 989</u> of Official Records.
- 13. An easement for storm drain and incidental purposes in the document recorded July 12, 1961 as Instrument No. 1420 in Book D1282, Page 992 of Official Records.

The location of the easement cannot be determined from record information.

- 14. An easement for public utility, sewer and incidental purposes in the document recorded May 11, 1962 as Instrument No. 3914 in Book D1611, Page 921 of Official Records.
- 15. The terms and provisions contained in the document entitled "Mutual Reciprocal Restriction on Use of Land" recorded November 02, 1994 as Instrument No. 94-1983331 of Official Records.

Affects: The land and other property.

16. An easement for drainage channel and incidental purposes, recorded November 02, 1994 as Instrument No. 94-1983333 of Official Records.

In Favor of: SMC Properties-Burbank, a California General Partnership

Affects: The Most Westerly 10 feet, as described therein

- 17. An easement shown or dedicated on the map of Parcel Map No. 24143 recorded December 13, 1995 and on file in <u>Book 269, Page 99 and 100</u>, of Parcel Maps. For: Drainage and incidental purposes.
- 18. The terms and provisions contained in the document entitled "Use Restriction Agreement" recorded November 23, 2016 as Instrument No. 16-1473315 of Official Records.

This page is only a part of a 2016 ALTA® Commitment for Title Insurance issued by First American Title Insurance Company. This Commitment is not valid without the Notice; the Commitment to Issue Policy; the Commitment Conditions; Schedule A; Schedule B, Part I-Requirements; Schedule B, Part II-Exceptions.

Copyright 2006-2016 American Land Title Association. All rights reserved.

The use of this Form (or any derivative thereof) is restricted to ALTA licensees and ALTA members in good standing as of the date of use. All other uses are prohibited. Reprinted under license from the American Land Title Association.