5.4 TRANSPORTATION/TRAFFIC

This section is based upon the Traffic Impact Study for the Media Studios Office Project (Traffic Study), dated August 2018 and prepared by Fehr & Peers; refer to Appendix E, Traffic Study. The purpose of the Traffic Study is to evaluate development of the proposed Project from a traffic and circulation standpoint. This analysis considers impacts on local intersections and regional transportation facilities. Mitigation measures are recommended, if necessary, to avoid or reduce Project impacts on traffic and circulation.

5.4.1 EXISTING SETTING

EXISTING ROADWAY SYSTEM

The Golden State Freeway (Interstate 5; I-5) to the north and east and the Hollywood Freeway (State Route 170; SR-170) to the west provide primary regional access to the site. Access to the Project site from I-5 is provided by the ramps at Hollywood Way and San Fernando Boulevard, to the northeast. Access from SR-170 is available from the ramps at Sherman Way, to the west. The entire Media Studios campus is generally bounded by commercial office buildings and surface parking lots to the north, North Ontario Street to the east, West Empire Avenue to the south, and North Avon Street to the west. Direct access to the Phase 6 site is provided along North Avon Street.

Regional/Local Roadways

The following is a brief description of the major streets serving the Project site:

- **Alameda Avenue.** Alameda Avenue is an east/west major arterial that provides two through lanes per direction and is divided by a two-way left-turn lane. On-street parking is prohibited between Lake Street and San Fernando Boulevard but is generally available west of Lake Street. Alameda provides regional access to I-5.

- **Buena Vista Street.** Buena Vista Street is a north-south secondary arterial that provides two through lanes in each direction and is divided by a two-way left-turn lane. On-street parking is generally allowed on both sides of the street. As of May 2017, there is major construction occurring at the intersection of Buena Vista Street and San Fernando Boulevard, where the railroad which runs parallel to San Fernando Boulevard is being elevated to eliminate an at-grade crossing at Buena Vista Street.

- **Burbank Boulevard.** In the study area, Burbank Boulevard is an east/west secondary arterial that provides two through lanes per direction and is divided by a two-way left-turn lane, except in the vicinity of the I-5 interchange where it provides three lanes per direction. Parking is generally allowed on both sides of the street west of Victory Boulevard.

- **Empire Avenue.** Empire Avenue is an east/west secondary arterial that provides two through lanes in each direction and is divided by a two-way left-turn lane. West of the Hollywood-Burbank (Burbank) Airport entrance, Empire Avenue provides two lanes in the westbound direction and one lane in the eastbound direction. Empire Avenue provides regional access to the Burbank Airport. On-street parking is generally prohibited west of Ontario Street and generally permitted...
east of Ontario Street. The California Department of Transportation (Caltrans) is currently constructing a new I-5 interchange at Empire Avenue, which will enhance regional vehicular access to the Burbank Airport and the Project site. Upon completion of the new freeway interchange, Empire Avenue will be connected to North San Fernando Boulevard east of I-5, providing a new connection across the freeway to connect Downtown Burbank and the Project site.

- **Hollywood Way.** Hollywood Way is a north/south major arterial that provides two lanes in each direction and is divided by a two-way left-turn lane between Olive Avenue and Thornton Avenue and between Hollywood Way and I-5. Hollywood Way provides two northbound lanes and three southbound lanes and is divided by a two-way left-turn lane, between Thornton Avenue and San Fernando Boulevard in the vicinity of the Project site. Hollywood Way provides regional access to I-5 and SR-134. Bicycle lanes are provided on Hollywood Way between Pacific Avenue and San Fernando Boulevard. On-street parking is prohibited in the vicinity of the Project site between Empire Avenue and San Fernando Boulevard but is generally permitted on both sides of the street south of Empire Avenue and north of San Fernando Boulevard.

- **Magnolia Boulevard.** Magnolia Boulevard is an east/west secondary arterial that provides two through lanes per direction and is divided by a two-way left-turn lane. On-street parking is generally allowed within the study area.

- **Ontario Street.** Ontario Street is a two-lane local street running north/south in the study area. Ontario Street provides local access to Empire Avenue and San Fernando Boulevard. On-street parking is generally permitted on both sides of the street.

- **San Fernando Boulevard/San Fernando Road.** San Fernando Boulevard is classified as a Major Highway Class II in the City of Los Angeles and a secondary arterial street in the City of Burbank. It runs northwest/southeast along the south side of the Union Pacific (UP)/Metrolink Valley Railroad Line, provides two lanes in each direction and is divided by a two-way left-turn lane. Parking is generally permitted on the south side of the street only.

- **“Little” San Fernando Boulevard.** “Little” San Fernando Boulevard extends along the north side of the UP/Metrolink Valley Railroad Line northwest of Buena Vista Street. It is a neighborhood collector street that provides one lane in each direction. Parking is permitted on both sides of the street, and parking along the southbound lane is configured as angled parking.

- **Thornton Avenue.** Thornton Avenue is classified as an east/west two-lane neighborhood collector and is divided by a two-way left-turn lane. Thornton Avenue provides local access to the Burbank Airport. On-street parking is generally permitted on both sides of the street.

- **Vanowen Street.** Vanowen Street is classified as an east/west neighborhood collector that provides two lanes in each direction and a two-way continuous left-turn lane between Buena Vista Street and Hollywood Way, and provides one lane in each direction and a two-way left-turn lane between Hollywood Way and Clybourn Avenue. On-street parking is prohibited on the north side, but generally permitted on the south side.
- **Verdugo Avenue.** Verdugo Avenue is classified as an east/west neighborhood collector that provides one lane in each direction as well as a two-way left-turn lane. Class II bicycle lanes are provided between Clybourn Avenue and Victory Boulevard. Parking is generally allowed on both sides of the street.

- **Victory Boulevard.** Victory Boulevard is classified as an east/west major arterial that provides two lanes in each direction and a two-way left-turn lane. Bicycle lanes are provided between Burbank Boulevard and Clybourn Avenue. Parking is generally allowed on both sides of the street.

Study Area Intersections

As shown on Exhibit 5.4-1, Study Area Intersections and Roadway Segments, the City of Burbank determined the study area for the proposed Project and identified the following intersections and roadway segments in the vicinity of the Project site for detailed analysis:

Intersections:
1. North Hollywood Way and Winona Avenue
2. North Hollywood Way and Thornton Avenue
4. North Hollywood Way and West Empire Avenue
5. North Avon Street and West Empire Avenue
6. Bob Hope Airport Drive and West Empire Avenue
7. Empire Avenue and Vanowen Street
11. North Hollywood Way and Verdugo Avenue
12. North Hollywood Way and West Alameda Avenue
13. North Buena Vista Street and North San Fernando Boulevard
14. North Ontario Street and West Empire Avenue
15. North Buena Vista Street and West Empire Avenue
16. North Buena Vista Street and Thornton Avenue
17. I-5 Southbound Ramps and West Empire Avenue
 - (not yet constructed; only analyzed in future scenarios)
18. I-5 Northbound Ramps and North San Fernando Boulevard/Empire Avenue
 - (not yet constructed; only analyzed in future scenarios)
19. West Burbank Boulevard and Victory Boulevard

All but three of the analyzed intersections are located wholly in the City of Burbank. The intersection of Empire Avenue and Vanowen Street (No. 7) is located on the City of Burbank and Los Angeles border and the intersections of North Hollywood Way at the I-5 ramps (No. 20 and No. 21) are wholly within the City of Los Angeles. Twenty of the analyzed intersections are signalized. The intersection of North Hollywood Way and I-5 Southbound Ramps (No. 21) is stop-controlled.
Study Area Intersections and Roadway Segments

ANALYSIS METHODOLOGY

The methodologies used to perform the future traffic volume forecasts and the explicit traffic operations analysis as part of the Traffic Study are summarized in this section. The analysis is based on potential impacts that would result from the increase in vehicle trips to and from the proposed Project that would be generated by Project implementation. For a detailed discussion of the analytical methodology, please refer to Appendix E.

The Traffic Study analyzes 2028 as the future year, two years after the development is expected to be completed. The following traffic scenarios have been developed and analyzed as part of the study:

- **Existing (2017) Conditions**: The analysis of existing traffic conditions is intended to provide a basis for the Traffic Study. The existing conditions analysis includes a description of the street system serving the site, current traffic volumes, and an assessment of the operating conditions at these locations.

- **Existing (2017) Plus Project Conditions**: This traffic scenario provides projected traffic volumes and an assessment of operating conditions under existing conditions with the addition of Project-generated traffic. The direct impacts of the proposed Project on existing traffic operating conditions were then identified.

- **Future Year (2028) Base Conditions**: Future traffic conditions without the proposed Project were developed for the year 2028. This analysis projects future traffic growth and operating conditions that could be expected to result from regional growth and related projects near the Project site by the year 2028. This scenario includes the changes in traffic from the new Burbank Airport Terminal and the new ramps at Empire Avenue and Burbank Boulevard.

- **Future Year (2028) Plus Project Conditions**: This traffic scenario includes the proposed Project, provides projected traffic volumes, and an assessment of operating conditions under future conditions with the addition of Project-generated traffic. The impacts of the proposed Project on future traffic operating conditions were then identified.

Existing Conditions Methodology

EXISTING TRAFFIC VOLUMES – INTERSECTIONS

Traffic volumes at the 21 existing study intersections were collected during the morning and afternoon peak hours, from 7:00 to 10:00 a.m. and from 4:30 p.m. to 7:30 p.m., respectively. The peak one-hour period for the morning and afternoon was established by identifying the four consecutive 15-minute periods with the highest traffic volumes.

Two sets of weekday counts were collected. Weekday counts were averaged to determine volumes for weekday existing conditions. The first set of counts were collected between January 24 and 26, 2017. For all but one location, the second set of counts was collected on April 6, 2017. Due to an error recording the second set of counts, the counts used in the analysis for Empire Avenue & Vanowen Street were recollected on May 16, 2017. Detailed count sheets with dates are included in Appendix A of the Traffic Study. During the count periods, there were long-term closures and detours associated with the Caltrans...
I-5 High Occupancy Vehicle/Empire Avenue Interchange Project and temporary lane configuration changes at Buena Vista Street and San Fernando Boulevard (No. 13); refer to Traffic Study Figure 5, Changes to Circulation Resulting from I-5 Freeway Project.

The weekday traffic volumes and lane configurations presented on Traffic Study Figure 6, Peak Hour Volumes and Lane Configurations Existing (2017) Volumes – AM(PM), represent the existing 2017 conditions during the time of the counts including temporary lane closures at Buena Vista Street and San Fernando Boulevard (No. 13). Local schools were in session on the days of the counts.

EXISTING TRAFFIC VOLUMES – ROADWAY SEGMENTS

Twenty-four-hour traffic counts were conducted at the five study roadway segments in November 2017. Two sets of counts were collected. The first set of counts was collected on November 14, 2017 along Avon Avenue east of Hollywood Way, along Empire Avenue east of Avon Avenue, and along Thornton Avenue east of Hollywood Way. The second set of counts was collected on November 16, 2017 along Hollywood Way south of Thornton Avenue and along Ontario Street north of Empire Avenue. Roadway segment counts for the two days were averaged to estimated typical daily volumes.

Buildout Year Growth

The Future Base (Year 2028) traffic projections reflect growth in traffic from two primary sources: background or ambient growth in the existing traffic volumes to reflect the effects of overall regional growth both in and outside of the study area, and traffic generated by specific projects in, or in the vicinity of, the study area. In addition, traffic shifts due to the Burbank Airport Terminal Replacement and the opening of the ramps for I-5 at Empire Avenue were also considered. These factors are described below.

AREAWIDE TRAFFIC GROWTH

The Burbank2035 General Plan (Burbank2035) forecasts growth of traffic volumes of approximately 0.72 percent per year near the study area. Future increases in background traffic volumes due to regional growth and development are expected to continue at this rate at least through the year 2028. With the assumed completion date of 2028, the existing 2017 traffic volumes were adjusted upward by 7.9 percent to reflect areawide regional growth.

Due to construction on I-5 when existing counts were taken, several movements were restricted when existing counts were taken at Buena Vista Street and San Fernando Boulevard (No.13). To develop future forecasts at these intersections, count data from 2014 was used when construction was not occurring, and all available movements were possible at these intersections; refer to Traffic Study Appendix A, Traffic Counts, for 2014 counts. These counts were grown using the same growth factor established in the model, 0.72 percent per year, to create existing base volumes (Year 2017), which were then adjusted by the same 7.9 percent growth factor as all other volumes to account for areawide growth.

FUTURE PROJECT TRAFFIC GENERATION AND ASSIGNMENT

The second part of background traffic growth is the traffic generated by related projects. Related projects or cumulative projects are planned developments to be completed in the same timeframe as the proposed Project. Future projects are considered in terms of the extent of growth, the location of growth, and the origins/destinations of trips.
Information on future projects was collected from the City of Burbank. The projects are summarized in Table 4-1, Cumulative Projects List, and their locations illustrated on Exhibit 4-1, Cumulative Projects Map, in Section 4.0, Basis of Cumulative Analysis.

BACKGROUND SHIFTS DUE TO BURBANK AIRPORT TERMINAL REPLACEMENT

The Burbank Airport terminal is planned to be relocated from its current location between Empire Avenue and Hollywood Way to a new location on North Hollywood Way at the current location of Airport Lot A and the employee parking lot. Background traffic shifts for this project were developed as part of the Burbank-Glendale-Pasadena Airport Authority’s Environmental Impact Report for a Replacement Airline Passenger Terminal at Burbank Bob Hope Airport (June 2016), and these shifts were incorporated into the future base analysis as part of the Traffic Study. Vehicle shifts are primarily localized near the airport.

BACKGROUND SHIFTS DUE TO OPENING OF EMPIRE AVENUE INTERCHANGE AND RECONFIGURATION OF BURBANK BOULEVARD INTERCHANGE

As part of the I-5 reconstruction, a new ramp interchange is being constructed at Empire Avenue that will provide new on- and off-ramps for both northbound and southbound travel. These ramps will replace the Victory Place ramps that were removed as part of the same project. In addition, the interchange at Burbank Boulevard is being reconfigured to provide on- and off-ramps for both northbound and southbound travel. Currently, the interchange at Burbank Boulevard does not include a northbound on-ramp. The traffic study for this Project used the City model and existing counts to estimate background shifts that are expected to mostly move trips from the Buena Vista Street/San Fernando Boulevard ramps to the Empire Avenue Interchange, as the Burbank Boulevard ramps will continue functioning as the most direct access point to downtown Burbank.

Project Trip Generation and Distribution Methodology

The development of traffic generation estimates for the proposed Project involves the use of a three-step process: trip generation, trip distribution, and traffic assignment.

PROJECT TRAFFIC GENERATION

Trip generation rates from the Institute of Transportation Engineers (ITE) in conjunction with the City of Burbank were used to estimate trip making characteristics for the proposed office land use. In case of weekday trips to the office space, the ITE trip generation equations were used instead of the linear trip generation rate as recommended by ITE for the scale of the proposed office use. The net number of trips was calculated by subtracting the existing trips generated by the Media Studios campus from the total estimated trips from full Project buildout (783,000 adjusted gross square feet of office use) to represent the incremental addition of Project trips generated by development of the Phase 6 site.

PROJECT TRIP DISTRIBUTION

The geographic distribution of Project-generated traffic depends on several factors. These factors include the type and density of the proposed land uses, the geographic distribution of population from which the employees and potential patrons of the proposed development are drawn, and the location of the Project in relation to the surrounding street system.
The City’s Travel Demand Model, consultation with City staff, prior traffic studies, and local street network/land uses were used to develop the Project trip distribution. The distribution pattern illustrated on Exhibit 5.4-2, *Project Trip Distribution*, was applied for Project traffic, under both existing and future conditions. Note, a total of 25 percent of Project trips use the I-5 ramps near the Project site. However, it is estimated that 5 percent of those trips would eventually travel east on SR-134 and 20 percent would continue south on I-5.

PROJECT TRAFFIC ASSIGNMENT

The traffic generated by the proposed Project was assigned to the street network using the distribution patterns illustrated on Exhibit 5.4-2. Note that the assignment of Project volumes differs between the existing and future conditions due to the opening of the new ramps for I-5 at Empire Avenue.

DRIVEWAY REDISTRIBUTION

Since the proposed driveway on North Avon Street would connect to the existing parking garage and three existing driveways on Empire Avenue and Ontario Street, it is assumed that some of the existing traffic would use the newly proposed driveway on North Avon Street based on more convenient access from their direction of arrival and departure to the site. The assumed shifts in the existing traffic (not including proposed Project traffic) are shown on Traffic Study Figure 9, *Peak Hour Volumes and Lane Configurations Driveway Redistribution – AM(PM).*

Intersection Level of Service Methodology

Level of service (LOS) is a qualitative measure used to describe the condition of traffic flow, ranging from excellent, nearly free-flow conditions at LOS A to overloaded, stop-and-go conditions at LOS F. LOS D is typically recognized as the minimum acceptable LOS in urban areas. LOS definitions for signalized intersections are detailed in Table 5.4-1, *Level of Service Definitions for Signalized Intersections*.

<table>
<thead>
<tr>
<th>Level of Service</th>
<th>Volume/Capacity Ratio</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.000 - 0.600</td>
<td>EXCELLENT. No vehicle waits longer than one red light and no approach phase is fully used.</td>
</tr>
<tr>
<td>B</td>
<td>> 0.600 - 0.700</td>
<td>VERY GOOD. An occasional approach phase is fully utilized; many drivers begin to feel somewhat restricted within groups of vehicles.</td>
</tr>
<tr>
<td>C</td>
<td>> 0.700 - 0.800</td>
<td>GOOD. Occasionally drivers may have to wait through more than one red light; backups may develop behind turning vehicles.</td>
</tr>
<tr>
<td>D</td>
<td>> 0.800 - 0.900</td>
<td>FAIR. Delays may be substantial during portions of the rush hours, but enough lower volume periods occur to permit clearing of developing lines, preventing excessive backups.</td>
</tr>
<tr>
<td>E</td>
<td>> 0.900 - 1.000</td>
<td>POOR. Represents the most vehicles intersection approaches can accommodate; may be long lines of waiting vehicles through several signal cycles.</td>
</tr>
<tr>
<td>F</td>
<td>> 1.000</td>
<td>FAILURE. Backups from nearby locations or on cross streets may restrict or prevent movement of vehicles out of the intersection approaches. Tremendous delays with continuously increasing queue lengths.</td>
</tr>
</tbody>
</table>

Source: Fehr & Peers, *Traffic Impact Study for the Media Studios Office Project*, August 2018; refer to Appendix E.
MEDIA STUDIOS PROJECT
ENVIRONMENTAL IMPACT REPORT

Exhibit 5.4-2

Project Trip Distribution

Driveway Distribution

- 55% In/Out
- 35% In
- 30% Out

Existing Intersection
Project Site
Future Intersection
City of Burbank Boundary
Study Segment

The study intersections within the City of Burbank were analyzed according to the City’s traffic study policies and procedures, while intersections located in the City of Los Angeles were analyzed according to policies and procedures required by Los Angeles. Most of the study intersections are entirely within the City of Burbank. Two study intersections are entirely within the City of Los Angeles: North Hollywood Way and I-5 Northbound Ramps (No. 20) and North Hollywood Way and I-5 Southbound Ramps (No. 21). The intersection of Empire Avenue at Vanowen Street (No. 7) was analyzed under both City of Burbank and City of Los Angeles policies and procedures since it is on the border of the two cities. The remaining intersections are located entirely within the City of Burbank.

Both the City of Burbank and the City of Los Angeles require the use of Critical Movement Analysis (CMA) methodology (*Transportation Research Circular No. 212, Interim Materials on Highway Capacity*, Transportation Research Board, 1980) to evaluate intersection operations. The CMA method of intersection capacity analysis determines the intersection volume-to-capacity (v/c) ratio and corresponding LOS for turning movements and intersection characteristics at signalized intersections.

LOS worksheets are included in Traffic Study Appendix B, *Intersection Level of Service Worksheets*, and signal warrant analysis for unsignalized intersections located in the City of Los Angeles are in Traffic Study Appendix E, *Signal Warrant Analysis*.

Roadway Segment Analysis Methodology

For informational purposes, the Project-generated daily increase in traffic was compared to the projected daily traffic with the Project to evaluate the percent increase over a 24-hour period.

Traffic Signal Warrant Analysis Methodology

The term “signal warrants” refers to the list of established criteria used by Caltrans and other public agencies to quantitatively justify or ascertain the potential need for installation of a traffic signal at an otherwise unsignalized intersection. The Traffic Study uses the signal warrant criteria presented in the latest edition of the Federal Highway Administration’s *Manual on Uniform Traffic Control Devices* (MUTCD), as amended by the MUTCD 2012 California Supplement.

EXISTING CONDITIONS

Existing Intersection Level of Service

Table 5.4-2, *Existing (2017) Intersection Level of Service Analysis*, summarizes the existing a.m. and p.m. peak hour LOS for the study area intersections. Detailed intersection traffic analysis LOS calculations are provided in Traffic Study Appendix B, *Intersection Level of Service Worksheets*.

As indicated in Table 5.4-2, all study intersections operate at LOS D or better under existing peak hour traffic conditions except for North Hollywood Way and West Victory Boulevard (No. 8), which operates at an LOS E during p.m. peak hours.
<table>
<thead>
<tr>
<th>No.</th>
<th>Intersection</th>
<th>Jurisdiction</th>
<th>Peak Hour</th>
<th>Existing (2017)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>v/c</td>
<td>LOS</td>
</tr>
<tr>
<td>1</td>
<td>Hollywood Way and Winona Avenue</td>
<td>Burbank</td>
<td>a.m.</td>
<td>0.564</td>
</tr>
<tr>
<td>2</td>
<td>Hollywood Way and Thornton Avenue</td>
<td>Burbank</td>
<td>p.m.</td>
<td>0.819</td>
</tr>
<tr>
<td>3</td>
<td>Hollywood Way and North Avon Street</td>
<td>Burbank</td>
<td>a.m.</td>
<td>0.867</td>
</tr>
<tr>
<td>4</td>
<td>Hollywood Way Southbound Frontage and Empire Avenue</td>
<td>Burbank</td>
<td>p.m.</td>
<td>0.756</td>
</tr>
<tr>
<td>5</td>
<td>North Avon Street and Empire Avenue</td>
<td>Burbank</td>
<td>a.m.</td>
<td>0.663</td>
</tr>
<tr>
<td>6</td>
<td>Bob Hope Airport Drive and Empire Avenue</td>
<td>Burbank</td>
<td>p.m.</td>
<td>0.687</td>
</tr>
<tr>
<td>7</td>
<td>Empire Avenue and Vanowen Street</td>
<td>Burbank</td>
<td>a.m.</td>
<td>0.266</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p.m.</td>
<td>0.309</td>
</tr>
<tr>
<td>8</td>
<td>Hollywood Way and Victory Boulevard</td>
<td>Burbank</td>
<td>a.m.</td>
<td>0.256</td>
</tr>
<tr>
<td>9</td>
<td>Hollywood Way and Burbank Boulevard</td>
<td>Burbank</td>
<td>p.m.</td>
<td>0.354</td>
</tr>
<tr>
<td>10</td>
<td>Hollywood Way and Magnolia Boulevard</td>
<td>Burbank</td>
<td>a.m.</td>
<td>0.365</td>
</tr>
<tr>
<td>11</td>
<td>Hollywood Way and Verdugo Avenue</td>
<td>Burbank</td>
<td>p.m.</td>
<td>0.368</td>
</tr>
<tr>
<td>12</td>
<td>Hollywood Way and Alameda Avenue</td>
<td>Burbank</td>
<td>a.m.</td>
<td>0.470</td>
</tr>
<tr>
<td>13</td>
<td>Buena Vista Street and San Fernando Boulevard</td>
<td>Burbank</td>
<td>p.m.</td>
<td>0.772</td>
</tr>
<tr>
<td>14</td>
<td>Ontario Street and Empire Avenue</td>
<td>Burbank</td>
<td>a.m.</td>
<td>0.509</td>
</tr>
<tr>
<td>15</td>
<td>Buena Vista Street and Empire Avenue</td>
<td>Burbank</td>
<td>p.m.</td>
<td>0.592</td>
</tr>
<tr>
<td>16</td>
<td>N Buena Vista Street and Thornton Avenue</td>
<td>Burbank</td>
<td>a.m.</td>
<td>0.526</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p.m.</td>
<td>0.772</td>
</tr>
<tr>
<td>17</td>
<td>I-5 Southbound Ramps and Empire Avenue</td>
<td>Burbank</td>
<td>a.m.</td>
<td>0.509</td>
</tr>
<tr>
<td>18</td>
<td>I-5 Northbound Ramps and Empire Avenue</td>
<td>Burbank</td>
<td>p.m.</td>
<td>0.526</td>
</tr>
<tr>
<td>19</td>
<td>Victory Boulevard and Burbank Boulevard</td>
<td>Burbank</td>
<td>a.m.</td>
<td>0.490</td>
</tr>
<tr>
<td>20</td>
<td>Hollywood Way and I-5 Northbound Ramps</td>
<td>Los Angeles/Caltrans</td>
<td>a.m.</td>
<td>0.541</td>
</tr>
</tbody>
</table>

Notes: Volumes are the average of two sets of January 2017 and April 2017 weekday counts and are current as of the date of the Notice of Preparation (January 2018).

1 All intersections shown are signalized.

2 Analysis methodology varies by jurisdiction according to jurisdictional traffic study guidelines:
 City of Burbank: signalized intersections within the City of Burbank are analyzed in Traffix using the Circular 212 methodology.
 City of Los Angeles: signalized intersections within the City of Los Angeles are analyzed with the City of Los Angeles Critical Move Analysis worksheets.
 For signalized intersections on the border between the City of Los Angeles and the City of Burbank, both methodologies are applied.

3 Source: Fehr & Peers, Traffic Impact Study for the Media Studios Office Project, dated August 2018; refer to Appendix E.
Existing Congestion Management Program Locations

According to the Los Angeles County Metropolitan Transportation Authority’s (Metro) 2010 Congestion Management Program (2010 CMP), those proposed projects, which meet the following criteria, shall be evaluated:

- All congestion management program (CMP) arterial monitoring intersections, including monitored freeway on- or off-ramp intersections, where the proposed project would add 50 or more trips during either the a.m. or p.m. weekday peak hours (of adjacent street traffic).
- Mainline freeway monitoring locations where the project would add 150 or more trips, in either direction, during either the a.m. or p.m. weekday peak hours.

ARTERIAL MONITORING STATIONS

None of the study area intersections are CMP arterial monitoring locations. The CMP arterial monitoring stations closest to the proposed Project site are located at the intersection of Victory Boulevard and Woodman Avenue, approximately six miles west of the Project site, and Ventura Boulevard and Lankershim Boulevard, approximately five miles south of the Project site.

FREEWAY MONITORING STATIONS

The CMP freeway monitoring stations closest to the Project site include the following:

- I-5 Freeway at Osborne Street, north of SR-170 (approximately five miles north of the site)
- I-5 Freeway north of Burbank Boulevard Burbank Ramps (approximately two miles east of the site)
- I-5 Freeway south of Colorado Boulevard Exit (approximately five miles south of the site)
- SR-134 at Forman Avenue (approximately three miles south of the site)
- SR-134 east of Central Avenue (approximately six miles southeast of the site)
- SR-170 south of Sherman Way (approximately three miles west of the site)

Existing Traffic Signal Warrants Analysis

The City of Los Angeles’ Transportation Impact Study Guidelines requires that unsignalized intersections be evaluated solely to determine the need for the installation of a traffic signal or other traffic control device(s). Traffic signal warrants for existing traffic conditions are based on the existing peak hour intersection turning volumes. Signal warrant analysis was conducted at the unsignalized study intersection, North Hollywood Way and I-5 Southbound Off-Ramp (No. 21). The results of the analysis are presented in Traffic Study Table 16, Intersection Signal Warrant Analysis, and detailed signal warrant analysis sheets are included in Traffic Study Appendix E, Signal Warrant Analysis. According to Traffic Study Table 16, a signal warrant is met at North Hollywood Way and I-5 Southbound Off-Ramp (No. 21) under existing (2017) conditions.

Existing Transit Service

One commuter rail line and four bus lines currently serve the Project site as shown on Traffic Study Figure 3, Existing Transit Service. These transit lines consist of the Metrolink commuter rail, Los Angeles County Metropolitan Transportation Authority (Metro) bus lines, and BurbankBus lines, as described below.
The following line provides service to the Project site with peak period headways of 15 minutes or less:

- **Metro Line 94/794**. Line 94/794 is a north/south line that travels from Sylmar to downtown Los Angeles via San Fernando, Pacoima, Sun Valley, Burbank, and Glendale. Line 94/794 stops at the Sylmar/San Fernando and Sun Valley Metrolink Stations, Burbank Airport, and Los Angeles Union Station.

 Within the study area, Line 94/794 travels along Empire Avenue, North Avon Street, and Hollywood Way. Line 94 provides local service seven days per week. Weekday service hours are from 4:30 a.m. to 2:00 a.m. Peak hour headways on Line 94 are 15 to 20 minutes in the morning and 20 to 30 minutes in the afternoon. Line 794 provides rapid service on weekdays only between 4:30 a.m. and 9:30 p.m. Peak hour headways on Line 794 are approximately 20 to 30 minutes in the morning and 20 minutes in the afternoon. At stops where both Lines 94 and 794 provide service, headways are 15 minutes or better during weekdays.

The following lines provide service to the Project site with peak period headways longer than 15 minutes:

- **Metrolink Ventura County Line**, **Metro Line 169**, and **222**.

In addition to transit service, one commuter rail line, one bus rapid transit line (BRT), and eleven bus lines currently serve the Project study area. These transit lines are described below. They consist of two Metrolink commuter rail lines with two stations located near the project at Empire Avenue west of Hollywood Way and San Fernando Boulevard west of Hollywood Way. Also, Metro bus lines, BurbankBus lines, and one Los Angeles Department of Transportation (LADOT) Commuter Express (CE) bus line serves the Project study area.

The following lines provide service within the study area with peak period headways of 15 minutes or less:

- **Metro Orange Line**. The Metro Orange Line provides BRT service across the San Fernando Valley from Chatsworth on the Los Angeles/Ventura County border to North Hollywood. Service is provided seven days per week from 4:00 a.m. to 2:00 a.m. Twenty-four-hour service is provided on weekends (Friday and Saturday nights). Weekday morning and afternoon peak headways are three to six minutes.

- **Metro Line 162/163**. Line 162/163 is an east/west line that provides service from West Hills to Sun Valley via Canoga Park, Winnetka, Reseda, and Van Nuys. Line 162/163 travels along Sherman Way. Service is provided seven days per week, with weekday and Saturday service provided between 4:30 a.m. and 11:30 p.m. Peak hour headways on Line 162/163 are 10 minutes in the morning and 15 to 30 minutes in the afternoon.

- **BurbankBus Golden State Circulator**. This line begins and ends at the Burbank Airport North Metrolink Station and travels along Hollywood Way, Winona Avenue, Ontario Street, Empire Avenue, Lincoln Street and San Fernando Boulevard. Service is provided on weekdays only from 6:00 a.m. to 6:30 p.m. with 15-minute headways.

- **BurbankBus NoHo/Airport Route**. This line begins at the North Hollywood Red Line Station and ends at the Burbank Airport Regional Intermodal Transportation Center (RITC) and travels along Burbank Boulevard, Buena Vista Street, Empire Avenue, Ontario Street, Thornton Avenue, and
Media Studios Project
ENVIRONMENTAL IMPACT REPORT

Hollywood Way. Service is provided on weekdays only from 5:30 a.m. to 10:30 p.m. with 15-minute headways during the peak periods, 20-minute headways during the mid-day, and 45-minute headways during the late evening.

- **BurbankBus Metrolink/Media District Loop.** This line begins and ends at the Downtown Burbank Metrolink Station and travels along Olive Avenue, Buena Vista Street, Alameda Avenue, Bob Hope Drive, and Riverside Drive. Service is provided on weekdays only from 6:00 a.m. to 9:45 a.m. and again from 2:30 p.m. to 6:00 p.m. with 12-minute headways.

- **BurbankBus NoHo/Media District Loop.** This line begins and ends at the North Hollywood Red Line Station and travels along Magnolia Boulevard, Buena Vista Street, Alameda Avenue, Olive Avenue, and Hollywood Way. Service is provided on weekdays only. Headways are 15 minutes during morning and evening commute periods, every 20 minutes during the mid-day and every 45 minutes during the evening.

The following lines provide service within the study area with peak period headways longer than 15 minutes: Metrolink Antelope Valley Line, Metro Lines 96, 152/353, 155, 164, 165, 183, and 224, and LADOT Commuter Express 549.

Existing Bicycle Facilities

As shown on Traffic Study Figure 4, **Existing and Proposed Bikeways**, there is dedicated bicycle infrastructure in the study area. West of the Project site, a Class II bicycle lane is provided along Hollywood Way between Tulare Avenue and Pacific Avenue and along Vanowen Street between Clybourn Avenue and Hollywood Way. There is a Class I bicycle path northeast of the Project site east of I-5 from Buena Vista Street to Landis Street, and a Class I bicycle path along Chandler Boulevard between Vineland Avenue and Mariposa Street. Near the Project site, there are bicycle lanes along Glenoaks Boulevard, Vineland Avenue, Sherman Way, and Clybourn Avenue. Class III bicycle routes are located along portions of Pacific Avenue, Keystone Street, Maple Street, Pass Avenue, and California Street, in the southern edge of the study area.

Proposed bicycle facilities are also shown on Traffic Study Figure 4, **Existing and Proposed Bikeways**. Planned bicycle lanes and routes in the study area, include a Class I bicycle path along San Fernando Boulevard. The proposed facilities are included in the City of Los Angeles’ **Mobility Plan 2035** (2016), the City of Burbank’s **Bicycle Master Plan** (2009), and Metro’s **Active Transportation Strategic Plan** (2016).

5.4.2 REGULATORY SETTING

STATE

California Department of Transportation

Caltrans publishes a document entitled **Guide for the Preparation of Traffic Impact Studies** (Guide), which provides guidelines and recommended elements of traffic studies for projects that could potentially impact State facilities such as State Route highways and freeway facilities. This is a State-level document that is used by each of the Caltrans District offices.
The Guide defines when traffic studies should be conducted to address impacts to State facilities but does not define quantitative impact standards. The Guide states that Measures of Effectiveness are used to evaluate Caltrans facilities, and that the agency strives to maintain a LOS value of C on its facilities. However, the Guide states that the appropriate target LOS varies by facility and congestion level and is defined differently by Caltrans depending on the analyzed facility.

Senate Bill 743

On September 27, 2013, Governor Brown signed Senate Bill (SB) 743, which became effective on January 1, 2014. The purpose of SB 743 is to streamline the review under CEQA for several categories of development projects including the development of infill projects in transit priority areas and to balance the needs of congestion management with Statewide goals related to infill development, promotion of public health through active transportation, and reduction of greenhouse gas emissions.

SB 743 adds Chapter 2.7, *Modernization of Transportation Analysis for Transit Oriented Infill Projects*, to the CEQA Statute (Section 21099). Section 21099(d)(1) provides that aesthetic and parking impacts of a residential, mixed-use residential, or employment center project on an infill site within a transit priority area shall not be considered significant impacts on the environment. In addition, SB 743 will result in a change in the metrics for determining impacts relative to the transportation network through the development of new methodologies for traffic analyses for CEQA documents to promote the State’s goals of reducing greenhouse gas emissions and traffic-related air pollution, promoting the development of multimodal transportation system, and providing clean, efficient access to destinations.

Currently, environmental review of transportation impacts focuses on the delay that vehicles experience at intersections and on roadway segments, which is often measured using LOS. Mitigation for increased delay often involves widening a roadway or the size of an intersection, which increases capacity and may, therefore, increase auto use and emissions and discourage alternative forms of transportation. Under SB 743, the focus of transportation analysis will shift from driver delay to reduction of greenhouse gas emissions, creation of multimodal networks, and promotion of a mix of land uses.

Among other things, SB 743 requires that the Office of Planning and Research (OPR) prepare revisions to the State CEQA Guidelines criteria for determining the significance of transportation impacts of projects within transit priority areas. OPR will submit the proposed changes to the Secretary of the Natural Resources Agency to certify and adopt. In August 2014, OPR released a report entitled “Updating Transportation Impacts Analysis in the CEQA Guidelines” for public comment. The report contained a new proposed Section 15064.3 to the State CEQA Guidelines as well as proposed amendments to Appendix F (Energy Conservation) and Appendix G (Initial Study Checklist) of the State CEQA Guidelines. The comment period closed November 21, 2014 and OPR reviewed and considered comments to determine if revisions were needed. OPR conducted many months of intensive engagement with the public, public agencies, environmental organizations, development advocates, industry experts, and many others, regarding the analysis of transportation impacts. On January 20, 2016, OPR released a Notice of Availability for the Revised Proposal on Updates to the CEQA Guidelines on Evaluating Transportation Impacts in CEQA. The comment period closed on February 29, 2016. After substantial study and public comment throughout the process, OPR submitted a set of final revisions to the Natural Resources Agency in November 2017. The subsequent “rulemaking” process is anticipated to take approximately six months and SB 743 is expected to go into effect in 2018. Beginning January 1, 2020, the provisions of the OPR guidance shall apply statewide.
LOCAL

Los Angeles County Metropolitan Transportation Authority

The Los Angeles County Metropolitan Transportation Authority (Metro) is responsible for the continuous improvement of an efficient and effective transportation system for the County of Los Angeles. Metro’s service area covers approximately 1,433 square miles. State statute requires that a CMP be developed, adopted, and updated biennially for every county that includes an urbanized area and shall include every city and the county government within that county. As the Congestion Management Agency for Los Angeles County, Metro is responsible for implementing the CMP for the County.

CONGESTION MANAGEMENT PLAN

Pursuant to Proposition 111, every county in California is required to develop a CMP that examines the relationships between land use, transportation, and air quality. The CMP addresses the impact of local growth on the regional transportation system. Proposition 111 also established a nine percent per gallon gas tax, staged over a five-year period, for funding transportation-related improvements Statewide. To be eligible for Proposition 111 revenues, the CMP legislation (originally AB 471, amended by AB 1791) requires that a CMP be developed, adopted, and updated biennially for every county that includes an urbanized area and shall include every city and the county government within that county. Statutory elements of the CMP include Highway and Roadway System monitoring, multi-modal system performance analysis, the Transportation Demand Management Program, the Land Use Analysis Program, and local conformance for all the county’s jurisdictions.

The purpose of the CMP is to develop a coordinated approach to managing and decreasing traffic congestion by linking the various transportation, land use and air quality planning programs throughout the County. The program is consistent with that of the Regional Transportation Plan prepared by the Southern California Association of Governments (SCAG). The CMP program requires review of significant individual projects, which might on their own impact the CMP transportation system.

2014 SHORT RANGE TRANSPORTATION PLAN

Metro’s 2014 Short Range Transportation Plan (SRTP) is a 10-year action plan that guides programs and projects through 2024. It advances Metro towards the long-term goals identified in the 2009 Long Range Transportation Plan (LRTP). The 2009 LRTP identifies the short-term challenges, provides an analysis of Metro’s financial resources, proposes action plans for the public transportation and highway modes, and includes other project and program initiatives. Additionally, the 2009 LRTP addresses sustainability, future funding strategies, and measures of the Plan’s performance.

Burbank Municipal Code

The Burbank Municipal Code (BMC) Title 6, Chapter 1 includes provisions for traffic control devices, restrictions, and allowances for turning movements, pedestrian crosswalks, parking restrictions, truck routes for commercial vehicles with three or more axles, public transit zones, speed limits, curb markings, bicycle parking, and many other regulations for design and traffic control features.
BMC Section 10-1-1408 contains the following parking requirements for the land uses that comprise the proposed project:

- Office – three parking spaces per 1,000 square feet

Road improvement plans for projects are reviewed by the City’s Public Works Department for compliance with BMC requirements for street, driveway, and parking designs, and traffic control measures such as signage and signals. Traffic enforcement as required by the BMC is regulated by the City’s Police Department.

Burbank Bicycle Master Plan

To promote bicycle travel, the City adopted a Bicycle Master Plan in 2009 to encourage bicycling and ensure that adequate facilities are maintained within the City to serve bicycle riders of all ages and skill sets. The City recognizes that a safe and effective bikeway network enhances the quality of life for residents and visitors to the City. The Bicycle Master Plan incorporates the planning of routes and facilities into the circulation network, promotes bicycling as a primary form of travel to reduce traffic, and prioritizes investments in bicycle infrastructure.

Burbank Transportation Management Organization

The Burbank Transportation Management Organization (BTMO) is a private-sector nonprofit organization formed to formally bring together employers, developers, building owners, and other stakeholders to collectively establish policies, programs, and services that address local transportation and air quality issues and concerns. More specifically, the BTMO develops, coordinates, and implements cost effective transportation management programs that comply with traffic congestion and clean air requirements; improve mobility and access to Burbank businesses for employees, customers, vendors, and visitors; and enhances the community commitment to traffic mitigation and clean air. Businesses with 25 or more employees who are located in the Burbank Media District or Downtown Burbank are required to join the BTMO. In addition, the Project was required to join the BTMO as part of a previous entitlement process and the current PD, even though membership in the BTMO is not required for projects located outside of the Burbank Media District and Burbank Center Specific Plans. While participation in the BTMO and its associated transportation management programs may reduce vehicular traffic accessing the Project site, for the purposes of this analysis, no trip reduction credit was taken for implementing transportation demand management programs.

Burbank2035 Mobility Element

The Burbank2035 Mobility Element focuses on establishing a dedicated transportation system that provides a high LOS to residents, employees, and visitors while enhancing the livability and economic vitality of the City. The Mobility Element focuses on public transit, bicycle transportation, and pedestrian transportation in addition to motor vehicles to take a multimodal approach in achieving the Mobility Element goals and policies. The Mobility Element goals and policies that pertain to the proposed Project include the following:
Goal 1 - Burbank’s transportation system ensures economic vitality while preserving neighborhood character.

Policy 1.1: Consider economic growth, transportation demands, and neighborhood character in developing a comprehensive transportation system that meets Burbank’s needs.

Policy 1.2: Recognize that Burbank is a built-out city and wholesale changes to street rights-of-way are infeasible.

Policy 1.4: Ensure that future land uses can be adequately served by the planned transportation system.

Policy 1.5: Design transportation improvements to be compatible with the scale and design of existing infrastructure.

Policy 1.6: Use technology and intelligent transportation systems to increase street system capacity and efficiency as an alternative to street widening.

Policy 1.7: Ensure that the transportation system enables Burbank residents, employees, and visitors opportunity to live, work, and play throughout the community.

GOAL 2 - Burbank’s transportation system will adapt to changing mobility and accessibility needs without sacrificing today’s community values.

Policy 2.1: Improve Burbank’s alternative transportation access to local and regional destinations through land use decisions that support multimodal transportation.

Policy 2.4: Require new projects to contribute to the city’s transit and/or non-motorized transportation network in proportion to its expected traffic generation.

GOAL 3 - Burbank’s complete streets will meet all mobility needs and improve community health.

Policy 3.1: Use multi-modal transportation standards to assess the performance of the City street system.

Policy 3.2: Complete city streets by providing facilities for all transportation modes.

Policy 3.3: Provide attractive, safe street designs that improve transit, bicycle, pedestrian, and equestrian connections between homes and other destinations.

Policy 3.4: All street improvements should be implemented within the existing right-of-way. Consider street widening and right-of-way acquisition as methods of last resort.

Policy 3.5: Design street improvements so they preserve opportunities to maintain or expand bicycle, pedestrian, and transit systems.
GOAL 4 - Burbank’s convenient, efficient public transit network provides a viable alternative to the automobile.

Policy 4.1: Ensure that local transit service is reliable, safe, and provides high-quality service to major employment centers, shopping districts, regional transit centers, and residential areas.

Policy 4.2: Use best-available transit technology to better link local destinations and improve rider convenience and safety, including specialized services for youth and the elderly.

Policy 4.7: Integrate transit nodes and connection points with adjacent land uses and public pedestrian spaces to make them more convenient to transit users.

GOAL 5 - Burbank fosters pedestrian and bicycle travel as healthy, environmentally sound methods to reduce vehicle trips and improve community character.

Policy 5.1: Maximize pedestrian and bicycle safety, accessibility, connectivity, and education throughout Burbank to create neighborhoods where people choose to walk or ride between nearby destinations.

Policy 5.2: Implement the Bicycle Master Plan by maintaining and expanding the bicycle network, providing end-of-trip facilities, improving bicycle/transit integration, encouraging bicycle use, and making bicycling safer.

Policy 5.3: Provide bicycle connections to major employment centers, shopping districts, residential areas, and transit connections.

Policy 5.4: Ensure that new commercial and residential developments integrate with Burbank’s bicycle and pedestrian networks.

Policy 5.5: Require new development to provide land necessary to accommodate pedestrian infrastructure, including sidewalks at the standard widths specified in Table M-2.

GOAL 7 - Burbank’s public and private parking facilities are well managed and convenient.

Policy 7.1: Effectively manage citywide parking to improve convenience while maximizing use at all times of the day.

Policy 7.2: Design commercial and residential parking standards to limit new vehicle trips, incentivize transit use, and promote non-motorized transportation.

GOAL 9 - Burbank’s transportation network is safe, accessible, and equitable.

Policy 9.1: Ensure safe interaction between all modes of travel that use the street network, specifically the interaction of bicyclists, pedestrians, and equestrians with motor vehicles.

Policy 9.3: Provide access to transportation alternatives for all users, including senior, disabled, youth, and other transit-dependent residents.
5.4.3 IMPACT THRESHOLDS AND SIGNIFICANCE CRITERIA

DEFINITION OF LOS THRESHOLDS SIGNIFICANT IMPACT

City of Burbank

Signalized intersections within the City of Burbank were analyzed using the following criteria:

- The increase in the v/c ratio from future base conditions to future base plus project conditions is 0.020 or more with the intersection operating at LOS D after the addition of project traffic, or;
- The increase in the v/c ratio from future base conditions to future base plus project conditions is 0.010 or more with the intersection operating at LOS E after the addition of project traffic, or;
- The increase in the v/c ratio from future base conditions to future base plus project conditions is 0.005 or more with the intersection operating at LOS F after the addition of project traffic.

The City of Burbank’s impact criteria is based on delay-based LOS and percent increase in number of project trips travelling through the intersection. An impact is triggered in accordance with the following parameters:

- An increase in final average control delay per vehicle between 25 to 35 seconds, representing a two percent increase in vehicle trips through the intersection operating at LOS D after the addition of project traffic, or;
- An increase in final average control delay per vehicle between 35 to 50 seconds, representing a one percent increase in vehicle trips through the intersection operating at LOS E after the addition of project traffic, or;
- An increase in final average control delay per vehicle over 50 seconds, representing five or more project trips through the intersection operating at LOS F.

City of Los Angeles

Impact analysis for signalized intersections within the City of Los Angeles was conducted using City of Los Angeles impact criteria, which state a significant impact is triggered when one of the following criteria is met:

- The increase in the v/c ratio from future base conditions to future base plus project conditions is 0.040 or more with the intersection operating at LOS C after the addition of project traffic, or;
- The increase in the v/c ratio from future base conditions to future base plus project conditions is 0.020 or more with the intersection operating at LOS D after the addition of project traffic, or;
- The increase in the v/c ratio from future base conditions to future base plus project conditions is 0.010 or more with the intersection operating at LOS E or F after the addition of project traffic.
Unsignalized intersections within the City of Los Angeles are not analyzed to determine significant impacts but are analyzed to determine if a signal warrant is met.

DEFINITION OF CMP SIGNIFICANT IMPACT

The CMP traffic impact analysis guidelines establish that a significant project impact occurs when a certain threshold is exceeded. If the proposed Project increases traffic demand on a CMP facility by 2 percent of capacity ($v/c \geq 0.02$), causing LOS F ($v/c > 1.00$), a significant impact would occur. If the facility is already at LOS F, a significant impact occurs when the proposed Project increases traffic demand on a CMP facility by 2 percent of capacity ($v/c \geq 0.02$).

DEFINITION OF SIGNIFICANT IMPACT

A traffic impact is considered significant and immitigable if the Project both: i) contributes measurable traffic to, and ii) substantially and adversely changes the LOS at any off-site location projected to experience deficient operations under foreseeable cumulative conditions, where feasible improvements consistent with the General Plan cannot be constructed.

CEQA SIGNIFICANCE CRITERIA

Appendix G of the CEQA Guidelines contains the Environmental Checklist form that was used during the preparation of this EIR. Accordingly, a project may create a significant adverse environmental impact if it would:

- Conflict with an applicable plan, ordinance or policy establishing measures of effectiveness for the performance of the circulation system, taking into account all modes of transportation including mass transit and non-motorized travel and relevant components of the circulation system, including but not limited to intersections, streets, highways and freeways, pedestrian and bicycle paths, and mass transit (refer to Impact Statement TRA-1 and TRA-2);

- Conflict with an applicable congestion management program, including, but not limited to level of service standards and travel demand measures, or other standards established by the county congestion management agency for designated roads or highways (refer to Impact Statement TRA-3);

- Result in a change in air traffic patterns, including either an increase in traffic levels or a change in location that results in substantial safety risks (refer to Section 8.0, Effects Found Not To Be Significant);

- Substantially increase hazards due to a design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment) (refer to Impact Statement TRA-4);

- Result in inadequate emergency access (refer to Impact Statement TRA-5);

- Conflict with adopted policies, plans, or programs regarding public transit, bicycle, or pedestrian facilities, or otherwise decrease the performance or safety of such facilities (refer to Impact Statement TRA-6); and
- Substantially affect vehicular traffic, bicycles and pedestrians, transit, or emergency access (refer to Impact Statements TRA-5 and TRA-6).

Based on these significance thresholds and criteria, the Project’s effects have been categorized as either “no impact,” a “less than significant impact,” or a “potentially significant impact.” Mitigation measures are recommended for potentially significant impacts. If a potentially significant impact cannot be reduced to a less than significant level through the application of mitigation, it is categorized as a significant unavoidable impact.

5.4.4 IMPACTS AND MITIGATION MEASURES

CONSTRUCTION TRAFFIC

TRA-1 PROJECT CONSTRUCTION COULD CAUSE A SIGNIFICANT INCREASE IN TRAFFIC FOR EXISTING CONDITIONS WHEN COMPARED TO THE TRAFFIC CAPACITY OF THE STREET SYSTEM.

Impact Analysis: Construction activities associated with the proposed Project would generate traffic as a result of equipment being transported to the site, and vehicular traffic from construction workers and delivery of materials to the Project site. Staging areas for construction equipment storage and construction work storage would be established on-site.

Construction related trips associated with trucks and employees traveling to and from the Project site may result in minor traffic delays within the Project area. However, the potential traffic interference caused by construction vehicles would only be a temporary, short-term impact to vehicles using local roadways in the morning and afternoon hours.

Construction of the proposed Project would occur over an approximately 24-month period, from May 2024 to May 2026. A total of 2,314 haul trips (approximately 70 trips per day) for the export of demolished debris and earthwork balance would be anticipated during the demolition phase (11 days) and grading phase (22 days). Hauling of any material would be restricted to occur during the off-peak hours (9:00 a.m. to 3:00 p.m.) and appropriate traffic control personnel (“flaggers”) would be used to ensure construction vehicles operate safely along the immediately adjacent local roadways (e.g., North Avon Street, Empire Avenue, North Hollywood Way) in a manner that minimizes disruption of traffic along these roadways.

Vehicle trips from construction workers would temporarily increase the number of vehicles on local roadways in the Project vicinity. The Project is anticipated to generate approximately 131 total worker trips during the 24-month construction period with the most trips generated during building construction phase (484 days). However, given the nature and phasing of the construction process, it is expected that construction arrivals and departures would be staggered throughout the day, and that workers would not all arrive and depart at the same time. This interim traffic would cease upon completion of the proposed Project. The added trips from construction workers and other vehicle equipment/traffic during construction could potentially impact the study intersections within the Project area, including with the addition of trips associated with regional traffic growth and approved projects.

To reduce the impact of construction-related traffic, a construction management plan would be developed to implement a variety of measures to minimize traffic and parking impacts upon the local circulation system (Mitigation Measure TRA-1). The construction management plan would include, but
not be limited to, the following measures: prohibit construction worker parking along local streets, identify appropriate haul routes to avoid traffic disruptions, and limit hauling activities to off-peak hours. Implementation of a construction management plan under Mitigation Measure TRA-1 would ensure potential impacts associated with construction related traffic would be reduced to a less than significant level.

Mitigation Measures:

TRA-1

Prior to issuance of any grading and/or demolition permits, whichever occurs first, a Construction Management Plan shall be submitted for review and approval by the City Traffic Engineer and Building Official. The requirement for a Construction Management Plan shall be incorporated into the Project specifications and subject to verification by the City Traffic Engineer and Building Official prior to final plan approval. The Construction Management Plan shall, at a minimum, address the following:

- Traffic control for any street closure, detour, or other disruption to traffic circulation.
- Identify the routes that construction vehicles will utilize for the delivery of construction materials (i.e., lumber, tiles, piping, windows, etc.), to access the site, traffic controls and detours, and proposed construction phasing plan for the Project.
- Require the Project Applicant to keep all haul routes clean and free of debris, including but not limited to gravel and dirt as a result of its operations. The Project Applicant shall clean adjacent streets, as directed by the City Traffic Engineer (or representative of the City Traffic Engineer), of any material which may have been spilled, tracked, or blown onto adjacent streets or areas.
- Hauling or transport of oversize loads shall be allowed between the hours of 9:00 a.m. and 3:00 p.m. only, Monday through Friday, unless approved otherwise by the City Traffic Engineer. No hauling or transport will be allowed during nighttime hours, weekends, or Federal holidays.
- Use of local streets shall be prohibited unless otherwise provided for in the CMP.
- Haul trucks entering or exiting public streets shall at all times yield to public traffic.
- If hauling operations cause any damage to existing pavement, streets, curbs, and/or gutters along the haul route, the Project Applicant shall be fully responsible for repairs. The repairs shall be completed to the satisfaction of the City Traffic Engineer.
- All construction-related parking and staging of vehicles shall be kept out of the adjacent public roadways and shall occur on-site or at a nearby site approved by the City Traffic Engineer as part of the CMP.
- The Construction Management Plan shall meet standards established in the current California Manual on Uniform Traffic Control Device as well as City of Burbank requirements.

Level of Significance: Less Than Significant With Mitigation Incorporated.
PROJECT TRAFFIC GENERATION

TRA-2 PROJECT IMPLEMENTATION COULD CAUSE A SIGNIFICANT INCREASE IN TRAFFIC WHEN COMPARED TO THE TRAFFIC CAPACITY OF THE STREET SYSTEM.

Impact Analysis:

PROJECT TRIP GENERATION

“Trip generation analysis” is the process by which the number of vehicle trips that a specific proposed land use plan would add to local roadways are identified. General Office Building (ITE 710) was utilized as the appropriate ITE rate to estimate trip generation for the proposed office land use. The net new number of trips was estimated by subtracting the existing vehicle trips generated on the Media Studios campus (622,553 adjusted gross square feet of office use) from the proposed total office trips generated at full buildout of the campus (783,000 adjusted gross square feet of office use) to represent the incremental addition of Project trips generated by development of the Phase 6 site.

Trip generation rates used to estimate traffic generated by the Project and a summary of trip generation for Project buildout are shown in Table 5.4-3, Project Trip Generation Estimates. As shown, the Project would generate approximately 903 net daily trips, including 149 a.m. peak hour trips and 162 p.m. peak hour trips.

Table 5.4-3
Project Trip Generation Estimates

<table>
<thead>
<tr>
<th>Type</th>
<th>ITE Code</th>
<th>Size</th>
<th>Trip Generation Rates¹</th>
<th>Estimated Trip Generation</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Daily Trips</td>
<td>Morning Peak Hour</td>
<td>Evening Peak Hour</td>
<td>In</td>
<td>Out</td>
<td>Total</td>
<td>In</td>
<td>Out</td>
</tr>
<tr>
<td>General Office Building (Existing)</td>
<td>710</td>
<td>622,553</td>
<td>88% 12% 17% 83%</td>
<td>5,270 727 99 826 132 644 776</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transit Credit²</td>
<td></td>
<td></td>
<td></td>
<td>(527) (73) (10) (83) (13) (64) (77)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Net External Trips</td>
<td></td>
<td></td>
<td></td>
<td>4,743 654 89 743 119 580 699</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Office Building (Proposed)</td>
<td>710</td>
<td>783,000</td>
<td>88% 12% 17% 83%</td>
<td>6,273 874 119 993 162 793 955</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transit Credit²</td>
<td></td>
<td></td>
<td></td>
<td>(627) (87) (12) (99) (16) (79) (95)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Net External Trips</td>
<td></td>
<td></td>
<td></td>
<td>5,646 787 107 894 146 714 860</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Net Project Trips</td>
<td></td>
<td>160,447</td>
<td>10% 10% 10% 10%</td>
<td>1,003 147 19 166 30 150 180</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transit Credit²</td>
<td></td>
<td></td>
<td></td>
<td>(100) (15) (2) (17) (3) (15) (18)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Net Project Trips</td>
<td></td>
<td></td>
<td></td>
<td>903 132 17 149 27 135 162</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: ksf = thousand square feet

ITE General Office trip generation equations used rather than trip generation rate:
- Daily: \(\ln(T) = 0.76 \times \ln(X) + 3.68 \), where \(T = \) trips, \(X = \) area in ksf
- a.m. peak hour: \(\ln(T) = 0.80 \times \ln(X) + 1.57 \), where \(T = \) trips, \(X = \) area in ksf
- p.m. peak hour: \(T = 1.12 \times X + 78.45 \), where \(T = \) trips, \(X = \) area in ksf

2 A transit credit is to be considered reasonable given the location of the site near major transit stations.

Source: Fehr & Peers, Traffic Impact Study for the Media Studios Office Project, dated August 2018; refer to Appendix E.
PROJECT TRIP DISTRIBUTION AND ASSIGNMENT

The Project-generated trips were distributed to the study area roadway network in accordance with the trip distribution illustrated on Exhibit 5.4-2. Since the proposed driveway on North Avon Street would connect to the existing parking garage and three existing driveways on Empire Avenue and Ontario Street, it is assumed that some of the existing traffic would use the proposed driveway on North Avon Street based on more convenient access from their direction of arrival and departure to the Project site.

EXISTING PLUS PROJECT TRAFFIC CONDITIONS

This section presents the Existing Plus Project traffic volumes and the resulting LOS conditions at each of the study intersections. Detailed intersection traffic analysis LOS calculations are provided in Traffic Study Appendix B, Intersection Level of Service Worksheets.

Intersection Traffic Volumes and Level of Service

The peak hour Project trips estimated in Table 5.4-3 were added to the existing (Year 2017) traffic volumes to estimate Existing Plus Project traffic volumes. Existing Plus Project traffic volumes presented in Traffic Study Figure 10, Peak Hour Volumes and Lane Configurations Existing Plus Project Volumes – AM(PM), were analyzed to determine the projected v/c ratios or delay and LOS for each of the analyzed intersections under this scenario. Table 5.4-4, Existing (2017) Plus Project Intersection Level of Service Analysis, summarizes the Existing Plus Project LOS for study intersections.

Table 5.4-4
Existing (2017) Plus Project Intersection Level of Service Analysis

<table>
<thead>
<tr>
<th>No.</th>
<th>Intersection1</th>
<th>Jurisdiction2 3</th>
<th>Peak Hour</th>
<th>Existing (2017)</th>
<th>Existing Plus Project</th>
<th>Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>v/c</td>
<td>LOS</td>
<td>v/c</td>
</tr>
<tr>
<td>1</td>
<td>Hollywood Way and Winona Avenue Burbank</td>
<td>a.m.</td>
<td>0.564</td>
<td>A</td>
<td>0.565</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p.m.</td>
<td>0.819</td>
<td>D</td>
<td>0.829</td>
</tr>
<tr>
<td>2</td>
<td>Hollywood Way and Thornton Avenue Burbank</td>
<td>a.m.</td>
<td>0.867</td>
<td>D</td>
<td>0.879</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p.m.</td>
<td>0.756</td>
<td>C</td>
<td>0.768</td>
</tr>
<tr>
<td>3</td>
<td>Hollywood Way and North Avon Street Burbank</td>
<td>a.m.</td>
<td>0.663</td>
<td>B</td>
<td>0.666</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p.m.</td>
<td>0.687</td>
<td>B</td>
<td>0.717</td>
</tr>
<tr>
<td>4</td>
<td>Hollywood Way Southbound Frontage and Empire Avenue Burbank</td>
<td>a.m.</td>
<td>0.266</td>
<td>A</td>
<td>0.270</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p.m.</td>
<td>0.309</td>
<td>A</td>
<td>0.314</td>
</tr>
<tr>
<td>5</td>
<td>North Avon Street and Empire Avenue Burbank</td>
<td>a.m.</td>
<td>0.256</td>
<td>A</td>
<td>0.246</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p.m.</td>
<td>0.354</td>
<td>A</td>
<td>0.363</td>
</tr>
<tr>
<td>6</td>
<td>Bob Hope Airport Drive and Empire Avenue Burbank</td>
<td>a.m.</td>
<td>0.365</td>
<td>A</td>
<td>0.374</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p.m.</td>
<td>0.368</td>
<td>A</td>
<td>0.373</td>
</tr>
<tr>
<td>No.</td>
<td>Intersection1</td>
<td>Jurisdiction2,3</td>
<td>Peak Hour</td>
<td>Existing (2017) v/c</td>
<td>Existing (2017) LOS</td>
<td>Existing Plus Project v/c</td>
</tr>
<tr>
<td>-----</td>
<td>---------------</td>
<td>-----------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>7</td>
<td>Empire Avenue and Vanowen Street</td>
<td>Burbank</td>
<td>a.m.</td>
<td>0.740</td>
<td>C</td>
<td>0.751</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p.m.</td>
<td>0.772</td>
<td>C</td>
<td>0.780</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Los Angeles</td>
<td>a.m.</td>
<td>0.509</td>
<td>A</td>
<td>0.518</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p.m.</td>
<td>0.592</td>
<td>A</td>
<td>0.598</td>
</tr>
<tr>
<td>8</td>
<td>Hollywood Way and Victory Boulevard</td>
<td>Burbank</td>
<td>a.m.</td>
<td>0.883</td>
<td>D</td>
<td>0.884</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p.m.</td>
<td>0.972</td>
<td>E</td>
<td>0.978</td>
</tr>
<tr>
<td>9</td>
<td>Hollywood Way and Burbank Boulevard</td>
<td>Burbank</td>
<td>a.m.</td>
<td>0.880</td>
<td>D</td>
<td>0.882</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p.m.</td>
<td>0.873</td>
<td>D</td>
<td>0.875</td>
</tr>
<tr>
<td>10</td>
<td>Hollywood Way and Magnolia Boulevard</td>
<td>Burbank</td>
<td>a.m.</td>
<td>0.849</td>
<td>D</td>
<td>0.850</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p.m.</td>
<td>0.876</td>
<td>D</td>
<td>0.878</td>
</tr>
<tr>
<td>11</td>
<td>Hollywood Way and Verdugo Avenue</td>
<td>Burbank</td>
<td>a.m.</td>
<td>0.772</td>
<td>C</td>
<td>0.774</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p.m.</td>
<td>0.840</td>
<td>D</td>
<td>0.842</td>
</tr>
<tr>
<td>12</td>
<td>Hollywood Way and Alameda Avenue</td>
<td>Burbank</td>
<td>a.m.</td>
<td>0.744</td>
<td>C</td>
<td>0.745</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p.m.</td>
<td>0.669</td>
<td>B</td>
<td>0.673</td>
</tr>
<tr>
<td>13</td>
<td>Buena Vista Street and San Fernando Boulevard</td>
<td>Burbank</td>
<td>a.m.</td>
<td>0.839</td>
<td>D</td>
<td>0.840</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p.m.</td>
<td>0.682</td>
<td>B</td>
<td>0.682</td>
</tr>
<tr>
<td>14</td>
<td>Ontario Street and Empire Avenue</td>
<td>Burbank</td>
<td>a.m.</td>
<td>0.264</td>
<td>A</td>
<td>0.279</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p.m.</td>
<td>0.285</td>
<td>A</td>
<td>0.288</td>
</tr>
<tr>
<td>15</td>
<td>Buena Vista Street and Empire Avenue</td>
<td>Burbank</td>
<td>a.m.</td>
<td>0.551</td>
<td>A</td>
<td>0.568</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p.m.</td>
<td>0.625</td>
<td>B</td>
<td>0.651</td>
</tr>
<tr>
<td>16</td>
<td>N Buena Vista Street and Thornton Avenue</td>
<td>Burbank</td>
<td>a.m.</td>
<td>0.541</td>
<td>A</td>
<td>0.542</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p.m.</td>
<td>0.581</td>
<td>A</td>
<td>0.584</td>
</tr>
<tr>
<td>17</td>
<td>I-5 Southbound Ramps and Empire Avenue</td>
<td>Burbank/Caltrans</td>
<td>a.m.</td>
<td>Future Intersection</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p.m.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>I-5 Northbound Ramps and Empire Avenue</td>
<td>Burbank/Caltrans</td>
<td>a.m.</td>
<td>Future Intersection</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p.m.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Victory Boulevard and Burbank Boulevard</td>
<td>Burbank</td>
<td>a.m.</td>
<td>0.719</td>
<td>C</td>
<td>0.720</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p.m.</td>
<td>0.798</td>
<td>C</td>
<td>0.808</td>
</tr>
<tr>
<td>20</td>
<td>Hollywood Way and I-5 Northbound Ramps</td>
<td>Los Angeles/Caltrans</td>
<td>a.m.</td>
<td>0.490</td>
<td>A</td>
<td>0.492</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p.m.</td>
<td>0.459</td>
<td>A</td>
<td>0.465</td>
</tr>
</tbody>
</table>

Notes: Volumes are the average of two sets of January 2017 and April 2017 weekday counts.
1 All intersections shown are signalized.
2 Analysis methodology varies by jurisdiction according to jurisdictional traffic study guidelines:
 City of Burbank: signalized intersections within the City of Burbank are analyzed in Traffix using the Circular 212 methodology.
 City of Los Angeles: signalized intersections within the City of Los Angeles are analyzed with the City of Los Angeles Critical Move Analysis worksheets.
3 For signalized intersections on the border between the City of Los Angeles and the City of Burbank, both methodologies are applied.

Source: Fehr & Peers, Traffic Impact Study for the Media Studios Office Project, dated August 2018; refer to Appendix E.
As indicated in Table 5.4-4, under existing conditions, the following intersection currently operates at LOS E in the p.m. peak hour, which exceeds the City’s LOS D standard:

- North Hollywood Way and West Victory Boulevard (Intersection No. 8)

When Project-generated traffic is added to this intersection under Existing Plus Project conditions, this intersection continues to operate at LOS E, however, the Project’s v/c increase at this intersection is 0.006 and below the City’s significance threshold for an incremental increase in intersection v/c at LOS E. Thus, this intersection would not result in a significant impact based on the City’s performance criteria under Existing Plus Project conditions and no mitigation is required.

Freeway Ramp Queuing Adjacent to the Project Site

A freeway ramp queuing analysis was conducted at two freeway ramp terminal intersections under the Existing and Existing Plus Project conditions. The Synchro traffic analysis software was used to implement the Highway Capacity Manual methodology to calculate the 95th percentile queues and compare them with the available vehicle storage on these ramps. Traffic signal-related information such as phasing and timing plans (minimum green, maximum green, gap, etc.) were obtained from cities of Burbank and Los Angeles for each location and the morning and evening peak hour traffic volumes from the Traffic Study were utilized. Additional detail such as turn pocket lengths and ramp lengths was coded based on scaled distances from on-line aerial photographs. Detailed queue calculations are provided in Traffic Study Appendix C, *Queuing Analysis Sheets*.

Traffic Study Table 15A, *Peak Hour Off-Ramp Intersection 95th Percentile Queues – Existing Plus Project Conditions*, shows the results of the queuing analysis. The following ramp would experience queuing greater than the available storage during Existing Plus Project conditions:

- North Hollywood Way and I-5 Southbound Off-Ramp (Intersection No. 21)

Additional queue analysis was conducted with both the existing stop-control and with a signal at Intersection No. 21. As shown in Traffic Study Table 15C, *Peak Hour Off-Ramp Intersection 95th Percentile Queues with Signal*, implementation of a signal at this intersection would ensure queuing does not exceed the ramp storage at Intersection No. 21.

Traffic Signal Warrant Analysis

The City of Los Angeles’ *Transportation Impact Study Guidelines* requires that unsignalized intersections be evaluated solely to determine the need for the installation of a traffic signal or other traffic control device(s). As such, signal warrant analysis was conducted at the unsignalized study intersection of North Hollywood Way and I-5 Southbound Off-Ramp (Intersection No. 21). The results of the analysis are presented in Traffic Study Table 16, *Intersection Signal Warrant Analysis*, and detailed signal warrant analysis sheets are shown in Traffic Study Appendix E, *Signal Warrant Analysis*. As shown, a signal warrant is met at the North Hollywood Way and I-5 Southbound Off-Ramp (Intersection No. 21) under the Existing Plus Project conditions.
FUTURE PLUS PROJECT TRAFFIC CONDITIONS

To evaluate the potential impacts of the proposed Project on Future Base (Year 2028) conditions, it was necessary to develop estimates of future traffic conditions in the area both without and with Project traffic. First, estimates of traffic growth were developed for the study area to forecast future conditions without the Project. These forecasts included traffic increases as a result of both regional ambient traffic growth and traffic generated by specific developments in the vicinity of the Project (related projects). These projected traffic volumes, identified herein as the Future Base conditions, represent the future conditions (Year 2028) without the proposed Project. The traffic generated by the proposed Project was then estimated and assigned to the surrounding street system. The Project traffic was added to the Future Base (Year 2028) to develop the Future Plus Project traffic conditions that are analyzed below.

As noted above, in addition to areawide ambient traffic growth and traffic generated by related projects, background traffic distribution shifts due to the Burbank Airport Terminal Replacement Project and Empire Avenue Interchange Project that includes reconfiguring the Burbank Boulevard interchange, were also taken into account for Future Base (Year 2028) conditions. Detailed intersection traffic analysis LOS calculations are provided in Traffic Study Appendix B, Intersection Level of Service Worksheets.

Intersection Traffic Volumes and Level of Service

Under the Future Plus Project conditions, the Project-generated traffic volumes differ from the Existing Plus Project conditions due to the new access provided on I-5 at Empire Avenue. These volumes were added to the Future Base (Year 2028) traffic volumes to develop Future Plus Project peak hour traffic volumes. Future Plus Project traffic volumes during the a.m. and p.m. peak hours are shown on Traffic Study Figure 16, Peak Hour Volumes and Lane Configurations Future Plus Project – AM(PM).

The resulting Future Plus Project peak hour traffic volumes were analyzed to determine the projected future operating conditions with the addition of the proposed Project traffic. Table 5.4-5, Future Base (Year 2028) Plus Project Intersection Level of Service Analysis, summarizes the Existing Plus Project LOS for study intersections.

As indicated in Table 5.4-5, under Future Plus Project conditions, the following ten deficient intersections would result:

- North Hollywood Way and Winona Avenue (Intersection No. 1)
- North Hollywood Way and Thornton Avenue (Intersection No. 2)
- Empire Avenue and Vanowen Street (Intersection No. 7)
- North Hollywood Way and Victory Boulevard (Intersection No. 8)
- North Hollywood Way and Burbank Boulevard (Intersection No. 9)
- North Hollywood Way and Magnolia Boulevard (Intersection No. 10)
- North Hollywood Way and Verdugo Avenue (Intersection No. 11)
- North Hollywood Way and West Alameda Avenue (Intersection No. 12)
- North Buena Vista Street and North San Fernando Boulevard (Intersection No. 13)
- West Burbank Boulevard and Victory Boulevard (Intersection No. 19)
Table 5.4-5
Future Base (Year 2028) Plus Project Intersection Level of Service Analysis

<table>
<thead>
<tr>
<th>No.</th>
<th>Intersection¹</th>
<th>Jurisdiction²,³</th>
<th>Peak Hour</th>
<th>Future Base (2028)</th>
<th>Future Plus Project Impacts</th>
<th>Significant?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>v/c</td>
<td>LOS</td>
<td>v/c</td>
</tr>
<tr>
<td>1</td>
<td>Hollywood Way and Winona Avenue Burbank</td>
<td>a.m.</td>
<td>0.815</td>
<td>D</td>
<td>0.816</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p.m.</td>
<td>0.980</td>
<td>E</td>
<td>0.990</td>
</tr>
<tr>
<td>2</td>
<td>Hollywood Way and Thornton Avenue Burbank</td>
<td>a.m.</td>
<td>0.909</td>
<td>E</td>
<td>0.921</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p.m.</td>
<td>0.956</td>
<td>E</td>
<td>0.965</td>
</tr>
<tr>
<td>3</td>
<td>Hollywood Way and North Avon Street Burbank</td>
<td>a.m.</td>
<td>0.793</td>
<td>C</td>
<td>0.796</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p.m.</td>
<td>0.796</td>
<td>C</td>
<td>0.826</td>
</tr>
<tr>
<td>4</td>
<td>Hollywood Way Southbound Frontage and Empire Avenue Burbank</td>
<td>a.m.</td>
<td>0.283</td>
<td>A</td>
<td>0.287</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p.m.</td>
<td>0.367</td>
<td>A</td>
<td>0.372</td>
</tr>
<tr>
<td>5</td>
<td>North Avon Street and Empire Avenue Burbank</td>
<td>a.m.</td>
<td>0.304</td>
<td>A</td>
<td>0.294</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p.m.</td>
<td>0.332</td>
<td>A</td>
<td>0.346</td>
</tr>
<tr>
<td>6</td>
<td>Bob Hope Airport Drive and Empire Avenue Burbank</td>
<td>a.m.</td>
<td>0.456</td>
<td>A</td>
<td>0.465</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p.m.</td>
<td>0.400</td>
<td>A</td>
<td>0.405</td>
</tr>
<tr>
<td>7</td>
<td>Empire Avenue and Vanowen Street Burbank</td>
<td>a.m.</td>
<td>0.871</td>
<td>D</td>
<td>0.883</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Los Angeles</td>
<td></td>
<td>p.m.</td>
<td>0.894</td>
<td>D</td>
<td>0.902</td>
</tr>
<tr>
<td>8</td>
<td>Hollywood Way and Victory Boulevard Burbank</td>
<td>a.m.</td>
<td>0.999</td>
<td>E</td>
<td>1.001</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p.m.</td>
<td>1.122</td>
<td>F</td>
<td>1.128</td>
</tr>
<tr>
<td>9</td>
<td>Hollywood Way and Burbank Boulevard Burbank</td>
<td>a.m.</td>
<td>1.030</td>
<td>F</td>
<td>1.031</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p.m.</td>
<td>1.024</td>
<td>F</td>
<td>1.026</td>
</tr>
<tr>
<td>10</td>
<td>Hollywood Way and Magnolia Boulevard Burbank</td>
<td>a.m.</td>
<td>1.005</td>
<td>F</td>
<td>1.006</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p.m.</td>
<td>1.045</td>
<td>F</td>
<td>1.047</td>
</tr>
<tr>
<td>11</td>
<td>Hollywood Way and Verdugo Avenue Burbank</td>
<td>a.m.</td>
<td>0.918</td>
<td>E</td>
<td>0.920</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p.m.</td>
<td>1.014</td>
<td>F</td>
<td>1.016</td>
</tr>
<tr>
<td>12</td>
<td>Hollywood Way and Alameda Avenue Burbank</td>
<td>a.m.</td>
<td>0.998</td>
<td>E</td>
<td>0.999</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p.m.</td>
<td>0.961</td>
<td>E</td>
<td>0.966</td>
</tr>
<tr>
<td>13</td>
<td>Buena Vista Street and San Fernando Boulevard Burbank</td>
<td>a.m.</td>
<td>0.750</td>
<td>C</td>
<td>0.752</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p.m.</td>
<td>0.905</td>
<td>E</td>
<td>0.907</td>
</tr>
<tr>
<td>14</td>
<td>Ontario Street and Empire Avenue Burbank</td>
<td>a.m.</td>
<td>0.329</td>
<td>A</td>
<td>0.346</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p.m.</td>
<td>0.339</td>
<td>A</td>
<td>0.352</td>
</tr>
<tr>
<td>No.</td>
<td>Intersection1</td>
<td>Jurisdiction2,3</td>
<td>Peak Hour</td>
<td>Future Base (2028)</td>
<td>Future Plus Project</td>
<td>Impacts</td>
</tr>
<tr>
<td>-----</td>
<td>---------------</td>
<td>-----------------</td>
<td>-----------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>v/c</td>
<td>LOS</td>
<td>v/c</td>
</tr>
<tr>
<td>15</td>
<td>Buena Vista Street and Empire Avenue</td>
<td>Burbank</td>
<td>a.m.</td>
<td>0.605</td>
<td>B</td>
<td>0.606</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p.m.</td>
<td>0.686</td>
<td>B</td>
<td>0.688</td>
</tr>
<tr>
<td>16</td>
<td>N Buena Vista Street and Thornton Avenue</td>
<td>Burbank</td>
<td>a.m.</td>
<td>0.590</td>
<td>A</td>
<td>0.592</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p.m.</td>
<td>0.620</td>
<td>B</td>
<td>0.623</td>
</tr>
<tr>
<td>17</td>
<td>I-5 Southbound Ramps and Empire Avenue</td>
<td>Burbank/Caltrans</td>
<td>a.m.</td>
<td>0.433</td>
<td>A</td>
<td>0.446</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p.m.</td>
<td>0.556</td>
<td>A</td>
<td>0.559</td>
</tr>
<tr>
<td>18</td>
<td>I-5 Northbound Ramps and Empire Avenue</td>
<td>Burbank/Caltrans</td>
<td>a.m.</td>
<td>0.524</td>
<td>A</td>
<td>0.539</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p.m.</td>
<td>0.698</td>
<td>B</td>
<td>0.701</td>
</tr>
<tr>
<td>19</td>
<td>Victory Boulevard and Burbank Boulevard</td>
<td>Burbank</td>
<td>a.m.</td>
<td>0.796</td>
<td>C</td>
<td>0.797</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p.m.</td>
<td>0.908</td>
<td>E</td>
<td>0.909</td>
</tr>
<tr>
<td>20</td>
<td>Hollywood Way and I-5 Northbound Ramps</td>
<td>Los Angeles/Caltrans</td>
<td>a.m.</td>
<td>0.633</td>
<td>B</td>
<td>0.635</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p.m.</td>
<td>0.602</td>
<td>B</td>
<td>0.609</td>
</tr>
</tbody>
</table>

Notes: Volumes are the average of two sets of January 2017 and April 2017 weekday counts.
1 All intersections shown are signalized.
2 Analysis methodology varies by jurisdiction according to jurisdictional traffic study guidelines:
 City of Burbank: signalized intersections within the City of Burbank are analyzed in Traffix using the Circular 212 methodology.
 City of Los Angeles: signalized intersections within the City of Los Angeles are analyzed with the City of Los Angeles Critical Move Analysis worksheets.
3 For signalized intersections on the border between the City of Los Angeles and the City of Burbank, both methodologies are applied.

Source: Fehr & Peers, Traffic Impact Study for the Media Studios Office Project, dated August 2018; refer to Appendix E.

As shown in Table 5.4-5, the Project’s contribution to the increased traffic at six of these ten intersections is less than the City’s significance thresholds, and thus, the increased traffic under Future Plus Project conditions at these six locations is less than significant. However, the remaining four intersections that operate deficiently include an amount of Project traffic that exceeds the City’s thresholds of significance and therefore are significantly impacted by the project under Future Plus Project conditions:

- North Hollywood Way and Winona Avenue (Intersection No. 1)
- North Hollywood Way and Thornton Avenue (Intersection No. 2)
- North Hollywood Way and North Avon Street (Intersection No. 3)
- North Hollywood Way and Victory Boulevard (Intersection No. 8)

Burbank2035 provides the City with a framework for determining the feasibility of intersection improvements based upon right-of-way (ROW) constraints or instances where the physical layout of intersection improvements causes a conflict between Burbank2035 goals and policies and the City’s LOS D standard. Burbank2035 includes policies that provide criteria for determining the feasibility of intersection improvements based on whether or not they conflict with general plan goals and policies.
The screening analysis used in Burbank2035 and in the Traffic Study analysis relies on the following four overarching City policy groups that support Burbank2035: Any transportation improvement should (1) be achievable within the existing ROW; (2) be in conformity with the existing scale and design of the location they serve; (3) allow for complete streets; and (4) maintain pedestrian opportunities. These four overarching policies are supported by Burbank2035 through several Land Use and Mobility Element policies as well.

Under Burbank2035, a mitigation measure is considered to have significant land use impact when the proposed improvement conflicts with the “ROW Needs” policies or with two or more of the “Scale and Design,” “Complete Streets,” or “Pedestrian Opportunities” policies.

The following intersection improvements were evaluated using an HCM evaluation as shown in Table 5.4-6, *Highway Capacity Manual Evaluation of Mitigations*, and against the City’s policy-based screening analysis, in Table 5.4-7, *Mitigation Policy-Based Screening Analysis*:

- **Hollywood Way and Winona Avenue (Intersection No. 1)**. In order to mitigate Project impacts at Hollywood Way and Winona Avenue, the intersection could be widened and restriped at the northbound approach to include one left-turn lane, two through lanes, and one through/right lane. The restriping of northbound Hollywood Way would provide one additional through lane between just north of Avon Street and just north of Tulare Avenue. The existing curb-to-curb width on North Hollywood Way is approximately 82 feet between Burton Avenue and Tulare Avenue, which is wide enough to accommodate the additional lane without reducing the number of southbound lanes or removing the existing bicycle lanes. As such, this intersection improvement would not conflict with any of the criteria in the policy-based screening analysis and impacts at Hollywood Way and Winona Avenue under the Future Plus Project conditions would be reduced to less than significant levels. The recommended intersection improvement is included as Mitigation Measure TRA-2 and is illustrated on Exhibit 5.4-3, *Proposed Hollywood Way and Winona Avenue (Intersection No.1) Improvement*.

Table 5.4-6
Highway Capacity Manual Evaluation of Mitigations

<table>
<thead>
<tr>
<th>No.</th>
<th>Intersection¹</th>
<th>Jurisdiction²</th>
<th>Peak Hour</th>
<th>Future Base (2028)</th>
<th>Future Plus Project</th>
<th>Future Plus Project Plus Mitigation</th>
<th>Change in Delay</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Delay</td>
<td>LOS</td>
<td>Delay</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Hollywood Way and Winona Avenue</td>
<td>Burbank</td>
<td>a.m.</td>
<td>21.4 C</td>
<td>21.6 C</td>
<td>19.5 B</td>
<td>-2.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>p.m.</td>
<td>21.1 C</td>
<td>21.5 C</td>
<td>16.4 B</td>
</tr>
<tr>
<td>2</td>
<td>Hollywood Way and Thornton Avenue</td>
<td>Burbank</td>
<td>a.m.</td>
<td>52.7 D</td>
<td>54.9 D</td>
<td>35.8 D</td>
<td>-19.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>p.m.</td>
<td>50.3 D</td>
<td>50.1 D</td>
<td>46.5 D</td>
</tr>
<tr>
<td>3</td>
<td>Hollywood Way and North Avon Street</td>
<td>Burbank</td>
<td>a.m.</td>
<td>29.1 C</td>
<td>27.1 C</td>
<td>25.3 C</td>
<td>-3.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>p.m.</td>
<td>26.8 C</td>
<td>29.1 C</td>
<td>26.1 C</td>
</tr>
</tbody>
</table>

Notes:
1. All intersections are signalized.
2. Analysis conducted applying HCM methodology.

Source: Fehr & Peers, *Traffic Impact Study for the Media Studios Office Project*, dated August 2018; refer to Appendix E.
Table 5.4-7
Mitigation Policy-Based Screening Analysis

<table>
<thead>
<tr>
<th>No.</th>
<th>Intersection</th>
<th>Project or Future Impact?</th>
<th>ROW¹ (6’ min. sidewalk)</th>
<th>Physical Mitigation Conflicts with General Plan Policies</th>
<th>Conflicts with ROW or 2 Policies?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Scale/Design²</td>
<td>Complete Streets³</td>
<td>Pedestrian Opportunities⁴</td>
</tr>
<tr>
<td>1</td>
<td>Hollywood Way and Winona Avenue</td>
<td>Future</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>Hollywood Way and Thornton Avenue</td>
<td>Future</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>Hollywood Way and North Avon Street</td>
<td>Future</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>8</td>
<td>Hollywood Way and Victory Boulevard</td>
<td>Future</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Notes: ROW = right-of-way
Burbank2035 provides the City with a framework to determine if intersection improvements are infeasible due to ROW constraints or conflict with community values.

1. ROW needs: A policy conflict is triggered if any ROW acquisition is needed to implement the proposed mitigation, assuming lane width minimums and 6-foot sidewalks.

 Supporting Policies: Mobility Element (Policy 1.2): Recognize that Burbank is a built-out city and wholesale changes to street ROWs are infeasible; and
 Mobility Element (Policy 3.4): All street improvements should be implemented within the existing ROW. Consider street widening and ROW acquisition as a method of last resort.

2. Scale/Design: A policy conflict is triggered if the scale and design go beyond the Maximum Acceptable Mitigations ‘template’ identified in the City of Burbank’s Burbank2035 Environmental Impact Report, or if the mitigation needed increases the existing travel-way width (measured from curb-to-curb) along a “residential/mixed use” area.

 Supporting Policies: Mobility Element (Policy 1.5): Design transportation improvements to be compatible with the scale and design of existing infrastructure.

3. Complete Streets: A conflict is triggered if the mitigation increases the travel-way width along the intersection so as to narrow existing sidewalks, decrease bike lanes widths, or greatly disturb transit/bus stop locations.

 Supporting Policies: Mobility Element (Policy 3.2): Complete city street by providing facilities for all transportation modes; and
 Land Use Element (Policy 4.1): Maintain complete streets that create functional place meeting the needs of pedestrians, bicyclists, wheelchair users, equestrian, and motorists.

4. Pedestrian Opportunities: A conflict is triggered if the proposed mitigation requires sidewalks to go below the minimum sidewalk width standards specified in Mobility Element Table M-2, Sidewalk Standards.

 Supporting Policies: Mobility Element (Policy 3.3): Provide attractive, safe street designs that improve transit, bicycle, pedestrian, and equestrian connections between homes and other destinations;
 Mobility Element (Policy 5.5): Require new development to provide land necessary to accommodate pedestrian infrastructure, including sidewalks at the standard widths specified in Table M-2; and
 Land Use Element (Policy 4.5): Require pedestrian-oriented areas to include amenities such as sidewalks of adequate width, benches, street trees/landscaping, decorative paving, art, kiosks, and restrooms.

Source: Fehr & Peers, Traffic Impact Study for the Media Studios Office Project, dated August 2018; refer to Appendix E.
Proposed Hollywood Way and Winona Avenue (Intersection No.1) Improvement

• **Hollywood Way and Thornton Avenue (Intersection No. 2).** In order to mitigate Project impacts at Hollywood Way and Thornton Avenue, the intersection could be restriped at the southbound approach to include one left-turn lane, two through lanes, and one through/right lane. Northbound Hollywood Way would be restriped to provide one additional through lane between just north of Avon Street and just north of Tulare Avenue. The existing curb-to-curb width on North Hollywood Way at this intersection is approximately 80 feet, which is wide enough to accommodate the additional travel lanes and maintain the existing bicycle lanes. The proposed intersection improvement is included as Mitigation Measure TRA-3 and would reduce the Project’s incremental increase in v/c to a level below significance under Future Plus Project conditions and does not conflict with any of the criteria in the policy-based screening analysis; refer to Exhibit 5.4-4, *Proposed Hollywood Way and Thornton Avenue (Intersection No.2) Improvement*. Thus, impacts at Hollywood Way and Thornton Avenue under the Future Plus Project conditions would be reduced to less than significant levels.

• **Hollywood Way and North Avon Street (Intersection No. 3).** To mitigate the significant Project impacts at North Hollywood Way and North Avon Street would require reconfiguring the westbound approach to one left-turn lane, one through lane, and one right-turn lane. The westbound approach is currently a left-turn lane and a through/right lane. This roadway improvement would reduce the Project’s incremental increase in v/c to less than significant levels under Future Plus Project conditions. However, the existing curb-to-curb width on North Avon Street at this intersection is approximately 36 feet, which is not wide enough to accommodate the additional travel lanes. In order to accommodate this proposed roadway improvement, the street would need to be widened, which would require narrowing sidewalks and/or acquiring ROW from adjacent properties. As such, this improvement conflicts with the Complete Streets and the ROW Needs portions of the Burbank2035 policy-based screening analysis. The improvement would conflict with the Burbank2035 goals and policies and therefore impacts at Hollywood Way and North Avon Street under Future Plus Project conditions would be significant and unavoidable.

• **Hollywood Way and Victory Boulevard (Intersection No. 8).** To mitigate the significant Project impact at Hollywood Way and Victory Boulevard would require widening and restriping the northbound approach. The northbound approach would need to be widened to include one left-turn lane, three through lanes, and one right-turn lane. This roadway improvement would reduce the Project’s incremental increase in v/c to less than significant levels. However, the existing curb-to-curb width on North Hollywood Way at this intersection is approximately 68 feet, which is not wide enough to accommodate the new northbound lanes. In order to accommodate this improvement, the street would need to be widened to at least 80 feet, which would require property acquisition on the northwest corner of the intersection and would also require narrowing sidewalks by 12 feet. Therefore, this proposed roadway improvement conflicts with both the ROW Needs and Complete Streets portions of the policy-based screening analysis. The mitigation would also conflict with the Scale/Design Portion of the policy-based screening analysis, because it would narrow sidewalks below the 15 feet prescribed in the Maximum Acceptable Mitigations template identified in the City of Burbank’s *Burbank2035 Environmental Impact Report*. Thus, the proposed improvement would conflict with the Burbank2035 goals and policies and impacts at Hollywood Way and Victory Boulevard under Future Plus Project conditions would be significant and unavoidable.
Proposed Hollywood Way and Thornton Avenue (Intersection No.2) Improvement

Convert southbound right turn lane to a through/right lane

Realign lanes to accommodate third northbound and southbound receiving lanes

Convert northbound right turn lane to a through/right lane
Overall, under Future Plus Project conditions, potentially significant impacts at the following intersections would be reduced to less than significant with mitigation incorporated:

- Hollywood Way and Winona Avenue (Intersection No. 1)
- Hollywood Way and Thornton Avenue (Intersection No. 2)

The following intersections would have significant and unavoidable impacts under Future Plus Project conditions:

- Hollywood Way and North Avon Street (Intersection No. 3)
- Hollywood Way and Victory Boulevard (Intersection No. 8)

Freeway Ramp Queuing Adjacent to the Project Site

A freeway ramp queuing analysis was conducted at four freeway ramp terminal intersections under the Future and Future Plus Project conditions using the Synchro traffic analysis software.

Traffic Study Table 15C, *Peak Hour Off-Ramp Intersection 95th Percentile Queues — Future Plus Project Conditions*, shows the results of the queuing analysis. As shown, similar to Existing Plus Project conditions, the following one ramp would experience queuing greater than the available storage during Future Plus Project conditions:

- North Hollywood Way and I-5 Southbound Off-Ramp (Intersection No. 21)

This analysis is provided for informational-purposes only, as Caltrans does not have an established significance threshold for ramp queueing. Additional queue analysis was conducted with both the existing stop-control and with a signal at Intersection No. 21. As shown in Traffic Study Table 15C, *Peak Hour Off-Ramp Intersection 95th Percentile Queues with Signal*, implementation of a signal at this intersection would ensure queuing does not exceed the ramp storage at Intersection No. 21.

This location is identified under existing conditions as experiencing queue lengths in excess of the total storage capacity. If the City of Los Angeles were to install a traffic signal at North Hollywood Way and I-5 Southbound Off-Ramp (see signal warrant analysis above), queuing would no longer exceed the available ramp storage. The addition of Project-generated trips would not result in any new queuing deficiencies at any of the other study freeway ramp locations.

Traffic Signal Warrant Analysis

Similar to Existing Plus Project conditions, a signal warrant analysis was conducted at the unsignalized study intersection of North Hollywood Way and I-5 Southbound Off-Ramp (Intersection No. 21) under Future Plus Project conditions. The results of the analysis are presented in Traffic Study Table 16, *Intersection Signal Warrant Analysis*, and detailed signal warrant analysis sheets are shown in Traffic Study Appendix E, *Signal Warrant Analysis*. As shown, similar to Existing Plus Project conditions, a signal warrant is met at the North Hollywood Way and I-5 Southbound Off-Ramp (Intersection No. 21) under the Future Plus Project conditions.
Mitigation Measures:

TRA-2 Prior to final plan approval, the Project Applicant shall demonstrate on the proposed Project plans that Hollywood Way and Winona Avenue (Intersection No. 1) shall be widened and restriped at the northbound approach to include one left-turn lane, two through lanes, and one through/right lane. The restriping of northbound Hollywood Way shall provide one additional through lane between just north of Avon Street and just north of Tulare Avenue. The existing southbound lanes and bicycle lanes along North Hollywood Way between Burton Avenue and Tulare Avenue shall not be removed as the proposed improvements can be accommodated within the existing 82-foot curb-to-curb width of North Hollywood Way. The final plan shall be reviewed and approved by the City Traffic Engineer and the Community Development Director. Proof of compliance with this mitigation measure shall be required in order to receive a certificate of occupancy for the proposed Project.

TRA-3 Prior to final plan approval, the Project Applicant shall demonstrate on the proposed Project plans that Hollywood Way and Thornton Avenue (Intersection No. 2) shall be restriped at the southbound approach to include one left-turn lane, two through lanes, and one through/right lane. The existing bicycle lanes along North Hollywood Way shall not be removed as the proposed additional travel lanes can be accommodated within the existing 80-foot curb-to-curb width of North Hollywood Way. The final plan shall be reviewed and approved by the City Traffic Engineer and the Community Development Director. Proof of compliance with this mitigation measure shall be required in order to receive a certificate of occupancy for the proposed Project.

Level of Significance: Significant and Unavoidable Impact to Intersection No. 3 and Intersection No. 8 as available mitigation to reduce the Project impacts at these intersections would require narrowing of sidewalks and/or acquiring ROW from adjacent properties, which would conflict with the Complete Streets, ROW Needs, and Scale/Design portions of the Burbank2035 policy-based screening analysis.

CONGESTION MANAGEMENT PROGRAM

TRA-3 PROJECT IMPLEMENTATION WOULD NOT CONFLICT WITH AN APPLICABLE CONGESTION MANAGEMENT PROGRAM.

Impact Analysis: The CMP requires that, when an environmental impact report is prepared for a project, traffic and transit impact analyses be conducted for select regional facilities based on the quantity of project traffic expected to use those facilities. This section presents an analysis of potential impacts on the regional transportation system in accordance with the procedures outlined in the 2010 CMP.

ARTERIAL MONITORING STATIONS

As stated above, none of the study area intersections are CMP arterial monitoring stations. The closest arterial monitoring stations are located at the intersection of Victory Boulevard and Woodman Avenue, approximately six miles west of the Project site, and Ventura Boulevard and Lankershim Boulevard, approximately five miles south of the Project site. Based on the Project’s trip distribution and trip generation, the Project is not expected to add 50 peak hour vehicle trips through the CMP arterial monitoring station. Project trips are anticipated to disperse among the transportation network due to
the extended distance between the Project site and the monitoring station and less than 5 percent of Project trips (or a maximum of four trips) are expected at these CMP monitoring stations. The proposed Project is not expected to add enough new traffic to exceed the arterial analysis criteria of 50 vehicle trips at the above-mentioned locations. Therefore, no further CMP arterial analysis is required, and the Project would not conflict with the 2010 CMP.

FREEWAY MONITORING STATIONS

The CMP freeway monitoring stations closest to the Project site include the following:

- I-5 Freeway at Osborne Street, north of SR-170 (approximately five miles north of the site)
- I-5 Freeway north of Burbank Boulevard Burbank Ramps (approximately two miles east of the site)
- I-5 Freeway south of Colorado Boulevard Exit (approximately five miles south of the site)
- SR-134 at Forman Avenue (approximately three miles south of the site)
- SR-134 east of Central Avenue (approximately six miles southeast of the site)
- SR-170 south of Sherman Way (approximately three miles west of the site)

Based on the Project distribution patterns shown on Exhibit 5.4-2 and the trip generation estimates shown in Table 5.4-3, fewer than 150 trips would be added during the a.m. or p.m. peak hours in either direction at any of the freeway segments near the study area. As such, no further analysis of the freeway segments is required, and the Project would not conflict with the 2010 CMP.

REGIONAL TRANSIT ANALYSIS

Appendix B-4 of the 2010 CMP provides a methodology for estimating the number of transit trips expected to result from a proposed project based on the projected number of vehicle trips. This methodology assumes an average vehicle ridership (AVR) factor of 1.4 to estimate the number of person trips to and from the project and then provides guidance regarding the percentage of person trips assigned to public transit depending on the type of land use (e.g., commercial/other uses versus residential use) and the proximity to transit services. The CMP methodology recommends observing the fixed-route local bus services within one-quarter mile of the project site and express bus routes and rail service within two miles of the project site.

The Project site is served by a high level of public transit. Traffic Study Figure 3, Existing Transit Service, shows the various transit routes providing service in the Project area. The Project site is located approximately one quarter mile from the existing Burbank Airport Metro Link Station and approximately one mile south of the Metrolink Station on North San Fernando Boulevard at Hollywood Way. Three local Metro bus routes have a bus stop adjacent to the Project site.

As part of the trip generation estimates presented in Table 5.4-3, a combined transit, walk, and bike credit of 10 percent was taken for the proposed office use. Excluding the transit credit in Table 5.4-3, the proposed Project would have an estimated increase in vehicle trip generation of approximately 149 net vehicle trips during a.m. peak hours and 162 during p.m. peak hours. Converting vehicle trips to transit person trips requires multiplying the vehicle trips by a 1.4 AVR (149 net a.m. peak hour trips x 1.4 = 209 and 162 net p.m. peak hour trips x 1.4 = 227) and applying a 3.5 percent transit use factor as specified by the CMP (209 net a.m. peak hour person trips x 3.5 percent = 7 and 227 net p.m. peak hour person trips
Thus, the Project would result in approximately seven new transit person trips during weekday a.m. peak hours and eight during p.m. peak hours.

The trip generation for the Project assumes a 10 percent vehicle trip transit credit for office uses, that calculates to 7 percent of total person trips, or 15 a.m. peak hour transit users and 16 p.m. peak hour transit users.

Given the frequency of the transit service near the Project site, the transit capacity is over 2,800 persons in each a.m. and p.m. peak periods. Of this capacity, approximately 60 percent will be provided by the two nearby Metrolink stations on North San Fernando Boulevard at Hollywood Way and near the Regional Intermodal Transportation Center, and 40 percent is provided by existing bus service. Thus, the proposed Project would use less than 0.6 percent of available transit capacity during peak morning and evening hours, and Project impacts on regional transit services would be less than significant.

Mitigation Measures: No mitigation measures are required.

Level of Significance: Less Than Significant Impact.

HAZARDOUS TRAFFIC CONDITIONS

TRA-4 DEVELOPMENT OF THE PROPOSED PROJECT WOULD NOT RESULT IN A HAZARDOUS TRAFFIC CONDITION EITHER ON-SITE OR IN THE SURROUNDING AREA.

Impact Analysis: Upon completion of the Phase 6 site, the Media Studios campus would have a new driveway along North Avon Street, one existing driveway along Empire Avenue and two existing driveways along Ontario Street. Access to the entire Media Studios site is available at each driveway as the entire underground parking garage is interconnected. All the access driveways are unsignalized and there are no turn restrictions at any of the driveways.

Sidewalks are provided along North Avon Street, Empire Avenue and Ontario Street adjacent to the site. Within the campus, there are several internal sidewalks that provide access to the existing and proposed buildings.

Traffic counts at the existing Empire Avenue driveway and the existing Ontario Street southern driveway were collected in December 2017. Parking usage information at each existing driveway was provided by the property owner and utilized to estimate the traffic volumes at the existing Ontario Street northern driveway. Since the proposed driveway on North Avon Street would connect to the existing parking garage and three existing driveways on Empire Avenue and Ontario Street, it is anticipated that some of the existing traffic would use the new driveway on North Avon Street to enter and exit the underground parking garage based on more convenient access from their direction of arrival and departure to the site. The anticipated/projected shifts in the existing traffic (not including proposed Project traffic) are shown on Traffic Study Figure 9, Peak Hour Volumes and Lane Configurations Driveway Redistribution – AM(PM).

Table 5.4-8, Driveway Level of Service Analysis, provides the anticipated levels of service at the proposed and existing unsignalized driveways. LOS worksheets for driveway analyses are provided in Traffic Study Appendix E, Signal Warrant Analysis.
Table 5.4-8
Driveway Level of Service Analysis

<table>
<thead>
<tr>
<th>No.</th>
<th>Intersection</th>
<th>Peak Hour</th>
<th>Existing Plus Project</th>
<th>Future Plus Project</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Delay</td>
<td>LOS</td>
</tr>
<tr>
<td>A</td>
<td>North Avon Street and Project Driveway</td>
<td>a.m.</td>
<td>9.5</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p.m.</td>
<td>10.6</td>
<td>B</td>
</tr>
<tr>
<td>B</td>
<td>Ontario Street and 3100 Thornton Driveway</td>
<td>a.m.</td>
<td>10.3</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p.m.</td>
<td>9.9</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>Ontario Street and 2255 Ontario Driveway</td>
<td>a.m.</td>
<td>11.9</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p.m.</td>
<td>11.2</td>
<td>B</td>
</tr>
<tr>
<td>D</td>
<td>Empire Street and 3333 Empire Driveway</td>
<td>a.m.</td>
<td>12.5</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p.m.</td>
<td>17.5</td>
<td>C</td>
</tr>
</tbody>
</table>

Note: Project driveways are analyzed in Traffix using the Highway Capacity Manual 2000 methodology (average vehicular delay reported is for the worst-case approach).

Source: Fehr & Peers, Traffic Impact Study for the Media Studios Office Project, dated August 2018; refer to Appendix E.

As shown, all unsignalized driveways are anticipated to operate at LOS D or better during Existing Plus Project and Future Plus Project conditions. Thus, the Project would not result in hazardous traffic conditions in the Project vicinity. Additionally, the proposed on- and off-site circulation improvements would be required to comply with existing State and local safety design requirements and impacts in this regard would be less than significant.

Mitigation Measures: No mitigation measures are required.

Level of Significance: Less Than Significant Impact.

INADEQUATE EMERGENCY ACCESS

TRA-5 THE PROPOSED PROJECT WOULD NOT RESULT IN INADEQUATE EMERGENCY ACCESS.

Impact Analysis: Local access to the Project site is provided via North Avon Street, Empire Avenue, Hollywood Way, and Ontario Street. These roadways may be interrupted during the construction phase. However, as concluded above under Impact Statement TRA-1, the Project would be subject to compliance with Mitigation Measure TRA-1 to ensure continued public safety and to minimize potential effects of construction activities on study area roadways/intersections. Mitigation Measure TRA-1 requires that the applicant prepare and implement a Construction Management Plan for approval by the City Traffic Engineer and City Building Official for the purposes of ensuring traffic control and public safety during all stages of construction. Implementation of the Construction Management Plan would identify construction vehicle haul routes, specify hours for hauling or transport activities, establish traffic control measures for any street closure, detour, or circulation disruptions, and prohibit the use of local streets, to name a few. The Construction Management Plan would ensure adequate emergency access in the Project area and minimize construction-related impacts related to traffic delay and circulation safety. Therefore, emergency vehicles would have adequate access to the Project site during construction activities. Construction impacts in this regard would be less than significant with mitigation incorporated.

As discussed under Impact Statement TRA-3, vehicles are expected to access the Media Studios site via the newly proposed driveway on North Avon Street or at any of the three existing driveways on Empire
Avenue and Ontario Street. As shown in Table 5.4-8, all four unsignalized driveways are anticipated to operate at LOS D or better during Existing Plus Project and Future Plus Project conditions. Thus, Project operations would result in adequate emergency access and impacts would be less than significant.

In addition, the Project would be designed to ensure emergency vehicle access by fire, police, and other emergency vehicles is maintained into the Project site. Providing adequate emergency vehicle access ensures that these vehicles can easily and quickly respond to service calls. Based on the proposed Project plans, emergency vehicles can access the site through all driveways along North Avon Street, Empire Avenue and Ontario Street. The California Fire Code (CFC) establishes the minimum requirements consistent with nationally recognized good practices to safeguard the public health, safety and general welfare from the hazards of fire, explosion, or dangerous conditions in new and existing buildings, structures, and premises. The Burbank Fire Department conducts safety inspections in accordance with the CFC to ensure compliance.

All internal roadways that provide fire access, referred to as fire apparatus access roads, are required to comply with the CFC Section 503.1. Fire apparatus access roads shall extend to within 150 feet of all portions of a building, shall be no less than 20 feet wide, and shall include turning radii that meet the discretion of the local fire code official (i.e., Burbank Fire Department). For fire apparatus access roads with dead ends where the length of the street is greater than 150 feet, an approved area for turning around fire apparatuses shall be provided. Based on the Project site plan, all proposed internal streets would comply with the CFC. Final approval of the Project site as it relates to fire access would be confirmed during the plan review process. Therefore, Project operations would result in adequate emergency access and impacts would be less than significant.

Mitigation Measures: Refer to Mitigation Measure TRA-1.

Level of Significance: Less Than Significant Impact With Mitigation Incorporated.

MULTIMODAL TRANSPORTATION PLANS

TRA-6 IMPLEMENTATION OF THE PROJECT WOULD NOT CONFLICT WITH ADOPTED MULTIMODAL POLICIES, PLANS, OR PROGRAMS.

Impact Analysis:

TRANSIT SYSTEM IMPACTS

Disruptions to Existing Transit Service

A significant impact would occur if a project or project-related mitigation disrupts existing transit services or facilities. This includes disruptions on transit streets caused by project driveways, impacts to transit stops/shelters, and impacts to transit operations from traffic improvements proposed or resulting from a project.

Bus stops, ADA-accessible sidewalks, and curb ramps that provide access to the bus stops are currently available at the following intersections:
The Project is not anticipated to impact transit circulation along these roadways, and therefore, Project impacts on existing transit service is less than significant.

Interference with Planned Transit Services

A significant impact occurs if a project interferes with planned transit services or facilities. Based on a review of available documents, including BurbankBus’ website and Metro’s *Long Range Transportation Plan*(2009), there are no planned transit services that would be impacted by the development of the Project site. Therefore, Project impacts on planned transit services would be less than significant.

Inconsistencies with Adopted Transit System Plans, Guidelines, Policies, or Standards

A significant impact occurs if a project conflicts or creates inconsistencies with adopted transit system plans, guidelines, policies, or standards. Burbank2035 includes policies supporting the development of alternative transportation programs. Key goals and objectives described in the Burbank2035 Mobility Element include the following:

- Improve Burbank’s alternative transportation access to local and regional destinations through land use decisions that support multimodal transportation.
- Ensure that local transit service is reliable, safe, and provides high-quality service to major employment centers, shopping districts, regional transit centers, and residential areas.

In addition, increased transit usage is a key goal of regional transportation plans and policies:

- The SCAG *Regional Transportation Plan*(2016) includes specific goals of sustainable mobility, including plans to reduce energy consumption and promote transit-friendly development.
- The SCAG *Regional Comprehensive Plan*(2008) includes an adopted policy supporting local jurisdiction programs that encourage the use of transit and thus reduce the need for roadway expansion, reduce the number of auto trips and vehicle miles traveled, and create opportunities for residents to walk and bicycle.

As analyzed above under Impact Statement TRA-3, the proposed Project would result in a nominal increase in transit usage. Additionally, the Project applicant provides ongoing shuttle service from the rail transit stops to the Media Studios campus and would continue to contribute towards the future maintenance and operation of the rail station and locally serving bus lines. Therefore, Project impacts on adopted transit system plans, guidelines, and standards would be less than significant.

BICYCLE NETWORK IMPACTS

Disruptions to Existing Facilities

A significant impact occurs if a project disrupts existing bicycle facilities. Bicycle facilities within the study area include on-street bicycle lanes on North Hollywood Way, Victory Boulevard and Verdugo Avenue.
No physical mitigation measures have been proposed at these study intersections that would eliminate or alter the existing bicycle facilities. As detailed in Mitigation Measures TRA-2 and TRA-3, existing bicycle lanes along North Hollywood Way shall not be removed during implementation of the proposed roadway improvements. Therefore, no existing bicycle facilities would be impacted by the proposed Project and impacts to existing bicycle facilities would be less than significant.

Interference with Planned Bicycle Facilities

A significant impact occurs if a project interferes with planned bicycle facilities that includes failure to dedicate rights-of-way for planned on- and off-street bicycle facilities contemplated in an adopted bicycle master plan or failure to contribute towards construction of planned bicycle facilities along a project’s frontage.

Bicycle facilities planned within the study area include on-street bike lanes along Vanowen Street, and a multi-use trail adjacent to San Fernando Boulevard. Neither the Project nor planned mitigation measures would interfere with the planned bicycle facilities. Rather, the Project would enhance the existing bicycle facilities along existing right-of-way. Thus, Project impacts would be less than significant.

Conflicts with Adopted Bicycle Plans, Guidelines, Policies, or Standards

A significant impact occurs if a project conflicts or creates inconsistencies with adopted bicycle system, plans, guidelines, policies, or standards. In 2009, the City adopted the *City of Burbank Bicycle Master Plan* (Bicycle Master Plan). The Bicycle Master Plan recognized the importance of the bicycle as a viable means of transportation and provides specific recommendations for facilities and programs for the next 25 years. The proposed Project does not conflict with or create inconsistencies with the adopted Bicycle Master Plan, and Project impacts would be less than significant.

PEDESTRIAN NETWORK IMPACTS

Disruptions to Existing Facilities

A significant impact occurs if a project disrupts existing pedestrian facilities. Disruption of existing facilities can include adding new vehicular, pedestrian, or bicycle traffic at locations experiencing pedestrian safety concerns including reduction in the number of pedestrian-acceptable gaps at unsignalized crossings or queues spilling back through pedestrian crossings.

Pedestrian walkways exist within the study area along North Avon Street, Empire Avenue, and Ontario Street. The Project would have no impact on these existing pedestrian network. The Project would include design features to widen the sidewalks and pedestrian pathways along North Avon Street and Empire Avenue. As such, Project impacts to existing pedestrian facilities would be less than significant.

Interference with Planned Pedestrian Facilities

A significant impact occurs if a project interferes with planned pedestrian facilities. In existing or planned urbanized areas, main streets, or pedestrian districts, this can include impacts to the quality of the walking environment. No planned pedestrian facilities would be affected by the Project. As such, Project impacts to planned pedestrian facilities are considered to be less than significant.
Conflicts with Adopted Pedestrian Plans, Guidelines, Policies, or Standards

A significant impact occurs if a project conflicts or creates inconsistencies with adopted pedestrian system plans, guidelines, policies, or standards. The Project does not conflict with any adopted pedestrian system plans, guidelines, policies, or standards. Impacts would be less than significant.

Mitigation Measures: No mitigation measures are required.

Level of Significance: Less Than Significant Impact.

5.4.5 CUMULATIVE IMPACTS

Table 4-1, *Cumulative Projects List*, identifies the related projects and other possible development in the area determined as having the potential to interact with the proposed Project to the extent that a significant cumulative effect may occur. The following discussions are included per topic area to determine whether a significant cumulative effect would occur.

CONSTRUCTION TRAFFIC

- **Construction activities associated with the proposed Project and other related cumulative projects, could adversely affect the existing traffic capacity.**

Impact Analysis: Construction activities associated with the proposed Project and cumulative projects may overlap, resulting in traffic impacts to local roadways. However, as stated, construction activity associated with the proposed Project would not result in significant traffic impacts to studied intersections. Further, implementation of Mitigation Measure TRA-1 would ensure a Construction Management Plan is prepared and implemented to reduce construction-related traffic impacts on the local circulation system within the Project area. Cumulative development projects would also be required to reduce construction traffic impacts on the local circulation system and implement any required mitigation measures that may be prescribed pursuant to CEQA provisions. Therefore, the Project’s contribution to cumulative construction traffic impacts would be less than significant.

Mitigation Measures: Refer to Mitigation Measure TRA-1.

Level of Significance: Less than Significant With Mitigation Incorporated.

PROJECT TRAFFIC GENERATION

- **Implementation of the proposed project and other related cumulative projects, could cause a significant increase in traffic for existing and future cumulative conditions when compared to the traffic capacity of the street system.**

Impact Analysis: The Traffic Study prepared for the Project analyzed Future Base (Year 2028) conditions, which estimates future traffic conditions in the area both without and with Project-generated traffic. These forecasts included traffic increases as a result of both regional ambient traffic growth and traffic generated by related projects, as listed in Traffic Study Table 7, *Related Projects Trip Generation*
Estimates, and illustrated on Traffic Study Figure 11, Related Projects. As such, the Future Plus Project conditions analyzed under Impact Statement TRA-2 is an analysis of the Project’s cumulative impacts. As summarized in Table 5.4-5, Future Plus Project conditions would result in the following ten deficient intersections:

- North Hollywood Way and Winona Avenue (Intersection No. 1)
- North Hollywood Way and Thornton Avenue (Intersection No. 2)
- Empire Avenue and Vanowen Street (Intersection No. 7)
- North Hollywood Way and Victory Boulevard (Intersection No. 8)
- North Hollywood Way and Burbank Boulevard (Intersection No. 9)
- North Hollywood Way and Magnolia Boulevard (Intersection No. 10)
- North Hollywood Way and Verdugo Avenue (Intersection No. 11)
- North Hollywood Way and West Alameda Avenue (Intersection No. 12)
- North Buena Vista Street and North San Fernando Boulevard (Intersection No. 13)
- West Burbank Boulevard and Victory Boulevard (Intersection No. 19)

However, as shown in Table 5.4-5, the Project’s increase at six of these intersections is below regulatory thresholds, and thus, considered less than significant. Thus, the change in v/c for the ten deficient intersections would only result in a potentially significant impact for the following four intersections based on the City’s performance criteria under Future Plus Project conditions:

- North Hollywood Way and Winona Avenue (Intersection No. 1)
- North Hollywood Way and Thornton Avenue (Intersection No. 2)
- North Hollywood Way and North Avon Street (Intersection No. 3)
- North Hollywood Way and Victory Boulevard (Intersection No. 8)

Implementation of Mitigation Measures TRA-2 and TRA-3 would reduce impacts to less than significant levels for North Hollywood Way and Winona Avenue (Intersection No. 1) and North Hollywood Way and Thornton Avenue (Intersection No. 2).

However, available mitigation to reduce Project impacts at North Hollywood Way and North Avon Street (Intersection No. 3) and North Hollywood Way and Victory Boulevard (Intersection No. 8) would require narrowing of sidewalks and/or acquiring ROW from adjacent properties, which would conflict with the Complete Streets, ROW Needs, and Scale/Design portions of the Burbank2035 policy-based screening analysis. As such, these improvements cannot be implemented and the Project’s cumulative impacts to North Hollywood Way and North Avon Street (Intersection No. 3) and North Hollywood Way and Victory Boulevard (Intersection No. 8) would remain significant and unavoidable under Future Plus Project conditions.

Mitigation Measures: Refer to Mitigation Measures TRA-2 and TRA-3.

Level of Significance: Significant and Unavoidable Impact to Intersection No. 3 and Intersection No. 8, as available mitigation to reduce Project impacts at these intersections would require narrowing of sidewalks and/or acquiring ROW from adjacent properties, which would conflict with the Complete Streets, ROW Needs, and Scale/Design portions of the Burbank2035 policy-based screening analysis.
CONGESTION MANAGEMENT PROGRAM

- PROJECT IMPLEMENTATION WITH OTHER RELATED CUMULATIVE PROJECTS WOULD NOT CONFLICT WITH AN APPLICABLE CONGESTION MANAGEMENT PROGRAM.

Impact Analysis: None of the study area intersections are CMP arterial or freeway monitoring stations. The closest arterial monitoring stations are located at:

- Victory Boulevard and Woodman Avenue (approximately six miles west of the Project site)
- Ventura Boulevard and Lankershim Boulevard (approximately five miles south of the Project site)

The closest freeway monitoring stations are located at:

- I-5 Freeway at Osborne Street, north of SR-170 (approximately five miles north of the site)
- I-5 Freeway north of Burbank Boulevard Burbank Ramps (approximately two miles east of the site)
- I-5 Freeway south of Colorado Boulevard Exit (approximately five miles south of the site)
- SR-134 at Forman Avenue (approximately three miles south of the site)
- SR-134 east of Central Avenue (approximately six miles southeast of the site)
- SR-170 south of Sherman Way (approximately three miles west of the site)

Based on the Project’s trip distribution and trip generation, the proposed Project is not expected to add enough new traffic to exceed the arterial analysis criteria of 50 vehicle trips or the freeway analysis criteria of 150 peak hour trips at the above-mentioned locations. Therefore, no further CMP analysis is required, and the Project would not conflict with the 2010 CMP. Project impacts in this regard are less than significant and are not cumulatively considerable.

Mitigation Measures: No mitigation measures are required.

Level of Significance: Less Than Significant Impact.

HAZARDOUS TRAFFIC CONDITIONS

- DEVELOPMENT OF THE PROPOSED PROJECT, AND OTHER RELATED CUMULATIVE PROJECTS, WOULD NOT CUMULATIVELY RESULT IN HAZARDOUS TRAFFIC CONDITIONS.

Impact Analysis: Traffic Study Figure 11, Related Projects, shows the closest cumulative project to the Project site to be the Airport Hotels at 2500 North Hollywood Way directly north of the Project site. Based on the Airport Hotels site plans, the proposed hotel buildings would be constructed in the northeast quadrant of the site and primary vehicular access to the hotels would be provided via two driveways along Thornton Avenue with secondary access via North Hollywood Way and Marriot Way. These driveways are not within the vicinity of the proposed Project’s driveway along North Avon Street. As such, the Project would not cumulatively create any hazardous traffic conditions in relation to the Airport Hotels site, and Project impacts would not be cumulatively considerable. Impacts in this regard would be less than significant.
Mitigation Measures: No mitigation measures are required.

Level of Significance: Less Than Significant Impact.

INADEQUATE EMERGENCY ACCESS

- PROJECT DEVELOPMENT IN CONJUNCTION WITH RELATED PROJECTS WOULD NOT RESULT IN INADEQUATE EMERGENCY ACCESS.

Impact Analysis: The closest related project that may have a cumulative impact to emergency access in the Project vicinity is the Airport Hotels at 2500 North Hollywood Way directly north of the Project site. However, access to the Airport Hotels site is provided via two proposed driveways along Thornton Avenue with secondary access along North Hollywood Way. It would not coincide with the proposed Project’s driveway along North Avon Street or an existing fire/service roadway connecting to the main Media Studios campus. Further, as stated above, the proposed Project would not result in inadequate emergency access during construction. A Construction Management Plan would be prepared and implemented to ensure construction activities do not result in traffic delays or emergency access impacts (see Mitigation Measure TRA-1). Similar to the proposed Project, cumulative projects would also be required to comply with applicable safety standards for emergency vehicle access. Therefore, the Project’s contribution to cumulative construction-related emergency access would be less than significant.

Mitigation Measures: Refer to Mitigation Measure TRA-1

Level of Significance: Less Than Significant Impact With Mitigation Incorporated.

MULTIMODAL TRANSPORTATION PLANS

- IMPLEMENTATION OF THE PROJECT AND OTHER CUMULATIVE PROJECTS WOULD NOT CONFLICT WITH ADOPTED MULTIMODAL POLICIES, PLANS, OR PROGRAMS.

Impact Analysis: As detailed above, development of the proposed Project would not result in any substantial increase in transit usage and is not anticipated to impact existing or planned transit circulation on surrounding roadways. The Project also does not propose any development or mitigation that would physically alter or eliminate existing or planned bicycle and pedestrian facilities in the Project vicinity. Overall, the Project would not conflict with any adopted pedestrian system plans, guidelines, policies, or standards. As such, the proposed Project could not cumulatively contribute to impacts regarding multimodal transportation plans, and impacts would be less than significant.

Mitigation Measures: No mitigation measures are required.

Level of Significance: Less Than Significant Impact.
5.4.6 SIGNIFICANT UNAVOIDABLE IMPACTS

Despite compliance with mitigation measures, the proposed Project would result in significant and unavoidable impacts regarding the following:

- **Hollywood Way and North Avon Street (Intersection No. 3).** Project-generated trips would result in a significant impact at the intersection of Hollywood Way and North Avon Street for the weekday p.m. peak hour for the Future Plus Project conditions. To mitigate this impact would require reconfiguring the westbound approach to one left-turn lane, one through lane, and one right-turn lane. However, the existing curb-to-curb width on North Avon Street at this intersection is approximately 36 feet, which is not wide enough to accommodate the additional travel lanes. In order to accommodate this mitigation, the street would need to be widened, which would require narrowing sidewalks and/or acquiring ROW from adjacent properties. Therefore, this mitigation conflicts with the Complete Streets and Pedestrians and/or the ROW Needs portions of the Burbank2035 policy-based screening analysis and is considered significant and unavoidable. This significant and unavoidable impact is also cumulatively considerable.

- **Hollywood Way and Victory Avenue (Intersection No. 8).** Project-generated trips would result in a significant impact at the intersection of Hollywood Way and Victory Avenue for the weekday p.m. peak hour for the Future Plus Project conditions. In order to mitigate the impact to a less than significant level, it would have to be widened and restriped at the northbound approach to include one left-turn lane, three through lanes, and one right-turn lane. However, the existing curb-to-curb width on North Hollywood Way at this intersection is approximately 68 feet, which is not wide enough to accommodate the new northbound lanes. In order to accommodate this roadway improvement, the street would need to be at widened to at least 80 feet, which would require narrowing sidewalks by 12 feet since the existing ROW does not allow for the added width. Therefore, this mitigation conflicts with the Complete Streets portion of the Burbank2035 policy-based screening analysis. The mitigation would also conflict with the Scale/Design Portion of the policy-based screening analysis, because it would narrow sidewalks below the 15 feet prescribed in the Maximum Acceptable Mitigations template identified in the Burbank2035 FEIR. Therefore, the impact is considered significant and unavoidable. This significant and unavoidable impact is also cumulatively considerable.

If the City of Burbank approves the Project, the City shall be required to make findings in accordance with CEQA Guidelines Section 15091 and adopt a Statement of Overriding Considerations in accordance with CEQA Guidelines Section 15093.